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AN EFFICIENT AND GLOBALLY CONVERGENT ALGORITHM FOR
`p,q-`r MODEL IN GROUP SPARSE OPTIMIZATION∗

YUNHUA XUE† , YANFEI FENG‡ , AND CHUNLIN WU§

Abstract. Group sparsity has lots of applications in various data science related problems. It
combines the underlying sparsity and group structure of the variables. A general and important model
for group sparsity is the `p,q-`r optimization model with p≥1, 0<q<1, 1≤ r≤∞, which is appli-
cable to different types of measurement noises. It includes not only the non-smooth composition of
`q (0<q<1) and `p (p≥1), but also the non-smooth `1/`∞ fidelity term. In this paper, we present a
nontrivial extension of our recent work to solve this general group sparse minimization model. By a
motivating proposition, our algorithm is naturally designed to shrink the group support and eliminate
the variables gradually. It is thus very fast, especially for large-scale problems. Combined with a proxi-
mal linearization, it allows an inexact inner loop implemented by scaled alternating direction method of
multipliers (ADMM), and still has global convergence. The algorithm gives a unified framework for the
full parameters. Many numerical experiments are presented for various combinations of the parameters
p,q,r. The comparisons show the advantages of our algorithm over others in the existing works.

Keywords. group sparse; `p,q-`r model; non-Lipschitz optimization; Laplace noise; Gaussian
noise; uniform distribution noise; lower bound theory; Kurdyka- Lojasiewicz (KL) property.
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1. Introduction

In Big Data era, data variables used to describe the structures, segments and fea-
tures usually have group property. Namely, they have a natural grouping of their
components. Sparsity allows us to reconstruct high-dimensional data with only a small
number of sample variables, leading to better recovery performance. By combining
them, group sparse recovery or reconstruction has a wide variety of applications, such
as signal recovery [17, 22], image processing [38], compressed sensing [37], model selec-
tion in birth weight prediction [42], sparse learning [8, 40], variable selection in gene
finding [30] and so on. This topic is enhanced to be an active research topic in recent
years.

In this paper, we consider the following `p,q-`r group sparse optimization problem

min
x∈RN

E(x) :=‖x‖qp,q+Fr(x), (1.1)

where p∈ [1,∞), q∈ (0,1) and

Fr(x) =

 1
rα ‖Ax−y‖rr , r≥1,

1
α ‖Ax−y‖∞ , r=∞,

with r∈ [1,∞],α∈ (0,∞), A∈RM×N , y∈RM . The `p,q regularization term, measuring
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the group sparse structure of x, is a quasi-norm and defined by

‖x‖p,q =

(
g∑

i=1

‖xi‖qp

)1/q

,

where xi, i=1,·· · ,g are the group members defined in Section 2 and ‖·‖p is the stan-
dard `p norm for vectors. The minimization model (1.1) is a quite general non-convex
extension of the group lasso [42] and covers a wide range of applications. Firstly, the
`p,q regularization term is a general form with different choices of p,q. Here p∈ [1,∞)
reflects the group structure of the variables and q∈ (0,1) is used to describe the spar-
sity. When p= 1, it actually allows the sparsity to exist within a group, according to the
theory of compressive sensing. Secondly, the data fidelity term Fr(x) covers extensive
applications. It is derived from the statistical property of the random measurement
noise n∈RM in the observed data

y =Axor+n,

where xor is the ground truth or the original signal. Nowadays it is clear from MAP to
use squared `2 fidelity term (r= 2) for Gaussian noise, the `1 fidelity term (r= 1) for
Laplace noise and heavy-tailed noise, and the `∞ fidelity term (r=∞) for uniformly
distributed noise and quantization error.

The goal of this paper is to design an efficient and unified algorithm with a global
convergence guarantee to solve the general non-Lipshitz minimization model (1.1). Be-
fore this, we review some related algorithms.

We first summarize several classes of algorithms for a special case of (1.1), i.e., the
non-group sparse optimization model in which the number of groups g equals N . In
this case, the group structure vanishes and the `p,q term in (1.1) is degenerated to
`q (0<q<1) regularization one. The first class of methods is the smoothing approxi-
mate one [5,12–14,25]. By a sophisticated smoothing function ϕ(x,θ), the non-Lipschitz
property of the objective function can be removed. The second class of method is the
general iterative shrinkage-thresholding algorithm (GISA) for `q-`2 problem [9, 39, 46],
which was inspired by the soft thresholding and iterative shrinkage-thresholding algo-
rithm (ISTA) [3,16] for convex `1-`2 problem. The third class of method is the iterative
reweighted minimization method, like the very successful IRL1 and IRLS for `q-`2 mini-
mization problem; see, e.g., [10,15,24,28]. Actually the reweighted methods reformulate
the original non-Lipschitz `q-`2 to Lipschitz ones by a de-singularizing parameter. Very
recently, a strategy of progressively shrinking the support of the variables to overcome
non-Lipschitz property was derived and presented for different problems respectively
in [26,43,44], where [26] considered the non-group case with r 6=∞ and [43,44] focused
on the image restoration with r= 1,2. To the best of our knowledge, we note that none
of these references considered all the 1≤ r≤∞, even in the non-group case.

As for the group sparse optimization problem (1.1), the authors in [22] proposed an
GISA extension with interesting convergence results for the case of r= 2. This is the
only existing algorithm for the general model (1.1) we can find in the literature. Note
that with r= 2, the data fidelity term is a smooth one. For the general problem (1.1)
with more difficult non-smooth fidelity terms, there isn’t any approach. On the other
hand, the general model (1.1) with 1≤ r≤∞ has various applications, as mentioned
before. We therefore try to design a unified algorithm for solving (1.1). Because of
the diversity of p,q,r and the non-smooth `p,q (especially `1,q) in the objective function
E , we present a non-trivial extension of the recent iterative support shrinking strategy,
especially [26], for this general problem (1.1).
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We firstly establish a motivating proposition by developing subdifferential lemmas
in group variables. This gives us the rationality to apply a unified iterative support
shrinking technique over group support set with variable elimination for various p,q,r.
To make the technique more practical and easily implementable, we linearize the ob-
jective and present an inexact iterative support shrinking algorithm with a proximal
linearization for group sparse optimization (InISSAPL-GSO). Although the algorithm
allows an inexact inner loop, we prove its global convergence from a new lower bound
theory for the `p norm of the nonzero groups of iteration sequence. The algorithm im-
plementation by scaled ADMM is also discussed where, especially for the case of r=∞,
we give an analytical derivation of the sub-solvers. Numerical experiments show that
the algorithm is robust to the diversity of p,q,r. Compared with others in group sparse
optimization with respect to relative errors, successful rates and running time, our al-
gorithm outperforms them. The main characters of InISSAPL-GSO for model (1.1) are
presented as follows:

(1) The algorithm provides a unified framework for the full parameters p,q,r. It can
particularly deal with the case of the addition of non-smooth `1,q regularization
term and non-smooth `1/`∞ fidelity term.

(2) The computation is implemented only on the shrinking group support set of x at
each iteration. Naturally our algorithm is efficient, especially for large-scale sparse
recovery problems.

(3) The key step is to overcome the non-Lipschitz property of the objective function and
construct an appropriate subdifferential formula, when using KL property to prove
the global convergence of the algorithm. It is solved by developing a lower bound
theory of the nonzero groups of the iterative sequence and a technical construction
of the subdifferential; see Section 4 for details.

The rest of the paper is outlined as follows. In Section 2, we give some basic nota-
tions and preliminaries. In Section 3, we give the motivating proposition and propose
the corresponding algorithms. In Section 4, we establish the global convergence theo-
rem for the proposed algorithms. In Section 5, we describe the implementation of the
algorithm by scaled ADMM. Numerical experiments and comparisons are showed in
Section 6. Section 7 concludes the paper.

2. Notation and preliminary
Suppose that A is an M×N matrix and x is a column vector with N entries.

I={1,2,. ..,M} denotes the row index set of A. To be specialized, we use another kind

of upright font to express the group index such as G, i,g. Let x :=
(
xT1 ,x

T
2 ,·· · ,xTg

)T
represent the group structure of x. G={1,2,. ..,g} denotes the group index set of x.
For each group member xi, we denote by Ji ={1,2,·· · ,Ni} the index set. Therefore
N =N1 + ·· ·+Ng. We also refer to xi,j as the j-th entry of xi and denote the group
support set of x by

suppG(x) :={i∈G :xi 6=0},

where xi 6=0 means that xi,j 6= 0 for some j∈Ji. Furthermore, we use xi =0 when xi,j = 0
for all j∈Ji. The support of group member xi is defined by

supp(xi) ={j∈Ji :xi,j 6= 0}.

