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THE KINETIC FOKKER-PLANCK EQUATION WITH WEAK
CONFINEMENT FORCE∗

CHUQI CAO†

Abstract. We consider the kinetic Fokker-Planck equation with weak confinement force. We prove
some (polynomial and sub-exponential) rate of convergence to the equilibrium (depending on the space
to which the initial datum belongs). Our results generalize some results known for strong confinement
to the weak confinement case.
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1. Introduction
In this paper, we consider the weak hypocoercivity issue for a solution f to the

kinetic Fokker-Planck (KFP for short) equation

∂tf =Lf :=−v ·∇xf+∇xV (x) ·∇vf+∆vf+divv(vf), (1.1)

on a function f =f(t,x,v), with t≥0, x∈Rd, v∈Rd. The evolution Equation (1.1) is
complemented with an initial datum

f(0,·) =f0 on R2d.

Throughout the paper, we make the assumption on the confinement potential V

V (x) = 〈x〉γ , γ∈ (0,1),

where 〈x〉2 := 1+ |x|2. Let us make some elementary but fundamental observations.
First, the equation is mass conservative, that is

M(f(t,·)) =M(f0), ∀t≥0,

where we define the mass of f by

M(f) =

∫
Rd×Rd

fdxdv.

Next, we observe that the function

G=Z−1e−W , W =
|v|2

2
+V (x), Z ∈R+ (1.2)

is a positive normalized steady state of the KFP model, precisely

LG= 0, G>0, M(G) = 1,
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by choosing the normalizing constant Z>0 appropriately. Finally we observe that,
contrary to the case γ≥1, a Poincaré inequality of the type

∃c>0,

∫
Rd
|φ(x)|2 exp(−V (x))dx≤ c

∫
Rd
|∇φ(x)|2 exp(−V (x))dx,

for any smooth function φ :Rd→R such that∫
Rd
φ(x)exp(−V (x))dx= 0,

does not hold. Only a weaker version of this inequality remains true (see [11, 18], or
Section 2 below). In particular, there is no spectral gap for the associated operator L,
nor is there an exponential trend to the equilibrium for the associated semigroup.

For a given weight function m, we will denote Lp(m) ={f |fm∈Lp} the associ-
ated Lebesgue space and ‖f‖Lp(m) =‖fm‖Lp the associated norm. The notation A.B
means A≤CB for some constant C>0.

The main result of this paper writes as follows.

Theorem 1.1.
(1) For any initial datum f0∈Lp(G−( p−1

p +ε)), p∈ [1,∞), ε>0 small, the associated
solution f(t,·) to the kinetic Fokker-Planck Equation (1.1) satisfies

‖f(t,·)−M(f0)G‖
Lp(G

− p−1
p )

.e−Ct
b

‖f0−M(f0)G‖
Lp(G

−(
p−1
p

+ε)
)
,

for any b∈ (0, γ
2−γ ) and some constant C>0.

(2) For any initial datum f0∈L1(m), m=Hk, H= |x|2 + |v|2 +1, k≥1, the associated
solution f(t,·) to the kinetic Fokker-Planck Equation (1.1) satisfies

‖f(t,·)−M(f0)G‖L1 . (1+ t)
− k

1− γ
2 ‖f0−M(f0)G‖L1(m).

The constants in the estimates only depend on γ,d,ε,p,k.

Remark 1.1. Let us emphasize the loss of tail control in both estimates in Theorem
1.1, which is reminiscent of decay estimates in sub-geometric contexts.

Remark 1.2. In the results above the constants can be explicitly estimated in terms
of the parameters appearing in the equation by following the calculations in the proofs.
We do not give them explicitly since we do not expect them to be optimal, but they are
nevertheless completely constructive.

Remark 1.3. Theorem 1.1 is also true when V (x) behaves like 〈x〉γ , that is for any
V (x) satisfying

C1〈x〉γ≤V (x)≤C2〈x〉γ , ∀x∈Rd,
C3|x|〈x〉γ−1≤x ·∇xV (x)≤C4|x|〈x〉γ−1, ∀x∈BcR,

with BR denoting the ball centered at origin with radius R and BcR=Rd \BR, and

|D2
xV (x)|≤C5〈x〉γ−2, ∀x∈Rd,

for some constants Ci>0, R>0.
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Remark 1.4. There are many classical results about the strong confinement frame-
work corresponding to γ≥1. In this case there is a spectral gap on the operator L and
exponential decay estimates on the associated semigroup SL, we refer the interested
readers to [2–4,7–10,15,22].

Remark 1.5. For the Fokker-Planck equation with weak confinement force, a sub-
geometric convergence to equilibrium is established in [11,18,20]

Remark 1.6. There are already some convergence results for the KFP equation with
weak confinement case considered in the present paper proved by probability method. In
[1], a polynomial rate of convergence to the equilibrium is established, in total variation
distance with some weight norm, and in [5], a sub-geometric rate of convergence in
total variation distance with some weight norm is established. Both papers use Harris’
theorem, which is first introduced in [21] and pushed forward in [19] to show exponential
convergence to equilibrium. This paper extends the result to Lp spaces and larger
spaces.

One advantage of the method in this paper is that it can yield convergence on a
wider range of initial conditions and Lp spaces, while previous proofs of convergence to
equilibrium mainly using some strong L1 norms (probability method) or L2 norms (PDE
methods). Also the method provides a quantitative rate of convergence to the steady
state, which is better than non-quantitative-type argument such as the consequence of
Krein-Rutman theorem. While our method also has some disadvantages, it requires
that the equation has an explicit steady state.

Let us briefly explain the main ideas behind our method of proof.

We introduce four spaces E1 =L2(G−1/2), E2 =L2(G−1/2eε1V (x)), E3 =
L2(G−(1+ε2)/2) and E0 =L2(G−1/2〈x〉γ−1), with ε1>0 and ε2>0 small such that
E3⊂E2⊂E1⊂E0⊂L2. Thus E1 is an “interpolation” space between E0 and E2.
We first use a hypocoercivity argument as in [3, 4] to prove that, for any f0∈E3, the
solution f to the KFP Equation (1.1) satisfies

d

dt
‖f(t)‖Ẽ1

≤−λ‖f(t)‖E0
,

for some constant λ>0, where the norm of Ẽ1 is equivalent to the norm of E1. We use
this and the Duhamel formula to prove

‖f(t)‖E2
.‖f0‖E3

.

Combining the two inequalities and using an interpolation argument as in [11], we get

‖f(t)‖E1
.e−at

b

‖f0‖E3
, (1.3)

for some a>0,b∈ (0,1).

We then generalize the decay estimate to a wider class of Banach spaces by adapting
the extension theory introduced in [16] and developed in [6, 13]. For any operator L,
denote SL(t) the associated semigroup. We introduce a splitting L=A+B, where A is
an appropriately defined bounded operator so that B becomes a dissipative operator.
Moreover we prove that SB satisfies some regularization estimate

‖SB(t)‖Lp(m1)→L2(m2) . t
−α, ∀t∈ [0,η],
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for any p∈ [1,2), some weight function m1, m2 and some α,η>0, and using the iterated
Duhamel’s formula

SL=SB+
n−1∑
l=1

(SB)∗(ASB)(∗l) +SL ∗(ASB)(∗n), (1.4)

we deduce the Lp convergence on SL as stated in Theorem 1.1. Here and below U ∗V
denotes the convolution of two operator-valued functions U , V defined by

(U ∗V)(t) =

∫ t

0

U(s)V(t−s)ds,

and we set U (∗0) = I,U (∗1) =U and for any k≥2, U (∗k) =U (∗(k−1)) ∗U .

Let us end the introduction by describing the plan of the paper. In Section 2, we will
develop a hypocoercivity argument to prove a weighted L2 estimate for the KFP model.
In Section 3, we introduce a splitting L=A+B and using the L2 estimate, we prove a
L2 convergence. In Section 4, we present the proof of a regularization estimate on SB
from Lp to L2. In Section 5, we prove some L1 estimate on the semigroup SB. Finally
in Section 6 we use the above regularization estimate to conclude the Lp convergence
for the KFP equation.

2. L2 framework: Dirichlet form and rate of convergence estimate
For later discussion, we introduce some notations for the whole paper.

