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3D CRYSTAL IMAGE ANALYSIS
BASED ON FAST SYNCHROSQUEEZED TRANSFORMS∗

TAO ZHANG† , LING LI‡ , AND HAIZHAO YANG§

Abstract. We propose an efficient algorithm to analyze 3D crystal structure at the individual
particle level based on a fast 3D synchrosqueezed wave packet transform. The proposed algorithm
can automatically extract microscopic information from 3D atomic/particle resolution crystal images,
e.g., crystal orientation, defects, and deformation, which are important information for characterizing
material properties as well as potentially understanding the underlying formation processes. The effec-
tiveness of our algorithms is illustrated by experiments of synthetic datasets and real 3D microscopic
colloidal images.
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1. Introduction

The microstructure of materials, e.g., the dynamics of defects (e.g., grain bound-
aries and isolated dislocations) and grain deformation, is one of the key factors that
determines the physical properties of crystalline materials [9,22,36]. A thorough under-
standing of the role of the microscopic dynamics helps the design of advanced functional
materials in many applications. To study the impact of the microscopic dynamics, it is
necessary to obtain experimental data throughout the crystal fabrication process and
monitor the change of microstructure. A major bottleneck in this process is then analyz-
ing this dynamic information, which often involves time-consuming manual structural
identification and classification, and sometimes is even beyond the capability of manual
evaluation, e.g., grain deformation.

For the purpose of automatical and efficient data analysis, there has been extensive
research in designing crystal image analysis tools [4–7,18,19,24,26,27,39,44,50,54] for
2D data coming from advanced imaging techniques (such as high resolution transmission
electron microscopy (HR-TEM) [25]), mean field models like phase field crystals [17], and
the atomic simulation of molecular dynamics [1]. These algorithms include the famous
variational methods for texture classification and segmentation (see [3,10,29,30,34,41,42]
for example) with adaptation to crystal image analysis [5, 6, 18,19,37], the phase-space
analysis methods [26, 27, 35, 40, 50], the algorithms based on atom positions [7, 38], and
more recently deep learning approaches [28,33,51–53].

However, the majority of existing crystal analysis methods in the literature are
limited to 2D data and hence cannot meet the demand of 3D materials synthesis [23].
To the best of our knowledge, only a few 3D crystal image analysis methods were
previously reported ( [20] for grain segmentation assuming that the crystal lattice was
known, [53] for the identification of lattice symmetry of simulated crystal structures).
An automatic algorithm for a complete analysis including lattice classification, grain
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segmentation, defect detection, deformation estimation, etc., is still not available. This
motivates the development of a complete framework to analyze 3D crystal structure at
the individual particle level in this paper.

Our first contribution is the development of a fast 3D synchrosqueezed transform
(SST) based on a 3D wave packet transform with geometric scaling parameters to con-
trol the support sizes of wave packets, making the 3D SST adaptive to complicated
atomic/particle configurations. A band-limited version of the SST significantly speeds
up its application to 3D data making it practical for large images. Our second contribu-
tion is to extend the algorithms in [26,27,50] to 3D based on the 3D SST. In 3D space,
the atomic/particle configurations become much more complicated: the rotation of crys-
tal lattices is characterized by two sphere angles, and there are much more classes of
lattices in 3D than 2D as shown in Figure 1.1 including triclinic, monoclinic, orthorhom-
bic, tetragonal, hexagonal and cubic. Finally, the proposed method is a model-based
method that could work for different kinds of atomic/particle crystal images from real
experiments and computer simulations, which is different to data-based methods (e.g.,
deep learning methods [28, 33, 51–53]) that are sensitive to training data (e.g., neural
networks trained with synthetic data might not work for experimental data). Analysis
results of 3D experimental data are usually limited (too expensive to obtain manually)
and even not available (impossible for manual measurement). Hence, the proposed al-
gorithm in this paper could serve as a useful tool to prepare training data from real
experiments for data-based approaches.

Fig. 1.1. Six fundamental 3D Bravais lattices: 1 triclinic, 2 monoclinic, 3 tetragonal, 4 or-
thorhombic, 5 cubic, and 6 hexagonal. Courtesy of Wikipedia.

The rest of the paper is organized as follows. In Section 2, we introduce an
atomic/particle crystal image model based on 3D general intrinsic-mode-type functions,
and prove that the 3D SST is able to estimate the local properties of atomic/particle
crystal images. In Section 3, we present a fast 3D band-limited synchrosqueezed wave
packet transform to detect crystal defects, estimate crystal rotations and elastic defor-
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mations. In Section 4, several numerical examples of synthetic and real crystal images
are provided to demonstrate the robustness and the reliability of our methods. Finally,
we conclude with some discussion in Section 5.

2. Theory of 3D SST and atomic/particle crystal analysis
This section consists of three parts: In the first part, we introduce a new 3D SST

based on 3D wave packet transform with a geometric scaling parameter s∈ ( 1
2 ,1) to

control the support sizes of wave packets. In the second part, we introduce 3D general
intrinsic-mode-type functions to model atomic/particle crystal images. In the last part,
we prove that the 3D SST is able to estimate local wave vectors of general intrinsic-
mode-type functions accurately, providing useful information for crystal image analysis.

2.1. 3D SST. One-dimensional SSTs are well-developed tools for empirical mode
decomposition and time-frequency analysis [2,11,13–15,31,47] with better robustness in
analyzing noisy signals than the short-time Fourier transform [48,49]. Two-dimensional
SSTs have been proposed recently in [12, 45, 46]. However, 3D synchrosqueezed trans-
forms have not been explored previously. Motivated by 3D crystal image analysis, we
propose the 3D SST based on wave packet transforms (SSWPT) with a geometric scal-
ing parameter s as follows. From now on, we will use n to denote the dimension in this
section. The proposed transform and analysis later work for n= 1, 2, and 3. Through-
out this paper, the spatial variable would be denoted as x or b, and the variable in the
Fourier domain would be denoted as ξ, a, or v.

First, we introduce an n-dimensional mother wave packet w(x)∈Cm(Rn) of type
(ε,m) such that ŵ(ξ) has an essential support in the unit ball B1(0) centered at the
frequency origin with a radius 11, i.e.,

|ŵ(ξ)|≤ ε

(1+ |ξ|)m
,

for |ξ|>1 and some non-negative integer m. A family of n-dimensional wave packets is
obtained by isotropic dilation, rotations and translations of the mother wave packet as
follows, controlled by a geometric parameter s.

Definition 2.1. Given the mother wave packet w(x) of type (ε,m) and the parameter
s∈ (1/2,1), the family of wave packets {wab(x) :a,b∈Rn,|a|≥1} are defined as

wab(x) = |a|ns/2w(|a|s(x−b))e2πi(x−b)·a,

or equivalently in the Fourier domain

ŵab(ξ) = |a|−ns/2e−2πib·ξŵ
(
|a|−s(ξ−a)

)
.

In this definition, we require |a|≥1. The reason is that, when |a|<1, the above
consideration regarding the shape of the wave packets is no longer valid. However, since
we are mostly concerned with the high frequencies as the signals of interest here are
oscillatory, the case |a|<1 is essentially irrelevant.

Some properties can be seen immediately from the definition: the Fourier transform
ŵab(ξ) is essentially supported in B|a|s (a), a ball centered at a with a radius |a|s;
wab(x) is centered in space at b with an essential support of width O(|a|−s). An n-
dimensional SSWPT with a smaller s value is better at distinguishing two intrinsic-
mode-type functions with close propagating directions and is more robust [48] against

1In our numerical implementation, the mother wave packet has an essential support Bd(0) in the
Fourier domain, where d is an adjustable parameter.
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noise. This is the motivation to propose the wave packet transform here instead of
adopting the wavelet transform corresponding to the case of s= 1. With this family of
wave packets, we define the wave packet transform as follows.