Let S be a subset of G. We denote by xS the group vectors of x indexed by S, which
consist of the nonzero group members of x with S= suppG(x).
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For a matrix A∈RM×N , we partition it into submatrices Ak,i,k∈ I, i∈G, which is
the i-th block of the k-th row of A associating to the group structure of x, i.e.,

A=


A1,1 A1,2 ·· · A1,g

·· · ··· ·· · ·· ·

AM,1 AM,2 ·· · AM,g

.
Because Ak,i,k∈ I, i∈G are row vectors, we denote by (Ak,i)j its j-th entry. In a similar
way with xS, we denote by AS the column sub-matrix of A consisting of the columns
indexed by S.

Define φ : [0,∞)→ [0,∞) by φ(x) =xq(0<q<1). We state some useful properties
for φ(·).

Proposition 2.1 ( [26]). The function φ(·) has the following properties:

(1) φ(0) = 0 and φ′(x) = qxq−1>0 on (0,∞).

(2) φ(x) is concave and the following inequality holds,

φ(y)≤φ(x)+φ′(x)(y−x), ∀x∈ (0,∞),y∈ [0,∞). (2.1)

(3) For any c>0, φ′(x) is Lc-Lipschitz continuous on [c,∞), i.e., there exists a constant
Lc>0 determined by c, such that ∀x,y∈ [c,∞),

|φ′(x)−φ′(y)|≤Lc |x−y|. (2.2)

Lemma 2.1 ( [22]). Let y∈Rm be the m-dimensional vector. The following inequality
holds:

‖y‖γ2 ≤‖y‖γ1 ,0<γ1≤γ2. (2.3)

Lemma 2.2. Let s>0,y∈Rm. Then there exists a constant C̃s>0 such that,

‖y‖s≤ C̃s‖y‖s+1 . (2.4)

Proof. For s≥1, there exists C>0 which satisfies the above inequality by the
norm equivalence. For 0<s<1, from [22, Lemma 1], there exists Cs>0 such that

‖y‖s≤Cs‖y‖2 .

We use the norm equivalence once again to have

‖y‖s≤CsC ‖y‖s+1 .

Hence we can choose C̃s= max{C,CsC} to finish the proof.

3. Motivation and the proposed algorithm

3.1. Subdifferentials and regularity. By the definition of φ(·), we have
‖x‖qp,q =

∑
i∈Gφ(‖xi‖p). We also define the norm function g(y) =‖y‖p for a vector y.

In order to calculate the subdifferential (see Definition A.1 in the Appendix A) of
the objective function E(x) in (1.1), we firstly give two lemmas. Although they are
straightforward results, we put their proofs here for the sake of completeness.

Lemma 3.1 (Subdifferential). Let y∈Rm be an m-dimensional vector. We have the
following results:
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(1) For y =0 and p≥1, the subdifferential is,

∂(φ◦g)(y) =
m∏
j=1

Sj ,

where Sj = (−∞,∞),∀j= 1,2,·· · ,m and Π means the Cartesian product of sets;

(2) For y 6=0, the subdifferential is

∂(φ◦g)(y) =
m∏
j=1

Sj ,

where

Sj =


φ′(‖y‖p)‖y‖

1−p
p |yj |p−1 sgn(yj), p>1,

φ′(‖y‖1)sgn(yj), j∈ supp(y) and p= 1,

[−φ′(‖y‖1),φ′(‖y‖1)], j /∈ supp(y) and p= 1.

Proof. For brevity, we denote the set
∏m
j=1Sj by S.

(i). We take a u∈ ∂̂(φ◦g)(y) with y =0. By the definition,

liminf
z→0
z6=0

‖z‖qp−<u,z−0>

‖z−0‖2
≥0.

From the equivalence of norms when p≥1, we have

‖z‖p≥C ‖z‖2 ,

where C>0 is a constant. It is sufficient to have

‖z‖qp−<u,z−0>

‖z−0‖2
≥
Cq ‖z‖q2−<u,z>

‖z‖2
≥0, z→0.

This is true for any u∈S due to 0<q<1. Then the proof is done by the fact ∂̂(φ◦
g)(y)⊆∂(φ◦g)(y).

(ii). For p>1, the function (φ◦g)(y) is continuously differentiable at y 6=0, so the

subdifferential is the gradient in this case. For p= 1, we show that S= ∂̂(φ◦g)(y) firstly.

On the one hand, letting u∈ ∂̂(φ◦g)(y) with y 6=0, we know that the limit inferior holds
along a special direction, i.e.,

liminf
zk=yk,k 6=j

zj→yj

z6=y

‖z‖q1−‖y‖
q
1−<u,z−y>

‖z−y‖2
≥0.

Then we have {
(u)j =φ′(‖y‖1) ·sgn(yj), j∈ supp(y),

|(u)j |≤φ′(‖y‖1), j /∈ supp(y),

by the differential mean value theorem. So ∂̂(φ◦g)(y)⊆S.
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On the other hand, we construct a function h(z) in the neighbourhood of y (y 6= 0):

h(z) =

 ∑
j∈supp(y)

|zj |+
∑

j /∈supp(y)

kjzj

q

,

where kj can be any value in [−1,1]. Then h satisfies the condition of [35, Proposition

8.5] and we have ∇h(y)∈ ∂̂(φ◦g)(y). Since

(∇h(y))j =

{
φ′(‖y‖1) ·sgn(yj), j∈ supp(y),

φ′(‖y‖1) ·kj , j /∈ supp(y),

we obtain S⊆ ∂̂(φ◦g)(y). Hence S= ∂̂(φ◦g)(y).

The only thing left to show is ∂(φ◦g)(y)⊆ ∂̂(φ◦g)(y), since the inclusion relation-
ship in the other direction holds naturally. In fact, for u∈∂(φ◦g)(y) with y 6=0, there

exists z(k)→y,φ(
∥∥z(k)

∥∥
1
)→φ(‖y‖1) and u(k)∈ ∂̂(φ◦g)(z(k)),u(k)→u. It is clear that

supp(y)⊆ supp(z(k)) when k is sufficiently large. Together with the fact{
(u(k))j =φ′(

∥∥z(k)
∥∥

1
) ·sgn(z

(k)
j ), j∈ supp(z(k)),∣∣(u(k))j

∣∣≤φ′(∥∥z(k)
∥∥

1
), j /∈ supp(z(k)),

we therefore obtain u∈ ∂̂(φ◦g)(y) by a limiting procedure.

The regularity property of functions is essential for subdifferential calculus of the
addition of two non-smooth terms, e.g., `1,q term and `1/`∞ fidelity term. The following
lemma is very useful in this work.

Lemma 3.2 (Regularity). Let y∈Rm be an m-dimensional vector. Then (φ◦g)(y) is
regular at y for p≥1.

Proof. By [35, Corollary 8.11], (φ◦g)(y) is regular at y if and only if

∂(φ◦g)(y) = ∂̂(φ◦g)(y), ∂∞(φ◦g)(y) = (∂̂(φ◦g)(y))∞. (3.1)

In the proof of Lemma 3.1, we know that the first equality in (3.1) holds. The only
thing left is to verify the second equality.

For y =0, we have

∂̂(φ◦g)(y) = (−∞,∞)m.

Some simple calculations using Definition A.2 in the Appendix A show that the horizon
cone (∂̂(φ◦g)(y))∞ is the same set (−∞,∞)m. We can also conclude ∂∞(φ◦g)(y) =
(−∞,∞)m by the same trick.

For y 6=0, we have

∂∞(φ◦g)(y) = (∂̂(φ◦g)(y))∞={0},

by the boundedness of ∂̂(φ◦g)(y).

Remark 3.1. From [35, Proposition 10.5] for separable functions, the sum function

‖x‖qp,q =
∑
i∈G

φ(‖xi‖p)
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is also regular at x and

∂‖x‖qp,q =
∏
i∈G

∂(φ◦g)(xi).

The objective function E in (1.1) reads

E(x) =
∑
i∈G

φ(‖xi‖p)+Fr(x), p≥1, 1≤ r≤∞, (3.2)

which is bounded below, coercive, and continuous. It has at least one minimizer.
Now, we give the subdifferential of E at x. From the Remark of Lemma 3.2 and the

convexity of Fr(x) with 1≤ r≤∞, we clearly see

∂E(x) =∂
∑
i∈G

φ(‖xi‖p)+∂Fr(x)

=
∏
i∈G

∂(φ◦g)(xi)+

 1
αrA

T∂‖v‖rr|v=Ax−y, r≥1,

1
αAT∂‖v‖∞|v=Ax−y, r=∞.

(3.3)

Therein the factors can be calculated by Lemma 3.1. The subdifferential of the infinity
norm is calculated by the Danskin-Bertsekas Theorem in [4, Proposition A.22] as follows

∂‖h‖∞={u∈RM |‖u‖1≤1,hTu=‖h‖∞}. (3.4)

For any given x, it is obvious that ∂Fr(x) is a bounded set.
We call x∗ a stationary point of (1.1) if and only if

0∈∂E(x∗). (3.5)

3.2. A motivating proposition. The following proposition presents a motiva-
tion to design the algorithm in the next section.

Proposition 3.1. Suppose x∈RN be with the group structure x :=
(
xT1 ,x

T
2 ,·· · ,xTg

)T
.

