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REGULARITY AND SINGULARITY RESULTS
FOR THE DISSIPATIVE WHITHAM EQUATION AND RELATED
SURFACE WAVE EQUATIONS*

QIANYUN MIAO? AND LIUTANG XUE#

Abstract. We consider the Cauchy problem for the Whitham equation and related surface wave
equations with (fractional) dissipation. We prove global regularity results at the subcritical and critical
dissipative cases by applying the method of modulus of continuity, and we show a finite-time singularity
result at the supercritical dissipative case.
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1. Introduction
In this paper we address the following Whitham equation with dissipation

Out+udyu+ pLoyu+vA®u=0, uli—o(x)=ug(x), (1.1)

where z €R (or T), v >0, u#0, @« €]0,2], u is a 1D scalar field, the (fractional) differential
operator A®:=(—0,,)%, and the Fourier multiplier operator L is defined via

LHO) =m(O)F() = “f*ﬂo. (1.2)

Let K(z)=F*(m(¢))(z)=F ! (, / %) (z) be the kernel function of L, we also get

Lﬂ@=AK@—wﬂw®- (1.3)

When v=0, Equation (1.1) is the classical Whitham equation, which was introduced
by Whitham [47] as an alterative to the Korteweg-de Vries (abbr. KdV) equation

1
Opu+udu+p (1 + 68%) O,u=0, ult—o(z)=wup(x). (1.4)

The symbol m(¢) =/ % arises from the full frequency dispersion for linear gravity

water waves on finite depth, and the first two terms in the Maclaurin series of m(({) are
1— %CQ, just corresponding to the symbol of KAV equation. Since the KdV Equation
(1.4), as a long-wave approximation model of water wave equations (see [36]), does not
admit breaking solutions due to the strong dispersion effect, Whitham proposed Equa-
tion (1.1) (with »=0) as a simplified mathematical equation of water wave equations to
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study the breaking phenomenon, which is an important and intriguing problem in the
water wave theory. Recently, compared with the KdV equation, both numerical simula-
tion and wave-channel experiments [7,46] show the modeling advantages of the Whitham
equation, when either short or large waves are concerned. One can also see [34] for more
physical relevance and discussion of Whitham Equation (1.1) with »=0. When v >0,
the dissipation effect is introduced in Equation (1.1), which naturally occurs in many
real situations, and one can analogously see [43] for the KdV equation with (fractional)
dissipation and see [6,17,20] (and references therein) for various 1D dispersive equations
with dissipation.

We also consider the following surface wave equation with fractional dispersion and
dissipation

Oputudpu+ p A Hu+vAu=0, uli—o(z)=uo(z), (1.5)

where x €R, v >0, u#0, a« €]0,2], B€[0,1], H=—0, A~ is the usual Hilbert transform
(e.g. see [44]). When v =0, different values of g lead to various surface wave models:
if =3, Equation (1.5) is the KdV equation; if 8=2, Equation (1.5) is the well-known
Benjamin-Ono equation; if f=1, Equation (1.5) corresponds to the invisid Burgers
equation (after a suitable transformation); if 5=1/2, it is observed by Hur [25] that
(1.5) shares the dispersion relation and scaling symmetry analogous to the 2D water
wave system in the infinite depth; while if 8=0, Equation (1.5) is proposed by Biello
and Hunter [4] as a model for water waves with nonzero constant-valued linearized
frequency. When v >0, we also include the dissipative effect in Equation (1.5).

The Whitham equation (i.e. Equation (1.1) with v =0) has attracted much at-
tention in recent years, and there have been several noticeable works on the breaking
mechanism. Ehrnstrom, Groves and Wahlén [21] proved the existence of solitary waves,
i.e. solutions of the form u=wu(r—ct) with u(z—ct) =0 as x —ct — +oo. Ehrnstrom
and Wahlén [23] constructed the highest, cusped, periodic travelling wave solution to
the Whitham equation (similar to the Stokes wave although with a different angle),
which solved a long-standing conjecture proposed in Whitham [48]. For the existence
and properties of the periodic travelling waves, as well as the corresponding stability
versus instability issue for the Whitham equation, one can refer to [8,9,22,27,28] and
references therein. As another breaking scenario proposed by Whitham [48], the so-
called “wave breaking”, which means that the solution itself is uniformly bounded but
its slope becomes unbounded at finite time, was recently proved by Hur [26] for the
Whitham equation associated with some smooth data (see also the past work [13,42]
on some Whitham-type equations).

For the surface wave Equation (1.5) with v =0 and S €]0,1[, Castro, Cérdoba and
Gancedo [11] (see also Hur [25] for the case f=1/2) proved that by applying the
weighted integral method inspired by [15], the smooth solution associated with some
data ug € L2NCH9(R), § >0 blows up at finite time (they also prove a similar blowup
result for the =0 case by using a different method). Hur and Tao [29] considered
(1.5) with »=0 and 0< 8 <1/2 to show that the wave breaking phenomenon occurs for
the equation with some smooth initial data. Later, Hur [26] further extended the same
result to the Equation (1.5) with =0 and 0< 5 <2/3. It should be noted that for the
KdV-like Equation (1.5) with =0, the cases 8 €]1,2[ are more subtle, and based on the
numerical stimulations, Klein, Saut et al. [34,35] conjectured the global well-posedness
for the case 8>3/2 as well as the finite-time blowup for the case 1< 5<3/2 (one can
see [41] for the recent progress on the case 13/7< 5 <2).

If £=0 and v >0, Equations (1.1) and (1.5) reduce to the dissipative Burgers equa-
tion: the classical viscous case o =2 and the fractional dissipation case a €]0,2[ (cf. [5]).
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Fractional dissipation related to Lévy flights also appears in many physical models (e.g.
see [12,38,43]). Kiselev, Nazarov and Shterenberg [32] proved that for a€[1,2] and
ug € H°, s >3/2—«, there is a unique global smooth solution to the dissipative Burgers
equation (the method used in the case a=1 is the original method of modulus of con-
tinuity); while for the case a€]0,1[, they showed that the shock singularity similar to
the inviscid case occurs (see [18] for another proof using the weighted integral method,
and also [2]). Besides, the authors in [32] proved that at the a=1 case and associated
with rough initial data ug € LP (1 <p < 0), there is a solution which is C'*°-smooth for
any t>0 (if up € L?, see also [10] for a different method using De Giorgi’s iteration),
but so far the uniqueness issue remains an interesting open problem. Alibaud and
Andreianov [1] showed that starting from some initial data uo€ L, the uniqueness
of weak solution (in the distributional sense) fails for the dissipative Burgers equation
for the 0<a <1 case (while the uniqueness of weak solution is ensured for the a>1
case, see [19]). By these results, the cases 1<a<2, a=1 and 0<a <1 are called the
subcritical, critical and supercritical cases, respectively.

We also mention a model relevant to the above equations, the dissipative dispersive
surface quasi-geostrophic (abbr. SQG) equation

8t9+v~V0+/wQ+1/Aa9:0, V= (’01,1)2) :RLGZ (—Rza,ng), g‘tzo(.’ﬂ) :90(55),
(1.6)
where z € R? (or T?), v >0, u#0, R; =9, A~! (i=1,2) is the usual Riesz transform (e.g.
see [44]). Here 6 is a real-valued scalar function that can be interpreted as a buoyancy
field, v is the velocity field, p is the amplitude parameter. Equation (1.6) is a simplified
model from the geostrophic fluid dynamics and describes the evolution of a surface
buoyancy in the presence of an environmental horizontal buoyancy gradient ( [24]).
Physically, the background buoyancy gradient generates dispersive waves, thus Equation
(1.6) provides a 2D model for the interactions among turbulent motion, dispersive waves
and dissipation. By using the modulus of continuity method, Kiselev and Nazarov [31]
considered this dissipative dispersive Equation (1.6) for the case =1 and proved the
global existence and uniqueness of smooth solution associated with smooth data.

In this paper we are mainly concerned with the following dissipative dispersive
Burgers equation which includes Equations (1.1) and (1.5) as examples (see Lemma 2.1
below)

Ou+udzu+pLau+vA®u=0, uli=o(z)=up(z), (1.7)

where z€R (or T), v>0, u#0, a€]0,2], €[0,1], u is a scalar function, and Lg is a
Fourier multiplier operator

Lpf(¢)=ima(¢)f(©), (1.8)

with i2=—1, mg € C°°(R\ {0}) a real-valued odd function which satisfies the following
assumptions

(A1) Ims(Q)| < C[¢|” for every C€R;
(A2) mg(() is of the Mikhlin-Hormander type, that is, mg(() satisfies that for every
¢#0,
|05 ms(OI < CICI™*Imps(C)],  forke{1,2,3}. (1.9)
We intend to address Equation (1.7) to show some global regularity results at the

subcritical and critical cases a € [1,2] and a singularity result for the supercritical case
0 <a<1. Our main regularity results are as follows.
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THEOREM 1.1 (Global well-posedness in the subcritical and critical dissipative cases).

Assume that v>0, p#0, a€[l,2], 5€[0,1] and uo€ H*(R), s>3/2. Then the
dissipative dispersive Burgers Equation (1.7) admits a unique global solution wu€
C([0,00[; H*(R))NC°(Rx]0,00[).

In the critical case a=1, we moreover have the following global regularity result
associated with rough initial data.

THEOREM 1.2 (Global regularity result in the critical dissipative case). Assume
that v>0, p#0, a=1, f€[0,1], and ug € L>NL>(R). Then for the dissipative disper-
sive Burgers Equation (1.7), there is a global weak solution (see Definition 4.1 below)
ue L([0,00[; L2N L= (R)) N L2([0,00[; H'/2(R)) such that for any t' >0, u(z,t) is C-
reqular on R x [t',+00].

Our singularity result for the case a€]0,1] and 5 €]0,1] is stated in the following.
THEOREM 1.3 (Finite time blowup in the supercritical dissipative case).  Let v >0,
w#0, a€l0,1], B€]0,1]. There exists initial data uo € H*(R), s>3/2 (satisfying (5.18)
below) and a finite time T >0 depending only on ug, such that for the solution u(zx,t)
to the dissipative dispersive Burgers Equation (1.7), we have

limsup ||0zu(-,t) || 1o (r) = 00. (1.10)
t—T

In the proof of Theorems 1.1-1.2, we mainly use the method of modulus of continuity
(see Definition 2.1) that originated in [30,32,33]. The general idea is to prove that
the evolution of considered equation obeys a suitable (stationary or time-dependent)
modulus of continuity, and by a contradiction analysis, it reduces to justify the pointwise
inequality (2.8) under the scenario (2.7), then by using the equation and Lemma 2.4,
and noting that the contribution from the dissipation term is negative, the strategy is
to let the negative contribution play a dominant role so that one can prove (2.8).

For the proof of Theorem 1.1, we first show the local well-posedness result for the
considered equation, the blowup criterion in terms of the Lipschitz norm of solution,
and also the uniform L°-estimate of the solution (see Lemma 2.6); then for the sub-
critical case «€]1,2], we manage to prove the maximal lifespan solution obeys some
stationary (bounded) modulus of continuity (3.3), which implies the desired uniform-
in-time Lipschitz regularity. For the critical case a =1, we moreover present a refined
blowup criterion (see Lemma 3.1) in terms of the o-Holder regularity of solution, then
in order to show the needed uniform Hélder estimate on the maximal lifespan, we prove
the preservation of a suitable stationary unbounded modulus of continuity (3.20) by the
evolution, which is pursued in Lemma 3.2; note that the modulus of continuity (3.20)
is in a simple form, and is different from the ones used in [31,32] (where they instead
lead to the preservation of Lipschitz regularity).

For the proof of Theorem 1.2, by virtue of the global existence result of weak
solutions established in Proposition 4.1 and the regularity criterion in Lemma 4.1, the
main point is to show that the weak solution starting from the rough initial data ug €
L?NL*> instantly obtains the required Holder regularity. To this goal, we construct
a family of time-dependent moduli of continuity (4.12)-(4.13), which reduces to the
stationary modulus of continuity (3.20) after a time period that can be arbitrarily small,
then we manage to prove that the weak solution obeys such moduli of continuity for all
time by a careful analysis (see Lemma 4.2), and it yields the needed Holder regularity
after an arbitrarily small time interval, as desired.

The proof of Theorem 1.3 applies the method of weighted integral as in [11,15,18,25],
and the general strategy is to prove that some weighted integral of the solution F(t)
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(see (5.4) below) satisfies F’(t) > %’5)2 — C, which means E(t) blows up at a finite time,
and it will in turn yield that the solution can not be globally regular. Here the contri-
butions from both the dispersive and dissipative terms are considered simultaneously,
and also the dissipation may have some more advantage than previous works on the
purely dispersive equations (e.g. see Lemma 2.6), thus we include the detailed proof for
completeness and convenience.

REMARK 1.1. For the dissipative dispersive Burgers Equation (1.7) with « €]8,1], by
Lemma 2.6 below, we have sup,¢jo 7(l[u(:,t)| Lo () < oo, which combined with equality
(1.10) yields that the singularity in Theorem 1.3 has the “wave breaking” phenomenon.

REMARK 1.2. It seems that the weighted integral method used in Theorem 1.3 fails
for the case =0, and thus we do not address this case in Theorem 1.3. Note that by
applying a different method, Castro et al. in [11] manage to show a blowup result for
the surface wave Equation (1.5) with v=0, 4 <0 and §=0. If one intends to extend
such a blowup result to Equation (1.7) with »=0 and =0, some deeper properties of
the operator Lo (like the kernel Ky satisfying (—1)"0; Ko(y) >0 for y >0 and n=0,1)
need to be proved, which are not so clear from our current viewpoint.

REMARK 1.3. By applying the same procedure as that for the surface wave Equation
(1.5) with =0 and a=1, one can show the analogous Theorem 1.2 for the dissipative
dispersive SQG Equation (1.6).

The paper is organized as follows. In Section 2, we collect some auxiliary results
used in the main proof. We show the proof of Theorem 1.1 in Section 3, and we prove
Theorem 1.2 in Section 4. Then, Section 5 is devoted to the proof of Theorem 1.3. At
last, in the Appendix, we give the details of the proof for Proposition 3.1 concerning
the local well-posedness result, and also present an L>°-estimate of the viscous Burgers
equation with forcing.

The following notations are used throughout this paper.

e C stands for a constant which may be different from line to line, and C(A1,Aa--+, Ay)
denotes a constant C' depending on the coefficients A1,A9, -+, A X <Y means that
there is a harmless constant C' such that X <CY, and X =Y means that X <Y and
Y < X simultaneously.

e The notation C°(R) or C2°(R x [0,T[) denotes the space of C*°-smooth functions with
compact support on R or R x [0,7], respectively. The notation S(R) is the Schwartz
class of rapidly decreasing C°°-smooth functions, and S§’(R) is the space of tempered
distributions which is the dual space of S(R).

e For meN, r€[1,400], s€R, we denote by W (R) (W™ (R)) and H*(R) (H*(R))
the usual L"-based and L2-based inhomogeneous (homogenous) Sobolev spaces, and by
C™7(R), C™7(R) with ~ €]0,1[ the inhomogeneous and homogeneous Holder spaces (if
m=0, we also write C%7(R) and C%7(R) as C?(R) and C7(R) for brevity).

o We use F(f) (or f) and F~'(f) to denote the Fourier transform and the in-
verse Fourier transform of a function f, that is, F(f)(¢)= [z f(z)dz and

FHg)(x) = 5= [peg(¢)dC.
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2. Preliminary and auxiliary results

We compile some useful and auxiliary results in this section.

