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A NONLINEAR FUNCTIONAL APPROACH FOR MONO-CLUSTER
FLOCKING TO THE DISCRETE CUCKER-SMALE MODEL∗
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Abstract. We present a nonlinear functional approach for the discrete Cucker-Smale (C-S) model
with a general communication weight, and using the monotonicity of this functional, we provide a simple
sufficient condition for the emergence of a mono-cluster flocking in terms of initial data, communication
weight function and system parameters. Our proposed nonlinear functionals are the discrete analogues
of the continuous nonlinear functionals introduced in [S.-Y. Ha and J.-G. Liu, Commun. Math. Sci.,
7:297–325, 2009].
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1. Introduction
After Vicsek’s seminal work [35] on the modeling of collective dynamics, research

on the collective dynamics has received lots of attention from diverse disciplines such as
applied math, control theory, nonlinear dynamics and statistical physics, etc. [14–16,21,
26,27,32,33,35] at the beginning of this century. In this paper, we are mainly interested
in a mechanical model by two mathematicians Cucker and Smale. In [13], the authors
proposed sufficient conditions for the mono-cluster flocking in terms of initial data,
decay rate of communication weight and system parameters, and they also showed a
phase-transition-like phenomenon depending on the long-ranged or short-ranged nature
of the communication weight function. Compared to the previous literature [27, 34] on
the flocking modeling, Cucker and Smale provided the first analytical framework for
the emergence of mono-cluster flocking using the self-bounding method, and their study
was further generalized from different perspectives in [1–4,6,7,9–12,17,18,20,22–24,30].
As an alternative methodology for flocking, Ha and Liu introduced nonlinear functional
approach for the continuous C-S model with a general communication weight, and
provided a simple sufficient condition leading to the emergence of mono-cluster flocking
(see Section 2.2). Their sufficient condition was expressed as a simple inequality (2.9)
involving the initial data, communication weight and coupling strength. As far as the
authors know, this nonlinear functional approach has never been extended to the discrete
C-S model. Recently, Ha and Zhang [19] succeeded in providing a flocking theorem for
the discrete C-S model with a general communication weight by combining a nonlinear
functional approach for the continuous model and approximation relationship between
the continuous C-S model and discrete C-S model. In fact, their key idea is to use
the flocking information for the continuous model to derive analogous results for the
discrete model. In this work, we provide a nonlinear functional approach for the discrete
model directly without resorting to the information from the continuous model. Now,
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we describe our setting. Consider a flock of N interacting particles (agents) moving in
the Euclidean space Rd, and let (xi,vi) be the phase-space coordinate of the i-th C-S
particle in R2d. Then, the continuous dynamics of phase-space coordinate (xi,vi) is
governed by the first-order ODE system:

ẋi(t) =vi(t), t>0, i= 1,·· · ,N,

v̇i(t) =
κ

N

N∑
j=1
j 6=i

ψ(‖xi(t)−xj(t)‖)(vj(t)−vi(t)),

(xi,vi)(0) = (x0
i ,v

0
i ),

(1.1)

where κ>0 and ‖·‖ are the coupling strength and standard `2-norm in Rd, respectively,
and ψ : (0,∞)→ (0,∞) is the communication weight function which is locally Lipschitz
continuous and satisfies positivity and monotonicity:

ψ(r)>0, ∀ r>0, (ψ(r1)−ψ(r2))(r1−r2)≤0, r1,r2>0. (1.2)

Note that the functions

ψ(r) = r−α or ψ(r) = (1+r2)−
α
2 with α>0

satisfy the above assumptions (1.2). On the other hand, for the sake of numerical
simulations, we need to discretize the continuous system (1.1) by employing suitable
discretization schemes. In this paper, we use the first-order forward Euler discretization
scheme with time-step h>0. First, we set

xi[n] :=xi(nh), vi[n] :=vi(nh) for all n∈N.

Then, the state (xi[n],vi[n]) is governed by the difference system:
xi[n+1] =xi[n]+hvi[n] n∈N, i= 1,·· · ,N,

vi[n+1] =vi[n]+
hκ

N

N∑
j=1
j 6=i

ψ(‖xi[n]−xj [n]‖)(vj [n]−vi[n]),

(xi,vi)[0] = (x0
i ,v

0
i ).

(1.3)

The continuous model (1.1) -(1.2) with a regular and bounded ψ has been extensively
studied in literature (see a recent survey paper [11] and references therein). In this case,
although collisions between particles are possible and the set of all such configurations
has measure zero in state space, due to the boundedness of ψ, collisions do not cause
any trouble in the well-posedness and flocking estimate. In contrast, for the singular
and unbounded ψ, it takes the value of infinity at the moment when particles collide.
Thus, the standard Cauchy-Lipschitz theory cannot be applied to yield a global solution.
Recently, Peszek and his collaborators in a series of papers [5,25,28,29] have investigated
the possibility of collision avoidance in terms of the degree of singularity, when ψ is
singular at the origin and short-ranged. In this paper, we instead use the collision
avoidance framework from [2], in which some admissible set for the initial configurations
was proposed to avoid collisions and existence of a positive lower bound for a positive
minimal distance between particles was obtained. In this framework, global smooth
solutions exist using the standard ODE theory. Similar issues can also occur for the
discrete model (1.3) as well. Motivated by the work [2], we will study the discrete
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model (1.3) for some class of restricted initial data in which a positive minimal distance
between particles can be obtained.