For any local minimizer (or stationary point) x∗ of (1.1) sufficiently close to x, it holds
that

x∗i =0, ∀i∈G\suppG(x). (3.6)

Proof. As x∗ is a local minimizer (or a stationary point) of E , we have 0∈∂E(x∗).
We prove (3.6) by contradiction. Assume that there exists i′∈G\suppG(x) such

that x∗i′ 6=0. That is, x∗i′,j 6= 0 for some j∈Ji′ .
From (3.5), we have

0 =φ′(‖x∗i′‖p)‖x
∗
i′‖

1−p
p |x∗i′,j |p−1 sgn(x∗i′,j)+ηi′,j(x

∗), (3.7)

where ηi′,j(x
∗) is the entry of a specific subgradient η(x∗)∈∂Fr(x∗). It follows that

q‖x∗i′‖
q−1
p ≤ q‖x∗i′‖

q−p
p ‖x∗i′‖

p−1
p−1 =

∑
j∈supp(x∗

i′ )

∣∣ηi′,j(x∗)∣∣. (3.8)
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Here the left inequality is due to Lemma 2.1 for p>1 and ‖x∗i′‖
p−1
p−1 =

#{nonzero entries of x∗i′} for p= 1. The right-hand side of (3.8) is uniformly bounded
in any predefined neighborhood of x, by (3.3) and (3.4). Since x∗i′ can be sufficiently
close to xi′ = 0, i′∈G\suppG(x), it contradicts (3.8) by 0<q<1.

Remark 3.2. For the special case r= 2 in the fidelity term, [14, 22] established the
lower bound theory, which can also inspire our proposition.

3.3. Algorithm. Motivated by Proposition 3.1, we propose to solve the prob-
lem (1.1) by an iterative process, which generates a sequence with a shrinking group
support set. Suppose that x(l) is an approximate solution in the l-th iteration. In the
next iteration, we minimize the objective function only on the group support set S(l) of
x(l), with the remaining variables being zero. This yields the iterative support shrinking
algorithm (ISSA). Given x(l), we compute x(l+1) by solving

min
x
S(l)

E(l)(xS(l)) :=
∑
i∈S(l)

φ(‖xi‖p)+F (l)
r (xS(l)), (P(l))

and setting

x
(l+1)
i =0, for i∈G\S(l),

where F
(l)
r (xS(l)) reads as follows,

F (l)
r (xS(l)) =



1

rα

∑
k∈I

∣∣∣∣∣∣
∑
i∈S(l)

Ak,ixi−yk

∣∣∣∣∣∣
r

, r≥1,

1

α
max
k∈I

∣∣∣∣∣∣
∑
i∈S(l)

Ak,ixi−yk

∣∣∣∣∣∣, r=∞.

The following proposition tells us that if we can find a local minimizer of (P(l))
by ISSA, then we can construct a local minimizer of the original problem (1.1). This
provides the rationality for ISSA in some sense.

Proposition 3.2. Suppose that x∗
S(l) is a local minimizer of (P(l)). Then its zero

padding z∗ by

z∗i =

{
x∗i , i∈S(l),

0, i∈G\S(l),

is a local minimizer of (1.1).

Proof. There exists δ1>0, such that

E(l)(xS(l))≥E(l)(x∗S(l)), ∀xS(l) ∈B(x∗S(l) ,δ1). (3.9)

Let x∈B(z∗,δ2) with δ2<δ1. From (3.9), we have

E(x)−E(z∗) =
∑
i∈S(l)

φ(‖xi‖p)+
∑

i∈G\S(l)

φ(‖xi‖p)+Fr(x)−E(l)(x∗S(l))

≥
∑

i∈G\S(l)

φ(‖xi‖p)+Fr(x)−F (l)
r (xS(l)). (3.10)
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Let z be the zero padding of xS(l) . From the convexity of Fr(x), we can obtain

Fr(x)−F (l)
r (xS(l)) =Fr(x)−Fr(z)≥〈η,x−z〉

≥−M
∑

i∈G\S(l)

‖xi‖2

≥−CM
∑

i∈G\S(l)

‖xi‖p, p≥1,

where η∈∂Fr(z) and ‖η‖2≤M uniformly since z∈B(z∗,δ2). C>0 is the constant for
norm equivalence. Hence, using the concavity of φ in Proposition 2.1, we obtain

E(x)−E(z∗)≥
∑

i∈G\S(l)
[φ(‖xi‖p)−CM‖xi‖p]≥

∑
i∈G\S(l)∩suppG(x)

[φ′(‖xi‖p)−CM ]‖xi‖p.

There exists δ3>0 such that φ′(‖xi‖p)≥CM for all i∈G\S(l)∩suppG(x) when x∈
B(z∗,δ3).

Let δ= min{δ1,δ2,δ3}. When x∈B(z∗,δ), E(x)≥E(z∗).

To make the problem (P(l)) more practical, we linearize φ(‖xi‖p), i∈S(l) at ‖x(l)
i ‖p 6=

0 in the objective function. With an additional proximal term, we introduce the follow-
ing energy functional:

H(l)(xS(l))=
∑
i∈S(l)

[
φ(‖x(l)

i ‖p)+φ
′(‖x(l)

i ‖p)
(
‖xi‖p−‖x

(l)
i ‖p

)]
+F (l)

r (xS(l))+
β

2
‖xS(l)−x

(l)

S(l)
‖22,

(3.11)

where β≥0. We now present an inexact iterative support shrinking algorithm with
proximal linearization to solve (1.1).

InISSAPL-GSO: Inexact Iterative Support Shrinking Algorithm with
Proximal Linearization for Group Sparse Optimization

Initialization: Select x(0) = c1 with c 6= 0 or randomly, where 1 is the all-one
vector.
Iteration: For l= 0,1,. .. until convergence:

(1) Set S(l) = suppG(x(l)). Set β= 0 for l= 0 and β>0 fixed for l≥1.

(2) Compute x
(l+1)

S(l) by approximately solving

min
x
S(l)

H(l)(xS(l)) (P(l)
x )

such that

u
(l)

S(l)(x
(l+1)

S(l) )∈∂H(l)(x
(l+1)

S(l) ),‖u(l)

S(l)(x
(l+1)

S(l) )‖2≤
β

2
ν‖x(l+1)

S(l) −x
(l)

S(l)‖2. (3.12)

with the tolerance error ν <1.

(3) Set

x
(l+1)
i =0, for i∈G\S(l).
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Remark 3.3. The condition (3.12) in InISSAPL-GSO is motivated by [2, 26]. It
corresponds to an inexact inner loop and a guide to select the approximate solution for

(P(l)
x ). Due to the strong convexity of the problem (P(l)

x ), it can be solved to any given
accuracy. Therefore, the condition (3.12) in InISSAPL-GSO can be satisfied, as long as

the problem (P(l)
x ) is solved sufficiently accurately.

Remark 3.4. By the motivating Proposition 3.1, x(0) is required to be with as large a
group support as possible. There are two strategies to choose this starting point. One is
to set x(0) by a nonzero scalar multiplication of the all-one vector, which yields a group
lasso for p= 2 in the first step. The other is to set x(0) by randomly generating data
of i.i.d. Gaussian (with zero probability to obtain zero group member), indicating a
weighted group lasso when p= 2. Due to the fact that x(0) is not the proximal solution,
we also set β= 0 in the first step of the algorithm. The results of experiments with these
two kinds of starting points are given in Section 6.1.

Remark 3.5. This support shrinking strategy is related to but different from the
active set methods [31].

Remark 3.6. In fact, our algorithm can be regarded as a variant of iteratively
reweighted `1 minimization. We mention that, a recent parallel manuscript [20] presents
to use iteratively reweighted least square (IRLS) algorithms for the special group sparse
`2,q−`2 model, after studying its sparse recovery property. Obviously the approach
in [20] cannot be applied to our general model (1.1).

For the convenience of later description, we represent the subgradient in (3.12) as
follows,

u
(l)

S(l)(xS(l)) =ζ
(l)

S(l)(xS(l))+η
(l)

S(l)(xS(l))+β(xS(l)−x
(l)

S(l)), (3.13)

where

ζ
(l)

S(l)(xS(l))∈
∏
i∈S(l)

φ′(‖x(l)
i ‖p)∂‖xi‖p, η(l)

S(l)(xS(l))∈∂F (l)
r (xS(l)).

Each entry of ζ
(l)

S(l)(xS(l)) has the form by

ζ
(l)
i,j (xS(l)) =


φ′(‖x(l)

i ‖p)‖xi‖1−pp |xi,j |p−1
sgn(xi,j), p>1,

φ′(‖x(l)
i ‖1)sgn(xi,j), p= 1, and j∈ supp(xi),

∈ [−φ′(‖x(l)
i ‖1),φ′(‖x(l)

i ‖1)], p= 1, and j /∈ supp(xi).