2.1. Some properties related to the dispersive operator Lg.
LEMMA 2.1.  The operator L, in Equation (1.1) and the operator APH in Equation
(1.5) are in the realm of the Fourier multiplier operator Lg introduced in Equation
(1.7).

Proof. The multiplier of the operator A*H (€ [0,1]) is i¢|[¢|?~!, and the function
¢[¢|P~1 is clearly a real-valued odd function satisfying assumptions (A1) and (A2).

The multiplier of the operator LJ, is im({) with m(¢)=¢4/ % It is easy to

see that m(¢) is a real-valued odd function satisfying |m(¢)| <[¢]'/? for all (€R (i.e.
assumption (Al) with f=1/2). Now we verify assumption (A2). Since 65%(0 is
either odd or even for k=1,2,3, we only need to consider the case ( >0. By a direct
computation, we see that for every ¢ >0,

tanh¢\" 1 [tanh¢ 1 [ ¢, 1 [tanh( ¢ 5
Gl >‘2¢ { +2\/tanhcb“h<‘2\/ £ (14 ).

which combined with the properties of tanh¢ and sech¢ (|tanh¢| <1 for all {, [tanh(]|~
|¢| for |¢| small, |sech¢|~e~I¢! for [¢] large and |sech(|~1 for |¢| small) leads to

/(O] < Col¢|Hm(Q)], I¢|>0. (2.1)

Similar computation also yields that for every ¢ >0

tanh( "7 Vtanh¢  sech?®¢ [ 2 ¢ c1/2
<< ¢ > T 4¢3/2 + 4 <C\/ tanhCsinhQC\/tanh<4\/<taIlh<>

_ 1 Jtanh¢ /1 2 (1 ¢ 1 ¢,
= C C ( 4 +S€Ch C (2 tanhC 4 Sil’lh2< C 9
and
tanh¢\” 1 [tanh( /3 9 3 ¢ 3.9 o
(C c ) e c é—l—sech ¢ _gm_éc +2¢“tanh(
1 [tanh( 9 ( 3 (2 1 ¢3 1 ¢ )
el w2el -2 - _z
2\ ¢ N TR T 2smb2ctanhe  Ssinh’ceoshc )
we find that
" (Ol < Col¢|?Im(Q)], and [m"(¢)| < Col¢| P Im(Q)],  VICI>0.  (2:2)
Estimates (2.1)-(2.2) immediately ensure assumption (A2), as desired. d

Now we recall the definition of the dyadic blocks (see e.g. [3]). Let x € C°(R) be
a non-negative function such that x({)=1 if |(|<1/2 and 0 if |(|>1. Let us define
another function ¢ € C(R) by ¢(¢) = x(¢/2) — x(¢) which is therefore supported on a
corona. Then, we define the Fourier multiplier A; (j €N) and A_; by

~ ~

A PO =920 f(©) and A F(O)=x(OF(Q). (2.3)
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By these operators we have the following Littlewood-Paley decomposition of a tempered
distribution f € S’(R):
f=A_1f+> A;f inS'(R).
JEN

For s€R and (p,q) € [1,00]?, we thus define the inhomogeneous Besov spaces as the set
of f€8’(R) so that the following quantity is finite

11155 , @ = {2718 fllze iz -1l o -

In particular, we have the equivalence of L?-based Sobolev space H*(R) = B3 5(R) and
L*>*-based Holder space C7(R) =B, ., (R) with v€]0,1[ (see [3]).

The following lemma deals with the action of the Fourier multiplier L0, into the
dyadic blocks.

LEMMA 2.2.  Let Lg (B€[0,1]) be the Fourier multiplier operator defined by (1.8)
with mg € C*(R\ {0}) a real-valued odd function satisfying the assumptions (A1)-(A2).
Then there exists a constant C'=C(8) >0 such that for every p€[l,00] and j €N,

1AL fllLe @) < C2ZP|| A fllLrw)- (2.4)

Proof. From assumptions (Al)-(A2), we see that
0" ms ()| < CICIP™, We0, forke{1,2,3},
thus we directly apply [3, Lemma 2.2] to obtain estimate (2.4). O

Next we derive the expression formula of the operator Lg and show the key kernel
estimates.

LEMMA 2.3. Let Lg (B€]0,1[) be the Fourier multiplier operator defined by formula

(1.8), where mg(() is a real-valued odd function satisfying the assumptions (A1)-(A2).
Let fe H°(R), s>%, then we have

Lof(@)=pov. / Kz —y)(f(y)— f(x))dy

—pov. / K (|2 —yl)sen(z — ) (f(y) - £(2))dy, (2.5)
R

where the kernel Kg(z)=F1(ims(¢))(z) is a real-valued odd function which satisfies
that for every x 0,

(2.6)

with C=C(B) some positive constant.

Proof.  Since mg() is a real-valued odd function, it is easy to see that Kg(z)=
Co [ €™ imp(¢)d( is also a real-valued odd function.

Now we prove estimate (2.6) (one can see [16, Lemma 5.1] for a similar treatment).
Let x,¢ € C°(R) be the cutoff functions introduced around (2.3), and it directly yields
that for every N €Z,

1=x(2"NO)+ ) p(277¢), V(eR.

Jj=N
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For some N €Z chosen later, we have

K ()= OO/R Cimp(Ox(2V0) d<+002/ Cima(C)p(277C)dC
=Kp1(x)+ Kpa(x).

For K3 1(x), we use assumption (A1) to derive that

|Kpq(z)|<C ¢[Pd¢ < 2N+,

I¢l<2V

For Kgo(x), by virtue of the integration by parts and the assumptions (A1)-(A2), we
find that for every z#0 and 3€/0,1],

Z / 7 33 (m(Q)p(2 7€) dC

-~ 3 —3j
<P Z Lo (09ms(@l e Ims(@l2)ac

|Kg2(x

||3

ZQ J(2-8) <« CQN(2 B).

2P
For every x#0, we choose N €Z to be N = [log, ﬁ} +1 (which implies that |1‘ <2V <
2, and gathering the above estimates leads to |Kz(z)| < C|z|~'~#. Noting that

Tz[ /2
K} (2) = —Co /R €7 Cma (O (2N ¢)dC — OOZ / €7 ¢ (C)p(279C)dC,

by using the same argument as above, we obtain that for every S€[0,1[ and x#£0,
|Kj(2)| <Clz| =275, as desired. ]

2.2. Modulus of continuity. First is the definition of the modulus of continuity.
DEFINITION 2.1. A function w:]0,00[—]0,00][ is called a modulus of continuity (abbr.
MOC) if w is continuous on ]0,00[, nondecreasing, concave, and piecewise C* with one-
sided derivatives defined at every point in 0,00[. We say a function f:R%—R! obeys
the modulus of continuity w if |f(x)— f(y)| <w(|z—y|) for every x#ycR?,

We have the following general criterion on the preservation of the modulus of con-
tinuity w(&,t) by some function u(z,t).

PROPOSITION 2.1. Assume that
(1) for every t >0, w(&,t) is a MOC and satisfies that its inverse function w=*((2+
€0)|0(-,1)|| L=, ) < o0 with some €y > 0;

(2) for every fized point &, w(€,t) is piecewise C in the time variable with one-sided
derivatives defined at each point, and that for all & near infinity, w(§,t) is continuous
in t uniformly in &;

(3) w(0+,t) and Ocw(0+,t) are continuous in t with values in RU{xoo}, and satisfy
that for every t>0, either w(0+,t) >0 or O:w(0+,t) =00 or Jgew(0+,t) =—
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Let ue C([0,T*[; H*(R?))NC>®(R?x]0,T*[), s> 2 +1 be a smooth function and ini-
tially uo(z) obey w(&,0). Then for every T €]0,T*|, if for all t€]0,T] and x#ycR?
satisfying the following scenario

u(z,t) —uly,t) =w(&,t), withé=|z—y|, and

’ ’ ’ ’ oo d (2'7)
|u(x,t)—u(y,t)|§w(\x _y|?t)7 vx?y eR".
one can show that for every £ €{£>0:w(&,t) <2||u(-,t)|| L=},
—0uw(&,t)+ (Opu(z,t) — dpu(y,t)) <0, (2.8)

then the function u(x,T) obeys the modulus of continuity w(§,T).

Proof.  Assume that ¢; €]0,7*[ is the first time that the modulus of continuity
w(€,t) is lost by u(z,t), then there exist two points z#y € R? such that the scenario
(2.7) holds with ¢ =t;, and for the proof one can see [39, Proposition 3.2] or [30, Theorem
2.2].

If one has inequality (2.8) with ¢ =t;, then it directly yields

o, (U(xat) - U(yat)) ~ —0w(&,t) +Opu(w,ty) — Opu(y,ty) <0,

W(f,t) t=t1 B w(gvtl)

which is a clear contradiction to scenario (2.7) and the fact that u(x,t) obeys the MOC
w(&,t) for every 0 <t < t;. Hence, inequality (2.8) in the considered scope (for & satisfying
w(&,t) >2||u(t)||p~ the preservation naturally holds) under scenario (2.7) guarantees
that the MOC w(&,t) is preserved by the function u(z,t), as desired. d

The following lemma is concerned with some actions of functions having the modulus
of continuity.

LEMMA 2.4. Assume that w(§,t) for every t>0 is a modulus of continuity, and
scenario (2.7) is satisfied. Then the following statements hold.
(1) We have
() (,8) — (D) (y,)| (€, )Dew(£,1), (2.9)
and
Opztt(x,t) — Oppu(y,t) < 20ecw(€,1). (2.10)
(2) Define Dy (z,y,t):=—A%u(z,t)+A%u(y,t), a€]0,2[. Then D,(z,y,t) can be ex-
pressed as
1
Da(x,y,t):C’ap.v./|Z|1+a(u(m+z,t)—u(y+z,t)—w(f,t))dz, (2.11)
R

and it satisfies that for any E=|x—y|>0,

£
Du(yt) <Cy /O w(&+2n,t) +w75§+—a277,t) —2w(£ ) i
+Cl/:ow(277+§’t)—w7§?jza—§,t)—2w(§,t) i, (2.12)

with C1 >0 a constant depending only on «.
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(8) Define ®3(x,y,t):=—(Lgu(z,t) — Lgu(y,t)), B€[0,1[, where Lg is the Fourier mul-
tiplier operator introduced in Equation (1.7). Then for a€[B,2[ and for any
§=lz—y|>0,

D5 (2,5,1) < —Ca® D, +02§/ e X N 30)

with the constant Cy >0 depending only on o« and 3. Besides, there also exists a
constant Ch=C4L(5) >0 such that for any {=|z—y| >0,

Dy (w,y,1) <€ / -+ i / ZCu (2.14)

Proof.  Since the time variable ¢t does not play an essential role in the proof, we
suppress it in the functions u, w, Dy, ® and ®g for simplicity.

(1) The proof of inequalities (2.9) and (2.10) is classical, e.g. see [30,33], and we
omit the details.

(2) Equality (2.11) directly follows from scenario (2.7) and the following expression
(see [14])

Aau(z)Cap.v./RWdz Va €]0,2]. (2.15)

|Z‘1+a ’

The proof of inequality (2.12) is by now classical, e.g. see [30,33], and we here omit the
details.

(3) By using expression (2.5), we see that
|Lgu(z) = Lgu(y)|
‘pv /Kg x—2z)(u(z)— u(x))dz—p.v./Kg(y—z)(u(z)—u(y))dz
i

:’p.v./RKg(z)(u(x—z)—u(x))dz—p.v./RKB(z)(u(y—z)—u(y))dz
<{(z,y)[+[11(z,y)]

with
I(z,y) ::p.v./l|<26K5(z)(u(x—z)—u(x))dz—p.v. /|Z|<2£K5(z)(u(y—z)—u(y))dz7
(2.16)

and

II(m,y)::/ Kg(z)(u(x—z)—u(:c))dz—/ Kg(2)(u(y—2) —u(y))dz. (2.17)
l21>2¢ |2>2¢
Scenario (2.7) implies that
I(ac,y):p.v./ Kg(2) (u(w—z) —u(y—2z) —w(€))dz,
l2]<2¢

and recalling that D, (x,y) has expression formula (2.11), we use kernel estimate (2.6)
to obtain that for some B >0 chosen later,

I(z,y)+BE* P Dy (2,y)
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C
B ~Kp(2) = BE o w u(ly—z)—u(z—2))dz
/Iz|§2£( Hele) =Bt |z|1+a>( (&) +uly—2)—u(z—=2))d

/| Ca (w(§)+u(y—z)7u(xfz))dz

|>2¢ |2t

|z]>—F gob
< /|z|<2§ (Cﬁ ga—,B CaB> |Z|1+a (W(£)+U(yfz)7u(xiz))dz

a—p
< / (2“750/370&B)gT(w(f)Jru(y—z)—u(a:—z))dz.
|z]<2¢ |zt +e
Thus by choosing B = %, we immediately get

[I(x,y)| < =B&* " Da(a,y). (2.18)

Besides, by starting from formula (2.16), and using estimates (2.7), (2.6) and the con-
cavity property of w(n), we also have

I(.y)| < Co /

[z]<

wl(fg dn.  (2.19)

Ko (2)lw(|2])dz < C /25“(’”(1 <c /5
25'8 =0y =T

. - . . . ~ x4
For I1(z,y), since Kg(z)=Kg3(|z|)sgn(z) is an odd function, by denoting Z=*3¥ and
in a similar argument as [33, Lemmal, we deduce that

= [ Kt —u@e- [ Kl —u@)

ly—=z|>2¢

S/lfc—ZIZ?)E |[Kp(2—2) = Kp(y—2)llu(z) —u(Z)|dz

s (Ko=) Kaly— ) )~ u(@)lds
3e<|-2|<3¢

Cst G Cs _
S/|92’2|>3§ Ww(|xz|)dz+/3£<iz|<3g mwﬂx—zbdz
oo w B
<CB§/€ 772(3_723(117-1—055 Pus(€), (220

where in the fourth line we have used estimate (2.6) and the fact that |Kg(x—z)—
Kg(y—2)|< %, Vz€R\ Ba¢(Z). Combining estimate (2.18) with estimate (2.20)

leads to inequality (2.13). Note that fog ;’ff,)g dn> %w(g), thus combining estimate
(2.19) with estimate (2.20) leads to inequality (2.14), as desired. d

2.3. Some auxiliary lemmas. We have the following product result used in
Subsection 4.1.

LEMMA 2.5.  Assume that meN, p€|l,00f, f€CX(RY) and ge WP (R4). Then
we have

1 gllw=m.n®a) <Ol fllwm oo @) |gllw—m»@a), (2.21)
where C'>0 is a constant depending only on m and d.