We split the KFP operator as

L=T +S,

where T stands for the transport part

T f =−v ·∇xf+∇xV (x) ·∇vf,

and S stands for the collision part

Sf = ∆vf+divv(vf).

We will denote the cut-off function χ such that χ(x,v)∈ [0,1], χ(x,v)∈C∞, χ(x,v) = 1
when |x|2 + |v|2≤1 , χ(x,v) = 0 when |x|2 + |v|2≥2, and then denote χR=χ(x/R,v/R).

We may also define another splitting of the KFP operator L by

L=A+B, A=KχR(x,v). (2.1)

with K,R>0 to be chosen later.
For f =f(x), we use

∫
f to replace

∫
Rd fdx, and for f =f(x,v), we use

∫
f in place

of
∫
Rd×Rd fdxdv for short, for f =f(x,v),

∫
fdx means

∫
Rd fdx ,

∫
fdv means

∫
Rd fdv.

B|x|≤ρ is used to denote the ball such that {x∈Rd||x|≤ρ}, similarly Bρ means the ball

such that {x,v∈Rd||x|2 + |v|2≤ρ}.
For V (x) = 〈x〉γ , 0<γ<1, we also denote 〈∇V 〉 for 〈x〉γ−1, and 〈∇V 〉−1 for 〈x〉1−γ .

With these notations we introduce the Dirichlet form adapted to our problem. We
define the 0 order and first order moments

ρf =ρ[f ] =

∫
fdv, jf = j[f ] =

∫
vfdv,
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then we define a projection operator π by

πf =Mρf , M =Ce−|v|
2/2,

∫
Mdv= 1,

and the complement of π by

π⊥= I−π, f⊥=π⊥f.

We define an elliptic operator ∆V and its dual ∆∗V by

∆V u :=divx(∇xu+∇xV u), ∆∗V u := ∆xu−∇xV ·∇xu,

let u= (∆∗V )−1ξ be the solution to the above elliptic equation

∆∗V u= ξ on Rd,

and satisfies ∫
ue−V 〈∇V 〉−2 = 0.

We will prove the existence and uniqueness to this elliptic equation in Lemma 2.3 below,
we then define H=L2(G−1/2), H1 =L2(G−1/2〈∇V 〉) and

H0 ={h∈H,
∫
fdxdv= 0}

where we recall that G has been introduced in (1.2). Using these notations, define a
scalar product by

((f,g)) := (f,g)H+ε(∆−1
V ∇xjf ,(ρge

V 〈∇V 〉2))L2 +ε((ρfe
V 〈∇V 〉2),∆−1

V ∇xjg)L2

= (f,g)H+ε(jf ,∇x(∆∗V )−1(ρge
V 〈∇V 〉2))L2 +ε(∇x(∆∗V )−1(ρfe

V 〈∇V 〉2),jg)L2 ,

for some ε>0 to be specified later.
Finally we define the Dirichlet form

D[f ] := ((−Lf,f))

= (−Lf,f)H+ε(∆−1
V ∇xj[−Lf ],(ρfe

V 〈∇V 〉2))L2 +ε((ρ[−Lf ]eV 〈∇V 〉2),∆−1
V ∇xjf )L2 .

With these notations we can come to our first theorem.

Theorem 2.1. There exists ε>0 small enough, such that on H0 the norm ((f,f))
1
2

defined above is equivalent to the norm of H, moreover there exists λ>0, such that

D[f ]≥λ‖f‖2H1
, ∀f ∈H0.

As a consequence, for any f0∈H0, the associated solution f(t,·) of the kinetic Fokker-
Planck Equation (1.1) satisfies

d

dt
((f,f))≤−C

∫
f2G−1〈x〉2(γ−1), (2.2)

for some constant C>0. In particular for any f0∈H0, we have

‖f(t,·)‖
L2(G−

1
2 )
≤C‖f0‖

L2(G−
1
2 )
, (2.3)
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for some constant C>0.

Remark 2.1. In H0 we have∫
ρfe

V 〈∇V 〉2e−V 〈∇V 〉−2dx=

∫
ρfdx=

∫
fdxdv= 0,

so the term (∆∗V )−1(ρge
V 〈∇V 〉2) is well defined in H0.

Remark 2.2. Our statement is a generalization of [3, 4].

Before proving the theorem, we need some lemmas.
We say that W satisfies a local Poincaré inequality on a bounded open set Ω if there
exists some constant κΩ>0 such that:∫

Ω

h2W ≤κΩ

∫
Ω

|∇h|2W +
1

W (Ω)

(∫
Ω

hW

)2

,

for any nice function h :Rd→R and where we denote W (Ω) := 〈W1Ω〉.

Lemma 2.1. Under the assumption W,W−1∈L∞loc(Rd), the function W satisfies the
local Poincaré inequality for any ball Ω⊂Rd.

For the proof of Lemma 2.1 we refer to [17, Lemma 2.3].

Lemma 2.2 (weak Poincaré inequality). There exists a constant λ>0 such that

‖u‖L2(〈∇V 〉e−V/2)≤λ‖∇u‖L2(e−V/2)

for any u∈D(Rd) such that ∫
ue−V 〈∇V 〉−2 = 0

Proof. We prove for any h∈D(Rd) such that∫
he−V 〈∇V 〉−2 = 0, (2.4)

we have ∫
|∇h|2e−V ≥ 1

λ

∫
h2e−V 〈x〉2(γ−1),

for some λ>0. Taking g=he−
1
2V , we have ∇g=∇he− 1

2V − 1
2∇V he

− 1
2V , so that

0≤
∫
|∇g|2 =

∫
|∇h|2e−V +

∫
h2 1

4
|∇V |2e−V −

∫
1

2
∇(h2) ·∇V e−V

=

∫
|∇h|2e−V +

∫
h2

(
1

2
∆V − 1

4
|∇V |2

)
e−V .

Since

1

4
|∇V |2−∆V ≥ 1

8
〈∇V 〉2−K1BR0

〈∇V 〉−2
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for some K,R0>0. We deduce for some K,R0>0∫
|∇h|2e−V ≥

∫
1

8
h2〈∇V 〉2e−V −K

∫
BR0

h2e−V 〈∇V 〉−2.

Defining

εR :=

∫
BcR

e−V 〈∇V 〉−6, ZR :=

∫
BR

e−V 〈∇V 〉−2,

and using (2.4), we get(∫
BR

he−V 〈∇V 〉−2

)2

=

(∫
BcR

he−V 〈∇V 〉−2

)2

≤
∫
BcR

h2e−V 〈∇V 〉2
∫
BcR

e−V 〈∇V 〉−6

≤ εR
∫
BcR

h2e−V 〈∇V 〉2.

Using the local Poincaré inequality in Lemma 2.1, we deduce∫
BR

h2e−V 〈∇V 〉−2≤CR
∫
BR

|∇h|2e−V 〈∇V 〉−2 +
1

ZR

(∫
BR

he−V 〈∇V 〉−2

)2

≤C
′

R

∫
BR

|∇h|2e−V +
εR
ZR

∫
BcR

h2e−V 〈∇V 〉2.

Putting all the inequalities together and taking R>R0, we finally get∫
h2e−V 〈∇V 〉2≤8

∫
|∇h|2e−V +8K

∫
BR0

h2e−V 〈∇V 〉−2

≤8(1+KC
′

R)

∫
|∇h|2e−V +

8KεR
ZR

∫
BcR

h2e−V 〈∇V 〉2,

and we conclude by taking R large such that: 8KεR
ZR
≤ 1

2 .