(3.14)

Since x(l+1) has group support set S(l), we also clarify the relation of the subgradi-

ents in ∂F
(l)
r (x

(l+1)

S(l) ) and ∂Fr(x
(l+1)). Indeed, for any η

(l)

S(l)(x
(l+1)

S(l) )∈∂F (l)
r (x

(l+1)

S(l) ), there

exists w in 1
αr∂‖v‖

r
r or 1

α∂‖v‖∞ with v=AS(l)x
(l+1)

S(l) −y such that

η
(l)

S(l)(x
(l+1)

S(l) ) =AT
S(l)w. (3.15)

Noting that Ax(l+1)−y =AS(l)x
(l+1)

S(l) −y, there exists a subgradient η(x(l+1))∈
∂Fr(x

(l+1)) with

η(x(l+1)) =ATw. (3.16)
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4. Convergence analysis
In this section, we establish the global convergence result of the sequence generated

by InISSAPL-GSO. Nowadays, a celebrating theoretical framework developed in [2] for
convergence analysis of descent methods, has been extensively applied in non-convex
optimization [29, 32–34, 36, 45]. We state the main result by Theorem B.2 in the Ap-
pendix B. It is required that the iterative sequence satisfies (H1)-(H3) in this theorem.
To verify the relative error condition (H2), we face two difficulties. The first one is the
non-Lipschitz property of E(x), which is solved by proving a lower bound theory on the
sequence. The second one is the highly non-smooth composition of `q (0<q<1) and
`1, which requires a technical construction of the subgradient in ∂E(x). See the details
in Lemma 4.3 and Lemma 4.4.

We firstly prove the sufficient decrease property about E(x(l)) in Lemma 4.1. To
this end, we introduce, for each index l, the following intermediate energy functional on
x∈RN :

H̃(l)(x) =
∑
i∈S(l)

[
φ(‖x(l)

i ‖p)+φ′(‖x(l)
i ‖p)

(
‖xi‖p−‖x(l)

i ‖p
)]

+Fr(x)+
β

2
‖x−x(l)‖22.

(4.1)

Lemma 4.1. Let
{
x(l)
}

be a sequence generated by InISSAPL-GSO. Then

(1) The sequence
{
E(x(l))

}
is nonincreasing and satisfies

E(x(l+1))+
β

2
(1−ν)‖x(l+1)−x(l)‖22≤E(x(l)), (4.2)

where β>0 and 0≤ν <1.

(2) The sequence
{
x(l)
}

is bounded and satisfies liml→∞‖x(l+1)−x(l)‖2 = 0.

Proof. Since x(l) has the group support set S(l), we have

H̃(l)(x(l)) =E(x(l)). (4.3)

At the (l+1)-th iteration, we obviously obtain

H̃(l)(x(l+1)) =
∑
i∈S(l)

[
φ(‖x(l)

i ‖p)+φ′(‖x(l)
i ‖p)

(
‖x(l+1)

i ‖p−‖x(l)
i ‖p

)]
+Fr(x

(l+1))+
β

2
‖x(l+1)−x(l)‖22

[ by (2.1) ] ≥
∑
i∈S(l)

φ(‖x(l+1)
i ‖p)+Fr(x

(l+1))+
β

2
‖x(l+1)−x(l)‖22

= E(x(l+1))+
β

2
‖x(l+1)−x(l)‖22. (4.4)

By (3.15)-(3.16), for any element η
(l)

S(l)(x
(l+1)

S(l) )∈∂F (l)
r (x

(l+1)

S(l) ), there exists a subgra-

dient η(x(l+1))∈∂Fr(x(l+1)) with

ηi(x
(l+1)) =η

(l)
i (x

(l+1)

S(l) ), i∈S(l).

Now we define ũ(l)(x(l+1)) by

ũ
(l)
i (x(l+1)) =

{
u

(l)
i (x

(l+1)

S(l) ), i∈S(l),

ηi(x
(l+1)), i∈G\S(l),

(4.5)
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where u
(l)
i (x

(l+1)

S(l) ) is given in (3.13). Then ũ(l)(x(l+1))∈∂H̃(l)(x(l+1)).

Since for any i∈G\S(l), x
(l+1)
i =x

(l)
i =0, we have

〈ũ(l)(x(l+1)),x(l)−x(l+1)〉=
∑
i∈S(l)

∑
j∈Ji

u
(l)
i,j (x

(l+1)

S(l) )(x
(l)
i,j −x

(l+1)
i,j )

≥−‖u(l)

S(l)(x
(l+1)

S(l) )‖2 ·‖x(l)

S(l)−x
(l+1)

S(l) ‖2

[ by (3.12) ] ≥−β
2
ν‖x(l)

S(l)−x
(l+1)

S(l) ‖22

=−β
2
ν‖x(l)−x(l+1)‖22. (4.6)

Putting (4.3), (4.4) and (4.6) together, we obtain

E(x(l)) = H̃(l)(x(l))≥H̃(l)(x(l+1))+〈ũ(l)(x(l+1)),x(l)−x(l+1)〉

≥H̃(l)(x(l+1))− β
2
ν‖x(l+1)−x(l)‖22

≥E(x(l+1))+
β

2
(1−ν)‖x(l+1)−x(l)‖22.

With the fact that E(x) is bounded from below and β
2 (1−ν)>0, it follows that

{
E(x(l))

}
is nonincreasing and converges to a finite value. Thus

lim
l→∞
‖x(l+1)−x(l)‖2 = 0.

Because E(x) is coercive, we know that
{
x(l)
}

is bounded.

The following lemma gives the finite convergence property of the group support set,
from which we can deduce a lower bound theory on the nonzero groups of the iteration
sequence.

Lemma 4.2. The sequence
{
S(l)
}

converges in a finite number of iterations, i.e., there

exists an integer L>0 such that when l≥L, S(l)≡S(L).

Proof. The statement is straightforward by the finiteness of G and G⊇S(0)⊇···⊇
S(l)⊇···, like those in [26,43,44].

Remark 4.1. From this Lemma, we know that the sequence {x(l)} by InISSAPL-GSO
has the fixed group support set S(L) when l≥L.

Lemma 4.3. There exist constants C>c>0 such that

either x
(l)
i = 0 or c≤‖x(l)

i ‖p≤C, ∀i∈G, ∀l≥L, (4.7)

where L is defined in Lemma 4.2.

Proof. From Lemma 4.2, for any i∈S(L) and l≥L, x
(l)
i 6=0. The sequence has an

upper bound from Lemma 4.1,

‖x(l)
i ‖p≤C.

We now prove by contradiction that ‖x(l)
i ‖p has a positive lower bound for any i∈

S(L),l≥L.
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Suppose that there exists i′∈S(L) for some subsequence x(lk), still denoted by x(l),
such that

x
(l)
i′ 6=0 and lim

l→∞
x

(l)
i′ =0.

By the subdifferential expression (3.13), we have, for j∈ supp(x
(l+1)
i′ ),∣∣∣u(l)

i′,j(x
(l+1)

S(L) )
∣∣∣+ ∣∣∣η(l)

i′,j(x
(l+1)

S(L) )
∣∣∣+β

∣∣∣x(l+1)
i′,j −x

(l)
i′,j

∣∣∣≥ ∣∣∣ζ(l)
i′,j(x

(l+1)

S(L) )
∣∣∣ (4.8)

with the right-hand side satisfying,

|ζ(l)
i′,j(x

(l+1)

S(L) )|≥φ′(‖x(l)
i′ ‖p) ·‖x

(l+1)
i′ ‖1−pp · |x(l+1)

i′,j |
p−1.

Summing up all the terms for j∈ supp(x
(l+1)
i′ ), we have∑

j∈supp(x
(l+1)

i′ )

∣∣∣u(l)
i′,j(x

(l+1)

S(L) )
∣∣∣+ ∣∣∣η(l)

i′,j(x
(l+1)

S(L) )
∣∣∣+β

∣∣∣x(l+1)
i′,j −x

(l)
i′,j

∣∣∣
≥φ′(‖x(l)

i′ ‖p) ·‖x
(l+1)
i′ ‖1−pp ·‖x(l+1)

i′ ‖p−1
p−1

≥φ′(‖x(l)
i′ ‖p)

= q‖x(l)
i′ ‖

q−1
p ,

where the second inequality holds from the same reason as in (3.8). It follows from

the boundedness of
{
x(l)
}

that
∣∣∣η(l)

i′,j(x
(l+1)

S(L) )
∣∣∣+β

∣∣∣x(l+1)
i′,j −x

(l)
i′,j

∣∣∣ is bounded. The con-

dition (3.12) implies that
∣∣∣u(l)

i′,j(x
(l+1))

∣∣∣ is also bounded. Thus the Equation (4.8) is

impossible to hold when l→∞ because of 0<q<1.

Remark 4.2. By combining Lemma 4.3 and Proposition 2.1, we can obtain the
Lipschitz property of φ′ over the group support:∣∣∣φ′(‖x(l+1)

i ‖p)−φ′(‖x(l)
i ‖p)

∣∣∣≤Lc ∣∣∣‖x(l+1)
i ‖p−‖x(l)

i ‖p
∣∣∣

≤Lc‖x(l+1)
i −x

(l)
i ‖p, i∈S

(L), l≥L. (4.9)

Using this property, we can prove the relative error condition in Lemma 4.4 through
a sophisticated construction of v(l+1)∈∂E(x(l+1)).