Proof.  Since W™ 4(R%) (=37 is the dual number of p) is the dual space of
W—mP(RY), we get
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I £gllw —m.»@ay=C sup fghdz
1Bl mq ey <11J/RE
<C  sup  |gllw-me@a)llfhllwmame

”huwmyq(ugd)f

§C||9||mew(nw)| sup (Hf”WWOC(JRd)”hHW’"»‘Z(Rd))

Wm,,q(]Rd)_l
SCligllw=mr @l fllwm oo @a)-
a

The next lemma is concerned with the energy estimate and L*°-estimate of smooth
solution for the considered dissipative dispersive equation.

LEMMA 2.6. Let u(x,t) € C([0,T7*[; H*(R))NC>(]0,T*[xR), s>3/2 be a smooth so-
lution to the dissipative dispersive Burgers Equation (1.7) with a€]0,2], 8€[0,1[. Then
we get

t
||U(t)\|iz+/0 lu(r)I%, g A7 <lluollZ2,  for all t€[0,77], (2.22)

and if a €],2], we also have

{supte[o,m Ju(t) = < ClaBope ) ol 2ese,  for a€lB2, -

sup;e (o, [|u(t) || <C(B, v, T)lluolL2nr=,  for a=2and T €]0,T7].

Proof. Noticing that the function mg({) in equality (1.8) is an odd function, we
find [, Lpu(z)u(z)dz = [ —img(¢)|a(¢)[*d¢ =0, thus the L?-energy estimate (2.22) can
be deduced in the usual way.

Now we show L*-estimate (2.23). For the case =2, estimate (2.23) is a conse-
quence of L2-estimate (2.22) and inequality (6.15) below: indeed, by using assumption
(A1), for every T €]0,T%] we have

1
sup ||u(t)|[Le < ClluollLe +CTH||Lul| 2, (L2
t€[0,T]

1
<Clluollee +CTH [ull 12 (r2npy < CBs v, T) ol 2o

Next we prove estimate (2.23) for the case a €]3,2[ by applying an argument from
[31]. For t€]0,T*[ fixed, assume that = €R is the spatial point at which u(x,t) attains
its maximum M = M (t) =suppu(-,t). Then by virtue of formulas (2.5) and (2.15), at
the maximum point we have

Oyu(z,t) =—vA%u(x,t) — pLau(z,t)
=—C, va/M |y|1€rza Y )dy+,up.v./RKB(y) (M(t)—u(z—y,t))dy

:Jl(a:,t)—i-Jg(x,t), (2.24)

where (by using the fact that Kz(y) is an odd function)

naty=p. [ (- |yclfa+m< )) 010t )

M(t)—u(x—y,
Jaost) = —C / |y|1+a 2y [ Kelyu—y.dy,

ly|>r
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with r >0 some constant chosen later. From kernel estimate (2.6), we obtain —‘Cl% +

1
Cps . a—p Cp
rKg(y) < \yl”” + I‘;‘Lﬁ, thus by choosing r:= (2‘%‘*55> so that ‘|M||1+ﬁ < 2‘(;'11& for
every 0<|y| <r, it is obvious that
Cov M(t) —u(x—y,t)
Ji(z,t) < C Hv PES dy. (2.25)
ly|<r Y

Thanks to the rearrangement inequality (e.g. see [37, Chapter 3]), the right-hand side of
(2.25) is maximal by replacing u(x —y,t) with its symmetric decreasing rearrangement
u*(x —y,t), and from the property of u*(z—y,t) and energy estimate (2.22) we see that

S & e

2||uoll7 2

Thus by setting 7= =% and letting M (t) be suitably large enough so that 7<% (i.e.
M(t)> 2oz we have {y € R:u*(w—y,t) > M(1)/2} C [-7,7)(C[~5,5]), and also

CovM(t) 1
Jl(x,t)S—i/ ey
4 [—rr\ [, 1Y[PT

CovM(t
Cov Cqv
- M) 2N (1), 2.26
a2+ [[ug |23 (t) + oa | (t) ( )

For Jy(z,t), since the first term on the right-hand side is negative, we directly use the
Holder inequality and estimates (2.6), (2.22) to get

1/2
1 1
J2<x,t>s|u|ca</R - |2+2de> lu(®)l= <2lulCalluollzr=—2.  (2:27)

Inserting inequalities (2.26), (2.27) into equality (2.24) yields
Cyv Cyv

20ty |29 200

dyu(x,t) < — M ()20 4 2= M () + 2| | Cp g || L2~ 2 7.

a+t4 1+28
As long as M(t)>25+ 1% |ugl| 2 and M(t) > (1255270 ) s 1= 3005557 g 2, the
negative contribution dominates on the right-hand side, and we get

1 Cpv

ou(z,t) < —=—
0 = e g 23

M(t)'T2* <0.

Thus by setting

NuCs\ 7o T 1204 4| Cy\ mom ( 2|u|C \ To 0 TEm
My:= o3+ ((ZIKICs (704 H 5)1“" Lo ]
0 max{ ’ Cyv ’ Cyv Cyv ’

we can infer that <M (t) < dyu(,t) <0 for every ¢ €]0,T[ satisfying M (t) > Mo||uol| 2
(e.g. see [14, Theorem 4.1]). Hence we conclude that M (t) <max{Mjy||uol 2, ||uollr=}
for any t€[0,7*[ and the desired estimate (2.23) follows. O
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We recall the following uniform-in-e estimates of the e-regularized transport-
diffusion equation, and for the proof one can see Theorem 1.2 and Remark 1.3 of [50]
(in fact a more general dissipation term is considered there).

LEMMA 2.7.  Consider the following e-reqularized drift-diffusion equation
Opu+be - Vu+vA©u—eAu=f,, uli=o=1upe=ec* (UolBl/E(o)), (2.28)

where a €]0,1], be = ¢ b, fe=¢c* f, ¢(x)=€e"¢(x/e) and ¢ is the standard mollifier.
Let ug € Co(R?) with Co(R?) being the space of continuous functions which decay at
infinity. Suppose that for any given T >0, the functions b and f satisfy

be L2([0,T];C°(RY), and feL®([0,T];C°NL3*RY)), for some §€]l—a, 1],
(2.29)
then the solutions u'®) of the regularized drift-diffusion Equation (2.28) uniformly-in-e
belong to

L>=([0,T];Co(RY))NL>®((0,T], CL2(RY))  for any 0€]0,04+a—1].

More precisely, for any t' €]0,T[, we have

e oy ouay < €5 (Jluollo + 11 fllzgecs ) (2.30)

where C 1is a positive constant depending only on v, a, d, § and Hb||L%oC<; and 1s inde-
pendent of €.

If assumption (2.29) holds for some 6 >1—« without the restriction 6 <1, then we
also have, uniformly in e,

) (0 +a—1,0 ) +
o {L (10,7);C ), Yo€lo,1], if 0+aeNT, (2.31)

L>=(]0,T];CP+ede) Vo el0,6+a—[0+a]], if 6+ a¢NT,
with the corresponding uniform-in-e bounds analogous with (2.30). Here, [a] denotes the

integer part of the real number a.

Note that in Lemma 2.7, the decaying property of the assumption ug € Co(R?),
the cutoff function 1p,,, in the definition of ug., as well as the assumption f€

L>=([0,T]; L*(R%)) are only used to show that the solutions u(®) are smooth functions
having the spatial decay, and these assumptions are not virtual for the uniform esti-
mate (2.30). Thus as a direct consequence of Lemma 2.7 we have the following a priori
estimates.

COROLLARY 2.1.  Assume that u€ C([0,T*[; H*(R?))NC>(R*x]0,T*[), s>1+ 42 is a
smooth solution to the following drift-diffusion equation

Ou+b-Vu+vA®u=f, uli=o=uo, «a€]0,1]. (2.32)
Suppose that for any given T €)0,T*[, the functions b and f satisfy
be Lo([0,T];C°(RY)), and feL®([0,T];CO(RY)), for some d€]l—a, 1], (2.33)

then we have that for any t' €]0,T7,

lullz (o ryeroray < €5 (JJuollze + 11 fllzzes ) (2:34)
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where C' is a positive constant depending only on v, «, d, 6 and ”b”L;OCJ' Moreover, if
0>1—a in assumption (2.33), we have

% .(o+a—1,0 ' +
ue{L (0,T7;C ), Voelo,1], if 0+aeNT, (2.35)

L>=(]0,T);Cl+de) Vo el0,6+a—[0+a]], if S+ g Nt

with the upper bounds analogous to (2.34).

REMARK 2.1. In the application of Corollary 2.1 to Equation (1.7), we usually view
the dispersive term pLgu as the forcing term f.

3. Proof of Theorem 1.1
At first, we have the local well-posedness result for the considered Equation (1.7),
whose proof is placed in the Appendix.

PROPOSITION 3.1.  Let p#0, v>0, a€]0,2], B€[0,1], and ug € H*(R) with s> 3.
Then there is a time T >0 depending on s and ||uo| g=w) such that the dissipative
dispersive Burgers FEquation (1.7) admits a unique local solution uwe C([0,T]; H*(R))N
L2([0,T]; H¥F 2 (R)) NC*>(Rx]0,T]) with s> 3.

We also have the classical blowup criterion: let T* >0 be the maximal existence
time of the above constructed solution, then

-
ifT*<oo:>/ 10 (t)]| Lo @y dt = o0 (3.1)
0

Next, in the following two subsections, we prove Theorem 1.1 for the subcritical
case a €]1,2] and the critical case a =1 respectively.

3.1. Global well-posedness for Equation (1.7) with subcritical dissipation
a€]1,2] and smooth data. Assume that T* is the maximal time of existence for
solution u to Equation (1.7) in C([0,7*[,H*(R))NC>(Rx]0,T*[) with s>3. Let T €
10,7 be given.

According to (2.23), for every a€]1,2] and T €]0,7%[, we know that

1l s ooy < Ba(T), (3.2)

where B, (T) is the upper bound in (2.23) depending only on «, 8, u,v,T and ||ugl||p2Ap e -
In the sequel, in order to derive the upper bound of the Lipschitz norm of v on the
time period [0,77], we shall prove that for some stationary modulus of continuity

wA(§) =2 w(AE), A€o0, (3.3)

where

1+ 34
§—07F,  if £>4, (3.4)

1+
£7§T7 if O<£§67
w(é) = {
with some 0 < d < 1 chosen later, such an wy (§) is preserved by the evolution of Equation
(1.7). Clearly, wy is a modulus of continuity, moreover, it satisfies wy(0+) =0, w} (0+) =
A and w{ (0+) = —o0.
First notice that by choosing A as

B 4B,(T) 8] 0puo] oo
o (i) a1 32
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we find that ug(z) obeys this wy(§) for A sufficiently large. Indeed, from |ug(x)—
uo(y)| <2|Jugl|pe and |ug(z) —uo(y)| <||Ozuo|lre|r—y|, it suffices to ensure that
min{2||ug|| e, ||Ozto||L=&} <wx(§). Hence, by setting ag: 2%, and using the

concavity of wy (), we see that it only needs to show
wa(ag) =A*"tw(Aag) > 2||uol| Lo - (3.6)

Therefore, to prove inequality (3.6), we let A\ large enough so that (recalling B, (T) >
[luollLee from estimate (3.2))

1) )
=)ol (7) 2B (T 3.7
walao) >wa (55 ) =X "w(5 ) > 2Ba(D), (3.7)
that is, Aag >g and w(g) > 2]/\33,(?), hence, we can choose A as formula (3.5) and this

proves the claim.
Note that by inequality (3. 7) and the choice of A in formula (3.5), we have wy (2 ) >
4B, (T), which implies that w} ' (4B4(T)) < & with wy ' (-) the inverse function of wA(f)
Then in order to prove that the solution u(z,t) obeys the MOC wy (§) for all t € [0,T],
according to Proposition 2.1 and Lemma 2.4, and noting that

O (u(z,t) —u(y,t)) =— (udyu(x,t) —udyu(y,t)) —M(AﬁHu(x,t) —AﬁHu(y,t))
+v(—=A%u(z,t) + A%u(y,1)), (3.8)

it remains to check that for all ¢€]0,T], x #y € R satisfying (2.7) (with w(&,t) =wx(&))
and 0<&€{€:wr(§) <2Ba(T)},

wA(§)wi () + [pl®s(x,y,t) +v Da(z,y,t) <O, (3.9)

where wy (£)wh (&) =22 lw(A)w'(XE), Ps(z,y,t) and D, (z,y,t) respectively satisfies
(from estimates (2.14), (2.10) and (2.12))

Sw Cw
Dp(x,y,t) <Oy /O nﬁ?dmcgg /E n;ﬂ)dnngl%(xg),

with () == C4 [ % dn+Cy¢ [ £ dp, and

D, (z,y,t)
2wy (§), if =2,
< 5 0 w —w —&)—2w .
< C1<f02 wx(5+277)+w7;1(f;2?7)*2w>\(£)dn+f§ A(2n+€) 7;1(3;7 £)—2 k(g)dn) it o€, 2],

S)\Qa—lDa()\é-)7
with
20" if 0 =2

éw w(é— —2w 00w —w —&)—2w .
C’l(ﬁf (£+2n)+nga2n) 2 (E)dﬂ+f% (2n+€) nﬁz €)—2 (g)dn)’ a1,

(3.10)

Note that &€ {¢>0:wy(£) <2B,(T)} C]0,2] (using inequality (3.7)) and A>1 from
our choice, thus it suffices to prove that

)\2a71(ww/+|u|@5+1/Da)()‘€)<0’ for aHfG} 25)\}
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Hence, our aim is to show that, the modulus of continuity w(€) defined by (3.4) verifies
w(&)w'(§) +1ul®s(§) +vDa(€) <0, forall £€]0,6/2],

that is, for a =2,

13 0o
w(f)w/(ﬁ)—i—CélM/o :ffgdn—l—(]ﬂmg/g :;fgdn+2uw”(§)<0, for all  £€]0,6/2],

(3.11)
and for a €]1,2],

£ e
o [ LT 200, [7 14001020,

1
7] +a nlJra

13 0o
+w(§)w’(£)+0§\,u|/o :ffgdn—l—()éluk/& :2(f;dn<0, for all £€]0,6/2], (3.12)

with C; =C1(a) and C),=C%(8) being the constants appearing in Lemma 2.4.
We first justify (3.11) for the case a=2. Since w(&)=¢E—&3/2 for every &€]0,0],
we get w'(§) = 351/2 ”(f) = %5’1/2, and w(§)w' () <&. Tt is also easy to see that

(f:ll],()idn<f ,,/30177<f7 and

> w(n) s * 1
5/5 n2+Bdn§§/ it [

fl By 51‘:_; , for B€]0,1],
§log§+£, for B=0
Scﬁ(sl B’

where ¢3 :% for 8 €]0,1] and ég=2 for 3=0. Gathering the above estimates, we have
that for all £ €]0,6/2],

w(&)w'(5>+|u|<1>ﬁ<£>+vDa<£><£+021 HIE* =+ Ol —v e
3
<¢ (52+02( Bw)luw - Zv) <0,

where the last inequality holds by choosing 6>0 small enough (i.e. o<

min{1,(%)%/3, (QC/((IIfCﬁ)M)S & b-

We next turn to the proof of inequality (3.12) for the case a€]1,2[. Since
w(€) =E—€ 75" for every £ €]0,0], we get w'(€§) =1- L2¢"T, (6= (et
and w(&)w'(£) <&. Similarly as above, we also get fo “’}jg dn< < and Sfoo :Q(fﬁ dn<
¢361 7. Due to the concavity of w(€), both integrals in formula (3 10) are negative, and

from the following estimate

w(§+2n) +w(€—2n)— 477// sw' (€ +2sTn)drds

§4772/0 /_lsw"(f)desgw”(g)n2, (3.13)
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we directly get

Nl

Da(ﬁ)écl/o w(£+277)+":]§§_a2n)2w(£)dn
Ci(l+a)(a—1) o (3, Cifa=1), o
S—#g /07]1 dné—mé .