The main result of this paper is to propose a nonlinear functional approach for
flocking to the discrete C-S model (1.3) with a monotonically decaying communication
weight (1.2), which has been sought for last ten years after Ha-Liu’s work [17]. Our
proposed nonlinear functionals for the discrete model have the same form as nonlinear
functionals for the continuous C-S model except that the integral part is replaced by
the discrete sum. More precisely, for n≥1, the nonlinear functionals L±[n] have the
form:

L±[n] :=‖V [n]‖±κ
n∑
i=1

ψ
(√

2‖X[i−1]‖
)

(‖X[i]‖−‖X[i−1]‖).

Then, by the matrix formulation of the difference system (1.3) (see Section 2.1), we can
show that L±[n] satisfy the monotonicity (Proposition 3.1):

L±[n+1]≤L±[n], n≥0.

Once the above monotonicity is obtained, then we can use a similar argument as the
continuous model to derive the emergence of mono-cluster flocking for the discrete
model (1.3). As a direct corollary of flocking estimate, we can also provide a uniform-
in-time transition from the discrete model to the continuous model which is valid for
whole time interval as the time-step tends to zero (see Corollary 2.1).

The rest of the paper is organized as follows. In Section 2, we provide matrix
formulations of (1.1) and (1.3), and review a nonlinear functional approach for the
continuous model, and discuss our main results. In Section 3, we present a proof of
Theorem 2.2 on the emergence of mono-cluster flocking. In Section 4, we study the
uniform-in-time transition from discrete model to continuous model, as the size of time-
step h tends to zero. Finally, Section 5 is devoted to a brief summary of our main results
and discussion on the possible direction for a future work.

Notation: Throughout the paper, we regard a vector z= (z1,·· · ,zd)∈Rd as a d×1
matrix. For N column vectors z1,·· · ,zN in Rd, Z= (z1,·· · ,zN )T is an N×d matrix
whose rows are given by zi. For two vectors z,w in Rd, z ·w and 〈z,w〉 denote the
same standard inner product in Rd:

〈z,w〉=z ·w=

d∑
i=1

zi ·wi.

2. Preliminaries and main results
In this section, we present matrix representation of the models (1.1) and (1.3), and

briefly review the nonlinear functional approach for the continuous model in [17]. We
also briefly describe our main results whose proofs will be presented in the following
two sections.

2.1. Matrix-valued system formulation. Below, we present a decomposition
of the N -body velocity space RN×d as a direct sum of d-dimensional flocking manifold
and its orthogonal complement. More precisely, we set 4 to be a d-dimensional flocking
submanifold which corresponds to the diagonal of RN×d:

4 :=
{

(u,...,u)>| u∈Rd
}
,
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and set 4⊥ to be the orthogonal complement of 4 in RN×d. Thus, every point V =
(v1,. ..,vN )>∈RN×d can be decomposed in a unique way:

V =V4+V⊥, V4∈4 and V⊥∈4⊥.

In fact, this decomposition has a simple explicit form:

v̄ :=
1

N

N∑
i=1

vi, V4= (v̄,. ..,v̄)> and V⊥= (v1− v̄,. ..,vk− v̄)>. (2.1)

Then, it is easy to see that

〈V4,V⊥〉 :=
N∑
i=1

v̄ ·(vi− v̄) = v̄ ·

(
N∑
i=1

vi−N v̄

)
= 0,

where · is the standard inner product in Rd.

Next, we rewrite system (1.1) in matrix form. For this, we first note that the
right-hand side of the velocity Equation (1.1)2 can be rewritten as

κ

N

N∑
j=1
j 6=i

ψ(‖xi−xj‖)(vj−vi) =− κ

N

[( N∑
j=1
j 6=i

ψ(‖xi−xj‖)
)
vi−

N∑
j=1
j 6=i

ψ(‖xi−xj‖)vj
]
. (2.2)

To exprress the R.H.S. of (2.2) as a matrix form, we set

aij(t) :=ψ(‖xi(t)−xj(t)‖), di(t) :=

N∑
j=1

aij(t), 1≤ i≤N,

A(t) := (aij(t)), D(t) = diag(d1(t),·· · ,dN (t)), L(t) :=D(t)−A(t),

X(t) := (x1(t),·· · ,xN (t))> and V (t) := (v1(t),·· · ,vN (t))>.

(2.3)

Then, the matrix L is a Laplacian matrix (see [8] for definition of Laplacian matrix and
its spectral properties). Then, it follows from (1.1), (2.2) and (2.3) that (X,V ) satisfies
the matrix-valued ODE system:

Ẋ(t) =V (t), t>0,

V̇ (t) =− κ

N
L(t)V (t),

(X,V )(0) = (X0,V 0).

(2.4)

Similarly, the discrete C-S model (1.3) can also be written as
X[n+1] =X[n]+hV [n], n∈N,
V [n+1] =

(
I−h κ

N
L[n]

)
V [n],

(X,V )[0] = (X0,V 0).

(2.5)

Now, we study conservation laws associated with (1.1) and (1.3). For this, similar to
(2.1), we introduce the average position x̄:

x̄ :=
1

N

N∑
i=1

xi=
1

N
([1,·· · ,1]X)

>
.
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Note that our C-S models are translation invariant, so linear momenta are conserved as
can be seen in the following lemma.