Lemma 2.3 (Elliptic Estimate). For any ξ1∈L2(〈∇V 〉−1e−V/2) and ξ2∈L2(e−V/2),
there exists a unique solution u to the elliptic equation

−∆∗V u= ξ1 +∇·ξ2,
∫
ue−V 〈∇V 〉−2 = 0, (2.5)

and satisfies

‖u‖L2(〈∇V 〉e−V/2) +‖∇u‖L2(e−V/2) .‖ξ1‖L2(〈∇V 〉−1e−V/2) +‖ξ2‖L2(e−V/2). (2.6)

In addition for any ξ∈L2(〈∇V 〉−1e−V/2), the solution u to the elliptic problem

−∆∗V u= ξ,

∫
ue−V 〈∇V 〉−2 = 0,

and satisfies

‖u‖L2(〈∇V 〉2e−V/2) +‖∇u‖L2(〈∇V 〉e−V/2) +‖D2u‖L2(e−V/2) .‖ξ‖L2(e−V/2〈∇V 〉−1). (2.7)
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Proof. Multiply (2.5) by ue−V and observe that

eV divx[e−V∇xu] = ∆xu−∇xV ·∇xu= ∆∗V u, (2.8)

we have after integration

−
∫
eV divx[e−V∇xu]ue−V =

∫
(ξ1 +∇·ξ2)ue−V .

Performing one integration by parts, we deduce∫
e−V |∇xu|2 =

∫
(ξ1u−ξ2 ·∇u+ξ2 ·∇V u)e−V ,

using Lemma 2.2 and Lax-Milgram theorem we obtain (2.6), the existence and thus the
uniqueness follows. In inequality (2.7), the first two terms are easily bounded by (2.6)
and 〈∇V 〉≤1, we then only need to prove the bound for the third term. By integration
by parts, we have∫

|D2u|2e−V =
d∑

i,j=1

∫
(∂2
iju)2e−V

=

d∑
i,j=1

∫
∂iu(∂2

iju∂jV −∂3
ijju)e−V

=
d∑

i,j=1

∫
∂2
jju∂i(∂iue

−V )− 1

2

∫
(∂iu)2∂j(∂jV e

−V )

=

∫
(∆u)(−∆∗V u)e−V +

1

2

∫
|∇u|2(|∇V |2−∆V )e−V

.‖D2u‖L2(e−V/2)‖ξ‖L2(e−V/2) +‖〈∇V 〉∇u‖L2(e−V/2),

where in the third equality we have used∫
∂2
iju∂iu∂jV e

−V =−
∫
∂iu∂j(∂iu∂jV e

−V )

=−
∫
∂2
iju∂iu∂jV e

−V −
∫

(∂iu)2∂j(∂jV e
−V ),

which implies ∫
∂2
iju∂iu∂jV e

−V =−1

2

∫
(∂iu)2∂j(∂jV e

−V ),

and in the fourth equality we have used (2.8). That concludes the proof.

Now we turn to the proof of Theorem 2.1.

Proof. (Proof of Theorem 2.1.) First we prove the equivalence of the norms
associated to ((,)) and (,)H. By Cauchy-Schwarz inequality and Lemma 2.3, we have

(jf ,∇x(∆∗V )−1(ρge
V 〈∇V 〉2))L2 ≤‖jf‖L2(eV/2)‖ρgeV 〈∇V 〉2‖L2(〈∇V 〉−1e−V/2),

and obviously

‖ρgeV 〈∇V 〉2‖L2(〈∇V 〉−1e−V/2) =‖ρg‖L2(〈∇V 〉eV/2)≤‖ρg‖L2(eV/2) .‖g‖H.
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Using the elementary observations

|jf |.‖f‖L2
v(e|v|2/4) |ρf |.‖f‖L2

v(e|v|2/4),

we deduce

(jf ,∇x(∆∗V )−1(ρge
V 〈∇V 〉2))L2 .‖f‖H‖g‖H,

The third term in the definition of ((,)) can be estimated in the same way and that ends
the proof of equivalence of norms.

Now we prove the main estimate of the theorem. We split the Dirichlet term D[f ]
into 3 parts

D[f ] =T1 +εT2 +εT3,

with

T1 := (−Lf,f)H

T2 := (∆−1
V ∇xj[−Lf ],ρf )L2(eV/2〈∇V 〉)

T3 := ((∆V )−1∇xjf ,ρ[−Lf ])L2(eV/2〈∇V 〉) ,

and compute them separately.

For the T1 term, using the classical Poincaré inequality, we have

T1 := (−T f−Sf,f)H= (−Sf,f)H

= −
∫

[∆vf+divv(vf)]fM−1eV =

∫
|∇v(f/M)|2MeV

≥ kp
∫
|f/M−ρf |2MeV =kp‖f−ρfM‖2H=kp‖f⊥‖2H,

for some kp>0. We split the T2 term as

T2 := (∆−1
V ∇xj[−Lf ],ρf )L2(eV/2〈∇V 〉)

= (∆−1
V ∇xj[−T πf ],ρf )L2(eV/2〈∇V 〉)

+(∆−1
V ∇xj[−T f

⊥],ρf )L2(eV/2〈∇V 〉) +(∆−1
V ∇xj[−Sf ],ρf )L2(eV/2〈∇V 〉)

:=T2,1 +T2,2 +T2,3.

First observe

T πf =−v ·∇xρfM−∇xV ·vρfM =−e−VMv ·∇x(ρf/e
−V ),

so that we have

j[−T πf ] =
d∑
k=1

〈vvkM〉e−V ∂xk(ρf/e
−V ) =e−V∇x(ρf/e

−V ).

Next by (2.8), we have

T2,1 = (j[−T πf ],∇(∆∗V )−1(ρfe
V 〈∇V 〉2))L2

= (ρf ,[e
V divx(e−V∇)][(∆∗V )−1(ρfe

V 〈∇V 〉2)])L2
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=‖ρfeV/2〈∇V 〉‖2L2 =‖πf‖2H1
.

Using the notation η1 = 〈v⊗vf⊥〉 and η2,αβ = 〈vα∂vβf⊥〉, and observing that

|η1|.‖f⊥‖L2
v(e|v|2/4), |η2|.‖f⊥‖L2

v(e|v|2/4),

we compute

T2,2 = (j[−T f⊥],∇(∆∗V )−1(ρfe
V 〈∇V 〉2))L2

= (Dη1 +η2∇V,∇(∆∗V )−1(ρfe
V 〈∇V 〉2))L2

= (η1,D
2(∆∗V )−1(ρfe

V 〈∇V 〉2))L2 +(η2,∇V∇(∆∗V )−1(ρfe
V 〈∇V 〉2))L2

≤‖η1‖L2(eV/2)‖D2(∆∗V )−1(ρfe
V 〈∇V 〉2)‖L2(e−V/2)

+‖η2‖L2(eV/2)‖∇V∇(∆∗V )−1(ρfe
V 〈∇V 〉2)‖L2(e−V/2).

By Lemma 2.3, we estimate

T2,2 .‖η1‖L2(eV/2)‖ρfeV 〈∇V 〉2‖L2(e−V/2〈∇V 〉−1)

+‖η2‖L2(eV/2)‖ρfeV 〈∇V 〉2‖L2(e−V/2〈∇V 〉−1)

.‖f⊥‖H‖πf‖H1
.

Using

j[−Sf ] = j[−Sf⊥] =−
∫
v[∆vf

⊥+divv(vf
⊥)]dv=d

∫
f⊥vdv.‖f⊥‖L2

v(e|v|2/4),

and Lemma 2.3, we have

T2,3 = (j[−Sf ],∇(∆∗V )−1(ρfe
V 〈∇V 〉2))L2

≤‖j[−Sf ]‖L2(eV/2)‖∇(∆∗V )−1(ρfe
V 〈∇V 〉2)‖L2(e−V/2)

.‖f⊥‖H‖ρfeV 〈∇V 〉2‖L2(〈∇V 〉−1e−V/2)

=‖f⊥‖H‖ρf‖L2(〈∇V 〉eV/2)

=‖f⊥‖H‖πf‖H1
.

Finally we come to the T3 term. Using

ρ[−Sf ] =

∫
∇v ·(∇vf+vf)dv= 0,

and

ρ[−Tf ] =ρ[v ·∇xf−∇xV (x) ·∇vf ]

=

∫
v ·∇xf−∇xV (x) ·∇vfdv

=∇xj[f ],

because ∇(〈∇V 〉2). 〈∇V 〉2 and 〈∇V 〉2 . 〈∇V 〉, we get

T3 = ((∆V )−1∇xjf ,ρ[−Lf ])L2(eV/2〈∇V 〉)

= ((∆V )−1∇xj[f⊥],ρ[−T f ])L2(eV/2〈∇V 〉)
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= (j[f⊥],∇(∆∗V )−1(∇xj[f ]eV 〈∇V 〉2))L2

≤‖j[f⊥]‖L2(eV/2)‖∇(∆∗V )−1[∇x(jfe
V 〈∇V 〉2)

−∇V jfeV 〈∇V 〉2−∇(〈∇V 〉2)jfe
V ]‖L2(e−V/2),

using Lemma 2.3 again, we have

T3 .‖j[f⊥]‖L2(eV/2)(‖jfeV 〈∇V 〉2‖L2(e−V/2〈∇V 〉−1) +‖jfeV∇(〈∇V 〉2)‖L2(〈∇V 〉−1e−V/2))

.‖f⊥‖H‖f‖H1
.