Thus we have

& Civ(a—1) o
(€ (€) + 1 Bal6)+Da(6) <6+ T4 €15 1 st - DO D
_asifcamn Chlp|(146p) camn 5 Crv(a—1)

<e (0% -5 ° 8(2—a)) 0

where the last inequality is guaranteed by letting § >0 be a fixed constant sufficiently

small (that s, § <min {1,(Gueb)atr (Glme—dry w5y

Therefore, for any given T €]0,7*[, and for every a€]1,2], 5€[0,1], the solution
u(z,t) to Equation (1.7) obeys the modulus of continuity wy(£) with A given by formula
(3.5) for all t€[0,T], which implies that sup,cpo 1) l|Vu(,t)|Le <w)i(0+)=A. Since
T €]0,7*[ is any given value, thanks to the blowup criterion 3.1, we conclude T* = +o00,
and thus Theorem 1.1 associated with Equation (1.7) for the subcritical case a €]1,2] is

proved.

3.2. Global well-posedness for Equation (1.7) with critical dissipation a=
1 and smooth data. First, we have the following more refined blowup criterion than
criterion (3.1).

LEMMA 3.1. Under the assumptions of Proposition 3.1, if T* <oo and « €]8,1], then
necessarily,

|l oo (0,7 ;oo (r)) = 00, for every o €]f+1—a,l]. (3.14)

Proof. If T* < oo and uw € L>([0,T*[;C° (R)) with o €]3+1—a,1[, by using Lemma
2.2, Bernstein’s inequality and the fact that mg(¢) is bounded on the interval [—1,1],
we have that for every ¢t €[0,7%,

I Lgu(t)|lco-s®) < CollA—1Lgu(t)|| L) +Co S_UEQJI(U*/B) 1A Lau(t)|| L= (r)
JjE
< C”AflLﬁu(t)”L?(R) +C$u§2ja||Aju(t)”L°°(R)
JE

< Cllull Lo jo,r+L2()) +Cllull Lo o, 7+ 0 (R)
< Clluollz2®) +Cllull oo (o, 7+ [0 r)) < 00, (3.15)

where A_; and A; are Littlewood-Paley operators defined in formula (2.3). Since u(t)
and dyu for any t €]0,T*[ are already smooth functions with the spatial decay, according
to Corollary 2.1 (or Lemma 2.7), we find that for every ¢’ €]0,7*],

_ot1
lwll oo (o e picre@y) O™ ([luoll Lo ) + | Lgtll oo (o, 7,0 )

_et1
<Ot (luollz2nzee @) + lull Lo 0,7+ 7)) (3.16)
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where p€]0,0 +a—1— [ and C depends only on u,v,o and Hu||Loo([O)T*[;Ca_ﬁ), then let
T >0 depending only on |lug|| 7+ (r) be some existence time (see Proposition 3.1), we can
choose t =T so that we can prove that d,u € L>(R x [0,7*[), which clearly contradicts
with blowup criterion (3.1). Hence, the desired blowup criterion (3.14) is followed. 0O

Thanks to Lemma 2.6, we first have the L?-estimate that

t
||U(t)||2m+/O lu(r)I5, g A7 <lluollZ-, ¥E>0, (3.17)

and the L°°-estimate that

sup [[u(t)|| L~ < Bo (3.18)
t>0

with By a fixed constant depending only on v, 8 and [|uol| L2z (R)-

In the following, we consider the dissipative dispersive Burgers Equation (1.7) with
B €10,1[ and critical dissipation a=1, and we shall apply the method of modulus of
continuity to show that

sup ||u(t)|| g g) <C, for some o €]B,1], (3.19)
te[0,T7+[

with some C' >0 depending only on v, § and ||uol| g+ (r)-
To this end, it suffices to show the following lemma.

LEMMA 3.2. Letue L*([0,T*[; H*(R))NC>=(Rx]0,T*[), s>3/2 be the mazimal lifes-
pan solution to the dissipative dispersive Burgers Equation (1.7). For every o €]p,1],
define the following unbounded function

e :{ms—oga, for0< €<,

3.20
fi+’ylog§, for &>, ( )

with v,k,6 >0. Then provided that the positive constants v,k,0 are sufficiently small
(k,y are independent of 0, see formulas (3.41)-(3.42) below), the function w(§) is a
modulus of continuity (see Definition 2.1) and the solution u(z,t) preserves MOC w(§)
on the whole time interval [0,T*].

In fact, with such a result at our disposal, and by using property (3.25) below, we
deduce that
|u(z,t) —u(y,t)] w(|lz—yl)

sup ||u(®)||pomy = sup sup —————= < sup ——<kKI O,
te[0,7[ o ®) te[0,T*[z,yER,z#y [z =yl syeRazy [T—Y|7
(3.21)

which is as desired. Hence, together with the blowup criterion (3.14), we show that
T* =00 and thus conclude Theorem 1.1.

We also remark that different from the above subcritical case, here we need to
verify inequality (3.28) at all scales (instead of only small scales) and also the MOC
w(€) should satisfy w™"(3|ul| e =) <00, thus the chosen modulus of continuity has to
be an unbounded one.

Proof. (Proof of Lemma 3.2.) We first show that w(€) is indeed a MOC satisfying
some needed properties. Clearly,

w(0+)=0, and W' (0+)=krod 7 lim &7 ! =o0. (3.22)
£—0+
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Observe that for every 0 <& <9,
W(E)=ro677¢7 >0, and W"(€)=—ro(1—0)6 ¢ %<0, (3.23)
and for every £ >4,
G (E=7v"1>0, and W"(€)=—v"2<0, (3.24)
and for £ =4,
W(d=)=roo™!, and W'(6+)=~0"1,
thus if v < ko, we infer that w is increasing and concave for all £ >0. We also find that

w(§)
é‘o’
Indeed, if ¢ €]0,4], property (3.25) is an obvious consequence of formula (3.20); while

/ ’
if £> 0, we have (%) = %, and noticing that by estimate (3.24), o > and
v<OK,

the mapping & — is non-increasing for £ €]0,00]. (3.25)

(Ew' (&) —ow(€)) =w' (&) +Ew" (€) — ow' (€) < o€~ <0,
and

dw'(0+) —ow(d) =7 — ok <0,

we deduce that d%(wg(f)) <0, which implies property (3.25) in the range £ > 4.

Now we prove that the initial data ug obeys some MOC w(&) defined by formula
(3.20). Indeed, owing to |ug(x) —uo(y)| < 2||uo|| L~ and |ug(x) —uo(y)| < |luollce |z —y|7,
it only needs to be shown that min{2uo|| e, ||uoll¢o |z —y|7} <w(|z—yl); then from
2||uollLoo

1/o0
ol ) , it moreover suffices to show that
e

property (3.25), and by denoting aq := (

w(a1)>2|\u0\|Loo. (326)

But without loss of generality assuming a; >4, we see that w(ai)>~vlog%, thus by
choosing ¢ >0 small enough, that is,

§<aje=2 luollzee (3.27)

we conclude that such a MOC w(¢) is obeyed by the data ug(z).

Next, for our purpose, according to Proposition 2.1, equality (3.8) and Lemma 2.4,
it suffices to prove that for all t€]0,7*[, z #y € R satisfying (2.7) (with w(§,t)=w(§)
given by (3.20)) and 0<&e{¢:w(§) <2By},

w(E)w'(§) + |l ®s(@,y.t) +vDi(w,y.t) <O, (3.28)
where D, (z,y,t) and ®g(z,y,t) respectively satisfy (from estimates (2.12) and (2.13))

:2(17; dn+Ca¢Puw(9), (3.29)

(I)ﬁ(xayat) S *CQé'liﬂDl (xayat) +CQ£/
13
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and

€
(.t <C, /2 w(§+2n) +w£]§2 2n) — 2w(§)d77

where C7 =C1(a),Co =C5(a,8) >0 are the constants appearing in Lemma 2.4.
We also remark that from estimate (3.18) and formula (3.20), the scope of £>0
satisfying w(€) <2By is contained in the following range

0<&<Zi=ge2 ' Bo, (3.31)

so that we only need to justify inequality (3.28) for all £ €]0,Z].
In order to prove inequality (3.28), we divide the proof into two cases.

Case 1: 0<£<4.
In this case, we have w(£) =rd77¢7, and w'(&) =kod 76771 thus,

w(E)w'(§) =r%ad27¢27

and by the property (3.25) and o €]3,1], we see that

< w(n) /°° w(n) 1 - /°° —2-8 Ks—oeo—p
dn= — —dn<kKs° " dn<25=7¢° 8.
5/5 s § . e n< 55 n s g 13

Then we find that for every |u|6'=" <

202
1 2C
|u|®s(z,y,t) < —iuDl(x,y,t)+72|u|m5*“£"*5. (3.32)

For the contribution from the dissipation term, by virtue of estimates (3.13) and
(3.23), we get

£
Di(p.t) §C1/2 w(f+277)+w57§2— 2n) —2w(&) dn < _%U(l_a)ms—afa—l_ (3.33)
0

Hence we infer that for all £ €]0,4],

w(€)w'(€) +ul®s(2,y.t) +vDi(x,y,t)

<kOIETL <<m (g) 4 Q%Mw—ﬁ - W)

2 1—
<kd ¢! <<m+ ?mwl—ﬂ—oll’aig)) <0, (3.34)

where the last inequality is through choosing ¢ and k so that

v C’lﬁua(l—a)} K<01V(1—0')

20y’ 16C5 8 (3:35)

|07 <m1n{

Case 2: §<{<E.
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In this case, we obviously have

w(€)w'(§) =yw(€)E"

Taking advantage of property (3.25) again, we see

Fwl) o [Tem) 1 w@ [~ 1 L w@) 1w
5/5 772“3(1”5/5 n” n2+ﬁ‘”dn§€"‘1/g P ST o Sh e

Thus from estimate (3.29), we obtain that by choosing |u|Z' =2 < 265

13 (e,0.0) <= 5vD1 1) + 222 ()6, (3.36)

For Di(x,y,t), noticing that w(2n+¢&) —w(2n—¢&) <w(2€) <2w(§), we get

Dy (z,y,t) < Cy (w(2€) _2‘*’(‘5))/g

2

o0

1 _
<201 (w(26) —2w(€))e (3.37)
Next we claim that for v small enough (i.e. v<§), we have

w(26) < gw(f), VeSS, (3.38)

Indeed, for £ =4, we see that w(d) =« and w(20) =k +ylog2, which further yields that
w(26) < 3w(6) for all y< & whereas for £ >0, considering an auxiliary function h(§):=
w(28) — 5w(&), and noting that

[V N

W(€) <2/ (26) ~ S0/ () =2y(26) ™ — g~ =~ 2o <0,
we deduce h(§) <h(4)<O0 for all £>0, which implies claim (3.38). Hence, plugging
inequality (3.38) into estimate (3.37) yields
Dy(z,y,t) < =201 (2= 3/2)w(§) = —Crw(§)
Collecting the above estimates leads to that for all £ €]6,=],

G

w(f)w’<s>+|u|¢ﬁ<x,y,t>+upl<x,y,t>g<2§2|u51aﬂ_ :

> w(€)et <0, (3.39)

where the last inequality is guaranteed as long as |u|,v are satisfying

|u|515<min{2g2,0810521/}, 'y<min{;,ciy}. (3.40)

In sum, by recalling formulas (3.27), (3.31) and gathering inequalities (3.35), (3.40),
we can choose

7011/(170) 7011/(170')
and
. <2||U0||L°°>°1’ ot [ Cipy 7T e (Crvpo(1-0)\ 7
d=ming ( —— ] e v, PR et S 7
l[uolle:o 16Cs |yl 32C,|u)
(3.42)

with 51 :=min{C4,1}, so that all the requirements are fulfilled, and then we conclude in-
equality (3.28) for w(§) in formula (3.20) equipped with such constants, which moreover
implies w(§) is preserved by the solution w for all time ¢ € [0,7*[, as desired. a
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4. Proof of Theorem 1.2
We consider the approximate dissipative dispersive Burgers equation with regular-
ized data

Ou+udzu+pLagu+vAu=0, uli=o(x)=ug(x) =@ xuo(x), (4.1)

where ug € L2NL>®(R), ¢ =€ p(e tx), € >0 and ¢ € C2°(R) is the standard mollifier,
ie., ¢ C®(R) with supppC [-1,1], ¢ >0 and [, pdz=1.

Thanks to Theorem 1.1, for every e€>0, we know that the approximate Equa-
tion (4.1) respectively generates a unique global smooth solution u¢ € C([0,00[; H*(R))N
C*°(Rx]0,00[) with any s>3/2.

Then the proof of Theorem 1.2 is divided into two steps. In the first step,
we show that by passing € to 0, Equation (1.7) admits a global weak solution w€
L (]0,00[; L2(R)) N L2([0,00[; H'/?(R)), and this is placed in Subsection 4.1. As the
second step, and in Subsection 4.2, we are devoted to proving that the approximate so-
lutions u® are C*°-regular on R x [¢', 00[ uniformly in € with any ¢’ > 0, and thus conclude
Theorem 1.2 by sending to the limit.

4.1. Global existence of weak solutions for Equation (1.7). We first recall
the definition of weak solution for Equation (1.7).

DEFINITION 4.1.  Let ug€ L3(R). We call a solution u:R x [0,00[—+R a weak solu-
tion to the dissipative dispersive Burgers Equation (1.7), provided that it satisfies the
following properties.

(1) u satisfies Equation (1.7) in the distributional sense, that is, for any X € C°(R x
[0,00]),

[e%s} 2
/ /(uat;+%@;ﬂumﬁg_yumz)dzdt:_/uo(x)y(x,())dz. (4.2)
0 R R

(2) The following energy inequality holds

(Ol + / (), g gy 7 < ol geyy V0. (43)
Then we show the global existence of a weak solution for the dissipative dispersive
Whitham Equation (1.7).