Lemma 2.1. Let (X(t),V (t)) and (X[n],V [n]) be solutions to (1.1) and (1.3), respec-
tively. Then, we have

(i) v̄(t) = v̄0, x̄(t) = x̄0 + tv̄0, t>0.

(ii) v̄[n] = v̄0, x̄[n] = x̄0 +nhv̄0, n∈N.

Proof. The proofs follow from (1.1) and (1.3) by straightforward calculations.

Thanks to Lemma 2.1 and translation invariance of (1.1) and (1.3), from now on,
we may assume that

N∑
i=1

xi(t) =
N∑
i=1

vi(t) = 0, for all t≥0,
N∑
i=1

xi[n] =
N∑
i=1

vi[n] = 0, for all n∈N.

In other words, we have

[1,·· · ,1]X= [1,·· · ,1]V = [0,·· · ,0].

This means that we are considering systems (2.4) and (2.5) in the quotient space E :=
4⊥, instead of RNd.

2.2. The continuous C-S model. In this subsection, we briefly review the
nonlinear functional approach for the continuous model (1.1)-(1.2) with a bounded com-
munication weight, and explain how it can be used to derive mono-cluster flocking es-
timates. In order to reduce the large system (1.1) into a smaller system, we introduce
two scalar quantities ‖X‖ and ‖V ‖ which correspond to the Frobenius norms for state
matrix (X,V ):

‖X‖2 :=

N∑
i=1

‖xi‖2, ‖V ‖2 :=

N∑
i=1

‖vi‖2,

Then, one can easily derive a system of dissipative differential equalities for ‖X(t)‖ and
‖V (t)‖ along (2.4) (see [17] for details):∣∣∣∣d‖X(t)‖

dt

∣∣∣∣≤‖V (t)‖, d‖V (t)‖
dt

≤−κψ(
√

2‖X(t)‖)‖V (t)‖, for a.e. t>0. (2.6)

Note that once we can derive a uniform bound for ‖X‖, we can derive an exponential
decay of ‖V ‖. For this purpose, we introduce nonlinear functionals E± which can be
viewed as `2-energy-type functionals for (2.4):

E±(t) :=‖V (t)‖±κ
∫ ‖X(t)‖

‖X0‖
ψ(
√

2s)ds. (2.7)

We differentiate the above functionals and use (2.6) to derive

d

dt
E±(t)≤−κψ(

√
2‖X(t)‖)

(
‖V (t)‖∓ d‖X(t)‖

dt

)
︸ ︷︷ ︸
≥0 due to (2.6)1

≤0.
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We again integrate the above relation to see that E±(t) is non-increasing with respect
to t:

‖V (t)‖+κ

∫ ‖X(t)‖

‖X0‖
ψ(
√

2s)ds≤‖V 0‖, and

‖V (t)‖−κ
∫ ‖X(t)‖

‖X0‖
ψ(
√

2s)ds≤‖V 0‖ for all t≥0.

These two relations can be combined as a stability estimate:

‖V (t)‖+κ

∣∣∣∣∣
∫ ‖X(t)‖

‖X0‖
ψ(
√

2s)ds

∣∣∣∣∣≤‖V 0‖ for all t≥0. (2.8)

As an application of the above stability estimate, we obtain the following flocking the-
orem.

Theorem 2.1 ( [17, Theorem 3.2]). Suppose that the initial data, communication
weight and coupling strength satisfy

‖V 0‖<κ
∫ ∞
‖X0‖

ψ(
√

2s)ds, (2.9)

and let (X,V ) be a solution to (2.4). Then, there is an xM >0 such that

sup
0≤t<∞

‖X(t)‖≤xM and ‖V (t)‖≤‖V 0‖e−κψ(
√
2xM )t, t≥0.

Proof. Detailed proof can be found in [17], but for the comparison with the discrete
model, we briefly present the part of the proof regarding the derivation of the uniform
bound xM for ‖X‖ as follows. We choose xM to satisfy

‖V 0‖=κ

∫ xM

‖X0‖
ψ(
√

2s)ds.

Then, we claim:

‖X(t)‖≤xM , ∀ t≥0.

For this, we fix ε>0 and define a set Sε as follows.

Sε :={T >0 : ‖X(t)‖<xM +ε, ∀ 0≤ t≤T} .

We see that 0∈Sε and so the set is nonempty. We need to show

supSε=∞, for each ε>0.

Suppose not, i.e. supSε=T ∗<∞. Then, we have

‖X(t)‖<xM +ε, 0≤ t<T ∗ and ‖X(T ∗)‖=xM +ε.

On the other hand, by (2.8) we have

‖V 0‖≥κ
∫ ‖X(T∗)‖

‖X0‖
ψ(
√

2s)ds=κ

∫ xM+ε

‖X0‖
ψ(
√

2s)ds>‖V 0‖,

which is contradictory. Hence, xM is a uniform bound for ‖X‖.
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Remark 2.1.
(1) The result of Theorem 2.1 holds for a general non-increasing communication weight

ψ.

(2) Note that the condition (2.9) is not only sufficient, but also necessary for the mono-
cluster flocking to occur for the two-particle system on the real line R (see Propo-
sition 3.1 in [10]).