Definition 2.2. The wave packet transform of a function f(x) is a function

Wf (a,b) = 〈f,wab〉=
∫
Rn
f(x)wab(x)dx

for a,b∈Rn,|a|≥1.

If the Fourier transform f̂(ξ) vanishes for |ξ|<1, it is easy to check that the L2-
norms of Wf (a,b) and f(x) are equivalent, up to a uniform constant factor, i.e.,∫

R2n

|Wf (a,b)|2dadbh
∫
Rn
|f(x)|2dx. (2.1)

Definition 2.3. The local wave vector estimation of a function f(x) at (a,b)∈R2n is

vf (a,b) =

{∇bWf (a,b)
2πiWf (a,b) , for Wf (a,b) 6= 0;

(∞,. ..,∞)∈Rn, otherwise.

Given the wave vector estimation vf (a,b), the synchrosqueezing step reallocates the
information in the phase space and provides a sharpened phase space representation of
f(x) in the following way.

Definition 2.4. Given f(x), the SST (or synchrosqueezed energy distribution),
Tf (v,b), is defined by

Tf (v,b) =

∫
Rn\B1(0)

|Wf (a,b)|2δ (Revf (a,b)−v)da

for v,b∈Rn.

As we shall see, for f(x) =α(x)e2πiNφ(x) with a sufficiently smooth amplitude α(x)
and a sufficiently steep phase Nφ(x), we can show that for each b, the estimation vf (a,b)
indeed approximates N∇φ(b) independently of a as long as Wf (a,b) is non-negligible.
As a direct consequence, for each b, the essential support of Tf (v,b) in the v variable
concentrates near N∇φ(b) (see Figure 2.1 for an example). In addition, we have the
following property∫

Tf (v,b)dvdb=

∫
|Wf (a,b)|2δ(Revf (a,b)−v)dvdadb=

∫
|Wf (a,b)|2dadbh‖f‖22

from Fubini’s theorem and the norm equivalence (2.1), for any f(x) with its Fourier
transform vanishing for |ξ|<1.

Now we show that the SST can distinguish well-separated local wavevec-
tors {Nk∇φk(x)}1≤k≤K from a superposition of multiple components f(x) =∑K
k=1αk(x)e2πiNkφk(x).

Definition 2.5. A function f(x) =α(x)e2πiNφ(x) is an intrinsic-mode-type function
(IMT) of type (M,N) if α(x) and φ(x) satisfy

α(x)∈C∞, |∇α(x)|≤M, 1/M ≤α(x)≤M
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Fig. 2.1. Suppose the data f(x)= e2πiN(x1+x2+x3) with N =20 for x=(x1,x2,x3)∈ [0,1]3. Left:
|Wf (a,b)| at b=(0.5,0.5,0.5) and a3=20. Right: Tf (a,b) at the same location b and a3. |Wf (a,b)| has
been reallocated to form a sharp phase space representation Tf (a,b).

φ(x)∈C∞, 1/M ≤|∇φ(x)|≤M, |∇2φ(x)|≤M.

Definition 2.6. A function f(x) is a well-separated superposition of type (M,N,K,s)
if

f(x)=

K∑
k=1

fk(x)

where each fk(x)=αk(x)e
2πiNkφk(x) is an IMT of type (M,Nk) with Nk≥N and the

phase functions satisfy the separation condition: for any (a,b)∈R2n, there exists at most
one fk satisfying that

|a|−s |a−Nk∇φk(b)|≤1.

We denote by F (M,N,K,s) the set of all such functions.

The following theorem illustrates the main results of the n-dimensional SST for a
superposition of IMTs. In what follows, when we write O(·), �, or �, the implicit
constants may depend on M , m and K.

Theorem 2.1. Suppose the n-dimensional mother wave packet is of type (ε,m), for
any fixed ε∈ (0,1) and any fixed integer m≥0. For a function f(x), we define

Rε={(a,b) : |Wf (a,b)|≥ |a|−ns/2
√
ε},

Sε={(a,b) : |Wf (a,b)|≥
√
ε},

and

Zk={(a,b) : |a−Nk∇φk(b)|≤ |a|s}

for 1≤k≤K. For fixed M , m, and K there exists a constant N0 (M,m,K,s,ε)�
max

{
ε

−2
2s−1 ,ε

−1
1−s

}
such that for any N >N0 and f(x)∈F (M,N,K,s) the following

statements hold:

(i) {Zk : 1≤k≤K} are disjoint and Sε⊂Rε⊂
⋃

1≤k≤KZk;
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(ii) For any (a,b)∈Rε∩Zk,

|vf (a,b)−Nk∇φk(b)|
|Nk∇φk(b)|

.
√
ε;

(iii) For any (a,b)∈Sε∩Zk,

|vf (a,b)−Nk∇φk(b)|
|Nk∇φk(b)|

.N−ns/2k

√
ε.

Lemma 2.1. Suppose Ωa={k : |a|∈ [ Nk2M ,2MNk]}. Under the assumption of Theorem
2.1, we have

Wf (a,b) = |a|−ns/2
(∑
k∈Ωa

αk(b)e2πiNkφk(b)ŵ
(
|a|−s (a−Nk∇φk(b))

)
+O(ε)

)
,

when N >N0 (M,m,K,s,ε)'max
{
ε

−2
2s−1 ,ε

−1
1−s

}
.

Proof. Let us first estimate Wf (a,b) assuming that f(x) contains a single intrinsic
mode function of type (M,N)

f(x) =α(x)e2πiNφ(x).

Using the definition of the wave packet transform, we have the following expression for
Wf (a,b).

Wf (a,b) =

∫
α(x)e2πiNφ(x)|a|ns/2w(|a|s(x−b))e−2πi(x−b)·adx

=

∫
α(b+ |a|−sy)e2πiNφ(b+|a|−sy)|a|ns/2w(y)e−2πi|a|−sy·ad(|a|−sy)

= |a|−ns/2
∫
α(b+ |a|−sy)w(y)e2πi(Nφ(b+|a|−sy)−|a|−sy·a)dy.

We claim that when N is sufficiently large

Wf (a,b) =

{
|a|−ns/2O(ε), |a| /∈ [ N2M ,2MN ]

|a|−ns/2
(
α(b)e2πiNφ(b)ŵ(|a|−s(a−N∇φ(b)))+O(ε)

)
, |a|∈ [ N2M ,2MN ].

(2.2)
First, let us consider the case |a| /∈ [ N2M ,2MN ]. Consider the integral∫

h(y)eig(y)dy

for smooth real functions h(y) and g(y), along with the differential operator

L=
1

i

〈∇g,∇〉
|∇g|2

.

If |∇g| does not vanish, we have

Leig =
〈∇g,i∇geig〉

i|∇g|2
=eig.
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Assuming that h(y) decays sufficiently fast at infinity, we perform integration by parts
r times to get ∫

heigdy=

∫
h(Lreig)dy=

∫
((L∗)rh)eigdy,

where L∗ is the adjoint of L. In the current setting, Wf (a,b) = |a|−ns/2
∫
h(y)eig(y)dy

with

h(y) =α(b+ |a|−sy)w(y), g(y) = 2π(Nφ(b+ |a|−sy)−|a|−sy ·a),

where h(y) clearly decays rapidly at infinity since w(y) is in the Schwartz class. In order
to understand the impact of L and L∗, we need to bound the norm of

∇g(y) = 2π
(
N∇φ(b+ |a|−sy)−a

)
|a|−s

from below when |a| /∈ [ N2M ,2MN ]. If |a|< N
2M , then

|∇g|& (|N∇φ|−|a|)|a|−s& |N∇φ||a|−s/2&N1−s.