PROPOSITION 4.1.  Let n#0, v>0, a€]0,1], B [ ,1[ and ug € L?(R). Then there ex-
ists a global weak solution ue L (]0,00[; L?(R))NL2([0,00[; H*/%(R)) to the dissipative
dispersive Burgers Equation (1.7).

Proof. We first consider the following approximate dissipative dispersive Whitham
equation

Ou+u0zu+pLgu+vA®u+eAu=0, ul=p="1uj:= @ *uq, (4.4)

with €>0, ¢6:e_1gb(é) and ¢ a standard mollifier. For every e >0, according to
Theorem 1.1, there exists a unique global smooth solution €€ C([0,00[; H*(R))N
C*°(Rx]0,00[) with s>3/2 for the Equation (4.4). By virtue of Lemma 2.6, we have

lu ()12 ) /llu s g d7 < luolzz@m, ¥>0, (4.5)
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which means that u¢ belongs to L>([0,00[; L2(R)) N L3([0,00[; H*/2(R)) uniformly with
respect to e.

Owing to the weak convergence lemmas, the solution sequence u€, up to a subse-
quence (still denoting by u¢), weakly converges to a function u in L®([0,00[; L?(R))N
L2([0,00[; H*/?(R)) (weakly-* converges in the L>-topology). From the lower semicon-
tinuity of weak convergence, we can derive the corresponding inequality (4.5) for the
limiting function wu.

Since equality (4.2) holds with u€ in place of u, by passing to the limit ¢ — 0, and
from ||LB%||L2(RX[O,OOD < CH%||L2([O,OO[;H{3 (R)), One can show that the limiting function u
satisfies equality (4.2) except for the following convergence

/ /(ue)zagC)dedt —>/ / w0, xdzdt, VY €CE (R x[0,00[). (4.6)
0o Jr o Jr
Moreover, we claim that up to a subsequence and as € — 0,

u® —u  strongly in L2 ([0,00[; L2 .(R)). (4.7

Indeed, let 1 € C2°(R x [0,00[), from inequality (4.5) and the following estimate that
1£9ll ror2ry S Cllf e llgll grase + Cllf lyirarzce 9llL2 S ClIf llwarzioe @y |91l rorz )
we know that
Yuc e L2([0,00[; H*/%(R)) uniformly ine. (4.8)

In order to show convergence (4.7), according to the Aubin-Lions compactness lemma,
we shall prove that

0y (huc) € L*([0,00[; Ww-las (R)), uniformly ine. (4.9)
Due to the fact that u¢ solves Equation (4.4) in the pointwise sense, we see that

3t(1/)u6) (8t1/))u6—|—1/)(3tu5)
= (O)u’ —Yu Opu’ — pp Lau® —vp A%uc — epp Aus;

from inequality (4.5), the interpolation inequality and Sobolev embedding, we get u€ €
L‘%[O,oo[;Lﬁ (R)), and also thanks to Lemma 2.5 and the LP-boundedness (p €]1,00])
of zero-order pseudo-differential operator (see [44], and the operator d,(Id —A)~2 is of
the zero-order symbol, i.e., [07 (C(1+ IC[2)~2)| < Cn(1+]|¢])™™ for every neN),

€\2
|10 (u®) ||L2([0,m[;w_1,ﬁ(R))
SOl Lo (0,00 w10 () 102 (1) |
<Ol 2o (0,00 w12 R | (1) |

L2((0,00[W " 758 ()
< 2

Loy = Ol

since the test function ¢ has a compact support on R x [0,00[, and using the continuous

embedding L?(I) < L7 (1) SWbre (I) for any compact interval I CR, we find

1(0et))

1

) < C[(Os)u|| oo ((0,00[:2) < Clluol|L2(r);

’U,E” _ 2
L2([0,00[;W "2=2 (R)
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and also in light of Lemma 2.5 and Lemma 2.2, we infer that

1 Laul, y S Cllv Lgutl 2 po,cofzr-2 m))

O,M[;Wfl’%(R
SO Lo (0,00 120 () | LaUE| Lo ([0,00[ -1 (R))
L O|9]] Lo (j0,00w 12 ®)) 1o L2 (R))

where in the second line we have used that |Lgu(t)|lg—1(g)<Cllms(¢)(1+

|C|2)_%1¢A€(C,t)||Lz(R) <||u(t)|| 2 (w); finally, the dissipative terms can be estimated in
a similar manner: for a €]0,1],

«, €
AN 0 a2 gy

<Ol (A" u)| 20,0011 (R))
<Ol o (0,001 2 ) | A" | oo 0,005 () < Cllwol| 2 )5

thus gathering the above estimates leads to estimate (4.9). Hence, by applying the
Aubin-Lions lemma (e.g. see [45, Theorem 2.1]) and estimates (4.8)-(4.9), we conclude
the desired assertion (4.7).

It is clear that inequality (4.7), strong convergence (4.5) and Holder’s inequality
ensure convergence (4.6). Therefore, we conclude the global existence of a weak solution
for the dissipative dispersive Burgers Equation (1.7). d

4.2. Global C*°-smoothness of the constructed weak solutions to Equa-
tion (1.7) for the critical case a=1.  For approximate Equation (4.1), since
ug € L2NL>®(R), we have |[u§||zznr~ <||uollzznre~, and ||u§||gs Ses l|uol|zz for every
>0, so that thanks to Theorem 1.1, Equation (4.1) admits a unique global smooth
solution u€ € C([0,00[; H*(R))NC>(Rx]0,00[), s >3/2, and also by Lemma 2.6 we have
the uniform energy estimate (4.5) and the uniform L*°-bound

sup [|u(t)]| o (r) < Bo (4.10)
>0

with By a fixed constant depending only on p,v, 8 and |lug||z2nz (®)-

In the following, we intend to show the uniform estimate u¢ € C*°(R X [t.,00[) uni-
formly in €, with any ¢, >0. We first have the following regularity criterion in terms of
the uniform Holder estimates.

LEMMA 4.1.  For any 0<T) <Ts < oo, if the solution u¢ for the Equation (4.1) with
a€]B,1] satisfies that

for some o €)1+ —a,1[, u®€L>®([T1,T2];C7(R)) uniformly in e, (4.11)

then we have u® € C*°(|Ty,Tz] x R) uniformly in e.

Proof. Combined with inequality (4.10), we get u® € L°°([0,T*[;C?(R)) uniformly
in €, then similar to obtaining estimates (3.15) and (3.16), we have

| Lgul Lo (1y 13],07—# ) < Clluol| L2 ) + Cllu]l Lo (111 12):00 (R)) < 00,

and for any t} €]T7, 75|,

€ _etl €
[u )| oo 1y o ore ) S C#L = T1) ™= (luoll oo ®) + Ul Lo (i1, 0o ) »
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where 0€]0,0+a—1-p[ and C depends only on o and |[u|| e (1, 1, ;o5 (r)); Which
specially implies that

3 (R)), uniformly in e.

ut € L([t), Tx);C7F
By arguing as estimate (3.15) again, we deduce that

€ a— < € a—
IE8U N e oy mapom-ae 252 gy S Colluollze + GOl ) 7y ooz gy

and taking advantage of estimate (2.35) (with §=0— 5+ # and a €],1]), we get that
for any 5, €]t}, 1],

uf € L ([th, To); 7 *P(R)),  uniformly in .

We further get that Lgu® € L>®([th, T];Ct*~28(R)), so that by using estimate (2.35)
again (with 0 =0 +a—28 and «a €]4,1]), it leads to that for any t5 €]th,T5],

(S L‘X’([tg,Tg];Cﬁ'Mugm (R)), uniformly in e.

By repeating the above process for more times, we obtain that wu‘e
L= ([t],, Tx);C7F e (R)) uniformly in e with any T)<t)<th---<t, <Tp and
neNT, which guarantees the uniform CS°-smoothness of u¢ on the spacetime domain
RX]Ty,Ts]. The uniform C°°-smoothness in t €]T7,T] can be derived by using Equation

(4.1). Hence, we prove the assertion under condition (4.11). 0

Now, our main target is to prove uniform estimate (4.11). We first observe that if
the MOC w(§) defined in formula (3.20) is initially uniformly-in-e preserved by solution
u€ at some time ¢, then the justification of inequality (3.28) can be naturally applied to
show solution u° will uniformly-in-e obey such a MOC for all ¢ >t;. The key issue is that
the initial data u§ = ¢, *up with rough assumption ug € LN L>(R) will not necessarily
uniformly-in-e obey such a MOC w(&) given by formula (3.20). The idea to overcome
this difficulty is as follows (see [30]): we intend to choose a family of time-dependent
moduli of continuity w(€,t) which gradually becomes w(&) given by formula (3.20) after
a short time, and we choose w(0+,0) >0 large enough so that initially u§(x) uniformly-
in-€ obeys w(&,0), then we moreover show that the MOC w(&,t) is uniformly-in-e obeyed
by the evolution of u¢(x,t) which finally yields that solution u¢(x,t;) at some short time
t1 preserves MOC w(€) defined by formula (3.20), as desired.

For this purpose, we consider the following family of moduli of continuity for &, > 4,

(1—0)k+vlog e —7& " (o —0) +ord™1E, for0<E<6,
w(&,60) =1 k+log & —7 4965 ¢, ford<¢<&,  (412)
m—l—'ylog%, for &> &,

and for &, <9,

(1—0)/{5"’584-0%6*"{8_1{7 for0< £ <&,
w(&,80) = KO7E7, for&y <& <6, (4.13)
f@+710g§, for& >4,
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where o €]3,1], and k,7,d are positive constants chosen later. In formulas (4.12)-(4.13),
& is a decreasing function of ¢ which goes to 0 as ¢ tending to some time, more precisely,
&0 =¢&o(t) can be chosen as

o(t) =20 —pt, (4.14)

with p and Zy some positive constants fixed later. Note that when £ =0, w(&,0)=
w(&,0+4) reduces to the MOC w(&) defined by (3.20). The construction of w(§,&p) is,
motivated by [30], through taking a tangent line at £ =&y to w(&) given by (3.20) and
replacing w(£) with this tangent line at the range 0 <& <&;. But since the one-sided
derivatives of w(§) at the point £ =0 do not coincide, we thus make a modification in
the case & > 9, that is, the tangent line mentioned above at the range 6 <& <§ is still
adopted, but at the range 0 <& <4 it is replaced by a straight line crossing w(d+,&p)
with the larger slope w’(6—)=0ord 1.
Clearly,

w(0+,&) >0, for all £ >0. (4.15)

Similarly as w(&) defined by formula (3.20), w(&,&p) is also an increasing and concave
function for all £ >0 and & >0. For £, =E¢ >, we get

w(0+,E0) = (1 —U)erlog%o —7Ey (B0—0) > ((1—0)k—7) +710g%07 (4.16)

By assuming vy < (1 — o)k, and using inequality (4.10), the initial data u uniformly-in-e
obeys the MOC w(§,Zp) provided that

2B, gylog?. (4.17)
Note also that under condition (4.17), we have

w(Zo,&0) = w(Eo,04) =w(Eo) Zw(0+,E) > 2By, for any { > 0. (4.18)

We have the following key lemma, whose proof is placed at the end of this subsection.

LEMMA 4.2.  Suppose that the initial data u§ uniformly-in-e obeys the MOC w(€,Eo)
given by (4.12). Then for some positive constants §, k, v, p small enough, the solution
u¢(z,t) of approzimate Equation (4.1) unformly-in-e obeys the MOC w(&,&(t)) for all
t such that &(t) =Z0—pt>0.

Now with Lemma 4.2 at our disposal, we see that from (4.17), we can choose =g to
be

Sy =8¢ Bo, §>0 is chosen later, (4.19)
and by letting
= 1 5. -
b S0 Laing (4.20)
PP

we get &o(t.) =0 from formula (4.14), thus thanks to the time continuity of u¢ and
w(&,80(t)), we have

(o ) (0 1) | < Jim (o — /| () =wle’ ~o/]), Ve’ €R,  (421)
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where w(§) is given by formula (3.20), and &,, p, 1 are fixed positive constants satisfying
condition (4.65) below with o €]3,1[. By setting the MOC

_ 26077&°, for 0< £ <9,
w(&):=2w(§)= ¢

2k +2vlog 3, for £ >4,
inequality (4.21) implies that solution u(z,t,) obeys the MOC @(£), and in a same
argument as Lemma 3.2, one can show that such a MOC @(&) will be preserved by the
solution u€ on the time interval |¢,,00[, provided that

—1-8 . v CwBo(l-o) 0 Civ(l—o0) 0 . K Civ
= <m1n{202,1602 , 0<w<——r—", 0<y<mingo,—=.

(4.22)
In combination with inequality (4.65) below, and by setting U:% €]8,1[, we can
choose

v(1-5) v(1-8)  v(1-p)? H[EL  ujg=P 20 By vB(1—p)

pP= Ta R= C y V= C )
(4.23)
with some constant C'>0 depending on C7,Cy=C5(f).
Hence, for every |u| € RT and ¢’ >0, by choosing ¢ to be
. 1 I/ﬂ(lfﬁ) 1/(1-8) I
5= —pe~2Bovy [ 2 Ty Bo 4.24
mm{2pe ,< 2C|M| € ) ( )
we obtain that
: < Bo+2k6~ 7 4.2
2
sup [ (0), 21 < B+ 260", (1.25)

te[%,oo[

where By is given in (4.10).
Therefore, we get the uniform estimate (4.25) with respect to e for any ¢’ >0, and
in view of Lemma 4.1 and Proposition 4.1, we can pass ¢ — 0 to conclude Theorem 1.2.

Finally, we give the details of proving Lemma 4.2.

Proof. (Proof of Lemma 4.2.) Since u§(x) obeys the MOC w(¢,£5(0)) =w(&,Zp)
by assumption, and w(&,£y(¢)) is the MOC satisfying the needed properties, according
to Proposition 2.1, equality (3.8) and Lemma 2.4, it suffices to prove that for every ¢ >0
such that &y(¢) >0, z #y € R satisfying (2.7) (with w(,t) =w(&,&(t)) given by formulas
(4.12)-(4.13)), and 0 < € € {€:w(&,&0(t)) <2B,},

7850(’0(5750)50(15) +w(£7§0)aﬁw(€>€0) + \,u|<I>5(:v,y,t) +VD1 (%y,t) < 07 (426)

where &(t) =20 — pt is abbreviated as & below, w(£,&y) is given by formulas (4.12)-
(4.13) and

£
(o) <O, /2 w(&+2n,&) +w(£n2 2n,&0) — 2w(§,50)dn
+C1/§ 277+§,§o)—w(27;72—£,£0)—2w(§,§0)dn’

(4.27)
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and

D (2,9,8) < ~Co€1 P Dy (,9,8) + Cot / LS an+ o Pule ) (@29

In inequality (4.26), if J¢,w(£,&o) or O:w(£,&y) does not exist, the larger value of the
one-sided derivative should be taken.

We also note that in view of inequality (4.18), the scope of £ considered in (4.26)
belongs to ]0,Zo].

According to the values of £ and &, we divide the proof into several cases to justify
inequality (4.26).