Putting all the terms together and choosing ε>0 small enough, we can deduce

D[f ]≥kp‖f⊥‖2H+ε‖πf‖2H1
−ε2K‖f⊥‖H‖f‖H1−ε2K‖f⊥‖H‖πf‖H1

≥kp‖f⊥‖2H+ε‖πf‖2H1
−(2ε+4ε1/2)K‖f⊥‖2H−ε3/24K‖πf‖2H1

≥ kp
2

(‖f⊥‖2H+ε‖πf‖2H1
)≥λ‖f‖H1

,

for some λ>0.

3. L2 sub-exponential decay for the kinetic Fokker-Planck equation based
on a splitting trick

In this section we establish a first decay estimate on SL which is a particular case
in the result of Theorem 1.1.

Theorem 3.1. Using the notation and results in Theorem 2.1, we have

‖SL(t)f0‖
L2(G−

1
2 )

.e−Ct
γ/(2−γ)

‖f0‖
L2(G−( 1

2
+ε))

,

for any f0∈L2(G−( 1
2 +ε))∩H0, ε>0 small enough.

Remark 3.1. It’s worth emphasizing that we deduce immediately part (1) of
Theorem 1.1 for the case p= 2 by considering the initial datum f0−M(f0)G for any

f0∈L2(G−
1
2 +ε).

Recall the splitting L=A+B introduced in (2.1), we first prove some decay estimate
on the semigroup SB.

Lemma 3.1. Let us fix p∈ [1,∞).

(1) For any given smooth weight function m, we have∫
|f |p−1 signf(Lf)G−(p−1)m≤ 1

p

∫
|f |pG−(p−1)m̃, (3.1)

with

m̃= ∆vm−∇vm ·v−∇xV (x) ·∇vm+v ·∇xm.

(2) Taking m=eεH
δ

, ε>0 if 0<δ< γ
2 , ε small enough if δ= γ

2 , H= 3|v|2 +2x ·v+ |x|2 +
1, we have ∫

|f |p−1 signf(Bf)G−(p−1)eεH
δ

≤−C
∫
|f |pG−(p−1)eεH

δ

H
δ
2 +γ−1, (3.2)

for some K and R large.
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(3) With the same notation as above, there holds

‖SB(t)‖
Lp(e2εHδG

− p−1
p )→Lp(eεHδG

− p−1
p )

.e−at
2δ

2−γ
, (3.3)

for some a>0. In particular, this implies

‖SB(t)‖
Lp(G

−(
p−1
p

+ε)
)→Lp(G

− p−1
p )

.e−at
γ

2−γ
.

Proof.
Step 1. Recalling (1.2), we write∫

|f |p−1 signf(Lf)G−(p−1)m

=

∫
|f |p−1 signf(T f)G−(p−1)m+

∫
|f |p−1 signf(Sf)G−(p−1)m.

We first compute the contribution of the term with operator T∫
|f |p−1 signf(T f)G−(p−1)m=

1

p

∫
T (|f |p)G−(p−1)m

=−1

p

∫
|f |pT (G−(p−1)m)

=
1

p

∫
|f |pG−(p−1)(v ·∇xm−∇V (x) ·∇vm).

For the term with operator S , we use one integration by parts, and we get∫
|f |p−1 signf(Sf)G−(p−1)m

=

∫
|f |p−1 signf(∆vf+divv(vf))G−(p−1)m

=−
∫
∇v(signf(|f |G−1)p−1m) ·∇v(fG−1)G

=−
∫

(p−1)|∇v(fG−1)|2(|f |G−1)p−2Gm− 1

p
∇v((|f |G−1)p) ·(∇vm)G.

Performing another integration by parts on the latter term, we have∫
fp−1 signf(Sf)G−(p−1)m

=

∫
−(p−1)|∇v(fG−1)|2(|f |G−1)p−2Gm+

1

p
∇v ·(G∇vm)(|f |G−1)p

=

∫
−(p−1)|∇v(fG−1)|2(|f |G−1)p−2Gm+

1

p
(∆vm−v ·∇vm)|f |pG−(p−1).

Inequality (3.1) follows by putting together the two identities.

Step 2. We particular use m=eεH
δ

and we easily compute

∇vm
m

= δε
∇vH
H1−δ ,

∇xm
m

= δε
∇xH
H1−δ ,
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and

∆vm

m
≤ δε∆vH

H1−δ +(δε)2 |∇vH|2

H2(1−δ) .

We deduce that φ= m̃
m satisfies

φH1−δ

εδ
≤∆vH+εδ

|∇vH|2

H1−δ −v ·∇vH+v ·∇xH−∇xV (x) ·∇vH.

From the very definition of H, we have

∇vH= 6v+2x, ∇xH= 2v+2x, ∆vH= 6.

Choosing ε>0 arbitrarily if 0<2δ<γ, ε small enough if 2δ=γ, we deduce

∆vH+2εδ
|∇vH|2

H1−δ +v ·∇xH−v ·∇vH−∇xV (x) ·∇vH

= 6+εδ
|6v+2x|2

H1−δ +2|v|2 +2x ·v−6|v|2−2x ·v−6v ·∇xV (x)−2x ·∇xV (x)

≤ (2|v|2 +C1|v|+C2|v|2δ−6|v|2)+(C3εδ|x|2δ−2x ·∇xV (x))+C

≤−C4|v|2−C5x ·∇xV (x)+C6

≤−C7H
γ
2 +KχR,

for some constants Ci,K,R>0. As a consequence, we have proved

φ−KχR≤
−C

H1−δ− γ2
≤0,

which is nothing but (3.2).

Step 3. In the following, we use the “interpolation” argument from [11], denote
ft=SB(t)f0 the solution to the evolution equation ∂tf =Bf,f(0) =f0. On the one
hand, by (3.2) we have

d

dt

∫
|ft|pG−(p−1)e2εHδ =

∫
|ft|p−1 signft(Bft)G−(p−1)e2εHδ ≤0,

which implies ∫
|ft|pG−(p−1)e2εHδ ≤

∫
|f0|pG−(p−1)e2εHδ :=Y1, ∀t≥0

On the other hand, defining

Y (t) :=

∫
|ft|pG−(p−1)eεH

δ

,

using (3.2) again, we have

d

dt
Y =p

∫
|ft|p−1 signft(Bft)G−(p−1)eεH

δ

≤−a
∫
|ft|pG−(p−1)eεH

δ

Hδ+ γ
2−1
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≤−a
∫
|ft|pG−(p−1)eεH

δ

〈x〉2δ+γ−2

≤−a
∫
B|x|≤ρ

|ft|pG−(p−1)eεH
δ

〈x〉2δ+γ−2,

for any ρ>0 and for some a>0. As 2δ+γ<2, 0≤|x|≤ρ implies 〈x〉2δ+γ−2≥〈ρ〉2δ+γ−2,
we deduce

d

dt
Y ≤−a〈ρ〉2δ+γ−2

∫
B|x|≤ρ

|ft|pG−(p−1)eεH
δ

≤−a〈ρ〉2δ+γ−2Y +a〈ρ〉2δ+γ−2

∫
B|x|≥ρ

|ft|pG−(p−1)eεH
δ

,

Using that eε〈x〉
2δ ≥eε〈ρ〉2δ on |x|≥ρ, we get

d

dt
Y ≤−a〈ρ〉2δ+γ−2Y +a〈ρ〉2δ+γ−2e−ε〈ρ〉

2δ

∫
B|x|≥ρ

|ft|pG−(p−1)eεH
δ

eε〈x〉
2δ

≤−a〈ρ〉2δ+γ−2Y +a〈ρ〉2δ+γ−2e−ε〈ρ〉
2δ

∫
|ft|pG−(p−1)eεH

δ

eε〈x〉
2δ

≤−a〈ρ〉2δ+γ−2Y +a〈ρ〉2δ+γ−2e−ε〈ρ〉
2δ

CY1.