If |a|>2MN , then

|∇g|& (|a|−|N∇φ|)|a|−s& |a| · |a|−s/2& (|a|)1−s&N1−s.

Hence |∇g|&N1−s if |a| /∈ [ N2M ,2MN ]. Since |∇g| 6= 0 and each L∗ contributes a factor
of order 1/|∇g| ∣∣∣∣∫ eig(y)((L∗)rh)(y)dy

∣∣∣∣.N−(1−s)r.

When we choose r sufficiently large depending on ε, N , and s such that

N & ε−1/((1−s)r), (2.3)

we obtain ∣∣∣∣∫ eig(y)((L∗)rh)(y)dy

∣∣∣∣. ε.
Using the fact Wf (a,b) = |a|−ns/2

∫
h(y)eig(y)dy, we have |Wf (a,b)|. |a|−ns/2ε.

Second, let us address the case |a|∈ [ N2M ,2MN ]. We want to approximate Wf (a,b)
with

|a|−ns/2α(b)e2πiNφ(x)ŵ
(
|a|−s(a−N∇φ(b))

)
.

Since w(y) is in the Schwartz class, we can assume that |w(y)|≤ Cu
|y|u for some sufficiently

large u (depending on ω(y) only) with Cu for |y|≥1. Therefore, the integration over
|y|& ε−1/u yields a contribution of at most order O(ε). We can then estimate

|Wf (a,b)|= |a|−ns/2
(∫
|y|.ε−1/u

α(b+ |a|−sy)w(y)e2πi(Nφ(b+|a|−sy)−|a|−sy·a)dy+O(ε)

)
.

A Taylor expansion of α(x) and φ(x) shows that

α(b+ |a|−sy) =α(b)+∇α(b∗) · |a|−sy
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and

φ(b+ |a|−sy) =φ(b)+∇φ(b) ·(|a|−sy)+
1

2
(|a|−sy)T∇2φ(b∗∗)(|a|−sy),

where in each case b∗ or b∗∗ is a point between b and b+ |a|−sy. We want to drop the
last term from the above formulas without introducing a relative error larger than O(ε).
We begin with the estimate∫

|y|.ε−1/u

|∇α · |a|−syw(y)|dy. ε,

which holds if ε−n/u|∇α · |a|−sy|. ε, which is true when |a|−s. ε1+(n+1)/u. Since |a|∈
[ N2M ,2MN ], the above holds if

N & ε−(1+(n+1)/u)/s. (2.4)

We also need∫
|y|.ε−1/u

|α(b)w(y)e2πi(Nφ(b)+N∇φ(b)·|a|−sy−|a|−sy·a)| · |e2πiN/2(|a|−sy)T∇2φ(|a|−sy)−1|dy. ε.

Since |eix−1|≤ |x|, the above inequality is true if the following term is asymptotically
bounded by ε∫
|y|.ε−1/u

∣∣∣α(b)w(y)e2πi(Nφ(b)+N∇φ(b)·|a|−sy−|a|−sy·a)
∣∣∣ · ∣∣2πN/2(|a|−sy)T∇2φ(|a|−sy)

∣∣dy,
which is true if ε−n/uN(|a|−sy)T∇2φ(|a|−sy). ε, which in turn holds if N |a|−2s|y|2 .
ε1+n/u. Because |y|. ε− 1

u and |a|∈ [ N2M ,2MN ], the above inequality is valid when

N & ε−(1+(n+2)/u)/(2s−1). (2.5)

In summary, for N larger than the maximum of the right-hand sides of (2.3), (2.4) and
(2.5), if |a|∈ [ N2M ,2MN ] then we have

Wf (a,b) = |a|−ns/2
(∫
|y|.ε−1/u

α(b)w(y)e2πi(Nφ(b)+N∇φ(b)·|a|−sy−|a|−sy·a)dy+O(ε)

)

= |a|−ns/2
(∫
|y|.ε−1/u

(
α(b)e2πiNφ(b)

)
w(y)e2πi(N∇φ(b)−a)·|a|−sydy+O(ε)

)

= |a|−ns/2
(∫

Rn

(
α(b)e2πiNφ(b)

)
w(y)e2πi(N∇φ(b)−a)·|a|−sydy+O(ε)

)
= |a|−ns/2

(
α(b)e2πiNφ(b)ŵ

(
|a|−s(a−N∇φ(b))

)
+O(ε)

)
,

where the third line uses the fact that the integration of w(y) outside the set {y : |y|.
ε−1/u} is again of order O(ε).

Now let us return to the general case, where f(x) is a superposition of K well-
separated intrinsic mode components:

f(x) =
K∑
k=1

fk(x) =
K∑
k=1

αk(x)e2πiNkφk(x).
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By linearity of the wave packet transform and (2.2), we find:

Wf (a,b)= |a|−ns/2

 ∑
k∈Ωa={k:|a|∈[

Nk
2M

,2MNk]}

αk(b)e
2πiNkφk(b)ŵ

(
|a|−s(a−Nk∇φk(b))

)
+O(ε)

.

The next lemma estimates ∇bWf (a,b) when Ωa is not empty, i.e., the case where
Wf (a,b) is non-negligible.

Lemma 2.2. Suppose Ωa={k : |a|∈ [ Nk2M ,2MNk]}. Under the assumption of Theorem
2.1, we have

∇bWf (a,b)=2πi|a|−
ns
2

(∑
k∈Ωa

Nk∇φk(b)αk(b)e2πiNkφk(b)ŵ
(
|a|−s (a−Nk∇φk(b))

)
+ |a|O(ε)

)
,

when N >N0 (M,m,K,s,ε)'max
{
ε

−2
2s−1 ,ε

−1
1−s

}
.

Proof. The proof is similar to that of Lemma 2.1. Assume that f(x) contains a
single intrinsic mode function, i.e.,

f(x) =α(x)e2πiNφ(x),

then

∇bWf (a,b)

=

∫
Rn
α(x)e2πiNφ(x)|a|ns2 (∇w(|a|s(x−b))(−|a|s)+2πiaw(|a|s(x−b)))e−2πi(x−b)·adx

=

∫
Rn
α(b+ |a|−sy)e2πiNφ(b+|a|−sy)|a|−ns/2∇w(y)(−|a|s)e−2πi|a|−sy·ady

+

∫
Rn
α(b+ |a|−sy)e2πiNφ(b+|a|−sy)|a|−ns/22πiaw(y)e−2πi|a|−sy·ady.

Forming a Taylor expansion and following the same argument as in the proof of Lemma
2.1 gives the following approximation for |a|∈ [ N2M ,2MN ]

∇bWf (a,b) =
(
−2πi|a|−ns/2(a−N∇φ(b))α(b)e2πiNφ(b)ŵ(|a|−s(a−N∇φ(b)))+O(ε)

)
+2πi|a|−ns/2a

(
α(b)e2πiNφ(b)ŵ

(
|a|−s(a−N∇φ(b))

)
+O(ε)

)
=2πi|a|−ns/2

(
N∇φ(b)α(b)e2πiNφ(b)ŵ(|a|−s(a−N∇φ(b)))+ |a|O(ε)

)
.

For f(x) =
∑K
k=1fk(x) =

∑K
k=1αk(x)e2πiNkφk(x), taking sum over K terms gives

∇bWf (a,b)

=2πi|a|−ns2
(∑
k∈Ωa

(
Nk∇φk(b)αk(x)e2πiNkφk(b)ŵ(|a|−s(a−Nk∇φk(b)))

)
+ |a|O(ε)

)
.

We are now ready to prove the theorem.
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Proof. (Proof of Theorem 2.1.)
For (i), the well-separation condition implies that {Zk : 1≤k≤K} are disjoint.