Case 1: £ >4, 0<£<4.

From w(&,&)=(1— U)/i—i—’ylog%o — &5 (€0 —0) +ordT1E in this case, we have

B, w(&,60) =76 ' =16 20<76 !, and Bew (&) = ord T, (4.29)

and
w(6,60) 20(04+,60) = (10 n-+110g L — 15 (€ —5), (4.30)

and
w(£,€0) —w(0+,&0) Sw(8,60) —w(0+,&0) =0k (4.31)

Thus by using equalities (4.14) and (4.29), we get
—Deow(&,60)é0(H) <pr&y - (4.32)

Owing to the integration by parts and the formula of w(n,&) in formula (4.12), we
obtain

w(n,%) 1 w(& %) w(n,&o)
5/ T e 1+6/ e

_ 1 (EafO) 1 J KOO~ 1 o 750 1 [e%S) v
1B &P +1+5§/5 P 1+5§/ T 1+5§/Eo 755

L wbbo) W T T elg(5B_gB 750( ¢
0 -0 5P — ATV )
R taemp (T D e (0TS e
cw(&8) -
< fﬁo 50K ﬁ+ﬂ 767, (4.33)

Thus by applying estimates (4.28), (4.31) and (4.33), we have that for |p|0' % < z&-,

v 5, C 5, C _
115 (r.9.8) < = D1 @t) + 2Calpl(€.€0)6 ™ + 2 o™+ ey

v _5  3C 4 C _
giZDl(xay’t)+202|/u‘|w(0+350)£ B+720/€|,u’|£ ﬁ"’FQLuh/EOBa
(4.34)

and also,

w(&,&)0ew(€,&0) < ord™H (w(0+4,&) + ko) <ord w(0+,&) + ok (4.35)
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For the contribution from the diffusion term, since the function w(n,&y) —w(0+,&g) is
still concave, we infer that

1
Dl(x,y,t)§*201w(0+,§0)/§ ?dn§74clw(0+,§0)£71 (436)

2

Thus by setting |p|d'—# < f—é’; and x < 92 so that

1
2Cs|nlw(0+,60)¢ ™" < (2CIuld" ") w(0+,6)¢ ™ < —gvDi(w.y.b),

B o ) 1 (4.37)
okd w(0+,&) < Tw(O—hﬁo)é < —guDl(x,y,t),
we get
3 ,) + (6 60006 60) < ~ PN B ety gy T
(4.38)
If £ > 94, we see that
w(0+,&) > (1—0)k+(log9—1)y > (1—0)k+7, (4.39)
and inserting the above estimate into inequality (4.36) leads to
Dy (z,y,t) < —4C (1 —0)k€ ™ —4C v¢ L. (4.40)

Thus for & >9§, by collecting estimates (4.32), (4.36), (4.38) and (4.40), we deduce
that

L.H.S. of (4.26)

3C; C
<K& (ﬁ o0 ||+ 0k — 20 v(1 — J))—i—'yfl <p+ﬁ26lﬁ|u|—2011/><0

where L.H.S. denotes the left-hand side and the last inequality is guaranteed as long as
K, || satisfy

CivB(1—o) V} K<Cly(170). (4.41)

C DR gt St
p<Cqv, |lu| —{ 302 7402 402

If £ <96, the positive contribution which is treated by estimates (4.32) and (4.38) can
be bounded by

— Ogow(&,&0) &0+ |1l Pp(2,y,t) +w(€,&)Oew (€, &)

1
<= g Dutaat) +re (oL vatr om0+ Lot ).

B

For the negative contribution from the diffusion term, from formula (4.30) and inequality
(4.36), we directly get that by letting v < 5%k,

D (z,y,t) <4016 (1 —0)k —v) < =201 (1 —0)kE L. (4.42)
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Hence for every &y <94, we have
-1 2 3C3 1-8
L.H.S. of (4.26) <x& pt+o’k+ 7(5 |u|—Civ(l—0) | <0,

where the last inequality is ensured if we set

Civ(l1—o0) 1-5 CyvB(l—0o) v Civ(l1—o) (1-0)
ST M T g T

Case 2: £ >0, § <£<&.
From w(&,&) :/<;+'ylog%° —y+7&5 1€ in this case, we have

Oeow(&,€0) =7E % (S0—€) <& ", and  dew(€,&0) =& ",

and
(€,60) > (6, E0) = +7108 2L — 8™ (60— ) =w(0,60) +ow,
and
w(€:€0) —w(04,&) <w(éo,&) —w(0+,60) =15 (€0 —8) + ok <y +0k. (4.44)
Thus by using formula (4.14), we get
—0e,w(&,0)é0(t) <&y - (4.45)

Thanks to the following estimate

> w(n,&) 1 w(&) o gt 1 g
6/5 n2+50 dn:1+6 550 1+6§/ liﬂ 1+65/§0 772+Bdn

1 w(&éo) B B —(148)
T er taeapt (76" vt

w(&6o) | v,
= 560 +B§0 )

we see that for all |u|&)~ F< e

v
- (1+5)2

1 C _
|u|<1)5(z Y, )<71VD1( 7y7t)+202|:u‘|w(£a§0)£7ﬁ+F2|.uh/§0ﬁ

1 C _
<= vDi(y,) + 205 u|w(0+,60)8 ™7 + 205 u| (v + o) €7 + ?2 v ?,
(4.46)
and also by using inequality (4.44),
w(€,60)0ew(€,80) <&y Tw(0+,&0) +7°6p H +oyry (4.47)

For the contribution from the diffusion term, we also have estimate (4.36). If £ >99,
by using inequality (4.39) and setting |,u|§é_6 401” and v < Cl” , we deduce that

1
2C2|u|w(0+7£0)£76 +’Y€O_1w(0+>€0) S *ZVDl (Cﬂ,y,t),
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and thus
L.H.S. of (4.26)

_ 3C _
<kE! (20C2|N|§5 B+U’Y—2C1V(1_U)> +E7! (FH" 72|M|5(1) ﬁ+7_C1V) <0

where the last inequality is guaranteed as long as

Civ v Cluﬂ(l—a)} <Clu(1—0)

i 1-6 1hind ——
p< . wlé <mln{4027 9Cs 1 (4.48)

3

If £y <94, the positive contribution treated by estimates (4.45), (4.46) and (4.47) can
be bounded as

— Ogow(&,&0)&0(t) + 1| Pp (@, y,t) +w(€,&)Pew (€, &o)

1 _ 3 2
< —=Dy(z,y,t)+rET pl—l—02|,u|§é Plooc+22 +0’y+l )
2 K Bk K

For the negative contribution from diffusion, we obtain estimate (4.42) for all v < 15%k.
Hence for £y <94, we have

L.H.S. of (4.26) < r&™? <p+3§2u|£é_5+2'y—01y(1—0)) <0,

where the last inequality is ensured if we set

Civ(l—o0) 3 v Civf(l-o) . [1-0 Civ(l—o0)
- 7 - 7 < .
< 3 ) ‘ |fo <min 4C 90, , yY<min 5 K, 6

(4.49)

Case 3: £ >0, §<E<5,
In this case, from w(€,&) =k +vlog$, we see that dg,w(€,£0) =0, dew(€,&) =€,

and
w(n,&o) 1 w(&é) , 1 < 9 w(&, %) -
f/ 2+ﬁ0 T 148 550 +1+B€/g g dns 550 e

Thus thanks to inequality (4.28), we get

C2|M|

1| @ (2,y,1) < = ==& 7P Dy (,y,) + 20| ulw(€,£0)6 ™" + CalulrE 7. (4.50)

and

w(&,&0) 0w (&,0) =yw(€, )¢ (4.51)

For the contribution from the diffusion term, since w(2n+¢&,&)—w(2n—¢E,&) <
w(2¢,&0) <2w(&,&p), we obtain

D (z,t) < C1 (w(2€,&0) —2w(€,&0)) /;0 %dTIS201(&1(25,50)*2W(57§0))571- (4.52)

Observing that w(2€,&) —w(&,&0) zvlog% —vlog s =vlog2 and w(¢,&o) Zvlog%, thus
if & satisfies that £ >4, we find w(&,&p) > 2ylog2 =2(w(2¢,&) —w(&,&0)), and then

(26 £0) — 2(€ o) < — 5l o). (4.53)
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Hence if £ >46, by gathering the above estimates, using the fact that w(€,&y) > and
1

setting \,u|507ﬁ < 16, we deduce that

‘,U/|(I)ﬁ($,y7t) +W(§,§0)8£OJ(£,£O) < _%VDI (x7y7t) +302|/J/|w(§7§0)§_6 +’)/(U(§,§o)§_1,

and
Dy (,y,t) <—Chw(€,6)E,
and so
(€. 60)e0(€.60) + |5, 9.0)+ D1 (2.9.1) < (3CallZ5 47— T (e o)™ <0,
where the last inequality is ensured if we set
|u55"<min{4”02,glc’;}, <%. (4.54)

On the other hand, if ¢ satisfies £<4§, since w(,&)—w(0+,£) is concave and
w(0+,&) > (1—0)k, we get

oo

Dy (z,y,t) < —2C’1w(0+,§o)/£

1 _
?dng—élCl(l—o)nf L (4.55)

2

and also by setting v <k,

w(i,ﬁo)=f€+710g§SH+710g4S3f<- (4.56)

ol |4

Hence if £ <46, by collecting the above estimates and letting | u|:(1)_ﬁ <ig we obtain

1 1 _ _
W(gago)agw(&go)"‘|N|<I)ﬁ($»yat)S—ZVDl(xayat)+7C2|M|:(1) Pt +3yreY,
and thus
(€,€0)0ew (& 60) + (.4, +v D1 (w,9,) < (TCa ulZh " +37—2C1w(1—0) ) ne ™,

where the last inequality is ensured by letting

1- 1-
|#|E(1)B<min{cll/8(02a),4yc,2}, ’Y<min{cll/(40),n}. (4.57)

Case 4: 0<&y <6, 0<E<&.
In this case w(&,&) = (1—0)kd 7S +ord &5 1€, and thus

agow(@ﬁo):a(l—a)m(é) 551 <l—§>, and Oww(&,&) =0k (6> 51,
&o o o

and

w(f,fo)Zw(0+,€0):(1*0)1€570€g, w(gag()) Sw(éag()) S/ﬂ;igfga (458)
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and

—0e,w(&,60)é0(t) < po(1—0)k (;) & (4.59)

By virtue of the integration by parts and formula (4.13), we see that

“w(mn,éo) 1 w(&,%) Iyw(n,&o)
5/6 772+/30 dn=1773 560 1+ﬁ§/ : 1+/30

1 w(&,&) 1 £ grd™ 7€ okéon !
“1+5 &8 +1+5£/ nt+h dn+1+ﬁ€/o 771+B a

1 w(& o) oK é - 1 oK é - —(148)
STypan +<1+5>5<£o) &' te)

w(§7§0) QO'J é - -
S é—@ + B <£O) gO ’

then gathering the above estimates and inequality (4.28) leads to that for all |u|6'~# <

v 20 7
15 (2,:8) < = Da(,y.8) + 2Cal (€. 80)6 ™ + ==l ( ) 6"
v 4Cy <6>“’ 5
<—=Di(x,y,t)+—~|uls| — , 4.60
1 P1@ ) 5 1z &) ¢ (4.60)
and

5 —0o 5 —20
W(ﬁ,ﬁo)asw(fafo)fmfo_l(fo> W(E,Eo)émz’(&)) el (461)

For the contribution from the diffusion term, by arguing as estimate (4.36) and using
inequality (4.58), we obtain

Dl(x,y,t)§72Clw(0+,§0)/:oidn< —4(1— 0)015(20>_ et (4.62)

2
Collecting the estimates (4.59), (4.61) and (4.62), we find that

L.H.S. of (4.26)

) S 2) )
<k|— o(l—o 1P 1k —-2C1v(l—0o
(fo) &l )50 ‘ | §o \ & w(l=o)
<k <6) ¢t (p0(1—0)+2|M|(51_’6+I€—201V(1—0')>,
€o B
which leads to the desired inequality (4.26) as long as p,|p|,x are such that

v CivB(l—o) <C'1u(17(7)
T T R 6

C
p<£, |6t B<m1n{

o (4.63)

Case 5: 0<&<d, {<€&<E.
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The proof of this case is almost identical to that of Case 1 and Case 2 in the proof
of Lemma 3.2, and we omit the details. Note that the conditions on k,|ul|,v are given
by

v CivBo(l—o) Civ(l1—o) . [rk Cv
20, 160, RSy ysmingg Ty (464)

Therefore, for the MOC w(¢,&p) defined by formulas (4.12)-(4.13) and &y =Eo(t) =
Zo—pt with p,k,|p|,y are appropriate constants satisfying conditions (4.41), (4.43),
(4.48), (4.49), (4.54), (4.63), (4.64); based on the above analysis, we verify inequality
(4.26) for all £ >0 and ¢ > 0 satisfying &y (¢) >0, and thus conclude Lemma 4.2. Observing
that by suppressing the dependence on the absolute constants and C7, Co =C5(5), the
conditions on coefficients p,x,y >0 are as follows

2
p M) M0 ey WB00) vy
with C' >0 some constant independent of o. 0

5. Proof of Theorem 1.3

From the local well-posedness result (see Proposition 3.1), we assume that the
dissipative dispersive Burgers Equation (1.7) generates a unique smooth solution u €
C([0,T[; H*(R))NCY([0,T[; H*~'(R)), s> 2, with any time 7" €]0,00[.

We define the following quantity

|25 P <m1n{

Epqtle)i= [ wpgla=p)uiu)iy (5.)
where
sgn(x), for |z|<1,
Wpa(@)i= { :::: singx;, for ||ac|| ; 1, (5:2)
with p€]0,1], ¢ €]2,00[ chosen later. Denote by X (x,t) the flow trajectory given by
%X(x t)=u(X(z,t),t), X(z,0)=z€R. (5.3)

Since u(-,t) on [0,77 is a Lipschitz function of R, we know that X (-,t) for every t € [0,T]
forms a unique one-to-one diffeomorphism. For ¢ € [0, T, set Z(t) = X (0,t).
In the sequel, we mainly consider the evolution of the weighted function

B(0) = Eyu(a().0)= [ 0,0(a0) =) uly . (5.4)
From Equations (1.7) and (5.3), we have
) g, (D) (1)) + u(2(0). )0, (8 qu) (2(2).)

