COMMUN. MATH. SCI. (© 2020 International Press
Vol. 18, No. 1, pp. 189-204

A REMARK ON THE CONTACT WAVE FOR
THE 1-D COMPRESSIBLE NAVIER-STOKES EQUATIONS*

DONGCHENG YANGT

Abstract. We revisit the classical work of Huang-Matsumura-Xin [F.M. Huang, A. Matsumura,
and Z.P. Xin, Arch. Ration. Mech. Anal., 179:55-77, 2006] and Huang-Xin-Yang [F.M. Huang, Z.P.
Xin, and T. Yang, Adv. Math., 219:1246-1297, 2008] for contact wave of the one-dimensional com-
pressible Navier-Stokes equations. By using Huang-Matsumura-Xin-Yang’s approach and a detailed
energy analysis, we prove the large-time asymptotic stability of a contact wave pattern with a better
convergence rate for compressible Navier-Stokes equations under non-zero mass condition on the per-
turbation. This improves previous results of [F.M. Huang, A. Matsumura, and Z.P. Xin, Arch. Ration.
Mech. Anal., 179:55-77, 2006] and [F.M. Huang, Z.P. Xin, and T. Yang, Adv. Math., 219:1246-1297,
2008].
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1. Introduction
We study the one-dimensional compressible Navier-Stokes equations in Lagrangian
coordinates which read

vy — Uy =0, rE€R=(—00,4+00), t>0,

ut"i'pmz:,u(uyi)wv (1.1)
(e 550+ (pu)e = A(55)a (255 )
where v=v(t,x) >0, u=u(t,x), §=0(t,x) >0 and e=e(t,z) >0 denote the specific vol-
ume, the fluid velocity, the absolute temperature and the internal energy, respectively.
The constants >0 and x>0 denote the viscosity and heat conduction coefficients,
respectively. Here we study the perfect fluids so that the pressure p and e are given by
p= % and e= %G—I—const., where R >0 is the gas constant and v >1 is the adiabatic
exponent.
The purpose of this paper is to establish a better time decay rate of the solutions to
the Cauchy problem for Equations (1.1) supplemented with the following initial values
and far field conditions

(v,u,0)(0,2) = (vg,up,0p)(z), xR,

1.2
(v,u,0)(t,x) = (v4,us,0+), when z—toco, >0, (1.2)

in which vy >0, ux =0, 6L>0 are given constants. Here, the two constant states
(vy,usr,01) are connected by the contact discontinuity wave solution to the Riemann
problem of the corresponding 1D compressible Euler system

Ve — Uz =0,

ug +pz =0, (1.3)
2

(e+ 45+ (pu), =0,
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with the Riemann initial data

(v+,u+,9+), IIZ'>0,
0 = 1.4
(vo,u0,00)(x) {(v7u,9), <0 (1.4)

There have been some results on the contact wave for system (1.1) and (1.3). Xin
in [15] first proved the metastability of a weak contact discontinuity for the compress-
ible Euler system with uniform viscosity. This was later generalized by Liu-Xin in [13]
to show the local stability of the contact discontinuities for a class of general system
of viscous conservation laws with artificial viscosity. But these methods do not apply
to the compressible Navier-Stokes system because the viscosity matrix in (1.1) is only
semi-positive definite. Recently, Huang-Matsumura-Xin in [7] used the anti-derivative
method, motivated by the theory of viscous shock waves in [12], to obtain not only the
stability of the viscous contact wave, but also the convergence rate for compressible
Navier-Stokes Equations (1.1) under zero mass condition on the perturbation. Then
Huang-Xin-Yang in [8] removed this zero mass condition on the perturbation. The el-
ementary energy method different from the anti-derivative method used in [7,8] was
proposed by Huang-Li-Matsumura in [4] where they succeeded in obtaining a new esti-
mate on heat equations and applied it to prove the stability of the viscous contact waves
for system (1.1), but the results do not obtain the convergence rate. By the way, there
are also some studies on the composite waves of compressible Navier-Stokes equations,
cf. [4,6,9] and the references therein.

In [7,8] with or without zero mass condition on the perturbation, the authors
obtained that the same convergence rate toward the contact wave is (1 —l—t)_%, where
they left a problem: can we show a faster convergence rate? Later, Huang-Wang-Wang
in [10] improved the convergence rate to (1+¢)~% under zero mass condition on the
perturbation, but the results do not contain non-zero mass case as [8]. In this paper,
we basically follow Huang-Matsumura-Xin-Yang’s approach and use a detailed energy
analysis, improve the convergence rate to (1 —|—t)’% under non-zero mass condition on
the perturbation. This removes the zero mass condition on the perturbation, which is a
crucially restrictive condition in [7,10]. Thus, our results improves the results of [7,8].