2.3. Description of main results. In this subsection, we briefly discuss
our main results for the discrete model (2.5) which are parallel to Theorem 2.1. As
mentioned in Introduction, a natural question one may ask is whether the nonlinear
functional approach used in the continuous model can be generalized to the discrete
model or not. In the sequel, we show that this is the case.

We are now in a position to state our first main result on the emergence of flocking
for discrete system (2.5). For this, we consider regular and singular communication
weights at the origin:

lim
r→0+

ψ(r)<+∞ and lim
r→0+

ψ(r) = +∞.

The singular case is more subtle and should be treated more carefully (see Theorem 2.3
below). The first result concerns the exponential flocking for a regular communication
weight.

Theorem 2.2 (Regular communication weight). Suppose that the initial data, com-
munication weight, coupling strength and time-step satisfy

lim
r→0+

ψ(r)<+∞, κ>0, ‖V 0‖<κ
∫ ∞
‖X0‖

ψ(
√

2s)ds, 0<h≤ 1

κψ(0+)
, (2.10)

and let (X,V ) be a solution to (2.5). Then, there is an M>0 such that

sup
n∈N
‖X[n]‖≤M and ‖V [n]‖≤‖V 0‖e−hκψ(

√
2M)n, n≥0.

Proof. The detailed proof will be presented in Section 3.

Remark 2.2. In [19], Ha and Zhang used rather restricted conditions compared to
(2.10): assume ψ(0+)≤1, and for given initial data (X0,V 0), let h>0 be sufficiently
small so that there is an M>0 satisfying

M>max{||X0||,||V 0||}, ||V 0||<κ
∫ M

||X0||
ψ(
√

2s)ds,

0<h�min
{

1,
ψ(
√

2M)

10κ
,
M−||X0||

2||V 0||
,

1

4κ

}
.

The second result deals with singular communication weight.

Theorem 2.3 (Singular communication weight). Suppose that the initial data, com-
munication weight, coupling strength and time-step satisfy: there exist M>0 and ρ>0
such that

lim
r→0+

ψ(r) = +∞, κ>0, ‖V 0‖<κ
∫ M

‖X0‖
ψ(
√

2s)ds,

min
i6=j
‖x0

i −x0
j‖≥ρ+

√
2‖V 0‖

κψ(
√

2M)
, 0<h≤ 1

κψ(ρ)
,

(2.11)
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and let (X[n],V [n]) be a solution to (2.5). Then, we have

inf
0≤n<∞

min
i6=j
‖xi[n]−xj [n]‖≥ρ, sup

n∈N
‖X[n]‖≤M,

‖V [n]‖≤‖V 0‖e−hκψ(
√
2M)n.

Proof. The detailed proof will be presented in Section 3.

Remark 2.3. For the regular case, the flocking result in Theorem 2.2 for the discrete
model (2.5) is exactly parallel to that in Theorem 2.1 for the continuous model (2.4).
However, for the singular case, the additional condition:

min
i6=j
‖x0

i −x0
j‖≥ρ+

√
2‖V 0‖

κψ(
√

2M)

is used to guarantee an existence of a positive minimal distance between particles, so
that the particles will never accidentally jump into a collision, causing the ill-posedness
of (2.5) at that instant.

As a direct corollary on the exponential flocking in Theorem 2.2 and Theorem 2.3,
we obtain the uniform-in-time convergence from discrete system (2.5) to the continuous
system (2.4), as h tends to zero in the whole time interval [0,∞).

Corollary 2.1. Suppose that condition (2.10) (in regular case) or condition (2.11)
(in singular case) holds, and let (X(t),V (t)) and (X[n],V [n]) be the solutions of (2.4)
and (2.5) with the same initial data, respectively. Then we have

limsup
h→0

sup
n∈N

(‖X[n]−X(nh)‖+‖V [n]−V (nh)‖) = 0.

Proof. We leave its proof to Section 4.

3. Emergence of mono-cluster flocking
In this section, we provide a nonlinear functional approach for the discrete C-S

model, and present proofs of Theorems 2.2 and 2.3.

3.1. A nonlinear functional approach. We begin with several technical lem-
mas to be used later, and then introduce a discrete analogue of the nonlinear functionals
(2.7) for the continuous model.

Lemma 3.1. Suppose that the weight function ψ satisfies (1.2), and initial data
(X0,V 0) satisfy zero sum conditions:

N∑
i=1

x0
i =

N∑
i=1

v0
i = 0,

and let (X[n],V [n]) be a solution to the discrete system (2.5). Then, we have the
following inequality for ∀ v∈ span{[1,·· · ,1]}⊥⊂RN :

Nψ
(√

2‖X[n]‖
)
‖v‖2≤〈L[n]v,v〉≤Nψ

(
min
i6=j
‖xi[n]−xj [n]‖

)
‖v‖2.