Lemma 4.4. For each l≥L, there exists v(l+1)∈∂E(x(l+1)) such that

‖v(l+1)‖2≤ C̄‖x(l+1)−x(l)‖2, (4.10)

where the constant C̄ >0 is independent of l.

Proof. For l≥L, by (3.13), the subgradient u
(l)

S(L)(x
(l+1)

S(L) ) in ∂H(l)(x
(l+1)

S(L) ) can be
written as

u
(l)

S(L)(x
(l+1)

S(L) ) =ζ
(l)

S(L)(x
(l+1)

S(L) )+η
(l)

S(L)(x
(l+1)

S(L) )+β(x
(l+1)

S(L) −x
(l)

S(L)).

For the above η
(l)

S(L)(x
(l+1)

S(L) ), by (3.15)-(3.16), there exists a subgradient η(x(l+1)) in

∂Fr(x
(l+1)) which satisfies

ηi(x
(l+1)) =η

(l)
i (x

(l+1)

S(L) ), i∈S(L).
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We introduce the intermediate variable ṽ(l+1) by

ṽ
(l+1)
i =

{
ζ

(l)
i (x

(l+1)

S(L) )+η
(l)
i (x

(l+1)

S(L) ), i∈S(L),

0, i∈G\S(L).
(4.11)

It can be measured by the iterative error,

‖ṽ(l+1)‖2 =‖u(l)

S(L)(x
(l+1)

S(L) )−β(x
(l+1)

S(L) −x
(l)

S(L))‖2
≤‖u(l)

S(L)(x
(l+1)

S(L) )‖2 +β‖x(l+1)

S(L) −x
(l)

S(L)‖2

[ by (3.12) ] ≤ β
2

(ν+2)‖x(l+1)−x(l)‖2. (4.12)

The objective is to construct v(l+1)∈∂E(x(l+1)) satisfying the theorem statement.
We can choose

v(l+1) =ζ(x(l+1))+η(x(l+1)), (4.13)

where ζ(x(l+1))∈
∏
i∈G
∂(φ◦g)(x

(l+1)
i ) is to be determined in the following.

By Lemma 3.1, for i∈S(L), each entry of ζ i(x
(l+1))∈∂(φ◦g)(x

(l+1)
i ) is given by

φ′(‖x(l+1)
i ‖p)‖x(l+1)

i ‖1−pp |x(l+1)
i,j |p−1 ·sgn(x

(l+1)
i,j ), p>1,

φ′(‖x(l+1)
i ‖1)sgn(x

(l+1)
i,j ), p= 1,j∈ supp(x

(l+1)
i ),

ψi,j , p= 1,j /∈ supp(x
(l+1)
i ),

(4.14)

where ψi,j satisfies

ψi,j ∈ I(l+1) := [−q‖x(l+1)
i ‖q−1

1 ,q‖x(l+1)
i ‖q−1

1 ].

The choice of ψi,j is technical. In order to estimate the `1 error of v(l+1) and ṽ(l+1) in
(4.17), the key idea of designing ψi,j is to find the nearest point in I(l+1) from the point

ζ
(l)
i,j (x

(l+1)

S(l) ) in the set [−q‖x(l)
i ‖

q−1
1 ,q‖x(l)

i ‖
q−1
1 ] by (4.11). That is,

ψi,j =


ζ

(l)
i,j (x

(l+1)

S(L) ), if ζ
(l)
i,j (x

(l+1)

S(L) )∈ I(l+1);

−q‖x(l+1)
i ‖q−1

1 , if ζ
(l)
i,j (x

(l+1)

S(L) )∈
[
−q‖x(l)

i ‖
q−1
1 ,−q‖x(l+1)

i ‖q−1
1

)
;

q‖x(l+1)
i ‖q−1

1 , if ζ
(l)
i,j (x

(l+1)

S(L) )∈
(
q‖x(l+1)

i ‖q−1
1 ,q‖x(l)

i ‖
q−1
1

]
.

(4.15)

For i∈G\S(L), since ∂(φ◦g)(x
(l+1)
i ) = Πj∈Ji(−∞,+∞), we can choose ζ i(x

(l+1)) =

−ηi(x(l+1)). Naturally, v
(l+1)
i =0 when i∈G\S(L).

Now we measure the difference between v(l+1) and ṽ(l+1). We divide this into two
cases: p>1 and p= 1. For p>1, the `1 norm of the difference can be bounded as follows

‖v(l+1)− ṽ(l+1)‖1 =
∑

i∈S(L)

∑
j∈Ji

∣∣∣ζ i,j(x(l+1))−ζ(l)
i,j (x

(l+1)

S(L) )
∣∣∣

=
∑

i∈S(L)

∑
j∈Ji

∣∣∣φ′(‖x(l+1)
i ‖p)−φ′(‖x(l)

i ‖p)
∣∣∣ ·‖x(l+1)

i ‖1−pp ·
∣∣∣x(l+1)

i,j

∣∣∣p−1

=
∑

i∈S(L)

∣∣∣φ′(‖x(l+1)
i ‖p)−φ′(‖x(l)

i ‖p)
∣∣∣ ·‖x(l+1)

i ‖1−pp ·‖x(l+1)
i ‖p−1

p−1
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[ by (4.9), (2.4) ]≤Lc · C̃p−1

∑
i∈S(L)

‖x(l+1)
i −x

(l)
i ‖p ·‖x

(l+1)
i ‖1−pp ·‖x(l+1)

i ‖p−1
p

≤Lc · C̃p−1 ·C‖x(l+1)−x(l)‖2, (4.16)

where C is the coefficient of norm equivalence. For p= 1, it follows,

‖v(l+1)− ṽ(l+1)‖1 =
∑

i∈S(L)

∑
j∈supp(x

(l+1)
i )

∣∣∣ζ i,j(x(l+1))−ζ(l)
i,j (x

(l+1)

S(L) )
∣∣∣

+
∑

i∈S(L)

∑
j /∈supp(x

(l+1)
i )

∣∣∣ψi,j−ζ(l)
i,j (x

(l+1)

S(L) )
∣∣∣

≤
∑

i∈S(L)

∑
j∈supp(x

(l+1)
i )

∣∣∣φ′(‖x(l+1)
i ‖1)−φ′(‖x(l)

i ‖1)
∣∣∣ · ∣∣∣sgn(x

(l+1)
i,j )

∣∣∣
+
∑

i∈S(L)

∑
j /∈supp(x

(l+1)
i )

∣∣∣q‖x(l+1)
i ‖q−1

1 −q‖x(l)
i ‖

q−1
1

∣∣∣
=
∑

i∈S(L)

∑
j∈Ji

∣∣∣φ′(‖x(l+1)
i ‖1)−φ′(‖x(l)

i ‖1)
∣∣∣

≤Lc‖x(l+1)−x(l)‖1
≤Lc ·C‖x(l+1)−x(l)‖2. (4.17)

where the first inequality comes from (4.14), (4.15).

Putting (4.12), (4.16) and (4.17) together, we obtain,

‖v(l+1)‖2≤‖v(l+1)‖1≤‖v(l+1)− ṽ(l+1)‖1 +
√
N‖ṽ(l+1)‖2

≤ C̄‖x(l+1)−x(l)‖2,

where C̄= max{LcC̃p−1C,LcC}+
√
Nβ(2+ν)/2.

Finally, we can establish the following convergence result.

Theorem 4.1. The iterative sequence
{
x(l)
}

generated by InISSAPL-GSO converges
globally to the limit point x∗, which is a stationary point of problem (1.1).

Proof. From Appendix B, we know that E(x) satisfies KL property. Since
{
x(l)
}

is bounded and E(x) is continuous, there exists a subsequence (x(lk)) and x∗ such that

x(lk)→x∗ and E(x(lk))→E(x∗),as k→∞. (4.18)

By Lemma 4.1, Lemma 4.4, and Theorem B.2 in the Appendix B, the sequence
{
x(l)
}

converges globally to the limit point x∗, which is a stationary point of E(x).

5. Algorithm implementation

At each iteration step in InISSAPL-GSO, we actually solve a weighted `p,1−`r( p≥
1, r≥1) minimization problem. It is convex and an inexact inner loop is allowed in
implementation. Some standard methods like ADMM [8,17], split Bregman method [21,
41] and primal-dual algorithm [11,19] can be used to efficiently solve it. Here we adopt
scaled ADMM.
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5.1. Scaled ADMM. The problem (P(l)
x ) in InISSAPL-GSO is equivalent to

min
x
S(l)

∑
i∈S(l)

φ′(‖x(l)
i ‖p)‖xi‖p+F (l)

r (xS(l))+
β

2
‖xS(l)−x

(l)

S(l)‖22. (5.1)

Since it is solved only on the group support, we omit the subscripts S(l) of the variables
for the brevity in the following. With some auxiliary variables, (5.1) is written as

min
z

∑
i∈S(l)

φ′(‖x(l)
i ‖p)‖zi‖p+fr(s)+

β

2
‖x−x(l)‖22

s.t. z=x, s=AS(l)x−y,

(5.2)

where

fr(s) =

{
1
rα‖s‖

r
r, r≥1,

1
α‖s‖∞, r=∞.