The paper is arranged as follows: The next section contains the statement of the
main theorem and some notations. Section 3 is devoted to get a priori estimates for the
compressible Navier-Stokes equations. The proofs of the main theorem will be given in
last section.

2. The main theorem

To state our main results, we first recall the contact wave (v,%,0)(t,x) for the
compressible Navier-Stokes Equations (1.1) defined in [7]. According to [14], one sees
that the Riemann problem (1.3) and (1.4) admits a contact discontinuity solution

(VO (tr)=q (Uil 220 (2.1
(v_yu_,0_), =<0,
on the condition that
0_ 0
p_i=R—=R—=:p,. (2.2)
v_ V4

In the setting of the compressible Navier-Stokes Equations (1.1), the corresponding wave

(v,1,0)(t,r) to the contact discontinuity (V,U,©)(t,r) becomes smooth and behaves as
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a diffusion wave due to the dissipation effect. From [7], the pressure of the profile

0,4,0)(t,x) is almost constant, that is

~P+, (23)

which indicates the leading part of the energy equation (1.1), is

R 0
7_19t+p+ux:’€(f)x- (2-4)

In view of (2.3), (2.4) and (1.1),, we obtain a nonlinear diffusion equation as follows

0. -1
O=a(=)z, a= %RQ

Rp+ > 0. (25)
Applying the same arguments as in [1,2], one sees that (2.5) admits a unique self-
similarity solution ©(¢), £= \/% with the boundary conditions ©(¢,+0c0)=0,. Ad-
ditionally, it turns out that ©(£) is a monotone function, increasing if 64 >6_ and
decreasing if 8 < 6_, and more importantly, there exists some positive constant §, such
that for 6 =10, —6_|, satisfies (see [3])

1 _g
[0,]=0(00)(1+¢t) 2e 2T+, as |z|—= o0,

clz

(141)|Ope| + (1+1)/2|0,|+]|0— 04| <Ce” T#7, as |z|— oo,

(2.6)

where ¢1 >0 is given constant. After © is determined, we can define the contact wave
profile (v,@,0)(t,z) as follows

e YT e 2R " @7

Then (,1,0) satisfies
|(0-V,a~U,0-0)||» =0(x%)(1+1)2, p>1, (2.8)

and

vt—ﬂw—O,

—12 A —

(E+20), 4+ (p)0 = #(% )y + (i) o + R

where

gl

Gim2
=+ p—pr=0(8)(1+t)"te 0+ as |z|— o0,
p—ps =0(0)(1+1) as o (2.10)

04 x
Ro=(Lkk— 1) 2= 4 (p—py)a=0() (1 +1)~Fe#70, as [a| -+ co.

Ry =(Ltn—p)

g e

Motivated by [8], we denote the conserved quantities as

Y=1 oy _ N Y
t,x)= +— = 0+-—
m(t,z) = (v,u,0 5B u?), m(t,x)=(9,a,0+ 5T )",



192 CONTACT WAVES FOR COMPRESSIBLE N-S EQUATIONS

where (-,-,-)! is the transpose of the vector (-,-,-) and let

0 -1 0
A(v,u,0)= —% 0 %
_(=Dpu  (y=Dp (y=lu
Rv R v

be the Jacobi matrix of the flux (—u,p, ﬁpu)t. The first eigenvalue of A(v_,0,0_) is
Al =—, /2= with right eigenvector r; =(— 1,)\1_,7—}_%1p_)t. Similarly, the third eigen-
value and right eigenvector of A(v,0,0,) are \J =, /er and ri = (1,1, = pL ),

respectively By strict hyperbolicity, the vectors r;, my —m_= (v+—v_,0 0, —0_)
and 73 are linearly independent in R3. Hence, there exist unique constants 6; (i=1,2,3)
such that

+oo
/ (m(0,2) —m(0,x))dz=01r] +02(my—m_)+05r]. (2.11)
As in [8], we define
ﬁl(t,m) :m(t,l'+9_2)+9_1017‘1_ +§3037‘;, (212)
where
1 (=2 (1+4)? 1 @@= a+e)?
O1(t,2) = —————e W50 | O3(t,0) = ————e A0 (2.13)
Ar(141) Ar(14t)
satisfying