Thanks to Grönwall’s Lemma

d

dt
X(t)≤−αX(t)+b⇒X(t)≤e−αtX(0)+

b

α
(1−e−αt)≤e−αtX(0)+

b

α
,

we obtain

Y (t)≤e−a〈ρ〉
2δ+γ−2tY (0)+Ce−ε〈ρ〉

2δ

Y1

. (e−a〈ρ〉
2δ+γ−2t+e−ε〈ρ〉

2δ

)Y1,

Finally, choosing ρ such that a〈ρ〉2δ+γ−2t= ε〈ρ〉2δ, that is 〈ρ〉2−γ =Ct, we deduce

Y (t)≤C1e
−C2t

2δ
2−γ

Y1,

for some Ci>0, and we deduce the proof of (3.3).

Now we come to prove Theorem 3.1.

Proof. (Proof of Theorem 3.1.) We recall that from (2.3), we have

‖SL(t)‖
L2(G−

1
2 )→L2(G−

1
2 )

.1, ∀t≥0.

From the very definition of A we have

‖A‖
L2(G−

1
2 )→L2(e2εHδG−

1
2 )

.1.

From Lemma 3.1 case p= 2, we have

‖SB(t)‖
L2(e2εHδG−

1
2 )→L2(eεHδG−

1
2 )

.e−at
2δ

2−γ
, ∀t≥0.
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Gathering the three estimates and using Duhamel’s formula

SL=SB+SBA∗SL,

we deduce

‖SL(t)‖
L2(e2εHδG−

1
2 )→L2(eεHδG−

1
2 )

.1, ∀t≥0.

In the following, we denote ft=SL(t)f0 the solution to the evolution equation ∂tf =
Lf,f(0,·) =f0. Taking 2δ=γ, ε small enough, we have in particular∫

|ft|2G−1eεH
γ
2 ≤C

∫
|f0|2G−1e2εH

γ
2 =:Y3.

We define

Y2(t) := ((f,f)),

with ((,)) defined in Theorem 2.1. Thanks to the result in (2.2), we have

d

dt
Y2≤−a

∫
|ft|2G−1〈x〉2(γ−1)

≤−a
∫
B|x|≤ρ

|ft|2G−1〈x〉2(γ−1),

for any ρ≥0, using the same argument as Lemma 3.1, we deduce

Y2(t)≤Ce−a〈ρ〉
2(γ−1)tY2(0)+Ce−ε2〈ρ〉

γ

Y3

. (e−a〈ρ〉
2(γ−1)t+e−ε2〈ρ〉

γ

)Y3.

Choosing ρ such that a〈ρ〉2(γ−1)t= ε2〈ρ〉γ , that is 〈ρ〉2−γ =Ct, we conclude

Y2(t)≤C1e
−C2t

γ/(2−γ)
Y3,

for some constants Ci>0. As H
γ
2 .C( |v|

2

2 +V (x)), we have

eεH
γ
2 ≤G−Cε,

Taking ε small, the proof of Theorem 3.1 is done.

4. Regularization property of SB
In this section we will denote L∗=L∗

G−1/2 =S−T be the dual operator of L on

L2(G−
1
2 ). In other words, L∗ is defined by the identity∫

(Lf)gG−1 =

∫
(L∗g)fG−1.

for any smooth function f,g. We also denote B∗=L∗−KχR. The aim of this section
is to establish the following regularization property. The proof closely follows the proof
of similar results in [7, 13,22].

Theorem 4.1. For any 0≤ δ<1, denote m1 =G−
1
2 (1+δ), there exists η>0 such that

‖SB(t)f‖L2(m1) .
1

t
3d+2

4

‖f‖L1(m1), ∀t∈ (0,η].
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Similarly, for any 0≤ δ<1, there exists η>0 such that

‖SB∗(t)f‖L2(m1) .
1

t
3d+2

4

‖f‖L1(m1), ∀t∈ (0,η].

As a consequence, there exists η>0 such that

‖SB(t)f‖
L∞(G−

1
2 )

.
1

t
3d+2

4

‖f‖
L2(G−

1
2 )
, ∀t∈ (0,η].

We start with some elementary lemmas.

Lemma 4.1. For any 0≤ δ<1, we have∫
(f(Lg)+g(Lf))G−(1+δ)

=−2

∫
∇v(fG−1) ·∇v(gG−1)G1−δ+

∫
(δd−δ(1−δ)|v|2)fgG−(1+δ) (4.1)

in particular, this implies∫
f(Lf)G−(1+δ)

=−
∫
|∇v(fG−1)|2G1−δ+

δd

2

∫
|f |2G−(1+δ)− δ(1−δ)

2

∫
|v|2|f |2G−(1+δ), (4.2)

similarly, for any 0≤ δ<1, we have∫
f(Lf)G−(1+δ)

=−
∫
|∇vf |2G−(1+δ) +

δ(1+δ)

2

∫
|v|2|f |2G−(1+δ) +

(2+δ)d

2

∫
|f |2G−(1+δ). (4.3)

All the equalities remain true when L is replaced by L∗.

Proof. Recalling T (G−(1+δ)) = 0, we have∫
f(T g)G−(1+δ) =

∫
T (fG−(1+δ))g=−

∫
(T f)gG−(1+δ),

which implies ∫
f(T g)G−(1+δ) +

∫
(T f)gG−(1+δ) = 0.

for the term with operator S we have∫
f(Sg)G−(1+δ) =−

∫
∇v(fG−(1+δ)) ·(∇vg+vg)

=−
∫

(∇vf+(1+δ)vf) ·(∇vg+vg)G−(1+δ)

=−
∫
∇v(fG−1) ·∇v(gG−1)G1−δ−

∫
(δ|v|2fg+δfv ·∇vg)G−(1+δ),

using integration by parts∫
δfv ·∇vgG−(1+δ) =−

∫
δg∇v ·(vfG−(1+δ))
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=−
∫
δgv ·∇vfG−(1+δ)−

∫
(δd+δ(1+δ)|v|2)fgG−(1+δ),

so we deduce∫
(f(Sg)+g(Sf))G−(1+δ)

=−2

∫
∇v(fG−1) ·∇v(gG−1)G1−δ+

∫
(δd−δ(1−δ)|v|2)fgG−(1+δ),

so (4.1) and (4.2) are thus proved by combining the two terms above. Finally, we
compute∫

fSfG−(1+δ)

=−
∫

(∇vf+(1+δ)vf) ·(∇vf+vf)G−(1+δ)

=−
∫
|∇vf |2G−(1+δ)−

∫
(1+δ)|v|2|f |2G−(1+δ)−

∫
(2+δ)fv ·∇vfG−(1+δ)

=−
∫
|∇vf |2G−(1+δ)−

∫
(1+δ)|v|2|f |2G−(1+δ) +

2+δ

2

∫
∇v ·(vG−(1+δ))|f |2

=−
∫
|∇vf |2G−(1+δ) +

δ(1+δ)

2

∫
|v|2|f |2G−(1+δ) +

(2+δ)d

2

∫
|f |2G−(1+δ),

so (4.3) follows by putting together the above equality with∫
fT fG−(1+δ) = 0.

Since the term associated with T is 0, by L=S+T ,L∗=S−T , we know the same
equalities will remain true when L is replaced by L∗.

Lemma 4.2. When ft=SB(t)f0, denote m1 =G−
1
2 (1+δ), define an energy functional

F(t,ft) :=A‖ft‖2L2(m1) +at‖∇vft‖2L2(m1)

+2ct2(∇vft,∇xft)L2(m1) +bt3‖∇xft‖2L2(m1), (4.4)

when ft=SB∗(t)f0, define another energy functional

F∗(t,ft) :=A‖ft‖2L2(m1) +at‖∇vft‖2L2(m1)

−2ct2(∇vft,∇xft)L2(m1) +bt3‖∇xft‖2L2(m1), (4.5)

with some constant a,b,c>0,c≤
√
ab and A large enough. Then for both cases, there

exists η>0 such that

d

dt
F (t,ft)≤−L

(
‖∇vft‖2L2(m1) + t2‖∇xft‖2L2(m1)

)
+C‖ft‖2L2(m1),

for all t∈ (0,η], for some L>0, C >0 and F =F or F∗.