) (5.5)

= 251241(6 u )( ) — ng,q(LBu>( )— Vgp,q(Aa“)(f)+u(j)8x(5p,qu)(j)a

where in the second line we have suppressed the ¢-variable in Z(¢) and u(-,t). In light
of the integration by parts, we claim that

~580(0:02)@)= 5 [ 0,005 =0)0, ((0) =22 0))dy

~5 [ Woala =) (@) =)o
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with

for |x| <1,

Wy (@) = — Oty g >{" (5.6)

WI%’ for |z| >1.
Indeed, the first equality is just from formula (5.1), while the second equality follows

from the integration by parts and a limiting argument, and we omit the details here.
We also find

aﬁ?(gp’qu)(j):/pr,q(y)az“(f_y)dy
/wp,q(y)ay(u(f)—u(ic—y))dy
= [ Woalt) (@)~ =) dy= [ Wl —0) (u(2) = ulw) o

Then it is obvious to see that
1 _ _ _ 2
—iepyq(aqu)(x) +u(x)8 D, qu / Wy o u(x) —u(y)) dy. (5.7)

Taking advantage of formulas (2.15) and (5.1), we write

Epa(A%0)(Z) = = [ w09 (Au) Jy+ 2 [ (=) (A0) ()0
2 2

_Ca u(z) —u(y)
/wpqx ypv/ 1+add+/wpq p.v./R|Z_y|1+adydz

_7& v wlv) —ulz wp7q(x Y) — Wp,q(T—2) -
- p../R/R((y) () dyd

2 |y—z|1+a
:C;p'v'//(“(f)—u(z))w””(x|yy_)Z|:ljf&q(xZ)dydz
wp’q(f—z)—wpyq(j_y)
—&-*pV// |Z—y|1+a dydz
:_§/R(u( z) —u(z)) (A wp,q) (% - Z)dz_%/R(“(f)_“(y))(/\”‘wpq)(x "
— /R (u(Z) —u(y)) (Awy.,) (Z—1)dy. (5.8)

In a similar argument as that in [11, Pg. 2844] and by formula (2.5), we get
Epg(Lpu)(z) = /pr,q(f—y)pv./Kﬁ(ly—ZI)sgn(y—Z)(U(Z)—U(y))dzdy
= [wpata=vpev. [ Kolly==Dsenly—2yu(z)dy

== [pate—vav. [ Kally—=l)ssnty =) (u(z) ~u()dzdy
R R
—— [ (@~ u@)pr. [ Kally— =D senly— 2)up(z -y
R R
=—/(U(f)—U(Z))p~V~/Kﬁ(ly—zl)sgn(y—z)(wp,q(f—y) Wp,q(T—2))dydz
R R
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—— [ (@)~ 0(2) (L) (o 2 5.9)

Inserting equalities (5.7)-(5.9) into Equation (5.5) leads to that

TR =5 [ 00 =) Wi | (060) =) ()5 )
JrV/R (u(@) —u(y)) (A*wp,q) (Z —y)dy. (5.10)

In order to estimate the last two terms on the right-hand side of Equation (5.10),
we need to use the following lemma, whose proof will be postponed to the end of this
section.

LEMMA 5.1.  Let p€]0,1], ¢€]2,0], a€]0,1], 8 €]0,1].
(1) Let J, 4(x) be the following function

Jp,q(:ﬁ)==Lﬁwp,q(l‘)=p-V-/RKﬁ(Ix—yl)sgn(z—y)(wp,q(y)—wp,q(x))dy, (5.11)

with Kg(x) = Kg(|z|)sgn(z) the kernel of the operator Lg (defined by formula (2.5)),
then we have

c
e or 0<|x| <1,
| Jp ()] <3 8 f = (5.12)
kR for 1< |z < o0,
where C >0 is a constant depending only on B,p,q.
(2) Let Hy, 4(x) be defined as
H A -C Wp,q() 7wp,f1(y)d 1
p.a(®):=A%wp o(2) = Cap.v. ta Y (5.13)
R |z —yl
with C,, some constant depending on «, then we have
c
T p¥a s or 0 <|x S 17
[Hpq(@)| <q 78 for 0 <[ (5.14)
W, f0T1§|x‘<OO,

where C'>0 is a constant depending on «a,p,q.

Then, by virtue of estimate (5.12), Holder’s inequality and Young’s inequality, we
infer that

‘H/R(u(ff)—“(y))(Lﬂwp,q)(f—y)dy‘SMI/IU(f)—U(y)IIJp,q(i“—y)ldy

<ul ( [ @)= ul) W o y)dy)l/2 ( / 'J”)d)/

<l (/R () = u(y) " Wp,q (T~ y)dy> 1/20(19,61,@

5/ () = u(y) *Wy,q (2 —y)dy +|*C(p.¢.8),
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where in the third line we let 0 < p <min{1,2—-28}, 2< ¢ <2428 and used the following

fact that

C
Vog@) _ | pize=r,  for 0<]a<1,
Wpqe(z) — Irlﬂ%’ for 1< |z| < co.
Similarly, due to that
C
|Hp @) _ | piza=r,  for 0<|z|<1,
Wpalz) — MH%, for 1 <|z| < oo,

and by choosing p,q such that 0 <p<min{1,2—2a} and 2< ¢ <2+ 2, we obtain
o [ @) =) (8% 10) @ =)0 < [ 10) =) P )t +2C ),

Gathering the above estimates yields

AEE / (u(@) — u(y)) Wp.q (& —y)dy — (|n +23)C(p,q.0.5).

(5.15)

> -

From expression (5.4) and Holder’s inequality, we also see that
B0 =~ [ w000 =) (u() ~u(w)
1/2 lw, o ()2 1/2
|u(z) YPW, . (Z y)dy) (/ de)
(/ P r Whpe()

< ([ @ - -viar)  ca

where in the third line we have used the fact that (for 0<p<1 and ¢>2)

[
¢ for 1 <|z| < o0,

a1

|wp,q<x)‘2 < = for 0< x| <1,
Wp,q(l') N

which moreover ensures that
(5.16)

/ (E) — () PWpg (2 — )y > c(p.q) E(1)?.

Hence, for every p,q satisfying 0 <p<min{1,2 — 2,2 —23} and 2 < ¢ <min{3,2+4 2«,2+

2}, we deduce
(5.17)

dEW) o ) g2 _ (142402 C(p,0,0.8).

But as long as we choose the initial data wuo such that <22 F(0)2— (|ul?+

)C(p,q,a,8) >0, that is, (noting that z(0)=0)
A(|u? +v*)C (g, 8) +1 )
pr,q(y)uo(y)dy‘ > ( . ) : (5.18)

[E(0)]=
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we have that the quantity E(t) defined by formula (5.4) blows up at finite time, which
is a contradiction with the fact that for every 0<p<min{l/2,2—2«a,2—-28}, 2<¢<
min{3,2+2a,2+23} and for all ¢t €[0,T7,

[E(t)|=

Wp,q(Y)w(Z(t) =y,0)dy| < [[wp gl L2 [[u(t)]| 2 < Clluo]| L2 () < o0
R

Therefore, the initial assumption does not hold, so that there exists a finite
time T €]0,00[ and Equation (1.7) generates a unique solution ue€ C([0,T[; H*(R))N
CLH([0,T[;H*(R)), s >3/2, with

sup |lu(t)| gs ) = limsup ||u(t)]| g &) = 00
tel0,T[ t—T

Now that the time T is the maximal existence time on the space C([0,T[; H*(R))N
C*(Rx]0,T]), according to blowup criterion (3.1), we thus get scenario (1.10) and
conclude Theorem 1.3.

Finally, we give the details of proving Lemma 5.1.
Proof. (Proof of Lemma 5.1.) We mainly use the method of [11, Lemma 3.3]
or [18, Lemma 2.1].

(1) Since J, 4(x) is an even function, it only needs to consider the case z>0. We
first consider the case 0 <z < % By change of variables, we have the following splitting

Ipq(T)= ‘ <1KB(|$—y)sgn(x_y)<sg|zr/1(:) _;lp>dy
g e (L)

=/01 (Kﬁ(Ix—yl)sgn(w—y)(;g—;,) —Kﬂ($+y)<yp +xlp)>dy
+/IOO(K5(yx)<11,) K/s(SHy)(yiJri) dy

yq xP
::J;q(m) —h]iq(x)7 (5.19)

where we have omitted the notation of principle value for brevity. For ‘]1%, (), we further
decompose it as

Iy q(2)= /: <Kﬁ($_y)<;p—;J>—K5(x+y)(;)+;)>dy
+/m (—Kﬂ(y—m)(;p—;)—Kﬁ(ﬂy)(;ﬁ;))dy

1

1 1 1 1

(Rt ) (e L))
=Jp 4 () + 5 () + % (2).

According to (2.6), the term Jg}q(x) can be directly treated as follows

x AL,+_;L
11 yP TP
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C [To101 c o[ o1 c ("1 1 C
§$1+B/0 (gﬂ’aﬂ’)dy+x1’+1é (m—y)ﬁderml‘*‘ﬁ/o (ﬁerip)dygxp‘*‘ﬁ'

The term J)2 (2) can be similarly estimated as

3, 3, 1 1
722 (2 N<e [ g W o [T e
) W VTR )L @y

. ELE | 1 C o [3r,q 1\ gy< C
1‘P+1 . (y—x)P y+x1+ﬁ - <y7+ﬁ> yimp"‘ﬁ'

For J}? (), since y —x > 1y for every y € [3x,1], we use formula (2.6) to deduce that

1 1 1 1 ! 1 1 1
13 < _ Y (e Tl
713 ()| < C RoEriE: (mp yp)dy+0/gz CEEE: (yp+xp)dy

C 1 C

1
<— ——dy < —.
TP /gx yl+h y= xPtB

Next we consider Jg’ (), by using formula (2.6) again, and due to the fact that y—x =~
y~y—+a for every 0 <z < % and y>1, we have

o0

@< [ (sl +1Kal+ )y [ Koyl + Katot)l) ody

c [ <1 C
el —(1+p8) - il
< zP J; y dy+0/1 yat1i+8 dy < P’

Gathering the above estimates leads to the desired estimate (5.12) for the case 0 < |z| <
1

For the case 3 L <2 <1, we also have decomposition (5.19), and by applying the
argument as above and the fact that |— — —| <C|z—y| for all y near x, e.g. <y <
we can show that |J, 4(z)| <C.

Now we turn to the case z>2. By using the change of variables, we have the
following decomposition

Tnal@)= | I<1Kﬁ<|x—y|>sgn<x—y>(“°‘g;|(§’) -
e (201

1
1 1 1 1
~ [ (Koo (5 - &) - Kot (5 + )
+ [T (Kalle—shsgnta—) (55— %) - Kata+o) (55 + ;) )d
— nlr—) (= - — i
-\ Bellr—yhsen(e—u)( 5 -0 ) - Ksletu)( o+ 5) v
—.73 4
=i q (@) +Jp 4 (2)- (5.20)
For Jg’,q(x), due to that for every 0<y<1 and z>2, it yields r—y~z~x+y and
|Ks(x—y) — Kg(x+y)| <Cyz~C+P) (recalling kernel estimate (2.6)), we obtain

1 1 1 1
|J3,q($)\é/0 ‘Kﬂ(w_y)_Kﬁ(x+y)‘y7dy+E | (IKs(z —y) |+ |Ks(z+y)|)dy
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c [t c C c
-p
S 5P / dy+qu / z— y|1+ﬁ dy< 575 +Czq+1+ﬁ S i

For .J; (x), we further split it as follows
sw= (x Lok
ha)= [ (Ko=) (5~ 55) Kot to)(

g'(—wy—x)(;q—;) Ks(a+y) ( ))

<[ -
o Gl ) e (e )

3
2
= J41 () + J;l?q(x) + J;,L,gq(x).

By using estimate (2.6) again and the following fact that |-L-

rat+l
%xﬁy@ﬁ 3z, and in a similar argument as the treating of J3 (x), we estimate J)! ()
and J,% () to get that

21/' 21

T (@ >|s/f |Kﬁ<x—y>—Kﬂ<x+y>|idy+i/f (1K 5z — )] + | Ks(x+y) ) dy

o[ el (- D) [ sl (G )y

3
2

c [, c [ 1 c v c
< ~ady+ — d d
_I2+ﬁ/1\ Yy y+xq[ |xfy|1+ﬁ y+;1;q+1 ~/:233L (l‘fy),g y+xq+6

C C C
- 1'2+ﬂ xq+ﬁ - x2+ﬂ ’

and

3

2T 1 1 Sz 1 1
< [ 1K=l (2 )au [ 1Rate o) (s = )

c o1 s C C
Se ), fymap T R S s

For J;}ff](ac)7 noting that y —x~y~y-+x for all y> %:m we directly infer that

c [~ c [ 1 c
|J§,?21( )|§ﬁ/ (|Kﬁ($_y)‘+|Kﬂ(x+y>|)dy§E/Qm Wdyfw-
2

3

2

Hence, collecting the above estimates yields the desired estimate (5.12) for all 2 <|z| <
00.

For the remaining case 1<z <2, decomposition (5.20) also holds, and we can esti-
mate similarly as above (in a simpler way) to show that |J, 4(x)| <C.

Therefore, based on the above analysis, the desired estimate (5.12) follows.

(2) Since Hp 4(z) is an odd function, we only need to consider the case z>0. We
first consider the case 0 <z < %, and we have the following splitting

1 1 sgn(y) / 1 1 sgn(y)
pal?) i<t [T —y[i+e (mp lylP ) g yi>1 T —y[t+e (fﬂ” [yl ) g
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o | () e ()
3,
w6 (e ) (o))
e, <m<;—;p>+m<;+;p>>dy
6 | (a3 gy ()
In a similar way as estimating J} % (x) - J)3 (z) and J2 (z), we get
o <55 [ ) o [ gt i [ ()
o / PR / () y1+dy

c —(1+a) —(1+a) ¢
+ﬁ 1 dy—i——/ dy < ppta’

which corresponds to estimate (5.14) for the case 0 < |z| <1/2.
While for the case x > 2, we have the following decomposition

H, (2)=C. #(i_sgn( ))d s #(i_sgn(y»dy

i<t [z —yltrezt ylp i1 [z =yl lzt yla

| (e o) e G )
v [ (g (G ) G ()
o [ (G () e )
v [ (e G i) s G ) )

By arguing as estimating J3  (z) and J)\ () - J}3 (), we obtain

! 1 1 dy ¢C 1 1
< _ gy
'H”*q(“””)‘*c/o (<x—y>1+a <x+y>1+a>yp+xq ; (<x—y>1+a+<x+y>1+a)dy

2 2
c [ c o[ir 1 c o[m o1 C
—4q — d d
+a:2+a/1 v y+xq/1 o=y “zqﬂ/g @y VT e

3
c o1 c C [™ 1 C
* ratl /z (y—z)e dy+ rite T x4 3, (y—z)lte dy< x2te’

2

which proves estimate (5.14) for the case |z|>2.
For the remaining cases 1/2<x <2, we can estimate in a similar and simpler way
as above to show that |H, 4(z)| < C. Therefore, estimate (5.14) is proved relying on the

above deduction. 0
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Appendix. We first recall the following commutator estimate (for the proof of
~v=0 case see e.g. [3, Eq. (3.15)], and general v can be similarly treated).

LEMMA 6.1. Let s>0,v>0 and 1 <p,r<oo. Let v be a vector field of R? and t be a
variable independent of the spatial variables. Then there exists a constant C' depending
only on s,p,r,d so that

o SCO[[Vol| e [[t70]

12 [Ag,v- VIO 0} g1 o B (6.1)

where for operators A, B the commutator operator [A,B] corresponds to AB— BA.