01t+/\1_01x :01$$7 03t+>\;03x :03£C$7
and [ 0;(t,x)dz=1 for i=1,3 and any ¢ >0. Precisely, the m(t,z) can be written as

~ N _]- t
m(t,x)=(0,4,0+ 7R ) (t,x), (2.14)
with

’ﬁ(t, )_7(t $+§2) §191—§393,
(t, ) ﬂ(t .13+(92)+)\ (9191-|—)\ 9393, (215)

(t,2)=0(t,z+0) + L2 (t, x4+ 02) + Lt py (0101 +0503) — L0,

Furthermore, one has

+oo +oo +oo
/ (m(0,z) —ﬁl(O,m))dx:/ (m(0,) —m(O,x))dx—l—/ (m(0,2) —m(0,z))dx

—o0 _—oo . —o0 )
:02(m+—m,)—|—/ (m(0,2) —m(0,z+05))dz =0.

— 00

(2.16)

Without loss of generality, we can assume that 3 =0 from now on. A direct computation
shows that

@t_’&z_Rlza
Qg+ e = pu( %) + Rog, (2.17)
@+ 25+ (p) e = k(%) + (Bt ) o + R
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Here f{l, Rz, R are given by

Ry =—0101, —0303,,
Ry=TRy —HL(% - %T) + (AL 01010+ M 0305,) + (h—P— (A])?0101 — (A5 )*0363),
Ry=Ro+r(%e— %)+ p(He — 22) 4 p. (0101, +0365,)
(Pl —pu—p+ Ay 0101 —p+ A3 0303).
Then using the same arguments as (2.a31) in [8], for some constant ¢, >0, R; (i=1,2,3)
satisfy

co(z—Ay (141))2 ca(z—AF (1+1))?

N _ _ 1 coa?
Ri:O(5+|91|+|93|)1—+t{6_127+t +e” T +e” T+ }. (2.18)

To present the results in this paper, the following notations are needed. Several
positive generic constants are denoted by C' (generally large) and ¢ (generally small)
without confusion. ¢1, ¢o etc. denote fixed positive constants. For functional space, H*
(k>0) denotes the usual Sobolev space W*2 with the norm |- ||+ and ||-||» denoting
the usual LP-norm. Denote the perturbation around the (@,a,é) by

(©,1,0)(t,x) = (v—b,u— 1,0 — ) (t,z), (2.19)

and then set the anti-derivative variables as

(?,ﬁﬁ)(t,x)z/m (5,&,%%-@-%)@,@@, (2.20)

— 00

which satisfy (‘7,[7,%)(07ioo):0. For 0<T <+o00, we define a function space
X (0,400) as follows

X(0,T)= {(?,ﬁ,w,a,mé) \(V,U,W)eC(0,T: H?),
ve L2(0,T; HY),(a,0) 6L2(O,T;H2)}.

With the above preparation, the main results can be stated as follows.

THEOREM 2.1.  Let (9,0,0)(t,z) be the contact wave defined by (2.15) with 0= 04 —
0_|. Then there exist small constants 6o >0 and €9 >0 such that if 6+ |01|+]05] <dg
and the initial data (vo,ug,6p) satisfies

(V.U W) (0,2)]1+ | 3,2,0) (0.2) | 1 < eo, (2.21)

then the initial value problem (1.1) and (1.2) admits a unique global solution (v,u,0)(t,x)
satisfying

(V,U,W.,5,,0)(t,z) € X(0,+00). (2.22)

Moreover, we have the following time decay rates

I

1@.8) Ol < C(eo+ Vo) 1+1) 1, (2.23)
1.@.8).(6)]| < C(eo+ V/3) (1+1)7*, (2.24)

W=
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and

1(@,7,0) ()| e < C(eo++/30) (144) 5. (2:25)

We give a few remarks on the Theorem 2.1: First, compared to the results of [8],
the convergence rate in (2.24) and (2.25) are faster than the one established in [8]. This
improves the results of [8]. Moreover, we expect that our arguments can be applied to
general systems such as Boltzmann equation [8,11], radiative hydrodynamic system and
other related systems to get a better convergence rate. Second, it should be noted that
l(0,,8).| decay faster than ||(v,u,0)||. Therefore, a faster decay rate for the higher-
order derivatives of (v,, 5) can be obtained provided that the initial data have the same
order regularity by our method.