Proof. • (Upper bound estimate): Let v= (v1,·· · ,vN ). It is easy to see that

〈L[n]v,v〉=
N∑
i=1

N∑
j=1
j 6=i

ψ(‖xi[n]−xj [n]‖)(vi−vj)vi



J.-G. DONG, S.-Y. HA, AND D. KIM 2247

=
1

2

∑
i6=j

ψ(‖xi[n]−xj [n]‖)|vi−vj |2. (3.1)

We use (1.2) and (3.1) to obtain

〈L[n]v,v〉≤ 1

2
ψ

(
min
i6=j
‖xi[n]−xj [n]‖

)∑
i6=j

|vi−vj |2

=Nψ

(
min
i6=j
‖xi[n]−xj [n]‖

)
‖v‖2. (3.2)

• (Lower bound estimate): In (3.1), we use

‖xi[n]−xj [n]‖≤
√

2‖X[n]‖

to get

〈L[n]v,v〉≥Nψ
(√

2‖X[n]‖
)
‖v‖2. (3.3)

Finally, we combine (3.2) and (3.3) to obtain the desired estimates.

Next, consider the velocity equation:

V [n+1] =
(
I−h κ

N
L[n]

)
V [n] =:C[n]V [n], n∈N. (3.4)

Lemma 3.2. For n∈N, let λ be an eigenvalue of the coefficient matrix C[n] corre-
sponding to an eigenvector in span{[1,·· · ,1]}⊥. Then, we have

1−hκψ
(

min
i6=j
‖xi[n]−xj [n]‖

)
≤λ≤1−hκψ

(√
2‖X[n]‖

)
.

Proof. Let λ be an eigenvalue of C[n] and v be a corresponding eigenvector:

C[n]v=λv. (3.5)

• Step A (λ is real): Since the matrices A and D in (2.3) are symmetric, the Laplacian
matrix L is also symmetric. This implies that the coefficient matrix C[n] in (3.4) is also
symmetric. Therefore, all eigenvalues of C[n] are real.

• Step B (Estimate on the range of λ): We use the relation (3.5) to see

λ‖v‖2 = 〈C[n]v,v〉=
〈

(I−h κ
N
L[n])v,v

〉
=‖v‖2− hκ

N
〈L[n]v,v〉.

Now, we use Lemma 3.1 to obtain the desired estimates.

Based on Lemma 3.2, we have the decay of ‖V [n]‖ as follows.

Lemma 3.3. For given n∈N, suppose that the time-step h satisfies

0<h≤ 1

κψ (mini6=j ‖xi[n]−xj [n]‖)
. (3.6)

Then, we have

‖V [n+1]‖≤
(

1−hκψ
(√

2‖X[n]‖
))
‖V [n]‖.
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Proof. We denote V k[n] by the k-th column of V [n]. Then, since V k[n] is in the
orthogonal complement of [1,·· · ,1], we can decompose V k[n] into a sum of N−1 or-
thogonal vectors from the N−1 remaining orthogonal eigenspaces of the real symmetric
matrix I−h κNL[n], say

V k[n] =u1 + ·· ·+uN−1, 〈ui,uj〉= 0, 1≤ i 6= j≤N−1.

Then, it follows from (2.5)2 that

‖V k[n+1]‖2 =
∥∥∥(I−h κ

N
L[n]

)
V k[n]

∥∥∥2 =‖λ1u1 + ·· ·+λN−1uN−1‖2

=
N−1∑
i=1

‖λiui‖2≤
(

max
1≤i≤N−1

λ2i

)N−1∑
i=1

‖ui‖2

=
(

max
1≤i≤N−1

λ2i

)∥∥∥N−1∑
i=1

ui

∥∥∥2 =
(

max
1≤i≤N−1

λ2i

)∥∥∥V k[n]
∥∥∥2. (3.7)

On the other hand, it follows from Lemma 3.2 and (3.6) that we can see that all eigenval-
ues of I−h κNL[n] are nonnegative and its largest eigenvalue (excluding the eigenvalue

1 corresponding to span{[1,·· · ,1]}) is bounded from above by 1−hκψ
(√

2‖X[n]‖
)
. Fi-

nally, we sum (3.7) over k to derive the desired estimate.

Remark 3.1. In [19], under the assumption ψ(0) = 1, Ha and Zhang derived a rather
crude estimate:

‖V [n+1]‖2 =
∥∥∥V [n]−h κ

N
L[n]V [n]

∥∥∥2 =

d∑
k=1

∥∥∥V k[n]−h κ
N
L[n]V k[n]

∥∥∥2
=‖V [n]‖2−2h

κ

N

d∑
k=1

〈V k[n],L[n]V k[n]〉+
∥∥∥−h κ

N
L[n]V [n]

∥∥∥2
≤‖V [n]‖2−2κh

d∑
k=1

ψ
(√

2‖X[n]‖
)
‖V k[n]‖2 +2κh‖V [n]‖2

=
[
1+2κh

(
κh−ψ(

√
2‖X[n]‖)

)]
‖V [n]‖2,

where they used Lemma 3.1 and the relation

‖−L[n]V [n]‖2 =
N∑
i=1

∥∥∥∥ N∑
j=1

ψ(‖xi[n]−xj [n]‖)(vj [n]−vi[n])

∥∥∥∥2

≤
N∑
i=1

( N∑
j=1

‖vj [n]−vi[n]‖
)2

≤N
∑
i,j

‖vj [n]−vi[n]‖2

= 2N2‖V [n]‖2. (3.8)