Let (a,b) be a point in Rε={(a,b) : |Wf (a,b)|≥ |a|−ns/2
√
ε}. From the above lemma,

we have

O(
√
ε)≤Wf (a,b) = |a|−ns/2

(∑
k∈Ωa

αk(b)e2πiNkφk(b)ŵ
(
|a|−s(a−Nk∇φk(b))

)
+O(ε)

)
.

Therefore, there exists k between 1 and K such that ŵ(|a|−s(a−Nk∇φk(b))) has a
magnitude larger than O(

√
ε), otherwise Wf (a,b) will be less than O(

√
ε). From the

definition of ŵ(ξ), we see that this implies (a,b)∈Zk, otherwise ŵ(|a|−s(a−Nk∇φk(b)))

is less than O(
√
ε) due to the essential compact support of ω̂. Hence Rε⊂

⋃K
k=1Zk. It’s

obvious that Sε⊂Rε.
To show (ii), let us recall that vf (a,b) is defined as

vf (a,b) =
∇bWf (a,b)

2πiWf (a,b)

for Wf (a,b) 6= 0. If (a,b)∈Rε∩Zk, then

Wf (a,b) = |a|−ns/2
(
αk(b)e2πiNkφk(b)ŵ

(
|a|−s(a−Nk∇φ(b))

)
+O(ε)

)
and

∇bWf (a,b) = 2πi|a|−ns/2
(
Nk∇φk(b)αk(b)e2πiNkφk(b)ŵ(|a|−s(a−Nk∇φk(b)))+ |a|O(ε)

)
as the other terms drop out since {Zk} are disjoint. Hence

vf (a,b) =
Nk∇φk(b)

(
αk(b)e2πiNkφk(b)ŵ(|a|−s(a−Nk∇φk(b)))+O(ε)

)(
αk(b)e2πiNkφk(b)ŵ(|a|−s(a−Nk∇φk(b)))+O(ε)

) .

Let us denote the term αk(b)e2πiNkφk(b)ŵ(|a|−s(a−Nk∇φk(b))) by g. Then

vf (a,b) =
Nk∇φk(b)(g+O(ε))

g+O(ε)
.

Since |Wf (a,b)|≥ |a|−ns/2
√
ε for (a,b)∈Rε, |g|&

√
ε, and therefore

|vf (a,b)−Nk∇φk(b)|
|Nk∇φk(b)|

.

∣∣∣∣ O(ε)

g+O(ε)

∣∣∣∣.√ε.
Similarly, if (a,b)∈Sε∩Zk, then

|vf (a,b)−Nk∇φk(b)|
|Nk∇φk(b)|

.

∣∣∣∣ O(ε)

g+O(ε)

∣∣∣∣. √
ε

N
ns/2
k

,

since |g|&Nns/2
k

√
ε for (a,b)∈Sε∩Zk.

In the next section, we will show that an atomic/particle crystal image can be

considered as a superposition of multiple components f(x) =
∑K
k=1αk(x)e2πiNkφk(x) and

hence Theorem 2.1 can be applied to analyze crystal images.



TAO ZHANG, LING LI, AND HAIZHAO YANG 2123

2.2. Mathematical models for 3D atomic/particle crystal image. In this
paper, we assume that the lattice type is known. In practical applications, the SST
of crystal images can provide important features for crystal classification following the
approach in [27]. Without loss of generality, we assume the known lattice type is cubic.
Consider an image of a polycrystalline material with atomic/particle resolution. Denote
the perfect reference lattice as

L={av1 +bv2 +cv3 : a, b, c are integers},

where v1, v2, and v3∈R3 represent three fixed lattice vectors. Let S(2πFx) be the image
corresponding to a single perfect unit cell, extended periodically in x with respect to
the reference crystal lattice, where F is an affine transform determined by the lattice
type. F is an identity matrix in the case of the cubic lattice here. We denote by Ω
the domain occupied by the whole image and by Ωk, k= 1,. ..,M , the grains the system
consists of. Now we model a polycrystal image f : Ω→R as

f(x) =αk(x)S(2πNφk(x))+ck(x) if x∈Ωk, (2.6)

where N is the reciprocal lattice parameter (or rather the relative reciprocal lattice
parameter as we will normalize the dimension of the image) independent of k. The
φk : Ωk→R3 is chosen to map the atoms of grain Ωk back to the configuration of a perfect
crystal, in other words, it can be thought of as the inverse of the elastic displacement
field. The local inverse deformation gradient is then given by Gk =∇φk in each Ωk.
Possible variation of intensity and illumination may occur during the imaging process,
leading to the smooth amplitude envelop αk(x) and the smooth trend function ck(x) in
(2.6). By the 3D Fourier series Ŝ of S and the indicator functions χΩk , we can rewrite
(2.6) as

f(x) =
M∑
k=1

χΩk(x)

(∑
n∈L∗

αk(x)Ŝ(n)e2πiNn·φk(x) +ck(x)

)
, (2.7)

where L∗ is the reciprocal lattice of L (recall that S is periodic with respect to
the lattice L). In each grain Ωk, the image is a superposition of wave-like compo-

nents αk(x)Ŝ(n)e2πiNn·φk(x) with local wave vectors N∇(n ·φk(x)) and local amplitude

αk(x)|Ŝ(n)|.
Our goal here is to apply the 3D SST to estimate the defect region and also ∇φk

in the interior of each grain Ωk. Grain boundaries are interpreted as ∪∂Ωk (in real
crystal images, the grain boundaries would be a thin transition region instead of a
sharp boundary ∪∂Ωk. In the presence of local defects, e.g., an isolated defect and a
terminating line of defects, ∪∂Ωk may include irregular boundaries and may contain
point boundaries inside ∪Ωk.

2.3. SST for crystal image analysis. In this section, we will show that the
3D SST introduced previously can estimate well-separated local wavevectors from a
superposition of multiple components in (2.7).

Definition 2.7 (3D general shape function). The 3D general shape function class SM
consists of periodic functions S(x) with a periodicity (2π,2π,2π), a unit L2([−π,π]3)-
norm, and an L∞-norm bounded by M satisfying the following conditions:

(i) The 3D Fourier series of S(x) is uniformly convergent;

(ii)
∑
n∈Z3 |Ŝ(n)|≤M and Ŝ(0) = 0;
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(iii) Let Λi :={|ni|∈N :ni 6= 0, Ŝ(n1,n2,n3) 6= 0 for n1, n2, n3∈Z} for i= 1, 2, and 3,
and λi be the greatest common divisor of all the elements in Λi. Then the greatest
common divisor of {λi}1≤i≤3 is 1.

Definition 2.8 (3D general intrinsic-mode-type function (GIMT)). A function f(x) =
α(x)S(2πNφ(x)) is a 3D GIMT of type (M,N), if S(x)∈SM , α(x) and φ(x) satisfy
the conditions below.

α(x)∈C∞, |∇α|≤M, 1/M ≤α≤M,

φ(x)∈C∞, 1/M ≤
∣∣∇(nTφ)/|nT|

∣∣≤M, and∣∣∇(nTφ)/|nT|
∣∣≤M, ∀n∈Z3 s.t. Ŝ(n) 6= 0.

The following theorem illustrates the main results of the 3D SST for a superposition
of GIMTs.

Theorem 2.2. Suppose the 3D mother wave packet is of type (ε,m), for any fixed
ε∈ (0,1) and any fixed integer m≥0. For a function f(x), we define

Rε={(a,b) : |Wf (a,b)|≥ |a|−3s/2
√
ε},

Sε={(a,b) : |Wf (a,b)|≥
√
ε},

and

Zn={(a,b) : |a−N∇(nφ(b))|≤ |a|s}.