Now we turn to the proof of Proposition 3.1 concerning the local well-posedness
result for Equation (1.7).

Proof. (Proof of Proposition 3.1.) The proof is divided into several steps.

Step 1: A priori estimates.
Assume that v e C1([0,00[, H*°(R)) is a smooth solution to Equation (1.7). Accord-
ing to estimate (2.22), we easily get the energy estimate

t
||u(t)\|%z+/0 \\u(7)||§ﬁdrg||uo||2LQ, for all ¢ >0, (6.2)

Then for every g > —1, we apply the dyadic block operator A, to Equation (1.7) to get
O (Aqu) +ude(Aqu) + pnLg(Aqu) +vA® (Aqu) = —[Ag, uds]u,
then by taking the inner product of the above equation with Aju and using the fact

that (as mg(¢) is an odd function) [ (LgAqu) (Aqu)dm:fRimg((ﬂA/:u(C)PdC:O, we
find

1d a
g 3l SaulEa+ vIAS Al < | [ 0.l uPde] + 118g udidul 2| A gl o
Integrating on the time interval [0,¢] yields
t o
1A gu(t)]|2s +2v / IA% Agu(r)|2adr
0
t t
<[ Aguo2z +2 / 10, (7) | oo | Aqu(r)|[22dr +2 / 1A g, udJu(r) | 2 | Agu(r) | p2dr-

Multiplying both sides of the above inequality with 22?° and summing over all ¢> —1,
it follows from estimate (6.1) (with v=0) that

t
g, +20 [ 1A% ulr) g, 0r

<luol

t t
byt 2 [ Iosulio ull dr+2 | 1201 udcfulie Yol o
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<luol

t
by, C [ I0.u(r) o= u(r)l (6.3

2

Denoting by X (t)= ||“||2L§°(B§12) —&—z/fot |AZu(r)] BSJdT, and by using the Sobolev em-

bedding B3 5(R) — W (R) (s> 3), we obtain

t
X (1) < uol, +C / X(r)¥dr < luoll3, +CHX (1)}

By applying the continuity method, we infer that for all T'< m,
2,2

T
el (55, ¥ / IATu(r)|%; dr <2uol3; - (6.4)
Moreover, thanks to high-low frequency decomposition, energy estimate (2.22) and

Bernstein’s inequality,

||u||i2([0,T];B§§a/2) SCO||A—1U||%2T(L2) +CO||A%U||2LQT(B§12) S200(1‘|‘T)||U0||2B;2~ (6.5)

Next based on the a priori uniform bounds (6.4)-(6.5) and (6.2), we show the
smoothing estimates; more precisely, we prove that for all y € R and ¢t €[0,7],

1 ()0 pree + 1AZ ()72 grosaa

— CTHlluo|lgs (66)
<C(I]+ 120 DD (D2 A+ T2 o3, 7101752,

where C' is a constant depending only on «,v,s. Notice that t7u (y>0) satisfies the
following equation

Op(tVu) +u 0y (t7u) + puLg(t"uw) + vA* (#u) =yt u,  (H7u)|=0 =0. (6.7)
We first treat the case y€Z*. For v=1, noting that for g€N,

O A (tu) +u0, Ay (tu) + pLaAg(tu) + vAC A (tu) = —[A g, u0y] (tu) + Agu,

Ay (tu)]i=0=0, (6.8)

we take the dot product of the above equation with A, (tu) and integrate on the time
variable to get

1 t - t
18Ot [ 1A% A r)ladr < [ 0sulim 1A, (ru)ade
t t
+ [ M8y (rulladr+ o2 [ A gul o |AF A ()2
0 0

by multiplying both sides of the above inequality with 22¢(5%%)  summing over all g€ N,
using Young’s inequality and Lemma 6.1, we obtain

t
SR a4y [ (L 2T A ru)le)dr

qeN 0 geN

t t
C o
< - 2 = 2q(s+%) 2
< [ foali I+ < [ (S i)
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<0 [ 1o, llrur) g+ [ 4% (o)

while from Equation (6.8) with ¢=—1 and estimate (6.1), we deduce that

235’2d7; (6.9)

1 fa
1A @) Fatv [ 1A% A (rur)adr

t t
=/ ||<9xUHLooI\A—1(Tu)lli2d7+/0 (IA=1,uds](ru)ll 2 + | Ayul|z2) [A—1 (ru) [ L2d7

t
SC/O |0zu|| Lo ||7u(T)] 2B§Ead7—+”u0||%2t2; (6.10)

combining estimate (6.9) with estimate (6.10) leads to

[tu(t)]

2 < 2
2 i VA3 (tu<t>>||L2T(Bs+a)
T
<C / 0wl o (1) Pyt ATl i+ o3

Gronwall’s inequality yields that

CTlluollsg , .
'

2 e 2 2 2
[t e gy HVIAZ Gu()Lz (ype) < CA+T)uolsg e (6.11)
thus the desired estimate (6.6) with v=1 follows. Now suppose that estimate (6.6) holds
for y= N, we shall consider the case N +1. We use Equation (6.7) with y=N+1, and
similar to obtaining estimate (6.11), we have

||tN+1'LL(t)H§_IS+(N+1)a + ||A% (tN+1u(t))|‘%%(HS+(N+1)Q)

C U s Q
<010k (N 12AF @ u®) 3 ooy + (N + D Va1 1))

CTlluollsy , C(1+T)Nluol 53

<Ce (VD2 + T2 gy e B (N + 172N+ g 2,

SC((NJr 1)!)2(1 +T2N+2)||u0|‘2B§Y2ECT(N+1)HHOHBS’2,

where in the second line we have wused the following estimation
¥ ull gz o) [ )l . 22) STVl 1 12y STV 2ljugl22. Thus the in-
duction method ensures the estimate (6.6) for all y€Z*. Note that estimate (6.4)
corresponds to inequality (6.6) with v =0, hence we obtain estimate (6.6) for all v€N.
For the general v>0, we see [y] <v<[y]+1 with [y] the integer part of 7, and we use
the interpolation inequality in Sobolev spaces to get

2([y]+1 2
1700 e gy SIS N S e

_ o .
SC([7]+1)2(7 D ([4]1)2 (1+T27)||U0||2B§126 Tlluollzg ,

Similar estimate holds for |\A%(t'yu(t))\|i2 o -
T(BZ,2 )
Step 2: Existence.
Denoting the frequency cutoff operator J.:L?(R)— H>®(R), e>0 by (J.f)(x)=
F Y (f()1g, ,.(:))(z), then we regularize the dissipative dispersive Burgers Equation
(1.7) as follows

Ou + T (Jeu) 00 (Teus)) + pTe Lgus + v T A" u =0,  u|mo = Teto. (6.12)
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For every €>0 and wg€ L2, by the Cauchy-Lipschitz theorem, one easily deduces
that there exists a unique solution u€€ C([0,T.[,J.L?) to the regularized Equation
(6.12), with T, >0 the maximal existence time. Moreover, the L2-energy estimate
supgepo, 1. l1ull2 <[|Jeuollrz < lluollz2 can also be derived, which guarantees T.=o0
and indeed u€ € C1([0,00[, J.L?).

Then almost paralleling to the proof in the Step 1 and using the equivalence || - || s &

Il Bs ,» we know the uniform estimate that for all 7'< W,
, ollas
sup lu @) Zrs + U172 (roarzy < 2Co(1+T)luoll -, (6.13)
telo,

and also estimate (6.6) with u replaced by u¢, where C is a positive constant depend-
ing only on v,«a,s. Based on this uniform estimate (6.13), and using the deduction in
the uniqueness part below, we can argue as the corresponding part in [40] to prove
that {u¢} is a Cauchy sequence in C([0,T]; L?(R)), which implies that it strongly con-
verges to a function v € C([0,T]; L?(R)). By interpolation and uniform estimate (6.13),
we also get that u® strongly converges to w in C([0,T]; H™(R)) for every 0<m<s.
From the classical method we know that u is a distributional solution of the limit-
ing Equation (1.7), and satisfies u € L>([0,T]; H*(R))N L?([0,T]; H**+*/2(R)). More-
over, we can show that uwe€ C([0,T],H*(R)); indeed, the deduction in Step 1 guar-
antees that the formula (6.4) remains true by replacing |ul|re gy, with ||“HZ;>C(B-; )

where ||u% D as 1 2295 || A yu|? w0 (12 thus by this fact and a standard process

F(Bs )’
(e.g. see [40]), we can prove the continuity-in-time issue. If a€]0,1], from the rela-
tion dyu=—ud,u—pLgu—vA®u, we also get ue C'([0,T]; H*1(R)), and thus u is a
classical solution to the Equation (1.7).

Using Fatou’s Lemma, and from estimate (6.6) (with u replaced by u€), we have
tYu(t) € L>([0,T], H5t7*(R)), v € R, which combined with Equation (1.7) implies that
u€ C>®(Rx]0,TY).

Step 3: Uniqueness.

Let u!, u?€C([0,T],H*(R)), s>3 be two solutions to the dissipative dispersive
Whitham Equation (1.7) with the same initial data. Denote by du:=u!—u? i=1,2,
then we write the difference equation as

Ordutu'0,0u+pLsdu+vA®du=—6ud,u?, duli—o=0ug=0.
By using the standard energy method, we obtain

1d a
5 gz |9 +v[[AZ du(®)|72 < (1020 ()l + 1021 (B o2 ) [ 5w 172

Gronwall’s inequality ensures that

sup_[|6u(t)|32 <||duoll3z exp { CoT ('l (arey + 10| 35 ) } =0,
te(0,T)

)

that is, u' =u? on [0,7] xR, as desired.

Step 4: Blowup criteria.

Let T*>0 be the maximal existence time of the above constructed solu-
tion, then firstly we have a natural blowup criterion: if T* <oco then necessarily
llull oo (0,7 [, 1+ (r)) = 00; since otherwise from the local result, the solution will continue
past T*.
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In the same way as obtaining estimate (6.3), we get
t
2 < 2 2 2
()7 +vIAZullZs g0 SCoHUoHHerC/O [0xu(T) | Lo [[u(T) | 7rs T,

with C'=C(s) a positive constant. Gronwall’s inequality leads to that for every T' < T™*,

T
Il a1y + 1Al o 1oy < Coluoll- exp { € / Ouu(t)lzdt }.

Thus, if T* <oco and the integral fOT* |0su(t)||Lodt <oo, then we directly have
supg<<+ [u(t)|| s <oo, and this contradicts the above natural blowup criterion.
Hence, the desired blowup criterion (3.1) is followed. 0

Finally we present an L°°-estimate for the viscous Burgers equation with forcing
term.

PROPOSITION 6.1. Let wueC([0,T*[; H*(R))NC*>°(Rx]0,00[), s>3/2 be a smooth
solution of the following viscous Burgers equation with forcing

Ou+u0,u—vogu=f, uli—o(z)=1uo(z), (6.14)

with up € L>°(R) and f € L3(L?) with T >0. Then there exists a constant C >0 depend-
ing only on v such that for every t€[0,T] and T €]0,T*|,

lu(®)l| o= < Clluo|l Lo +CTH | fll 2 (z2)- (6.15)

Proof.  We shall use a DeGiorgi-Nash-Moser’s iterative method to prove inequality
(6.15) (one can see [49] for a similar argument). Let M be a positive number chosen
later, and M}, := M (1—27%=1) for all k€ N. From a pointwise positivity inequality that
for every ® convex function, —®'(u)0z,u> —02x®(u), we know that —1y> 7,1 0z2u >
—0Opy(u— My) 4, thus we have

Op(u—Mp)q +(u—My) 4 O (u— My) 4 — 0y (u— M)+ < fliusn,)-

Multiplying the above equation with (u — M} )+ and integrating over the spatial variable,
we see that,

d
1= MOl v w3 (O <[ [ F(t)a )y (wt)da], (.10
R’n
which leads to
1d

3 <ol (= M) )3 = M) ()0 < 1 oz an -y 1= M) ()3

o4
Denoting by
Ui i= | = M) 135 12) + 200 (= M) [ .

and integrating in the time interval [0,77], and by setting M > 2||lug||z= (so that ||(uo—
M)+ |lp2 =0 for every k€N), we get

T
Ue=2 [ IFO o -0 Mo+ )]
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By virtue of the continuous embedding (see [3, Corollary 1.39)) L = (]R) s H*(R) (s€
10,3[), and the following interpolation inequality that vi||(u— My | a1 S <CoUy, we

obtain

Uk < Collf () Liuy> a0y | i o= M)l 3

<Cov™ 5 || £(£)11ug ESVST I %Uzi/Q-

T(L )

The Young inequality and the Holder inequality yield

U, <C I 1ey
k oV ||f(){ t)>Mk}|| (L%)

1
<Cyv 4||f||L2(L2)||1{u DESYAY s L

< Cor 41123 oo /0 ut) = MeyfFar)” (6.17)

where |[{u(t) > M} }| denotes the Lebesgue measure of the set {z:u(x,t) > M)} CR. Not-
ing that u(x,t) — My_; > M27%=! for all u(z,t) > My, we have that for every 6 > 1,

(u(t) = Mr—1)4+\°
1{u(t>zwf;€}§(w) ;
and

2(k:+1)6
) 2 M) < 2 e M) ()

Hence, inserting the above estimate into estimate (6.17) leads to

2k+1

Uk <Cor 4113 oy (S5 )2(/OT||<u—Mk_1> M)’ @

Since H*(R) A (R) for every s€[0,3], and from the interpolation inequality, we
know that for every 0 € [2,00],

5—2
I(u=Mi-1)+l* a5 <Coll(u—My—1)4]* s <Cov™ % Up-1.
LT

2 (1) L2 (')

In the following it requires d € [2,00[ satisfies 75 < 4—5 and %>2 simultaneously, that
is, § €]4,8], thus we can fix § =8, and (6.18) reduces to

1 _ — —
U S Cor M 2 Ml M)l g Cor™ 1 02 M0

(6.19)
We also need to estimate Up. From (6.16), we obtain that

1d

3 1= M/2) 4 ON72 + 2l (u=M/2) L Ol <[ F @2l (w=M/2) 4 ()]l 22,

which yields

%%F(t) <[ F @2 F ()2,



Q. MIAO AND L. XUE 2189

with F(t)=||(u—M/2)4+(t)||3- +2Vf0t (u—M/2)., (7)
|luol| Lo, we derive

||?;1d7', thus by setting %>

Uo < Hf”%%(L?)T' (6.20)
Thanks to [49, Lemma 2.6], we can choose M >0 satisfying
IF125 ()T <2 4C5 W FIE2 gy M and M > 2ol
equivalently,
M = Cllug| o +Cv= 3T || 2. (12, (6.21)

so that we have Uy —0 as k— oo, which implies [|(u—M); ||z =0. Hence, for a.e.
(x,t) eRx[0,T], u(z,t) <M.

Applying the above deduction to —u, we also get u(x,t)>—M for ae. (x,t)€
R x [0,T]. Clearly, the desired estimate (6.15) follows. O
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