In (3.8), Lemma 3.1 was not used in the estimation of ‖−L[n]V [n]‖2. In other words,
the estimates of 〈V [n],L[n]V [n]〉 were not used when estimating ‖L[n]V [n]‖2. However,
in this paper, we saw vi[n] componentwise and devised a way to use the estimates of
〈v,C[n]v〉 for arbitrary v∈ span{[1,·· · ,1]}⊥ to estimate ‖C[n]V [n]‖2. Here, the idea of
decomposing V k = [vk1 ,·· · ,vkN ]> into a sum of orthogonal eigenvectors was important.
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Motivated by the nonlinear functionals in (2.7), we can define the two functionals L+[n]
and L−[n] as follows:

L±[0] :=‖V [0]‖ and

L±[n] :=‖V [n]‖±κ
n∑
i=1

ψ
(√

2‖X[i−1]‖
)

(‖X[i]‖−‖X[i−1]‖) for n≥1.
(3.9)

Note that the R.H.S. of (3.9)2 will be well-defined as long as the term ψ
(√

2‖X[i−1]‖
)

is finite which is always the case for a regular ψ, and L±[n] has a similar form as E± for
the continuous case.

Proposition 3.1. For given n∈N, suppose that the time-step h satisfies (3.6), and
let (X[n],V [n]) be a solution to (2.5). Then, we have

L±[n+1]≤L±[n].

Proof. It follows from Lemma 3.3 and (2.5)1 that we have

L±[n+1]−L±[n]

=‖V [n+1]‖−‖V [n]‖±κψ
(√

2‖X[n]‖
)

(‖X[n+1]‖−‖X[n]‖)

≤−hκψ
(√

2‖X[n]‖
)
‖V [n]‖±κψ

(√
2‖X[n]‖

)
(‖X[n+1]‖−‖X[n]‖)

=−κψ
(√

2‖X[n]‖
)
‖X[n+1]−X[n]‖±κψ

(√
2‖X[n]‖

)
(‖X[n+1]‖−‖X[n]‖)

≤−κψ
(√

2‖X[n]‖
)∣∣∣‖X[n+1]‖−‖X[n]‖

∣∣∣
±κψ

(√
2‖X[n]‖

)
(‖X[n+1]‖−‖X[n]‖)

≤0. (3.10)

Next, we introduce a useful inequality involving the functional L+ to be used later.
Proposition 3.2. For each n≥0, the functional L+ satisfies the inequality

L+[n]≥‖V [n]‖+κ

∫ ‖X[n]‖

‖X[0]‖
ψ(
√

2s)ds.

Proof. Due to (3.9), it suffices to prove the following statement: for each 1≤ i≤n,
we have ∫ ‖X[i]‖

‖X[i−1]‖
ψ(
√

2s)ds≤ψ
(√

2‖X[i−1]‖
)

(‖X[i]‖−‖X[i−1]‖).

To show this, we consider two cases:

Either ‖X[i]‖≥‖X[i−1]‖ or ‖X[i]‖<‖X[i−1]‖.

• Case A (‖X[i]‖≥‖X[i−1]‖): Since ψ(·) is non-increasing, we have

0≤
∫ ‖X[i]‖

‖X[i−1]‖
ψ(
√

2s)ds≤ψ
(√

2‖X[i−1]‖
)

(‖X[i]‖−‖X[i−1]‖).
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• Case B (‖X[i]‖<‖X[i−1]‖): Since ψ(·) is non-increasing, we have

0≤ψ
(√

2‖X[i−1]‖
)

(‖X[i−1]‖−‖X[i]‖)≤
∫ ‖X[i−1]‖

‖X[i]‖
ψ(
√

2s)ds.

Hence we have∫ ‖X[i]‖

‖X[i−1]‖
ψ(
√

2s)ds≤ψ
(√

2‖X[i−1]‖
)

(‖X[i]‖−‖X[i−1]‖)≤0.

Finally, we combine estimates in Case A and Case B to get the desired result.

Remark 3.2. We will see below that the lower bound for L+[n] in Proposition 3.2
is very crucial in establishing mono-cluster flocking estimates. Therefore, L+[n] plays
the same role as E+(t) for the continuous system. However, we cannot derive a similar
lower bound for L−[n]. This is a marked difference between the continuous system and
the discrete system.

3.2. A regular communication weight. In this subsection, we provide a
proof of Theorem 2.2. The proof is exactly parallel to that of Theorem 2.1. First, we
choose M ≥||X0|| to satisfy

‖V 0‖=κ

∫ M

‖X0‖
ψ(
√

2s)ds.

Then, we claim:

‖X[n]‖≤M, ∀ n≥0.

For this, we define a set S as follows.

S :={T ∈N : ‖X[n]‖≤M, n∈N, 0≤n≤T} .

We see that 0∈S and so the set is nonempty. To prove the claim, we need to show

supS=∞.

Suppose not, i.e. supS=T ∗<∞. Then, we have

‖X[n]‖≤M, 0≤n≤T ∗, and ‖X[T ∗+1]‖>M.

On the other hand, Propositions 3.1 and 3.2 imply

‖V 0‖=L+[0]≥L+[T ∗+1]≥κ
∫ ‖X[T∗+1]‖

‖X0‖
ψ(
√

2s)ds>κ

∫ M

‖X0‖
ψ(
√

2s)ds=‖V 0‖,

which is contradictory. Hence, M is a uniform bound for ‖X‖. For the estimate of
velocity variations, we use Lemma 3.3 and inequality:

1−x≤e−x, x>0

to see that for all n∈N,

‖V [n]‖≤
(

1−hκψ
(√

2M
))n
‖V 0‖≤‖V 0‖e−hκψ(

√
2M)n.