Let ρ1,ρ2>0 (denoted by ρ= (ρ1,ρ2) ) be the penalty parameters and λ,µ be the
Lagrangian multipliers. The scaled augmented Lagrangian functional for the weighted
problem (5.2) at l-th step is,

L(l)
ρ (x,z,s;λ,µ) =

∑
i∈T(l)

φ′(‖x(l)
i ‖p)‖zi‖p+fr(s)+

ρ1

2

(
‖AS(l)x−y−s+λ‖22−‖λ‖

2
2

)
+
ρ2

2

(
‖x−z+µ‖22−‖µ‖

2
2

)
+
β

2
‖x−x(l)‖22.

The scaled ADMM for solving (5.2) is described as follows, where we use t as the
iteration index.

Scaled ADMM: Scaled Alternating Direction Method of Multipliers for
Solving (5.2)

Initialization: Start with x(l,0) =x(l),λ(l,0) =0,µ(l,0) =0.
Iteration: For t= 0,1,. ..,MAXit and a stopping criterion is not met,
(1) Compute

(z(l,t+1),s(l,t+1)) = argmin
z,s
L(l)
ρ (x(l,t),z,s;λ(l,t),µ(l,t)). (5.3)

(2) Compute

x(l,t+1) = argmin
x
L(l)
ρ (x,z(l,t+1),s(l,t+1);λ(l,t),µ(l,t)). (5.4)

(3) Update

λ(l,t+1) =λ(l,t) +AS(l)x(l,t+1)−y−s(l,t+1), (5.5)

µ(l,t+1) =µ(l,t) +x(l,t+1)−z(l,t+1). (5.6)

Output: x(l+1) =x(l,t).

Remark 5.1. There are different choices for the stopping criterions in the scaled
ADMM, like (3.12) and the condition given in Section 6. As explained in Remark 3.3,
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the inner problem is a strongly convex problem and ADMM converges to its global
minimizer. We can check (3.12) by using x(l,t+1) at each iteration in the inner loop. As
long as the inner iteration index t is large enough, (3.12) can be guaranteed. However,
in real computation, we do not check this condition, since it involves subdifferential
calculus of non-convex non-smooth functions, which is time consuming. We instead use
the condition given in Section 6. Experiments in it show that this strategy works quite
well.

5.2. Solving (5.3) and (5.4). The subproblems (5.3) and (5.4) can be efficiently
solved.
(1) The minimization subproblem in (5.3) is equivalent to

min
z,s

∑
i∈S(l)

φ′(‖x(l)
i ‖p)‖zi‖p+fr(s)+

ρ1

2

∥∥∥AS(l)x(l,t)−y−s+λ(l,t)
∥∥∥2

2

+
ρ2

2

∥∥∥x(l,t)−z+µ(l,t)
∥∥∥2

2
,

which can be separated into two independent subproblems.
(a) z-minimization problem:

min
z

∑
i∈S(l)

φ′(‖x(l)
i ‖p)‖zi‖p+

ρ2

2

∥∥∥x(l,t)−z+µ(l,t)
∥∥∥2

2
.

This is a strongly convex problem. There are many well-developed methods to
solve it. In the two special cases with p= 1,2, we actually have explicit solutions
shown in the following. These two cases are also the most interesting cases,
because, as explained in the introduction, p= 1 allows within-group sparsity,
while p>1 does not. For p>1, the typical choice is p= 2, like [22].
Specifically, for p= 1, we have the unique explicit solution by the shrinkage as

z
(l,t+1)
i =S(x

(l,t)
i +µ

(l,t)
i ,φ′(‖x(l)

i ‖)/ρ2),

where

S(y,γ) = sgn(y)�max{|y|−γ,0}.

For p= 2, its minimizer can be obtained by the multi-dimensional shrinkage,
i.e.,

zi(vi) = max{‖vi‖2−φ′(‖x(l)
i ‖2)/ρ2,0}

vi

‖vi‖2
, vi =x

(l,t)
i +µ

(l,t)
i .

(b) s-minimization problem:

min
s
fr(s)+

ρ1

2

∥∥∥AS(l)x(l,t)−y−s+λ(l,t)
∥∥∥2

2
.

Note that it is separable to some 1D minimization problems.
For r= 1, it is the same problem as the z-minimization one for p= 1, and we
omit the details here.
For r= 2, the solution is clearly as follows,

s=αρ1/(1+αρ1)
(
AS(l)x(l,t)−y+λ(l,t)

)
.

For r∈ (1,∞)\{2}, it is strongly convex and can be efficiently solved by some
standard numerical methods.
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For r=∞, the s-minimization problem reads

min
s

1

α
‖s‖∞+

ρ1

2
‖s−v‖22 ,

where v =AS(l)x(l,t)−y+λ(l,t). Let s̃,ṽ be sorted from s,v by the absolute
values of elements of the known vector v in ascending order. Then the s-
problem is equivalent to

min
s̃
‖s̃‖∞+αρ1/2‖s̃− ṽ‖22 . (5.7)

It is strongly convex and its solution can be given by Theorem 5.1 in the next
subsection.

(2) The minimization problem in (5.4) is equivalent to

min
x

ρ1

2

∥∥∥AS(l)x−y−s(l,t+1) +λ(l,t)
∥∥∥2

2
+
ρ2

2

∥∥∥x−z(l,t+1) +µ(l,t)
∥∥∥2

2
+
β

2
‖x−x(l)‖22.

The optimality condition is the following linear system

(ρ1A
T
S(l)AS(l) +(ρ2 +β)I)x=ρ1A

T
S(l)(y+s(l,t+1)−λ(l,t))

+ρ2(z(l,t+1)−µ(l,t))+βx(l).

Since #S(l) becomes smaller and smaller, it can be solved efficiently by the inverse
of a symmetric positive-definite matrix.

Remark 5.2. In fact, when r= 2, it is unnecessary to introduce the variable s. The
scaled ADMM can be simplified in this case.

5.3. The analytical solution for the s-problem with infinity norm.
Theorem 5.1. Suppose that the entries of ṽ∈Rn are in ascending order by |ṽ1|≤
|ṽ2|· ··≤ |ṽn|. Then the minimization problem

min
s̃
‖s̃‖∞+

β

2
‖s̃− ṽ‖22 (5.8)

has the explicit optimal solution s̃∗ by

s̃∗i =

{
ṽi, i< i∗,

sgn(ṽi)ti∗ , i≥ i∗,
(5.9)

where i∗∈{0,1,·· · ,n−1} such that

ti∗ =
1

n− i∗

 n∑
j=i∗+1

|ṽj |−
1

β

 and ti∗ ∈ [|ṽi∗ |,|ṽi∗+1|] (5.10)

with ṽ0 = 0.

Proof. Suppose t=‖s̃‖∞. The minimization problem (5.8) can be rewritten as

min
t
f(t) = t+

β

2

∑
|ṽi|>t

(|ṽi|− t)2. (5.11)
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Clearly, t∈ [0,|ṽn|]. In fact, the objective functional f(t) is a piecewise continuous
function. We have

f(t) = t+
β

2

n∑
j=i+1

(|ṽj |− t)2, t∈ [|ṽi|,|ṽi+1|], i= 0,·· · ,n−1,

and

f ′(t) = 1+β
n∑

j=i+1

(t−|ṽj |), t∈ (|ṽi|,|ṽi+1|), i= 0,·· · ,n−1. (5.12)

We can check that f ′(t) is also continuous at t= |ṽi|. Therefore f(t) is continuously
differentiable.

Moreover, from (5.12), we know that f ′(t) is monotonically increasing. Hence f(t)
is convex and f ′(t) = 0 gives us the optimal solution of (5.11), i.e., there exists i∗∈
{0,1,·· · ,n−1} such that

ti∗ =
1

n− i∗

 n∑
j=i∗+1

|ṽj |−
1

β

 and ti∗ ∈ [|ṽi∗ |,|ṽi∗+1|].

The argument is then straightforward.

6. Numerical experiments
Numerical experiments are reported in this section to show the efficiency of the

InISSAPL-GSO. All of them are implemented on a Laptop (Intel(R) Core(TM) Duo
i5-7200u @2.50GHz 2.70GHz, 4.00GB RAM) using Matlab (License ID:1108635).

We consider the application in group sparse signal recovery. Let xor denote the
original signal, which is generated by randomly splitting its components into g groups.
For each nonzero group member, its entries are randomly generated by an i.i.d. Gaus-
sian, unless otherwise specified. The matrix B∈RM×N is also randomly generated by
an i.i.d. Gaussian. We let A be the row orthogonalized matrix of B by A= (orth(B′))′

in Matlab code. Then the measurement y is obtained by

y =A∗xor+σ∗noise,

where σ is the noise level and noise represents the three popular ones, Laplace noise,
Gaussian noise or uniform noise.