For fixed M , m, s, and ε, there exists a constant N0 (M,m,s,ε)'max
{
ε

−2
2s−1 ,ε

−1
1−s

}
such that for any N >N0 and a 3D GIMT f(x) =α(x)S(2πNφ(x)) of type (M,N) the
following statements hold for n=O(1).

(i)
{
Zn : Ŝ(n) 6= 0

}
are disjoint and Sε⊂Rε⊂

⋃
Ŝ(n)6=0Zn;

(ii) For any (a,b)∈Rε∩Zn,

|vf (a,b)−N∇(nφ(b))|
|N∇(nφ(b))|

.
√
ε;

(iii) For any (a,b)∈Sε∩Zn,

|vf (a,b)−N∇(nφ(b))|
|N∇(nφ(b))|

.N−3s/2
√
ε.

The proof of Theorem 2.2 is similar to that of Theorem 2.1 and requires Lemmas
2.1 and 2.2.

Proof. By the uniform convergence of the 3D Fourier series of general shape func-
tions, we have

Wf (a,b) =
∑
n∈Z3

Wfn(a,b),

where fn(x) = Ŝ(n)α(x)e2πiNn·φ(x). Introduce the short hand notation, φ̃n(x) =n ·
φ(x)/|n|, then

fn(x) = Ŝ(n)α(x)e2πiN |n|φ̃n(x).
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By the property of 3D general intrinsic mode functions, fn(x) is a well-separated su-
perposition of type (M,N |n|,1,s) defined in Definition 2.6.

For each n, we estimate Wfn(a,b). By Lemma 2.1, there exists a uniform
N1(M,m,1,s,ε) independent of n such that, if N |n|>N1,

Wfn(a,b) = |a|− 3s
2

(
fn(b)ŵ

(
|a|−s

(
a−N |n|∇φ̃n(b)

))
+
∣∣∣Ŝ(n)

∣∣∣O(ε)
)

for |a|∈ [N |n|2M ,2MN |n|], and

Wfn(a,b) = |a|− 3s
2

∣∣∣Ŝ(n)
∣∣∣O(ε),

for |a| /∈ [N |n|2M ,2MN |n|].
For (i), notice that for any n 6= n̂, the distances between wave vectors N |n|∇φ̃n(b)

and N |n̂|∇φ̃n̂(b) are bounded below. In fact

|N |n|∇φ̃n(b)−N |n̂|∇φ̃n̂(b)|= |N(n− n̂)∇φ(b)|> N

M
|n− n̂|> N

M
.

The first inequality above is due to the definition of 3D mode-type functions. Observe
that the support of a wave packet centered at a is within a disk with a radius of
length |a|s. Because of the range of a of interest is |a|62MN |n|, where |n|=O(1),
the wave packets of interest have supports of size at most of (2MN |n|)s. Hence, if
N
M > (2MN |n|)s, which is equivalent to N > (2sM1+s|n|s)

1
1−s =O(1), then for each (a,b)

of interest, there is at most one n∈Z3 such that

|a−N |n|∇φ̃n(b)|≤ |a|s.

This implies that {Zn} are disjoint sets. Notice that ŵ(x) decays to O(ε) when |x|>1.

The above statement also indicates that there is at most one n∈
{
n : Ŝ(n) 6= 0

}
such

that

fn(b)ŵ(|a|−s(a−N |n|∇φ̃n(b))) 6= 0.

Hence, if (a,b)∈Rε there must be some n such that Ŝ(n) 6= 0 and

Wf (a,b) = |a|−3s/2
(
fn(b)ŵ

(
|a|−s(a−N |n|∇φ̃n(b))

)
+O(ε)

)
, (2.8)

by Lemma 2.1. By the definition of Zn, we see (a,b)∈Zn. So, Sε⊂Rε⊂
⋃
Ŝ(n)6=0Zn,

and (i) is proved.
To show (ii), let us recall that vf (a,b) is defined as

vf (a,b) =
∇bWf (a,b)

2πiWf (a,b)

for Wf (a,b) 6= 0. If (a,b)∈Rε∩Zn, then by Lemmas 2.1, 2.2, and the above discussion,

Wf (a,b) = |a|−3s/2
(
fn(b)ŵ

(
|a|−s(a−N |n|∇φ̃n(b))

)
+ Ŝ(n)O(ε)

)
and

∇bWf (a,b) = 2πi|a|−3s/2
(
N |n|∇φ̃n(b)fn(b)ŵ(|a|−s(a−N |n|∇φ̃n(b)))+ |a|Ŝ(n)O(ε)

)
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as the other terms drop out since {Zn} are disjoint. Hence

vf (a,b) =
N |n|∇φ̃n(b)

(
fn(b)ŵ

(
|a|−s(a−N |n|∇φ̃n(b))

)
+ Ŝ(n)O(ε)

)
(
fn(b)ŵ

(
|a|−s(a−N |n|∇φ̃n(b))

)
+ Ŝ(n)O(ε)

) .

Let us denote the term fn(b)ŵ
(
|a|−s(a−N |n|∇φ̃n(b))

)
by g. Then

vf (a,b) =
N |n|∇φ̃n(b)(g+O(ε))

g+O(ε)
.

Since |Wf (a,b)|≥ |a|−3s/2
√
ε for (a,b)∈Rε, |g|&

√
ε, and therefore

|vf (a,b)−N |n|∇φ̃n(b)|
|N |n|∇φ̃n(b)|

.

∣∣∣∣ O(ε)

g+O(ε)

∣∣∣∣.√ε.
Similarly, if (a,b)∈Sε∩Zk, then

|vf (a,b)−N |n|∇φ̃n(b)|
|N |n|∇φ̃n(b)|

.

∣∣∣∣ O(ε)

g+O(ε)

∣∣∣∣. √
ε

N3s/2
,

since |g|&N3s/2
√
ε for (a,b)∈Sε∩Zk.

Theorem 2.2 indicates that the underlying wave-like components
Ŝ(n)α(x)e2πiNn·φ(x) of the 3D general intrinsic-mode-type function f(x) =
α(x)S(2πNφ(x)) are well-separated, if N is sufficiently large. By the definition
of the SST, Tf (v,b) would concentrate around their local wave vectors N∇(n ·φ(x)).

3. Crystal analysis algorithm and implementations
In this section, we analyze 3D crystal images using the 3D SST in the previous

section. We introduce several fast algorithms to analyze local defects, crystal rotations,
and deformations.

We will still focus on 3D cubic crystal images for simplicity. The generalization to
other types of crystal images is simple and there will be numerical examples of other
types of crystal images in the numerical section.

To make our presentation more transparent, the algorithm and implementation are
introduced with a toy example in Figure 3.1 (left).

3.1. Band-limited 3D SST in the spherical coordinate. Typically, each
grain

χΩk(x)(αk(x)S(2πNφk(x))+ck(x))

in a polycrystalline crystal image can be considered as a 3D general intrinsic-mode-type
function of type-(M,N) with a small M near 1, unless the strain is too large. Hence, the
3D Fourier power spectrum of a multi-grain image would have several well-separated
non-zero energy annuli centered at the origin due to crystal rotations. See Figure 3.1
(left and middle) for an example. Suppose the radially-averaged Fourier power spectrum
is defined as

E(r) =
1

r

∫ 2π

0

∫ π

0

|f̂(r,θ,ψ)|dψdθ,
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Fig. 3.1. Left: an undeformed example of two cubic grains with a vertical boundary surface.
Middle: six dominant local wave vectors in the interior of a grain. All vectors are located in the area
in light blue determined by the frequency range parameters [r1,r2]. Right: the radially-averaged Fourier
power spectrum E(r) with the identified most dominant energy bump in the frequency range [r1,r2]
indicated by two red circles.

where f̂(r,θ,ψ) is the Fourier transform in the spherical coordinate, i.e.,

f̂(r,θ,ψ)= f̂(ξ) for ξ=(rsinψcosθ,rsinψ sinθ,rcosψ).