3. Energy estimates

This section is devoted to the energy analysis for compressible Navier-Stokes Equa-
tions (1.1) and (1.2). We first reformulate Navier-Stokes equations in terms of (2.19)
and (2.20). Then we derive the lower order energy estimates for (V,U,W) in Section
3.2. And Section 3.3 is devoted to the derivative estimates of (V,U,W). The main
energy estimates will be given in Section 3.4.

3.1. Reformulated system. In view of (2.19) and (2.20), one can deduce that
- R~ 1~, ~ ~

Subtracting (2.17) from system (1.1) and integrating the resulting system, we get

‘A/it - ﬁx = _é17

Ut+p713:%um*%ﬁm7R27 (32)
From [8], we introduce another variable related to the temperature

" . —L i —an), (3.3)

It follows from (3.1) and (3.3) that

~ 1,1 ~ ~
f=W,—Y, and Y—%( U2 — i, 0). (3.4)

Using the new variable W, we can rewrite the Equations (3.2) as

‘7; *fjx :*Rla
%Wt +p+Uz = %sz +Q27

where

Q1 ={22V— (p—p+2Ve— 20)}+ (4 — Lup + £Y — Ry,
Q2= (p1 —p)Us+ (& — £)0, + 222U, —,U — £V, + iRy — Rs.
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Since the local existence of the solution to system (3.5) is well known, which is
similar to that in [5], the details are omitted. To prove the global existence of the
solution in Theorem 2.1, it only suffices to close the following a priori estimates:

Eu(D)= sup {|(V.0.W)0)|w + @D O} <25, (37

where €9 >0 is a small constant depending on the initial data and the strength of the
contact discontinuity. By (2.11), it is obvious that |61|+|03] <Cey for some positive
constant C. For brevity, from now on until the end of this paper, we always assume
§=03+4101|+105] and ¢ small enough such that 6 +co < 1.

3.2. Lower estimates. Next, we derive the lower order energy estimates.
LEmMmA 3.1. Suppose that (V. U,W,v,u,0)€ X(0,T) and §>0, E,s(t) >0 small
enough. Then for t €[0,T], we have

E1(t) + Dy (£) < C(8+20)||(B,,0) 0|2+ C(1+) " €1 (£) + CS(1+1) 2. (3.8)

Here £1(t) and D1(t) are given by

E0=Ci&olt)+ [(272-TO)do, DiO=I(VOWLIP (39)

for some large constant Cy >1 so that &1 (t) > Ey(t) with
Priro, Urso R? 2
Eo(t)= —V U+ —7—W*)dx. 3.10
o(®) /(2 "3 +2(7*1)p+ Jda (3.10)

Proof. Multiplying (3.5)1, (3.5)2 and (3.5)3 by p+‘7, 65, and %W, respectively,
adding the resulting equations, we obtain

R? R

P+ o, Ui 2 72 K 112

CAR VI L | U W

(2 LR TP )t+M AR

1 o~y o~ R R .
==, T2+ 00 Q1+ —W Qs — (o) g WWo — Rap V(s (3.11)
2 P+ Up4

Here and in the sequel the notation (---), represents the term in the conservative form
so that it vanishes after integration. By (2.18), (3.10) and the elementary inequalities,
we get

1, ~ R R ~
/\fth2|dm+/|(A—K)xWW$|dm+/\R1p+V|d;z:
2 Up4
<C|or]| oo | U1+ C 1o || e (W ([|[We ||+ Cl| B | [ V]
<CH(1+1) " E(t) + C8||W, |2+ Co(1+1) "3,
where we have used the fact that
el <COA+8)TY, |loallpe <COA+)72, [[Rel|<CH1+8)75.
We will deal with the term involving @)1, since

PP, — (ppot EVa = 28) = O (V2 WY+ [al"),
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It follows from this and (3.7) that

/| OV~ (-

<C|| T~ / (V24 W2 Y2+ o)) de

®>\’B>

7, 25 de
v

<Ceol|(V,U,W),|2+C8(1+1)"1&(t)+CS(1+1)"3.

In view of (2.18), (3.4), (3.10) and the elementary inequalities, we obtain

/|UU|| M+ 2 By Rylda
SC(6+50)||(V,U,W)$H2+C(5(1 1)1 (#) + CO(1+1) "% + Ceo | |-
By the expression of @1 in (3.6), we have from the above two estimates that
[ 160uds <@+ 0) (7,0, |+ Ceol
1

+O6(14+1) " & (1) +C5(141t) 2.