We denote by s the number of nonzero groups of the original signal xor. Then
the sparsity level ks is defined by ks=s/g. Without loss of genrality, we consider the
uniform group partitions which have the same group size n. Define the relative error ε
by

ε=
‖x−xor‖2
‖xor‖2

.

In the numerical experiments, we set M = 256,N = 1024 for the size of problem,
σ= 0.001 for the noise level and n= 8 for the group size, unless otherwise noted. The
model parameter α depends naturally on the noise level. It increases for higher levels
of noise. The α values for σ= 0.001 noise level are shown in Table 6.1. For every
predefined triple (p,q,r) in the problem setting, we use a uniform (β,ρ1,ρ2) for the
algorithmic parameters in all of our experiments; see also Table 6.1.
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(q= 0.1,0.3,0.5,0.7,0.9) α β ρ1 =ρ2

p= 2,r= 2 5 ·10−5‖ATy‖∞ 0.01 1

p= 1,r= 2 5 ·10−7‖ATy‖∞ 1 10

p= 2,r= 1 5 ·10−5‖ATy‖∞ 0.001 1

p= 1,r= 1 5 ·10−7‖ATy‖∞ 0.1 0.5

p= 2,r=∞ 5 ·10−10‖ATy‖∞ 0.1 1

p= 1,r=∞ 5 ·10−12‖ATy‖∞ 1 5

Table 6.1: The parameter settings in the scaled ADMM for the InISSAPL-GSO.

The recovery is recognized as a success when the relative error ε is less than 1%.
The stopping criterion of the inner loop of the scaled ADMM is the same as in [8]. It is
required to satisfy

‖r̂(i+1)‖2≤
√
Mεabs +εrelmax

{
‖Âx̂(i+1)‖2,‖ŷ‖2,‖ŝ(i+1)‖2

}
,

‖ρ̂Â(x̂(l,t+1)− x̂(l,t))‖2≤
√
Nεabs +εrel‖ρ̂λ̂(i+1)‖2,

where

εabs = εrel = 10−3, Â=

A

I

,ρ̂=

ρ1

ρ2

,

ŷ =

y

0

, ŝ=

 s
z

,x̂=

x

x

,λ̂=

λ
µ

, r̂(l,t+1) = Âx̂(l,t+1)− ŷ− ŝ(l,t+1).

The stopping criterion of outer iteration is ‖x(l+1)−x(l)‖2/‖x(l)‖2≤10−3. The maximal
iteration number is set to MAXit=1000 in the inner loop and MAX=100 in the outer
iteration.

6.1. Experiments on the initialization of the InISSAPL-GSO. We re-
port the results of experiments when the different types of starting points are used in
InISSAPL-GSO. The first kind of starting point is c1 with c 6= 0. We choose c= 1 in the
tests. By setting p= 2,q= 0.5,r= 2 for Gaussian noise, we compute the relative errors
ε. The second kind of starting point is randomly generated. We compute the average
relative error ε̄ over 1000 trials for the same problem setting as in the first kind.

The experiments are performed for different signal recovery problems with three
sensing matrices A1,A2,A3 and three sparsity cases s= 8,s= 16,s= 24. The compar-
isons are displayed in Table 6.2.

It shows that the InISSAPL-GSO is effective and not sensitive to the choice of the
starting points, even for the less sparsity case s= 24. Based on this conclusion, we will
use all-one vector as the starting point in the following experiments.
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A1 A2 A3

s= 8 ε 0.0042 0.0036 0.0041

ε̄ 0.0042 0.0036 0.0041

s= 16 ε 0.0059 0.0063 0.0058

ε̄ 0.0059 0.0063 0.0058

s= 24 ε 0.4107 0.0930 0.0084

ε̄ 0.4013 0.1016 0.0095

Table 6.2: Relative errors of the reconstruction by InISSAPL-GSO with two kinds of starting points.
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Fig. 6.1: The comparisons of InISSAPL-GSO on rates of success for different q with p= r= 2.

6.2. Accessible to the diversity of noise. Our algorithm is applicable to
different types of noises. Here we fix the model parameters q= 1/2,p= 2 and use different
r values in the data term for each type of noise to demonstrate the fidelity form derived
from the noise statistics. To clearly see those differences, we increase the noise level
to σ= 0.01. Accordingly, the model parameter α is enlarged (compared to the values
in Table 6.1) and carefully tuned so that each model case achieves its best recovery
error for every type of noise, respectively. Meanwhile, the values for the algorithmic
parameters β,ρ1,ρ2 are the same as in Table 6.1.

For a specific type of noise, we record the relative errors in Table 6.3 when the
fidelity term uses different `r (r= 1,2,∞) norms. It clearly shows that r= 1 is best for
Laplace noise, r= 2 is best for Gaussian noise and r=∞ is best for uniform noise. We
will use them appropriately in the following experiments.

6.3. Choice of p and q. We numerically discuss the effect of the model
parameters p,q in the InISSAPL-GSO. Firstly, letting p= r= 2, we test the algorithm
when q varies among {0.1,0.3,0.5,0.7,0.9}. The rates of success versus the sparsity level
are illustrated in Figure 6.1. It shows that the algorithm performs best when q= 1/2.
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Laplace noise ε(r= 1) ε(r= 2) ε(r=∞)

s= 4 0.0227 0.0612 0.0794

s= 8 0.0308 0.0502 0.0658

s= 12 0.0332 0.0427 0.0582

s= 16 0.0329 0.0455 0.0584

Gaussian noise ε(r= 1) ε(r= 2) ε(r=∞)

s= 4 0.0656 0.0362 0.0679

s= 8 0.0458 0.0267 0.0448

s= 12 0.0395 0.0216 0.0396

s= 16 0.0557 0.0334 0.0556

uniform noise ε(r= 1) ε(r= 2) ε(r=∞)

s= 4 0.0401 0.0387 0.0303

s= 8 0.0367 0.0387 0.0296

s= 12 0.0279 0.0332 0.0230

s= 16 0.0411 0.0517 0.0292

Table 6.3: Relative errors ε of InISSAPL-GSO over r for Laplace noise (top), Gaussian noise
(middle), uniform noise (bottom) with p= 2,q= 0.5,σ= 0.01.

This fact is consistent with the numerical results in [22, 39]. Hence, we always choose
q= 1/2 in the experiments.

Secondly, we examine the algorithm on commonly used p= 1 and p= 2 for the three
types of noises. We compare the rates of success versus the sparsity level in Figure
6.2. It can be observed that the rates of success have no essential numerical difference
between p= 1 and p= 2 for the different types of noises. The reason is that there is
zero probability to get zero entries in the nonzero group member generated by the i.i.d.
Gaussian.

6.4. Sensitivity analysis. In this subsection, we study the sensitivity of our
algorithm on group size n. The rates of success versus the sparsity level are illustrated
in Figure 6.3 for group size n= 4,8,16,32. It shows that the larger the group size, the
higher the rate of success. This fact is true because more information is included for
larger group size.

6.5. Comparison with some state-of-the-art algorithms. We compare
the InISSAPL-GSO with others in the existing works for the group sparse model.
The algorithms are typically PGM-GSO [22] and the convex optimization group
lasso [8]. In the code of PGM-GSO algorithm (available online https://CRAN.R-
project.org/package=GSparO), there is a predefined group sparsity number s for reg-
ularization parameter update. Since it is hard to know this exact s beforehand in
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(a) Laplace noise(r= 1,q= 0.5)
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(b) Gaussian noise(r= 2,q= 0.5)
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Fig. 6.2: Comparisons of InISSAPL-GSO on rates of success for Laplace noise (a), Gaussian noise
(b) and uniform noise (c) between p= 1 and p= 2.

applications, we also use an estimated value se (close to the true value s) with se=s+2
in the experiments for more tests. The PGM-GSO with estimated se is named e-PGM-
GSO. The comparisons on rates of success are displayed in Figure 6.4 by setting the
parameters p= 2,q= 1/2,r= 2,n= 8 for Gaussian noise. We can see that the rates of
success of PGM-GSO (with exact s of the number of nonzero groups of the ground truth)
and our InISSAPL-GSO are similar, which are considerably higher than e-PGM-GSO
and group lasso. Note that our InISSAPL-GSO does not require to input any number
of the nonzero groups.