Then there would be several well-separated energy bumps in E(r). See Figure 3.1 (right)
for an energy bump of the example of Figure 3.1 (left).

To realize this step, a grid of step size ∆ is generated to discretize the domain [0,∞)
in the variable r as follows:

R={n∆:n∈N}.

At each r=n∆∈R, we associate a cell Dr starting at r

Dr=[n∆,(n+1)∆) .

Then E(r) is estimated by

E(r)=
1

r

∑
ξ∈Ξ:|ξ|∈Dr

∣∣∣f̂(ξ)
∣∣∣ .

According to the structure of cubic lattices, we know that a cubic crystal image
with a single grain

f(x)=α(x)S(2πNφ(x))+c(x)

has six dominant local wave vectors close to νj(φ(x)), j=1, 2, · · · ,6, which are the
vertices of cubic prisms centered at the origin in the Fourier domain:

νj(φ(x))=N∇(nj ·φ(x)), j=1,2, . . . ,6, where {nj}={±e1,±e2,±e3},

and {e1,e2,e3} is the standard basis of R3 in the Fourier domain with axes ξ=(ξ1,ξ2,ξ3).
To reduce the computational cost of 3D SST, we restrict the computation to the

spectrum domain that contains the most dominant local wave vectors. The range of
such a domain can be identified via the most dominant energy bump in the radially-
averaged Fourier power spectrum E(r). Figure 3.1 (middle) visualize the range of
frequency domain of interest identified by the dominant energy bump in Figure 3.1
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(right). Suppose the support of the most dominant energy bump of E(r) (i.e. frequency
band) is [r1,r2]. Then a band-limited 3D fast SST can be introduced to estimate local
wave vectors with wave numbers in [r1,r2].

To be more specific, we consider images that are periodic over the unit cubic [0,1)3

in 3D. If this is not the case, the images will be periodized by padding zeros around
the image boundary. The key idea of the band-limited 3D SST is to restrict the class
of wave packets to a band-limited class{

wab(x) :a,b∈R3,|a|∈ [r1,r2]
}
.

And the 3D SST Tf (a,b) of an image f is only evaluated in the domain{
(a,b) :a,b∈R3,|a|∈ [r1,r2]

}
.

To design discrete wave packets, let

X={n/L :n∈Z3, 0≤nj<L, for 1≤ j≤3}

be the spatial grid of size L in each dimension at which these functions are sampled.
The corresponding Fourier grid is

Ξ ={ξ∈Z3 :−L/2≤ ξj<L/2, for 1≤ j≤3}.

For a function f(x)∈ `3(X), the discrete forward Fourier transform is defined by

f̂(ξ) =
1

L3/2

∑
x∈X

e−2πix·ξf(x),

while the discrete inverse Fourier transform of g(ξ)∈ `3(Ξ) is

ǧ(x) =
1

L3/2

∑
ξ∈Ξ

e2πix·ξg(ξ).

Due to the localization requirement of wave packets in the frequency domain in
the analysis of crystal images via SST, a filterbank-based time-frequency transform is
applied to design the discrete wave packet transform. In the Fourier domain, ŵab(ξ)
has the profile

|a|−3s/2ŵ(|a|−s(ξ−a)), (3.1)

modulo complex modulation. We sample the Fourier domain [−L/2,L/2]3 with a set
A of points a such that |a| is essentially in [r1,r2] (shown as “*” symbol in Figure
3.2) and associate with each a a smooth non-negative window function ga(ξ) with a
rectangular compact support of length La=O(|a|s) (see Figure 3.2 in blue) that behaves
qualitatively as ŵ(|a|−s(ξ−a)) essentially centered at a. These window functions form
a partition of unity of the Fourier domain.

The way we constructed the wave packets is similar to the constructions of the wave
atom frame in [16]. When s= 1/2, our wave packets become wave atoms. A straight-
forward calculation shows that the total number of sample a’s is of order O(L3(1−s)).

In the spatial domain, we simply discretize it with a uniform grid of size LB in each
dimension as follows:

B={n/LB :n∈Z3, 0≤nj<LB , for 1≤ j≤3}.
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Fig. 3.2. Sampled set A of a’s in the Fourier domain in the range specified by [r1,r2] (projected to
2D on the a1-a2 plane for visualization) for an image of size 512×512×512. Each point represents the
center of the support of a window function with a rectangular compact support of length La=O(|a|s)
in blue.

For each fixed a∈A and b∈B, the discrete wave packet wab(x) is defined as

ŵab(ξ)=
1

L
3/2
a

e−2πib·ξga(ξ) (3.2)

for ξ∈Ξ.
For a function f(x) defined on x∈X, the discrete wave packet transform is a map

from �2(X) to �2(A×B), defined by

Wf (a,b)= 〈wab,f〉= 〈ŵab, f̂〉=
∫

ŵab(ξ)f̂(ξ)dξ=
1

L
3/2
B

∑
ξ∈Ξ

e2πib·ξga(ξ)f̂(ξ). (3.3)

Note that

∇bWf (a,b)=∇b〈ŵab, f̂〉= 〈−2πiξŵab(ξ), f̂(ξ)〉.

Therefore, the discrete gradient ∇bWf (a,b) can be evaluated in a similar way

∇bWf (a,b)=
∑
ξ∈Ξ

1

L
3/2
B

2πiξe2πib·ξga(ξ)f̂(ξ). (3.4)

Applying the fast Fourier transform (FFT) to evaluate the summation in (3.3)
and (3.4), the wave packets admit a fast transform with complexity of O(L3 logL+
L3(1−s)L3

B logLB) with LB ≥maxa∈ALa=O(Ls), where L is bounded by r2, the fre-
quency range parameter.

For a given crystal image f(x) defined on x∈X, we compute Wf (a,b) and
∇bWf (a,b) via the FFT. The approximate local wavevector vf (a,b) is then estimated
by

vf (a,b)=
∇bWf (a,b)

2πiWf (a,b)
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for a and b in the domain Rε={(a,b) :a∈A,b∈B, |Wf (a,b)|≥
√
ε}.

To specify the SST Tf (v,ψ,θ,b) in the spherical coordinate (v,ψ,θ) of the Fourier
domain, we use step-sizes ∆v, ∆ψ, and ∆θ in v, ψ, and θ, respectively, to construct grids
Gv ={n∆v :n∈Z,n∆v ∈ [r1,r2]}, Gψ ={n∆ψ :n∈Z,n∆ψ ∈ [0,2π]}, and Gθ ={n∆θ :n∈
Z,n∆θ ∈ [0,π]}. At each v=n∆v ∈Gv, we associate a cell Dv centered at v, i.e., Dv =[
(n− 1

2 )∆v,(n+ 1
2 )∆v

)
. Similarly, we have cells Dψ =

[
(n− 1

2 )∆ψ,(n+ 1
2 )∆ψ

)
and Dθ =[

(n− 1
2 )∆θ,(n+ 1

2 )∆θ

)
at the grid ψ=n∆ψ and θ=n∆θ, respectively. Then the discrete

SST in the spherical coordinate is defined as

Tf (v,ψ,θ,b) =
∑

(a,b)∈Rε:Revf (a,b)∈Dv×Dψ×Dθ

|Wf (a,b)|2.
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Fig. 3.3. The SST Tf (v,ψ,θ,b) of Figure 3.1 (left) in the spherical coordinate at three different
points bi, i= 1, 2, and 3 when v is set to be the length of local wave vectors. Left: b1 = (0.25,0.5,0.5) is
in the middle of the right grain. Middle: b2 = (0.5,0.5,0.5) is at the boundary. Right: b3 = (0.75,0.5,0.5)
is in the middle of the left grain.