Proof. We only prove the case F =F , the proof for F =F∗ is the same. We split
the computation into several parts and then put them together. First using (4.2) and
(4.3) we have

d

dt
‖ft‖2L2(m1) = (ft,(L−KχR)ft)L2(m1)
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=
1−δ

2
(ft,Lft)L2(m1) +

1+δ

2
(ft,Lft)L2(m1)−(ft,KχRft)L2(m1)

≤ 1−δ
2
‖∇vft‖2L2(m1)−

1+δ

2
‖ftG−1‖2L2(m1G1/2) +C‖ft‖2L2(m1)

≤ 1−δ
2
‖∇vft‖2L2(m1) +C‖ft‖2L2(m1).

By

∂xiLf =L∂xif+
d∑
j=1

∂2
xixjV ∂vjf, (4.6)

and (4.2) we have

d

dt
‖∂xift‖2L2(m1)

= (∂xift,∂xi(L−KχR)ft)L2(m1)

≤‖∇v(∂xiftG−1)‖2L2(m1G) +
δd

2
‖∂xift‖2L2(m1)−

δ(1−δ)
2
‖∂xift‖2L2(m1|v|)

+(∂xift,
d∑
j=1

∂2
xixjV ∂vjft)L2(m1)−(∂xift,K∂xiχRft)L2(m1).

Using Cauchy-Schwarz inequality and summing up over i, we get

d

dt
‖∇xft‖2L2(m1)≤

d∑
i=1

‖∇v(∂xiftG−1)‖2L2(m1G)−
δ(1−δ)

2
‖∇xft‖2L2(m1|v|)

+C‖∇vft‖2L2(m1) +C‖∇xft‖2L2(m1) +C‖ft‖2L2(m1)

for some C>0. Similarly using

∂viLf =L∂vif−∂xif+∂vif, (4.7)

and (4.2), we have

d

dt
‖∂vift‖2L2(m1)

= (∂vift,∂vi(L−KχR)ft)L2(m1)

≤‖∇v(∂viftG−1)‖2L2(m1G) +
δd

2
‖∂vift‖2L2(m1)−

δ(1−δ)
2
‖∂vift‖2L2(m1|v|)

−(∂xift,∂vift)L2(m1) +‖∂vift‖2L2(m1)−(∂vift,K∂viχRft)L2(m1).

Using Cauchy-Schwarz inequality and summing up over i we get

d

dt
‖∇vft‖2L2(m1)≤

d∑
i=1

‖∇v(∂viftG−1)‖2L2(m1G)−
δ(1−δ)

2
‖∇vft‖2L2(m1|v|)

+C‖∇vft‖2L2(m1) +C(|∇xft|,|∇vft|)L2(m1) +C‖ft‖2L2(m1).

For the crossing term, we also split it into two parts

d

dt
2(∂xift,∂vift)L2(m1) = (∂xift,∂viLft)L2(m1) +(∂vift,∂xiLft)L2(m1)
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−(∂xift,∂vi(KχRft))L2(m1)−(∂vift,∂xi(KχRft))L2(m1)

:=W1 +W2.

Using (4.6) and (4.7) we have

W1 = (∂xift,L(∂vift))L2(m1) +(∂vift,L(∂xift))L2(m1)

+(∂vift,
d∑
j=1

∂2
xixjV ∂vjft)L2(m1)−‖∂xift‖2L2(m1) +(∂xift,∂vift)L2(m1).

By (4.1), we deduce

W1≤ (∇v(∂xiftG−1),∇v(∂viftG−1))L2(m1G) +δd(∂vift,∂xift)L2(m1)

−δ(1−δ)(∂vift,∂xift)L2(m1|v|) +(∂vift,
d∑
j=1

∂2
xixjV ∂vjft)L2(m1)

−‖∂xift‖2L2(m1) +(∂xift,∂vift)L2(m1).

For the W2 term we have

W2 =−2(∂xift,KχR∂vift)L2(m1)−(∂xift,K∂viχRft)L2(m1)−(∂vift,K∂xiχRft)L2(m1)

≤C(|∂xift|,|ft|)L2(m1) +C(|ft|,|∂vift|)L2(m1) +C(|∂xift|,|∂vift|)L2(m1).

Combining the two parts, using Cauchy-Schwarz inequality, and summing up over i we
get

d

dt
2(∇vft,∇xft)L2(m1)

≤2

d∑
i=1

(∇v(∂xiftG−1),∇v(∂viftG−1))L2(m1G)−δ(1−δ)(∇vft,∇xft)L2(m1|v|)

−1

2
‖∇xft‖2L2(m1) +C‖∇vft‖2L2(m1) +C‖ft‖2L2(m1).

From the very definition of F in (4.4), we easily compute

d

dt
F(t,ft) =A

d

dt
‖ft‖2L2(m1) +at

d

dt
‖∇vft‖2L2(m1) +2ct2

d

dt
(∇vft,∇xft)L2(m1)

+bt3
d

dt
‖∇xft‖2L2(m1) +a‖∇vft‖2L2(m1) +4ct(∇vft,∇xft)L2(m1)

+3bt2‖∇xft‖2L2(m1).

Gathering all the inequalities above together, we have

d

dt
F(t,ft)

≤
(

2a− A(1−δ)
2

+Cat+2Ct2c+Cbt3
)
‖∇vft‖2L2(m1)

+(3bt2− c
2
t2 +Cbt3)‖∇xft‖2L2(m1) +(4ct+Cat)(|∇vft|,|∇xft|)L2(m1)

−
d∑
i=1

[at‖∇v(∂viftG−1)‖2L2(m1G) +bt3‖∇v(∂xiftG−1)‖2L2(m1G)
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+2ct2(∇v(∂xiftG−1),∇v(∂viftG−1))L2(m1G)]−
δ(1−δ)

2
[at‖∇vft‖2L2(m1|v|)

+bt3‖∇xft‖2L2(m1|v|) +2ct2(∇vft,∇xft)L2(m1|v|)]+C‖ft‖2L2(m1),

for some C>0. We observe that

|2ct2(∇vft,∇xft)L2(m1|v|)|≤at‖∇vft‖
2
L2(m1|v|) +bt3‖∇xft‖2L2(m1|v|),

and

|2ct2(∇v(∂xiftG−1),∇v(∂viftG−1))L2(m1G)|
≤at‖∇v(∂viftG−1)‖2L2(m1G) +bt3‖∇v(∂xiftG−1)‖2L2(m1G).

by our choice on a,b,c. So by taking A large, 12b≤ c, and 0<η small (t∈ (0,η]), as a
consequence

d

dt
F(t,ft)≤−L(‖∇vft‖2L2(m1) + t2‖∇xft‖2L2(m1))+C‖ft‖2L2(m1),

for some L,C >0, and that ends the proof.

Remark 4.1. For the case F =F∗, the only difference in the proof is to change (4.6)
and (4.7) into

∂xiL∗f =L∗∂xif−
d∑
j=1

∂2
xixjV ∂vjf,

and

∂viL∗f =L∗∂vif+∂xif+∂vif.

The following proofs of this section are true for both cases.

Lemma 4.3. Denote m1 =G−
1
2 (1+δ), then for any 0<δ<1 we have∫

|∇x,v(fm1)|2≤
∫
|∇x,vf |2m2

1 +C

∫
f2m2

1,

Proof. We have∫
|∇(fm1)|2 =

∫
|∇fm1 +∇m1f |2

=

∫
|∇f |2m2

1 +

∫
|∇m1|2f2 +

∫
2fm1∇f ·∇m1

=

∫
|∇f |2m2

1 +

∫ (
|∇m1|2−

1

2
∆(m2

1)

)
f2,

=

∫
|∇f |2m2

1−
∫

∆m1

m1
f2m2

1,

since

∆m1

m1
=

(1+δ)2

4
(|v|2 + |∇xV (x)|2)+

1+δ

2
(∆xV (x)+d)≥−C,
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for some C>0, we are done.