Similar arguments as the above imply

R _ S
/ W Qaldr <C(E-+0) {I(V.0.W) 2+ | (7.7.9). 1)
+
FOS(1+1) " E(t) +Co(1+1) 3.
Hence, collecting the above estimates and then using the smallness of 6 and &, one has

Eor(t) + | (T W) | <C( +e0) {IVal* + | (3,,0)2 11}

1

+O5(14+) " & (t) + O (1+1) 2. (3.12)
Since the dissipation ||V, ||? is not included in (3.12), to complete the lower order
estimates, we rewrite (3.5)2 by using V; = U, — Ry such that

B O v =B, g PRy, (3.13)
v v v v

Multiplying (3.13) by ‘71 and using Vzﬁt: (Vmﬁ)t—i—ﬁﬁ — (‘N/tﬁ)m —Rlﬁz, we can arrive
at

(/%foﬁﬁdm)ﬁrcn‘zwSC’II([},W)mHz+C60||%H2+C5(1+t)’%. (3.14)

In summary, choosing some large constant C; >0 and using the smallness of § and
€0, then the summation of (3.12) x Cy and (3.14) give (3.8). This completes the proof
of Lemma 3.1. d

3.3. Derivative estimates. Now, we turn to consider the estimates of (v,u, 5)

LEMMA 3.2.  Under the assumptions of Lemma 3.1. Then for t€[0,T], we have

Eai(t)+ Dy (t) <C(L+1) " Dy () + CO(1+1) "2 + Ceg | tiga|>- (3.15)
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Here E5(t) and Dy(t) are given by

E2(t) = CoEa(t) + / (L2 —Twdr, Da(t)= 177,00l (3.16)

for some large constant Co>1 so that E2(t) 252(15) with

=~ v, 1 R 0
P(=)+ -2+ ——0D(= 1
£ ()= /(Re (3457 + 5 08(5) da. (317)
Proof. Since p—p==2% — fv we have from (1.1) and (2.17) that
Uy — Uy = —Ria,
ut"’(&_ga)mz(%ux_%ax)x_é2x; (3.18)

where
Uiy, .
Qs = HuQ-l—uut—&-pm (“T)I—Rgz. (3.19)

Similar to [8], multiplying (3.18)1, (3.18)2 and (3.18)3 by 2 2%, a, and ¢ 9> respectively,
then adding the resulting equations together, we can arrive at

v, 1, R ., 0 e K
(RG(I)(@) S+ —10®(é))t+vuz+v69z
v o R . _ 0 [T TR 1 1 N
0 N N m}ng 00, kO, KO 0
+§(p7p)ur 500 Oz 972(77 —) §Q3+()£7 (3.20)
where
O(s)=s—Ins—1. (3.21)

It is easy to check that ®'(1)=0 and ®(s) is strictly convex around s=1. Thus, there
exists ¢3 > 1 such that

G <B(2) <yt o5 0P < B(=) < csb?. (3.22)
v

5 D

For any function g(z)€ H'(R)C L>®(R), the following Sobolev imbedding inequality
holds

lg(@)l| L <Cllg()]Z llg= ()7 (3.23)
This together with
1611 < 1We >+ CIT |1 T ||+ CO(1+1) 2 [T |7 (3.24)

due to (3.4), one can deduce from (3.22) that

ol

v ‘I’(gﬂdﬁ”ﬁcﬂlﬂflm( B)+Co(1+1)7%.
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From (2.18), (3.23) and (3.24), we find that
Boopy o~ s~ a1 1
[(= — =)y, + Rogt— RO(— — =) Ry |dx
v v v v
<C8|[U |2+ CF(L+1) " Dy () + CF(1+1) 2.

(3.1), (3.4), (3.24) and the Sobolev imbedding inequality, we get

fi?)'gw A 5935 K0, KO,
/‘* (p—p)ia+ 3 99:1;-5-972(7_ p )|d$
1+)7%.

<OS(1+1) 71Dy (8) + O (5 +e0) |0, +Co(1

On the other hand, one finds by (3.19) and the elementary inequalities that
0 _ _ _ _
/|7Q3}dxgC’6(1+t)*1D1(t)+C’(5+50)Hu£||2+O§(1+t)*%.