This completes the proof of Theorem 2.2.
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3.3. A singular communication weight. In this subsection, we provide a
proof of Theorem 2.3. Suppose that initial data and system parameters satisfy

κ>0, ‖V 0‖<κ
∫ M

‖X0‖
ψ(
√

2s)ds,

min
i6=j
‖x0

i −x0
j‖≥ρ+

√
2‖V 0‖

κψ(
√

2M)
, 0<h≤ 1

κψ(ρ)
.

(3.11)

• Step A (Derivation on positive minimal distance): In this step, we will derive a positive
minimal relative distance for the well-prepared initial data (3.11). More precisely, we
claim that for all 1≤ i 6= j≤N and n∈N,

‖xi[n]−xj [n]‖≥ρ. (3.12)

For this, we define a set S as follows.

S :={T ∈N : ‖xi[n]−xj [n]‖≥ρ, ∀i 6= j, n∈N,0≤n≤T}.

Since 0∈S, the set S is nonempty. To prove (3.12), we need to show

supS=∞.

Suppose not, i.e., supS=T ∗<∞. Then, we have for all 0≤n≤T ∗,

‖xi[n]−xj [n]‖≥ρ, ∀i 6= j, (3.13)

and there exist indices i∗ 6= j∗ such that

‖xi∗ [T ∗+1]−xj∗ [T
∗+1]‖<ρ. (3.14)

On the other hand, by (3.11) and (3.13), the relation (3.6) is satisfied for all 0≤n≤T ∗.
Therefore, we use Proposition 3.1 to derive

L+[n+1]≤L+[n], for 0≤n≤T ∗.

We inductively apply the above relation in n and use the relations (3.11) to see that for
all 0≤n≤T ∗,

L+[n+1]≤L+[0] =‖V [0]‖<κ
∫ M

‖X0‖
ψ(
√

2s)ds.

Proposition 3.2 implies

‖V [n]‖+κ

∫ ‖X[n]‖

‖X0‖
ψ(
√

2s)ds≤L+[n]<κ

∫ M

‖X0‖
ψ(
√

2s)ds, 0≤n≤T ∗+1.

Clearly, this yields

‖X[n]‖≤M, for 0≤n≤T ∗+1. (3.15)

Now, we use Lemma 3.3 and (3.15) to find that for all 0≤n≤T ∗,

‖V [n+1]‖≤
(

1−hκψ
(√

2‖X[n]‖
))
‖V [n]‖≤

(
1−hκψ

(√
2M
))
‖V [n]‖. (3.16)
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Then, we iterate the relation (3.16) inductively to get

‖V [n]‖≤
(

1−hκψ
(√

2M
))n
‖V 0‖, 0≤n≤T ∗+1. (3.17)

On the other hand, it follows from (2.5)1 that

‖xi∗ [T ∗+1]−xj∗ [T
∗+1]‖

=

∥∥∥∥∥xi∗ [0]−xj∗ [0]+
T∗∑
n=0

(xi∗ [n+1]−xj∗ [n+1]−(xi∗ [n]−xj∗ [n]))

∥∥∥∥∥
=

∥∥∥∥∥xi∗ [0]−xj∗ [0]+h
T∗∑
n=0

(vi∗ [n]−vj∗ [n])

∥∥∥∥∥
≥‖x0

i∗−x0
j∗‖−h

T∗∑
n=0

‖vi∗ [n]−vj∗ [n]‖. (3.18)

We combine (3.17) and (3.18) to find

‖xi∗ [T ∗+1]−xj∗ [T
∗+1]‖

≥‖x0
i∗−x0

j∗‖−
√

2h
T∗∑
n=0

(
1−hκψ

(√
2M
))n
‖V 0‖

≥min
i6=j
‖x0

i −x0
j‖−

√
2‖V 0‖

κψ(
√

2M)
≥ρ.

This is contradictory to (3.14). Thus, (3.12) holds for all n∈N:

inf
n∈N

min
i6=j
‖xi[n]−xj [n]‖≥ρ.

We use Proposition 3.1 to see

L+[n]≤L+[0] for all n∈N.

Then, the above relation, (3.11) and Proposition 3.2 yield

‖X[n]‖≤M for all n∈N.

• Step B (Estimate on velocity variations): The analysis is the same as in the proof of
Theorem 2.2. We use Lemma 3.3 to see that for all n∈N,

‖V [n]‖≤‖V 0‖e−hκψ(
√
2M)n.

This completes the proof of Theorem 2.3.

4. From discrete dynamics to continuous dynamics
In this section, we present a uniform-in-time transition from the discrete C-S model

to the continuous C-S model by combining the corresponding result in any finite-time
interval and exponential flocking estimate for the discrete model.

Recall that our goal is to derive the estimate:

limsup
h→0

sup
n∈N

(‖X[n]−X(nh)‖+‖V [n]−V (nh)‖) = 0.
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For the derivation of the above estimate, we estimate the velocity variations and spatial
variations separately using the same argument.