Lemma 4.4. Nash’s inequality: for any f ∈L1(Rd)∩H1(Rd), there exists a constant
Cd such that:

‖f‖1+ 2
d

L2 ≤Cd‖f‖
2
d

L1‖∇vf‖L2 ,

For the proof of Nash’s inequality, we refer to [12, Section 8.13], for instance.

Lemma 4.5. Denote m1 =G−
1
2 (1+δ), then for any 0<δ<1 we have

d

dt
‖f‖L1(m1)≤d‖f‖L1(m1) (4.8)

which implies

‖ft‖L1(m1)≤edt‖f0‖L1(m1)

In particular we have

‖ft‖L1(m1)≤C‖f0‖L1(m1), ∀t∈ (0,η], (4.9)

for some constant C>0.

Proof. By Lemma 5.1 in the next section, letting p= 1, we have

d

dt

∫
|f |m1 =

∫
|f |(∆vm1−v ·∇vm1

+v ·∇xm1−∇xV (x) ·∇vm1−KχRm1)

≤
∫
|f |
(

1+δ

2
d− (1+δ)(1−δ)

4
|v|2
)
m1≤d

∫
|f |m1.

so (4.8) is proved. As Tm1 = 0, the result is still true when F =F∗.

Now we come to the proof of Theorem 4.1.

Proof. (Proof of Theorem 4.1.) We define

G(t,ft) =B‖ft‖2L1(m1) + tZF(t,ft),

with B,Z >0 to be fixed and F is defined in Lemma 4.2. We choose t∈ (0,η], η small
such that (a+b+c)ZηZ+1≤ 1

2Lη
Z (a,b,c,L are also defined Lemma 4.2), by (4.8) and

Lemma 4.2 we have

d

dt
G(t,ft)≤dB‖ft‖2L1(m1) +ZtZ−1F(t,ft)

−LtZ(‖∇vft‖2L2(m1) + t2‖∇xft‖2L2(m1))+CtZ‖ft‖2L2(m1)

≤dB‖ft‖2L1(m1) +CtZ−1‖ft‖2L2(m1)

−L
2
tZ(‖∇vft‖2L2(m1) + t2‖∇xft‖2L2(m1)).

Nash’s inequality and Lemma 4.2 implies

‖ftm1‖L2 ≤C‖ftm1‖
2
d+2

L1 ‖∇x,v(ftm1)‖
d
d+2

L2
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≤C‖ftm1‖
2
d+2

L1 (‖∇x,vftm1‖L2 +C‖ftm1‖L2)
d
d+2 .

Using Young’s inequality, we have

‖ft‖2L2(m1)≤Cεt
− 3

2d‖f‖2L1(m1) +εt3(‖∇x,vft‖2L2(m1) +C‖ft‖2L2(m1)).

Taking ε small such that Cεη3≤ 1
2 , we deduce

‖ft‖2L2(m1)≤2Cεt
− 3

2d‖f‖2L1(m1) +2εt3‖∇x,vft‖2L2(m1).

Taking ε small we have

d

dt
G(t,ft)≤dB‖ft‖2L1(m1) +C1t

Z−1− 3
2d‖ft‖2L1(m1),

for some C1>0. Choosing Z= 1+ 3
2d, and using (4.9), we deduce

∀t∈ (0,η], G(t,ft)≤G(0,f0)+C2‖f0‖2L1(m1)≤C3‖f0‖2L1(m1),

which ends the proof.

5. SB decay in larger spaces
The aim of this section is to prove the following decay estimate for the semigroup

SB which will be useful in the last section where we will prove Theorem 1.1 in full
generality.

Theorem 5.1. Let H= 1+ |x|2 +2v ·x+3|v|2, for any θ∈ (0,1) and for any l>0, we
have

‖SB(t)‖L1(Hl)→L1(Hlθ) . (1+ t)−a,

where

a=
l(1−θ)
1− γ

2

.

We start with an elementary identity.

Lemma 5.1. For the kinetic Fokker Planck operator L , let m be a weight function,
for any p∈ [1,∞] we have∫

|f |p−1 signf(Lf)mp=−(p−1)

∫
|∇v(mf)|2(m|f |)p−2 +

∫
|f |pmpφ,

with

φ=
2

p′
|∇vm|2

m2
+

(
2

p
−1

)
∆vm

m
+
d

p′
−v · ∇vm

m
− Tm

m
.

In particular when p= 1, we have

φ=
∆vm

m
−v · ∇vm

m
− Tm

m
.
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Proof. We split the integral as∫
signf(Lf)|f |p−1mp=

∫
signf |f |p−1(Sf)mp+

∫
signf |f |p−1(T f)mp.

First compute the contribution of the term with operator T∫
signf |f |p−1(T f)mp=

1

p

∫
T (|f |p)mp=−

∫
|f |pmp Tm

m
.

Concerning the term with operator S, we split it also into two parts∫
(Sf)signf |f |p−1mp=

∫
signf |f |p−1mp(∆vf+divv(vf)) :=C1 +C2.

We first compute the C2 term, to get

C2 =

∫
signf |f |p−1mp(df+v ·∇vf)

=

∫
d|f |pmp− 1

p

∫
|f |pdivv(vm

p)

=

∫
|f |p

[(
1− 1

p

)
d−v · ∇vm

m

]
mp.

Then turning to the C1 term, we have

C1 =

∫
signf |f |p−1mp∆vf =−

∫
∇v(signf |f |p−1mp) ·∇vf

=

∫
−(p−1)|∇vf |2|f |p−2mp− 1

p

∫
∇v|f |p ·∇v(mp).

Using ∇v(mf) =m∇vf+f∇vm, we deduce

C1 =−(p−1)

∫
|∇v(mf)|2|f |p−2mp−2 +(p−1)

∫
|∇vm|2|f |pmp−2

+
2(p−1)

p2

∫
∇v(|f |p) ·∇v(mp)− 1

p

∫
∇v(|f |p) ·∇v(mp)

=−(p−1)

∫
|∇v(mf)|2|f |p−2mp+(p−1)

∫
|∇vm|2|f |pmp−2

−p−2

p2

∫
|f |p∆vm

p.

Using that ∆vm
p=p∆vm mp−1 +p(p−1)|∇vm|2mp−2, we obtain

C1 =−(p−1)

∫
|∇v(mf)|2|f |p−2mp−2 +

∫
|f |pmp

[(
2

p
−1

)
∆vm

m
+2

(
1− 1

p

)
|∇vm|2

m2

]
.

We conclude by combining the above equalities.

Proof. (Proof of Theorem 5.1.) From Lemma 5.1, we have∫
signf(Bf)|f |p−1mp=

∫
signf((L−KχR)f)|f |p−1mp
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=−(p−1)

∫
|∇v(mf)|2(m|f |)p−2 +

∫
|f |pmpφ, (5.1)

with

φ=
2

p′
|∇vm|2

m2
+(

2

p
−1)

∆vm

m
+
d

p′
−v · ∇vm

m
− Tm

m
−KχR.

When p= 1, we have

φ=
∆vm

m
−v · ∇vm

m
− Tm

m
−KχR.

Let m=Hk. We have

∇vm
m

=k
∇vH
H

,
∇xm
m

=k
∇xH
H

,

and

∆vm

m
=
k∆vH

H
+
k(k−1)|∇vH|2

H2
.

Summing up, we have for φ

φH

k
= ∆vH+(k−1)

|∇vH|2

H
−v ·∇vH+v ·∇xH−∇xV (x) ·∇vH−KχR,

From the very definition of H, we have

∇vH= 6v+2x, ∇xH= 2v+2x, ∆vH= 6.