Hence, it holds by those above estimates that
Eay(t) +¢l|(@,0),|* < CF(1+1) 1Dy (1) + CF(1+1) 3.
|0;||%. For this, multiplying (3.18)2 by v, yields

(3.25)

As before, we need to estimate |

N __ RO p_,
() -t -u - (-2
N Tl [ e
=\ < Uz )zVUx — (< )aUz Vg Rr fc*TRzm T 3.26
(@Uu‘),v, (U)uv + Ry, 0 7 Riaa® ( )

where we have used the fact that

I

UV =

(%

Mooy (Hy 2
(2,{} I)t (2,0) tUy += R1$zvz

[~ i~
~Vtz Uz + gRlzwvw =

Integrating (3.26) with respect to x, then we estimate the resulting equation term by
term. First of all, one has from the Sobolev imbedding inequality that

[T R - - 1~
[ Bdn <Cloula~ 15l < C30-+1) ol

Using (3.18); and the integration by parts, we can claim that

/ﬂﬁwdm——/uvldaj—i—/u dx — /Rlzuida:

ga/ﬂﬁzdx—f—/u da + Cé|[u,||* + Co(1+t)~

5

2 .

By using the elementary inequalities, (3.24) and £ > ¢, we have

—/(R—H—Bv Vpda = / Vidx —/ 0. vxd:c—i—/( )2 00 dx — /(E)mgizdx

v
>c|[v,* = Cll0a* = C3(1+1) "' Du(t) - :

Co(1+1)%.
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On the other hand, we get
JIE ), < O+ )| (20 2 +CT1+)Da(0)+ ool

where we have used the fact that

/ [0 |dar < Ol | o 1T | < Cial| [T | ¥ [ > < Co (1Tl + [ |).
The last three terms in (3.26) are bounded by

JIE) e+ [ Ratuldot |15 Russtildo <081 @007+ 0501 +0) .
Substituting the above estimates into (3.26), we can conclude that
i (202 =i )da -+ |5, |
§C||(u,6’)x||2+C’5(1+t)’1D1(t)+C’5(1+t)’% +Ceo ||z |*. (3.27)

In summary, choosing some large constant Cy > 0, then the summation of (3.25) x Cs
and (3.27) gives (3.15). This completes the proof of Lemma 3.2. 0

Next, we will move to the estimates of ('ﬁx,ﬂm,gx). We design a suitable linear
combination of the derivative estimates of (3.18), (3.18)5 and (3.18)3 and consider the
most delicate calculations for each term.

LEMMA 3.3.  Under the assumptions of Lemma 3.1, for t €[0,T)], one has

Est(t)+ )| (1,0) pa||> SCS(1+1) 2Dy (£) + CO(1+1t) 2 Do (1)

+CO{E () +E(1) Do (t) + CH(1+1) 2. (3.28)
Here E3(t) is defined by
L Bpaes] i) [
Eg(t)—2/@ Vg dx—|—2/|ux\ dm—|—2 5 10| 2dx. (3.29)

Proof.  Differentiating (3.18); with respect to x, then multiplying the resulting
equation by £%, yields

p p j . P~ A
(%vﬂw)t—(Zv)tUQ ﬁvgcum:ffv:chm. (3.30)
Integrating (3.30) with respect to z, then direct computations show that

1d

Ly A /%%ﬂmdxg05(1+t)*1||'17x||2+C5(1+t)*%. (3.31)

In what follows we concentrate on the equation (3.18)9. Multiplying (3.18)2 by
—Ug, and integrating with respect to x over R gives

_ p
2dt/| |a¢—|—/vu x/ U, x—i—/(v

VU U d

@>\’E>
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/(E—E)H UpdT — /(]j) Humdm—i-/(;) Uumdx—i-/ LA
o R (GNP R T (3.52)

Equation (3.23) and the Cauchy inequality imply

|/ vmumda:|+|/ 9 o U A |

<C|[v] e [[Va || |tae |+ Cl0] oo II%II\Iumll
<Celltigy ||® +Ce{E2(t) + E3(2) } D (). (3.33)

We use an integration by parts about x to get
R, ~_ R R, ~
/(;)xaumdﬁﬂz—/U*U;ﬂumdx—#/(u—vxﬁ)xuzdx.

Similar arguments as (3.33) imply
R_ & ~ 2
| ﬁvmt‘)umdﬂ < e|tgall? + Ce{E(t) +E5(t) } Da(2)
By the Sobolev imbedding inequality and (3.24), we obtain
R, ~ _ Lo .o v
|/(ﬁvw9)wu$da§|SC/{|vw9Iuw\—|—\vmeum|+|vggvgg9u1|}daz
<Clloall o 6]l 1[e |+ C 0w . ][ |

+C 21| oo 1011 || + C' 90201 o< |31 |
<CH(1+1) 72Dy (1) +Co(141) "2 Dy(t) +C3(1+1) 3.