• Step A (velocity variations): First, we claim:

limsup
h→0

sup
n∈N
‖V [n]−V (nh)‖= 0. (4.1)

Proof of claim: We will show (4.1) by a contradiction argument. Suppose not, i.e. there
exists a constant δ>0 such that

limsup
h→0

sup
n∈N
‖V [n]−V (nh)‖= δ. (4.2)

It follows from Theorem 2.2 or Theorem 2.3 that for all n∈N,

‖V [n]‖≤‖V 0‖e−hκψ(
√
2M)n. (4.3)

On the other hand, it follows from Theorem 2.1 that for all n∈N,

‖V (nh)‖≤‖V 0‖e−κψ(
√
2xM )hn. (4.4)

By (4.3) and (4.4), there exists a time T0 such that

‖V [n]‖< δ

4
, ‖V (nh)‖< δ

4
, n≥bT0/hc+1.

This yields that for all n≥bT0/hc+1,

‖V [n]−V (nh)‖≤‖V [n]‖+‖V (nh)‖< δ

2
. (4.5)

We combine (4.2) and (4.5) to see

limsup
h→0

sup
n∈N,0≤n≤bT0/hc

‖V [n]−V (nh)‖= δ

which contradicts the classical finite-time interval convergence result in the finite time
interval [0,T0] (see [31]). Hence, we have the uniform-in-time convergence in velocity
part.

• Step B (spatial variations): Similar to (4.1), we claim:

limsup
h→0

sup
n∈N
‖X[n]−X(nh)‖= 0. (4.6)

Suppose not, i.e. there exists a constant δ̃ >0 such that

limsup
h→0

sup
n∈N
‖X[n]−X(nh)‖= δ̃. (4.7)

For a time T̃ to be determined later, we have for all n≥bT̃ /hc+1,

X[n] =X[b T̃
h
c]+h

n−1∑
i=b T̃h c

V [i] and X(nh) =X(b T̃
h
ch)+

∫ nh

b T̃h ch
V (s)ds.
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Therefore, we have

‖X[n]−X(nh)‖

≤

∥∥∥∥∥X[b T̃
h
c]−X(b T̃

h
ch)

∥∥∥∥∥+

∥∥∥∥∥∥∥
n−1∑
i=b T̃h c

∫ (i+1)h

ih

V [i]ds−
n−1∑
i=b T̃h c

∫ (i+1)h

ih

V (s)ds

∥∥∥∥∥∥∥
≤

∥∥∥∥∥X[b T̃
h
c]−X(b T̃

h
ch)

∥∥∥∥∥+
n−1∑
i=b T̃h c

∫ (i+1)h

ih

‖V [i]−V (s)‖ds

=:

∥∥∥∥∥X[b T̃
h
c]−X(b T̃

h
ch)

∥∥∥∥∥+I[n].

LetM := max{M,xM}. For the estimation of I[n], we use (4.3) and (4.4) to derive

I[n]≤
n−1∑
i=b T̃h c

2h‖V 0‖e−hκψ(
√
2M)i≤2h‖V 0‖

∞∑
i=b T̃h c

e−hκψ(
√
2M)i

= 2h‖V 0‖e
−κψ(

√
2M)b T̃h ch

1−e−hκψ(
√
2M)
≤2h‖V 0‖e

−κψ(
√
2M)(T̃−h)

1−e−hκψ(
√
2M)

.

Next, we can take T̃ sufficiently large such that

limsup
h→0

sup
n≥bT̃ /hc+1

I[n]<δ̃/2.

Then, we have

limsup
h→0

sup
n∈N
‖X[n]−X(nh)‖

≤limsup
h→0

sup
n∈N,0≤n≤bT̃ /hc

‖X[n]−X(nh)‖+limsup
h→0

sup
n∈N,n≥bT̃ /hc+1

‖X[n]−X(nh)‖

≤2limsup
h→0

sup
n∈N,0≤n≤bT̃ /hc

‖X[n]−X(nh)‖+
δ̃

2
=
δ̃

2
, (4.8)

where the last equality follows from the classical result on the convergence in a finite-
time interval [31]. Note that (4.7) and (4.8) are contradictory. Hence, we prove (4.6)
and complete the proof.

5. Conclusion
In this paper, we have presented a nonlinear functional approach for the flocking es-

timate to the discrete C-S model. For the continuous C-S model, Ha and Liu introduced
a nonlinear functional approach with a general communication weight. In literature,
the flocking estimates for the discrete C-S model have been studied for bounded and
algebraically decreasing communication weights using the self-bound argument in [13].
However, as far as the authors know, the nonlinear functional approach for the discrete
C-S model has not been done in the last ten years. In a recent work by Ha and Zhang,
they derived a flocking estimate for the discrete C-S model with a general communica-
tion weight by using the nonlinear functional approach for the continuous C-S model
and some approximation argument between the continuous model and discrete model.
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Thus, the main novelty of this work is to introduce a discrete analogue of nonlinear
functional approach directly. Our proposed nonlinear functional approach is a simple
and natural generalization of the continuous counterpart in the discrete regime. As a
direct corollary of our nonlinear functional approach, we also show the uniform-in-time
convergence from the discrete C-S model to the continuous C-S model under a relaxed
framework compared to [19]. Of course, there are still lots of open questions even for
the simple discrete C-S model with general communication weight. For the continuous
model, there has been some relevant work [10] on the emergence of local flocking. How-
ever, similar issues were never addressed in the discrete regime. Thus, it would be very
interesting to investigate the emergence of local flocking for the discrete C-S model as
well. This will be addressed in a future work.
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