We then compute

∆vH+(k−1)
|∇vH|2

H
+v ·∇xH−v ·∇vH−∇xV (x) ·∇vH

= 6+(k−1)
|6v+2x|2

H
+2|v|2 +2x ·v−6|v|2

−2x ·v−6v ·∇xV (x)−2x ·∇xV (x)

≤ (2|v|2 +C|v|−6|v|2)−2x ·∇xV (x)+C

≤−C1|v|2−C2x ·∇xV (x)+C3

≤−C4H
γ
2 +K1χR1 ,

for some Ci>0. Taking K and R large enough, we have φ≤−CH
γ
2−1, using this

inequality in Equation (5.1), we deduce

d

dt
Y4(t) :=

d

dt

∫
|fB(t)|Hk =

∫
sign(fB(t))(BfB(t))Hk

≤−C
∫
|fB(t)|Hk−1+ γ

2 , (5.2)

for any k>1. In particular for any l≥1, we can find K and R large enough such that

d

dt

∫
|fB(t)|H l≤0,
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which readily implies ∫
|fB(t)|H l≤

∫
|f0|H l :=Y5.

Take k≤ l, denoting

α=
l−k

l−k+1− γ
2

∈ (0,1),

the Hölder’s inequality∫
|fB(t)|Hk≤

(∫
|fB(t)|Hk−1+ γ

2

)α(∫
|fB(t)|H l

)1−α

,

implies (∫
|fB(t)|Hk

) 1
α
(∫
|fB(t)|H l

)α−1
α

≤
∫
|fB(t)|Hk−1+ γ

2 ,

From this inequality and (5.2), we get

d

dt
Y4(t)≤−C(Y4(t))

1
αY

α−1
α

5 .

Using Y4(0)≤Y5, after an integration, we deduce

Y4(t)≤Cα
1

(1+ t)
α

1−α
Y5,

which is nothing but the polynomial decay on SB

‖SB(t)‖Lp(Hl)→Lp(Hk) . (1+ t)−a,

with

a=
l−k
1− γ

2

, ∀0<k<l, 1≤ l.

We conclude Theorem 5.1 by writing k= lθ, 0<θ<1.

6. Lp convergence for the KFP model
Before going to the proof of our main theorem, we need two last deduced results.

Lemma 6.1. For any ε>0 small enough, we have

‖ASB(t)‖
L2(G−( 1

2
+ε))→L2(G−( 1

2
+ε))

.e−at
γ

2−γ
, ∀t≥0,

and

‖ASB(t)‖
L1(G−( 1

2
+ε))→L1(G−( 1

2
+ε))

.e−at
γ

2−γ
, ∀t≥0,

for some a>0. Similarly for any 0<b< γ
2−γ and for any ε>0 small enough, we have

‖ASB(t)‖
L1(G−( 1

2
+ε))→L2(G−( 1

2
+ε))

. t−αe−at
b

, ∀t≥0,
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for α= 3d+2
4 and some a>0.

Proof. The first two inequalities are obtained obviously by Lemma 3.1 and the
property A=KχR. For the third inequality we split it into two parts, t∈ (0,η] and

t>η, where η is defined in Theorem 4.1. When t∈ (0,η] , we have e−at
γ

2−γ ≥e−aη
γ

2−γ
,

by Theorem 4.1, we have

‖ASB(t)‖
L1(G−( 1

2
+ε))→L2(G−( 1

2
+ε))

. t−α. t−αe−at
γ

2−γ
, ∀t∈ (0,η],

for some a>0. When t≥η, by Theorem 4.1, we have

‖SB(η)‖
L1(G−( 1

2
+ε))→L2(G−( 1

2
+ε))

.ηα.1,

and by Lemma 3.1

‖SB(t−η)‖
L2(G−( 1

2
+ε))→L2(G−

1
2 )

.e−a(t−η)
γ

2−γ
.e−at

γ
2−γ

,

gathering the two inequalities, we have

‖ASB(t)‖
L1(G−( 1

2
+ε))→L2(G−( 1

2
+ε))

.e−at
γ

2−γ
. t−αe−at

b

, ∀t>η,

for any 0<b< γ
2−γ , the proof is ended by combining the two cases above.

Lemma 6.2. Similarly as Lemma 6.1, for any p∈ (2,∞), we have

‖SB(t)A‖
L2(G−

1
2 )→L2(G−

1
2 )

.e−at
γ

2−γ
, ∀t≥0.

and

‖SB(t)A‖
Lp(G−

1
2 )→Lp(G−

1
2 )

.e−at
γ

2−γ
, ∀t≥0.

for some a>0. And for any 0<b< γ
2−γ we have

‖SB(t)A‖
L2(G−

1
2 )→Lp(G−

1
2 )

. t−βe−at
b

, ∀t≥0.

for some β>0 and some a>0.

The proof of Lemma 6.2 is similar to the proof of Lemma 6.1 and is thus skipped.

Lemma 6.3. Let X,Y be two Banach spaces, S(t) a semigroup such that for all t≥0
and some 0<a, 0<b<1 we have

‖S(t)‖X→X ≤CXe−at
b

, ‖S(t)‖Y→Y ≤CY e−at
b

,

and for some 0<α, we have

‖S(t)‖X→Y ≤CX,Y t−αe−at
b

.

Then we can have that for all integers n>0

‖S(∗n)(t)‖X→X ≤CX,ntn−1e−at
b

,
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similarly

‖S(∗n)(t)‖Y→Y ≤CY,ntn−1e−at
b

,

and

‖S(∗n)(t)‖X→Y ≤CX,Y,ntn−α−1e−at
b

.

In particular for α+1<n, and for any b∗<b

‖S(∗n)(t)‖X→Y ≤CX,Y,ne−at
b∗

.

The proof of Lemma 6.3 is the same as Lemma 2.5 in [14], plus the fact tb≤sb+(t−s)b
for any 0≤s≤ t,0<b<1.

Then we come to the final proof.

Proof. (Proof of Theorem 1.1.) We only prove the case when m=G
p−1
p (1+ε), p∈

[1,2], for the proof of the other cases, one need only replace the use of Lemma 6.1 in
the following proof by Lemma 6.2 and Theorem 4.1. We will prove p= 1 first, this time
we need to prove

‖SL(I−Π)(t)‖L1(G−ε)→L1 .e−at
b

,

for any 0<b< γ
2−γ , where I is the identity operator and Π is a projection operator

defined by

Π(f) =M(f)G.

First, iterating the Duhamel’s formula, we split it into 3 terms

SL(I−Π) = (I−Π){SB+
n−1∑
l=1

(SBA)(∗l) ∗(SB)}+{(I−Π)SL}∗(ASB(t))(∗n),

and we will estimate them separately. By Lemma 3.1, we have

‖SB(t)‖L1(G−ε)→L1 .e−at
γ

2−γ
, (6.1)

the first term is thus estimated. For the second term, still using Lemma 3.1, we get

‖SB(t)A‖L1→L1 .e−at
γ

2−γ
,

by Lemma 6.3, we have

‖(SB(t)A)(∗l)‖L1→L1 . tl−1e−at
γ

2−γ
,

together with (6.1) the second term is estimated. For the last term by Lemma 3.1

‖ASB(t)‖
L1(G−ε)→L1(G−( 1

2
+ε))

.e−at
γ

2−γ
.

By Lemma 6.1 and 6.3, for any 0<b< γ
2−γ , we have

‖(ASB)(∗(n−1))(t)‖
L1(G−( 1

2
+ε))→L2(G−( 1

2
+ε))

. tn−α−2e−at
b

,

finally by Theorem 3.1, we have

‖SL(t)(I−Π)‖
L2(G−( 1

2
+ε))→L2(G−

1
2 )

.e−at
γ

2−γ
.

Taking n>α+2 the third term is estimated, thus the proof of case p= 1 is concluded
by gathering the inequalities above. As the case p= 2 is already proved in Theorem 3.1,
the case p∈ (1,2) follows by interpolation.
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[10] F. Hérau and F. Nier, Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck

equation with a high-degree potential, Arch. Ration. Mech. Anal., 171(2):151–218, 2004. 1.4
[11] O. Kavian and S. Mischler, The Fokker-Planck equation with subcritical confinement force,

arXiv, 2015. 1, 1.5, 3
[12] E. Lieb and M. Loss, Analysis, Second Edition, Amer. Math. Soc., 18, 2004. 4
[13] S. Mischler and C. Mouhot, Exponential stability of slowing decaying solutions to the kinetic-

Fokker-Planck equation, Arch. Ration. Mech. Anal., 221(2):677–723, 2016. 1, 4
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