It follows from the above three estimates that

|/( oFiled| < Ce a2+ Ce {Ex(t) + €5(8) ) Da(t)
5

FC5(14+1) 3Dy (1) + CO(1+1) "2 Dy(t) + Co(1+1) 3. (3.34)
Similar arguments as (3.34) imply
[ (21| < Cef |+ Co{Ea(t) + Ea(6)} alt)
FO5(141)" 3Dy (1) + CS(1+1) 2Dy (t) + C3(1+1)73. (3.35)
On the other hand, one can deduce that
[ )] <l P+ Colfoal o [+ el P
<el[tigs|? +CO(141) " D2 (t) + Co&3() Da(t) + Ceo| e ||, (3.36)

and
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<OS(144)"2D1 () + CS(1+1) 2 Dy(t) + CS(1+1) "2 + C|tipa || (3.37)

Hence, substituting (3.33)-(3.37) into (3.32) and taking e >0 small enough, we get the
desired estimate

gCé(H—t)‘fDl()+C(5(1+t)‘5D2 )+ C{E(t) +Es(t }Dg(t)+05(1+t)_%. (3.38)

We still deal with Equation (3.18)3. Differentiating (3.18)3 with respect to = yields
that

Bt s+ (p =Pt = (0 + [

K

v)ém]“ + Q3. (3.39)

Multiplying (3.39) by %51 and integrating with respect to x over R yields that

Ld [ R 1, R 1.+, R~ _ o 1s
KR

il slode = [ {00 415~ )il Qo } S
+/[(p—p)ux]z59mdw—/{(vez)mﬂ(v 6)975]M+Q3I}éemd : (3.40)

We will estimate each term for (3.40). First of all, we use the Sobolev imbedding
inequality and Holder inequality to obtain

| [ (o ulela| 1 [ e 38| < 1ol 1+l 1
<C5(1+1) "2 Dy(t). (3.41)

Using the integration by parts, the elementary inequalities and (3.24), one has

|/ (p— puxw dx|<su< 02)all? + Cell(p— puus 2

<Ce||fpa | +C- 5(1+t)_5D1( )+ C8(141) "2 Do(t)

+C. {52 +<€3 }DQ +C 5(1+t)7 (342)
where we have used the fact that
1~ ~ R ~ ~ _ o~
II(EGI)Q:II2 SOz |+ Cll0z 1700 10211 < Claa||* + C (1 +1) 1|62, (3.43)

We use an integration by parts about = to get

K~ 1~ 1 K, = 1~

—0, mfﬂmdx:—/ 92 dx —/ O ( (%) 9 dx — / 202(50z)zdz. 3.44
[ Gt 5 (5)aba(G0)ade. (344)
d

In view of the Sobolev imbedding inequality and (3.43), one obtains

]_ _ ~ o~
|/ 25 ):Bcda] < OB+ 02 +C80 (3.45)
and

Ky 5 1z 2 a2
[ 5128502l < Col| GO P+ Col (B8 |

[
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<Ce||bya|> 4+ Co6(141) " Dy (t) + CoE5(t)Da(t) + Ceco|0ua |- (3.46)

By the estimates from (3.44) to (3.46), we can arrive at
~ 1~ ~ -
/(gox)xxgexdx < _0”99:;8“2 +C6(1 +t)71,D2(t) +C£3(t)D2(t)- (3'47)

Similarly, it holds that

/<; 1
- m Hd -—=) d
i R [CE A RETAR Y

<C’5||9m||2+C 6(1+t)*5D1 )+ C6(1+ )’%Dg(t). (3.48)

Applying the integration by parts, (3.19) and (3.43) yields

1
+C.E(t)Da(t )+055(1+t)*% + Ceol|tiae | (3.49)
Substituting (3.41)-(3.42) and (3.47)-(3.49) into (3.40) and taking € >0 small enough,
one can show that
ld
2 dt
+C§(1+t)_§D2 (t)+C{E(t) + E(1) } Do () + CO(1+1) "% + Ceo|tns > (3.50)

I 1|0 |*da +/—6’ Upadz+ |0z ||> < C(1+1) 2Dy (1)

_ In summary, adding (3.31), (3.38) and (3.50) together, then using the smallness of
0 and gq, we get (3.28). Now the proof is completed. d