As an example, Figure 3.3 shows the SST Tf (v,ψ,θ,b) in the spherical coordinate
at three different positions of a crystal image in Figure 3.1 (left). The results show that
the essential support of Tf (v,ψ,θ,b) concentrates around local wave vectors of a grain
α(x)S(2πNφ(x))+c(x):

νj(φ(b)) =N∇(nj ·φ(b)), j= 1,2,. ..,6, where {nj}={±e1,±e2,±e3},

when the location b is not at the boundary. When b is at the boundary, the essential
support of Tf (v,ψ,θ,b) can still provide some information, e.g., crystal rotations.

3.2. Defect detection algorithm. As we can see in Figure 3.3,
the synchrosqueezed energy distribution has supports around local wave vectors
{νj(φ(b))}j=0,1,...,5 with energy of order |Ŝ(n)|α(b), when b is in the grain interior.
Moreover, the energy would decrease fast near defects. This motivates the applica-
tion of SST to identify defects by detecting the irregularity of energy distribution as
follows. Due to the symmetry of crystal lattice, we only consider the domain when
(ψ,θ)∈ [0, π2 ]× [0,2π], in which we have three dominant local wave vectors, denoted as
{νj(φ(b))}j=1,2,3. Let δ>0 be a small parameter for the size of the supports of the SST
around {νj(φ(b))}j=1,2,3 and Bδ(νj(φ(b))) be the ball centered at νj(φ(b)) with a radius
δ. As we can see in Figure 3.3, when b is in the grain interior, these balls can be easily
estimated; while when b is near the defect location, we could only identify three balls
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that most possibly contain the energy of Tf (v,ψ,θ,b). We define

mass(b) :=

3∑
j=1

∫
(v,ψ,θ)∈Bδ(νj(φ(b)))

Tf (v,ψ,θ,b)dvdψdθ∫
(v,ψ,θ)∈[r1,r2]×[0,π)×[0,π)

Tf (v,ψ,θ,b)dvdψdθ

.

Then mass(b) will be close to 1 in the interior of a grain; while mass(b)�1 when b
is near the defect location. Figure 3.4 (left) visualizes mass(b) of the crystal image in
Figure 3.1 (left).

Hence, the estimate of defect regions can be obtained by thresholding mass(b) at
some value η∈ (0,1) according to

Ωd={b∈Ω : mass(b)<η},

an illustration of which is shown in Figure 3.4 (right).

Fig. 3.4. Left: the mass(b) of the crystal image in Figure 3.1 (left). Right: the area in black
indicates the estimated defect area Ωd of the crystal image in Figure 3.1 (left).

3.3. Recovery of local inverse deformation gradient. Instead of estimating
the elastic deformation φ(x) of a grain directly, we would equivalently estimate the local
inverse deformation gradient ∇φ(x)∈R3×3, where

∇φ(x) =

∂x1φ1(x) ∂x2φ1(x) ∂x3φ1(x)
∂x1φ2(x) ∂x2φ2(x) ∂x3φ2(x)
∂x1φ3(x) ∂x2φ3(x) ∂x3φ3(x)

,
since ∇φ(x) leads to the estimation of crystal rotations and principal stretches.

With the three balls {Bδ(νj(φ(x)))}j=1,2,3 identified in Section 3.2, we can estimate
their corresponding local wave vectors {νj(φ(x))}j=1,2,3 via the weighted average of the
location of non-zero SST as follows. Let

(vestj (x),ψestj (x),θestj (x)) :=

∫
(v,ψ,θ)∈Bδ(νj(φ(x)))

(v,ψ,θ)Tf (v,ψ,θ,b)dvdψdθ∫
(v,ψ,θ)∈Bδ(νj(φ(x)))

Tf (v,ψ,θ,b)dvdψdθ

,

then the estimated local wave vector in the Cartesian coordinate is

νestj (φ(x))
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:=
(
vestj (x)sin(ψestj (x))cos(θestj (x)),vestj (x)sin(ψestj (x))sin(θestj (x)),vestj (x)cos(ψestj (x)

)
for j= 1, 2, and 3.

Note that the local wave vectors of an undeformed reference cubic grain
α(x)S(2πNx)+c(x) are νrefj (x) =Nej for j= 1, 2, and 3. Hence, the inverse defor-
mation gradient ∇φ(x) is determined by a least squares fitting of the deformed local
wave vectors νestj (φ(x)) to the reference local wave vectors Nej :

∇φ(x)≈G(x) = argmin
G̃

3∑
j=1

∥∥∥νestj (φ(x))−NG̃ej
∥∥∥2

2
,

where N can be estimated by the weighted average of the radially-averaged Fourier
power spectrum via N ≈

∫ r2
r1
rE(r)dr.

With the local inverse deformation gradient estimation G(x)∈R3×3 for each x, we
can estimate crystal rotations and principle stretches by the polar decomposition of
G(x), i.e., G(x) =R(x)U(x), where R(x)∈R3×3 is a unitary matrix implying how to
rotate vectors {NGej} to match reference vectors {νestj (φ(x))}, and U(x) is a positive-
semidefinite Hermitian matrix describing how to stretch {NGej} to match {νestj (φ(x))}.

In the 3D space, the orientation of a crystal lattice compared to a reference lattice
can be described by a series of elemental rotations, that is, rotations around the axes
along e1, e2, and e3 in the Cartesian coordinate. Generally, the composition of these
three elemental rotations is capable of recovering any rotation in the 3D space. Suppose
α(x), β(x), and γ(x) are the Euler angles of elemental rotations along e1, e2, and e3 to
generate the orientation of a crystal lattice, then α(x), β(x), and γ(x) can be computed
via the unitary matrix R(x) in the polar decomposition G(x) =R(x)U(x), since

R=

 cosβ cosγ sinαsinβ cosγ−cosαsinγ cosαsinβ cosγ+sinαsinγ
cosβ sinγ cosαcosγ+sinαsinβ sinγ −cosαsinβ sinγ−sinαcosγ
−sinβ sinαcosβ cosαcosβ


As an example, Figure 3.5 shows the estimated Euler angles α(x), β(x), and γ(x) of the
crystal orientation of the crystal image in Figure 3.1.

Fig. 3.5. Estimated Euler angles of the crystal orientation of the crystal image in Figure 3.1.
From left to right: α(x), β(x), and γ(x), respectively.

4. Examples and discussions
In this section, we present several numerical examples of synthetic and real images

to illustrate the performance of our method. The corresponding code is open source
and will be available as SynCrystal at https://github.com/SynCrystal/SynCrystal.
We first apply our method to analyze synthetic crystal images with triple junction

https://github.com/SynCrystal/SynCrystal
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grain boundaries and isolated defects. To show the robustness of our method, both
noiseless and noisy examples are presented. The synthetic data are generated via the
superposition of three or four plane waves with magnitude one. Mean-zero Gaussian
random noise with variance 1 is added to generate noisy crystal images. In the second
part, we apply our algorithm to crystal images from real experiments.

The main parameters for the 3D SST is the geometric scaling parameter s= 1
2
2.

The accuracy of our algorithm is not sensitive to the discretization grids in the SST and
the crystal image analysis, while the speed and memory cost of our code depends on the
grid sizes. Hence, we adaptively choose the grid sizes according to the size of data and
the resolution we need for visualization. In all of our synthetic examples, the image size
is 512×512×512 and the average run time is about 1600 seconds on our workstation
with a 3.2 GHz CPU and 1TB RAM in MATLAB.

4.1. Synthetic atomic/particle crystal images.

4.1.1. Triple junction grain boundaries. Our first example is a synthetic
hexagonal crystal image with triple junction grain boundaries in Figure 4.1 (left). It
contains three grains with triple junction grain boundaries. As shown in Figure 4.1
(middle), mass(x) clearly visualizes the grain boundaries and after thresholding it gives
the location of the boundaries in Figure 4.1 (right). Figure 4.2 shows the estimated Euler
angles of the crystal orientation of the crystal image in Figure 4.1 (left) (from left to
right: α(x), β(x), and γ(x), respectively). A noisy version of the triple junction example
and its analysis results are given in Figure 4.3 and 4.4. The results in Figure 4.3 and 4.4
are comparable to those in Figure 4.1 and 4.2, even though the atom/particle structure
is hardly seen in the presence of heavy noise (see the comparison of the zoomed-in
picture in the corner of Figure 4.3 (left) and that in the corner of Figure 4.1 (left)).

Fig. 4.1. Left: an undeformed hexagonal crystal image f(x) with triple junction grain boundaries.
Middle: mass(x) of f(x). Right: identified grain boundaries by thresholding mass(x).

4.1.2. Curved grain boundaries. Our second example is a synthetic hexago-
nal crystal image with curved grain boundaries in Figure 4.5 (left). As shown in Figure
4.5 (middle), mass(x) clearly visualizes the grain boundaries and after thresholding it
gives the location of the boundaries in Figure 4.5 (right). Figure 4.6 shows the estimated
Euler angles of the crystal orientation of the crystal image in Figure 4.5 (left) (from
left to right: α(x), β(x), and γ(x), respectively). A noisy version of the triple junction
example and its analysis results are given in Figure 4.7 and 4.8. The results in Figure
4.7 and 4.8 are comparable to those in Figure 4.5 and 4.6.

2Although in theory we cannot guarantee the performance of SST when s= 1
2
, it works well in

practice.
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Fig. 4.2. Estimated Euler angles of the crystal orientation of the crystal image in Figure 4.1
(left). From left to right: α(x), β(x), and γ(x), respectively.

Fig. 4.3. Left: an undeformed hexagonal crystal image f(x) with triple junction grain boundaries.
Mean-zero Gaussian random noise ns(x) with variance 1 is added to the crystal image. Middle:
mass(x) of f(x)+ns(x). Right: identified grain boundaries by thresholding mass(x).

Fig. 4.4. Estimated Euler angles of the crystal orientation of the crystal image in Figure 4.3
(left). From left to right: α(x), β(x), and γ(x), respectively.

Fig. 4.5. Left: an undeformed hexagonal crystal image f(x) with a curved grain boundary. Middle:
mass(x) of f(x). Right: identified grain boundaries by thresholding mass(x).

4.1.3. Isolated defects. Figure 4.9 (left) shows an example of one isolated
defect together with a grain boundary. As shown in Figure 4.9 (middle), mass(x)
clearly visualizes the defect location and after thresholding it gives the location of the
defect in Figure 4.9 (right). Figure 4.10 shows the estimated Euler angles of the crystal
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Fig. 4.6. Estimated Euler angles of the crystal orientation of the crystal image in Figure 4.5
(left). From left to right: α(x), β(x), and γ(x), respectively.

Fig. 4.7. Left: an undeformed hexagonal crystal image f(x) with a curved grain boundary. Mean-
zero Gaussian random noise ns(x) with variance 1 is added to the crystal image. Middle: mass(x) of
f(x)+ns(x). Right: identified grain boundaries by thresholding mass(x).

Fig. 4.8. Estimated Euler angles of the crystal orientation of the crystal image in Figure 4.7
(left). From left to right: α(x), β(x), and γ(x), respectively.

Fig. 4.9. Left: an undeformed cubic crystal image f(x) with one isolated defect and one grain
boundary. Middle: mass(x) of f(x). Right: identified grain boundaries by thresholding mass(x).

orientation of the crystal image in Figure 4.9 (left) (from left to right: α(x), β(x), and
γ(x), respectively). A noisy version of the example of isolated defects and its analysis
results are given in Figure 4.11 and 4.12. The results in Figure 4.11 and 4.12 are
comparable to those in Figure 4.9 and 4.10.
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Fig. 4.10. Estimated Euler angles of the crystal orientation of the crystal image in Figure 4.9
(left). From left to right: α(x), β(x), and γ(x), respectively.

Fig. 4.11. Left: an undeformed cubic crystal image f(x) of one isolated defect and one grain
boundary with additive Gaussian random noise ns(x) with mean zero and variance 0.3. Middle:
mass(x) of f(x)+ns(x). Right: identified grain boundaries by thresholding mass(x).

Fig. 4.12. Estimated Euler angles of the crystal orientation of the crystal image in Figure 4.11
(left). From left to right: α(x), β(x), and γ(x), respectively.

4.2. Real atomic/particle crystal images. Self-assembly plays a pivotal role
in biologically controlled synthesis and in fabricating advanced engineering materials
[21, 32]. For example, self-assembly of colloidal particles admits versatile fabrication of
highly ordered 2D and 3D structures for various applications, e.g., photonics, sensing,
catalysis, etc. [8, 43]. Data analysis of crystal images from self-assembly improves the
mechanistic understanding of the self-assembly processes for accurate control in lattice
types, crystallography, and defects, which could further facilitate the performance and
functionality of fabricated structures.

Here we present an example of 3D images of colloidal particles from a colloidal
crystal fabricated from an evaporation-induced self-assembly process (particle diameter:
380±10 nm). In the numerical implementation, we assume the data is defined in a unit
domain [0,1]3. Figure 4.13 shows a real example and its estimated Euler angle γ(x). To
better visualize the results, we cut the 3D data into 2D slices and show one slice per
eight pixels. The results in the estimated γ(x) is able to reflect the crystal orientation in
the x1-x3 plane. For example, the left-bottom panel of Figure 4.13 shows the zoomed-in
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image (top) and its corresponding γ(x) (bottom), highlighting two examples (boxed
regions) of noticeable fine scale variation of the crystal orientation in γ(x), readily
recognizable also by visual inspection of the corresponding zones in the crystal image.
The crystal images in these boxed regions squeeze slightly in the upper part, resulting
in slightly different orientations in γ(x). The image resolution in the data is higher than
that of the results in the bottom-left panel because we have subsampled the data for fast
analysis. Combined with some advanced 3D structural characterization methodologies,
such as focused ion beam-based nanotomography and X-ray nanotomgoraphy, such high-
resolution crystallographic information can provide critical information in revealing the
3D particle-level structural information and contribute to the understanding of their
formation pathways.

(a) (b)

(c) (d)

Fig. 4.13. (a) a colloidal particle image f(x). (b) 2D slices of the 3D data. (c) zoomed-in images
of the boxed regions of (b) and (d) (subsampled). Crystal images on top and their Euler angles γ(x)
at the botoom. (d) The Euler angles γ(x) of the 3D colloidal particle image in (a) showed in the form
of 2D slices.

5. Conclusion
This paper has proposed a framework for atomic/particle crystal image analysis

in 3D based on a new 3D fast synchrosqueezed transform. It has been shown that
the proposed methods are able to provide robust and reliable estimates of mesoscopic
and microscopic properties, e.g., crystal defects, rotations, elastic deformations, and
grain boundaries in various synthetic and real data. We focus on the analysis of images
with the presence of only one type of known crystal lattice and without solid and liquid
interfaces in this paper. The extension is simple following the work in [27]. The proposed
method can be a standalone algorithm for crystal image analysis; it could also be applied
to create training database for deep learning approaches because it is impractical (or
even impossible) to create training database manually for 3D data.
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