3.4. Main estimates. Finally, we give the main energy estimates as follows.

LEMMA 3.4. Under the assumptions of Lemma 3.1, there exists some large constant
C3>1 and for any t€[0,T] such that

E.(t)+cD(t) <C36(1+1) " E(t)+Csb(1+1)" 2. (3.51)

Here E(t) and D(t) are given by
E)=EL()+E(t)+E5(t), D(t)=D1(t)+Da(t) +||(@,0) e || >- (3.52)
Proof. The proof of Lemma 3.4 is a direct consequence of Lemmas 3.1-3.3. 0

4. Stability and convergence rate
In this section, we prove our main result Theorem 2.1. Multiplying (3.51) by (1+
)~ with C36 < 1/2 and integrating the resulting equation with respect to ¢ yields

E() <C(E0)+8)(1 )%, /D Jds < C(E(0) +8)(1+1)%. (4.1)

In view of (3.9), (3.10) and (3.52), we can see that there exists ¢4 >0 such that

E(t) | (V.U W) (4.2)
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It follows from (4.1) and (4.2) that
1(V,U,W)[]> < C(E(0)+8)(1+1)*. (4.3)

Combining (3.15) and (3.28) yields

3

Ea(t)+cDs(t) <OS(1+8)"'Dy (1) +C3(1+1) "2, (4.4)
where we have used the fact that () +E5(t) < Cep and
E4(t) =Ex(8)+E5(t),  D3(t)=Da()+ || (@,0)ue (4.5)
Multiplying (4.4) by (1+¢) and using
E(t) SCI(E,,0) 3 < OV, T, W) | +11(3,,0)0 |} + CO(148) 2
<CD(t)+Co(1+1)"3, (4.6)

[N

then we have from (4.4) and (4.6) that

[(1+6)E4(1)] +c(1+1)D3(t) <CDy(t) + CEL(t) + CE(1+1) "2
<CD(t)+C5(1+t)" 3. (4.7)

Integrating (4.7) with respect to t and using (4.1) yields

N\»—A
—~
~
oo
~~

(1+t)€4(t)—i—c/ot(l—i—s)Dg(s)ds§0(5(0)+6)(1+t)
It follows from (4.8) that
Ea(t) <C(E(0)+0)(1+1) 2. (4.9)
Furthermore, £4(t) has the following lower bound
E4(t) > os]|(5,0,0) 3 > | (V. T, W) | + 5| (0, 0)2|* — e56(1+1) 2, (4.10)
for constant ¢; >0. We have from (4.9), (4.10) and (4.3) that
(V.0 W)l <CI(V,TW)|Z((V,0, W), |2 <CEO)+8)2.  (4.11)
Similarly, from (3.3) and (4.11), one also can deduce that
1(V,U, W)= <C(E(0)+3)%. (4.12)

We now concentrate on the decay rate for ||(7,a,0)||~. From (3.28), (4.5) and

(4.9), one finds that
Exu(t) + ]| (@,0) 00| <COA+1) 2Dy (¢
+C(E(0)+0)(

5

(t)
144)"2Dy(t) + CS(1+1) 3. (4.13)

Multiplying (4.13) by (14)%, we obtain

[(14)2 ()]s +c(1+8) 2| (U,0)0a||> < CD1 () + C(L+£)Do(t) + CS(1+1) ", (4.14)
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due to the fact that £(0)+0 < C and E3(t) <CDa(t).
Integrating (4.14) with respect to ¢ and using (4.1), (4.8), we have

(1+t)353(t)+c/0t(1+s)3||(a,§)m||2dsgc(s<o>+5)(1+t)%. (4.15)

Notice that £(0) < C(e2+§) due to (2.21) and (3.52), we thus have from (4.9) and (4.15)
that

1(0,a,0)[| <CEF (¢)
1(@,3,6). ]| < C&3 (1)

|

(2408)2(1+1)71, (4.16)
(2+8)2(1+1)"2. (4.17)

N

<C
<C
As a consequence, one has from (3.23), (4.16) and (4.17) that

~ o~ ~ ~ Nni~~ 2 1 R _3
10,%,0) |2 < Cll(@,@,0)[12[|(¥,,0)s |7 < C(e§+6)= (1+1)75. (4.18)

Hence, we obtain the convergence rate of (2.23)-(2.25) and close the a priori estimates
(3.7). This completes the proof of Theorem 2.1.
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