For the competitive algorithms, InISSAPL-GSO, PGM-GSO, and e-PGM-GSO, we
also compare the running time and relative errors for different sized problems in Table
6.4. It is illustrated again that, the recovery accuracies of InISSAPL-GSO and PGM-
GSO are similar, and higher than e-PGM-GSO. Meanwhile, InISSAPL-GSO is more
efficient than PGM-GSOers, especially for larger scale problems. The reason is that the
computation is implemented only on the shrinking group support set.
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(a) Laplace noise with p= 1
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(b) Laplace noise with p= 2
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(c) Gaussian noise with p= 1
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(d) Gaussian noise with p= 2
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(e) uniform noise with p= 1

Sparsity Level(%)

R
a

te
 o

f 
S

u
c

c
e

s
s

(%
)

0 5 10 15 20 25 30
0

20

40

60

80

100

n = 4
n = 8
n = 16

n = 32

(f) uniform noise with p= 2

Fig. 6.3: Sensitivity analysis of InISSAPL-GSO over group size for Laplace noise (a) and (b),
Gaussian noise (c) and (d), uniform noise (e) and (f).
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Fig. 6.4: Comparisons on rate of success for InISSAPL-GSO, PGM-GSO (with true value of the
number of nonzero groups s), e-PGM-GSO (with estimated value of the number of nonzero groups
se = s+2) and Group Lasso algorithms.

M = 256

N = 1024 PGM-GSO e-PGM-GSO InISSAPL-GSO

s Time(s) ε Time(s) ε Time(s) ε

4 0.56 0.0024 0.59 0.0031 0.46 0.0023

8 0.58 0.0025 0.59 0.0033 0.49 0.0027

12 0.58 0.0030 0.60 0.0032 0.50 0.0030

16 0.59 0.0033 0.81 0.0040 0.52 0.0031

M = 1024

N = 4096 PGM-GSO e-PGM-GSO InISSAPL-GSO

s Time(s) ε Time(s) ε Time(s) ε

16 17.08 0.0022 17.75 0.0023 4.39 0.0021

32 17.89 0.0020 17.76 0.0024 5.02 0.0019

48 18.10 0.0025 18.04 0.0028 5.44 0.0025

64 18.95 0.0027 18.36 0.0029 7.68 0.0028

Table 6.4: Comparisons on running time and relative errors ε for PGM-GSO, e-PGM-GSO,
InISSAPL-GSO algorithms for two different sized problems. It can be seen that the advantages of
our algorithm become greater for larger scale problems.
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(e) uniform noise with p= 1,r=∞
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Fig. 6.5: Signal recovery by InISSAPL-GSO in the case of gs = 2, i.e., the 25% intra-group sparsity
level.

6.6. Experiments on the intra-group sparse signal recovery. It is natural
that the signal may also be sparse within some groups. We do the experiments on the
signal recovery of this situation. Let the number of nonzero groups s= 28 and the group
size n= 8. In each group, the number of nonzero elements is denoted by gs. We consider
gs= 2, 4 in these tests. Figure 6.5 and Figure 6.6 display the recovery results with p= 1
and p= 2 for different types of noises. We can observe that it works well with p= 1
while it fails with p= 2.
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Fig. 6.6: Signal recovery by InISSAPL-GSO in the case of gs = 4, i.e., the 50% intra-group sparsity
level.

7. Conclusions

The group sparse `p,q-`r model is very useful in many applications. The InISSAPL-
GSO provides a unified framework to deal with all the cases of parameters p≥1,0<q<
1,1≤ r≤∞. When proving the global convergence of algorithm with KL property, we
develop a lower bound theory for the nonzero groups of the iterative sequence to avoid
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the non-Lipschitz property and construct a sophisticated subgradient. Along iterations,
the unknowns become fewer and fewer and can be calculated by the scaled ADMM in the
inner loop. Therefore it is specially efficient for large-scale problems. Lots of numerical
experiments and comparisons demonstrate the good performance of our algorithm.

In our future work, the model and algorithm can be extended to other applica-
tions with overlapping groups structure such as the gene expression data and the patch
patterns in image processing.

Acknowledgements. We greatly appreciate helpful discussions with Xue Feng,
and thank the authors of [22] for making their code available online. This work
is supported in part by the Key Laboratory for Medical Data Analysis and Sta-
tistical Research of Tianjin (C. Wu,Y. Xue), NSFTJ-17JCYBJC15800 (Y. Xue),
NSFC 11871035 (C. Wu), NSFC 11531013 (C. Wu) and Recruitment Program of Global
Young Experts (C. Wu).

Appendix A. Subdifferential. We firstly recall the basic definitions of subdif-
ferential and horizon cone from the reference [35].

Definition A.1 (Subdifferentials). Let h :RN→R∪{+∞} be a proper, lower semi-
continuous function.

(1) The regular subdifferential of h at x̄∈domh={x∈RN :h(x)<+∞} is defined as

∂̂h(x̄) :=

{
v∈RN : liminf

x→x̄
x6=x̄

h(x)−h(x̄)−〈v,x− x̄〉
‖x− x̄‖

≥0

}
;

(2) The (limiting) subdifferential of h at x̄∈domh is defined as

∂h(x̄) :=
{

v∈RN :∃x(k)→ x̄,h(x(k))→h(x̄),v(k)∈ ∂̂h(x(k)),v(k)→v
}

;

(3) The horizon subdifferential of h at x̄∈domh is defined as

∂∞h(x̄)

:=
{

v∈RN :∃x(k)→ x̄,h(x(k))→h(x̄),v(k)∈ ∂̂h(x(k)),λ(k)v(k)→vfor some sequence λ(k)↘0
}
.

Remark A.1. As summarized in [26], the following properties hold:

(1) For any x̄∈domh, ∂̂h(x̄)⊆∂h(x̄). If h is continuously differentiable at x̄, then

∂̂h(x̄) =∂h(x̄) ={∇h(x̄)};
(2) For any x̄∈domh, the subdifferential set ∂h(x̄) is closed, i.e,{

v∈RN :∃x(k)→ x̄,h(x(k))→h(x̄),v(k)∈∂h(x(k)),v(k)→v
}
⊂∂h(x̄).

Definition A.2 (Horizon cone). For a set C⊂RN , the horizon cone is the closed
cone C∞ given by

C∞=

{v | ∃ v(k)∈C,λ(k)↘0,λ(k)v(k)→v} when C 6=∅,

{0} when C=∅.

Remark A.2. A set C⊂RN is bounded if and only if its horizon cone is just the zero
cone: C∞={0}.

Appendix B. KL property and convergence theorem. The Kurdyka-
 Lojasiewicz (KL) property [1,2,7,23,27] is a useful tool for establishing the convergence
of bounded sequence.
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Definition B.1. A proper function h is said to have the Kurdyka- Lojasiewicz prop-
erty at x̄∈dom∂h={x∈RN :∂h(x) 6=∅} if there exist ζ ∈ (0,+∞], a neighborhood U of
x̄, and a continuous concave function ϕ : [0,ζ)→R+ such that

(1) ϕ(0) = 0;

(2) ϕ(0) is C1 on (0,ζ);

(3) for all s∈ (0,ζ), ϕ′(s)>0;

(4) for all x∈U satisfying h(x̄)<h(x)<h(x̄)+ζ, the Kurdyka- Lojasiewicz inequality
holds:

ϕ′(h(x)−h(x̄))dist(0,∂h(x))≥1.

where dist(0,∂h(x)) = min{‖v‖ :v∈∂h(x)},

A proper, lower semicontinuous function h satisfying the KL property at all points
in dom∂h is called a KL function. One can refer to [2, 7] for examples of KL functions
and the application of KL property in optimization theory.

Recently, the KL property has been extended to the definable functions in an o-
minimal structure for the nonsmooth version; see [1,6,18,23] and the references therein.
The following definitions and Theorem B.1 are from them.

Definition B.2. Let O={On}n∈N be such that each On is a collection of subsets of
Rn. The family O is an o-minimal structure over R, if it satisfies the following axioms:

(1) Each On is a Boolean algebra. Namely ∅∈On and for each A,B∈On, A∪B,A∩B,
and Rn\A belong to On.

(2) For all A∈On, A×R and R×A belong to On+1.

(3) For all A∈On+1,
∏

(A) :={(x1,·· · ,xn)∈Rn|(x1,·· · ,xn,xn+1)∈A} belongs to On.

(4) For all i 6= j in {1,2,·· · ,n}, {(x1,·· · ,xn)∈Rn|xi=xj} belong to On.

(5) The set {(x1,x2)∈R2|x1<x2} belongs to O2.

(6) The elements of O1 are exactly finite unions of intervals.

Definition B.3. Given an o-minimal structure O over R. A set C is said to be
definable (in O) if C belongs to O. A function f :Rn→R∪{+∞} is said to be definable
in O if its graph belongs to On+1.

Then the definable function has the following property:

• finite sums of definable functions are definable;

• compositions of definable functions are definable;

• function of f(y) = supx∈C g(x,y) is definable if g(x,y) and the set C are defin-
able.

As an example [1, 18], there exists an o-minimal structure containing the graph of
xr :R→R,r∈R, which is given by

a 7→

{
ar, a>0

0, a≤0.
(B.1)

Theorem B.1. Any proper lower semicontinuous function f :Rn→R∪{+∞} that
is definable in an o-minimal structure O has the Kurdyka- Lojasiewicz property at each
point of dom∂f .
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From this theorem and Definition B.3, the objective function E in this paper is the
compositions of definable functions. So it satisfies the KL property.

The following theorem gives a general and important theoretical framework for the
sequence convergence.

Theorem B.2 ( [2]). Let f :Rn→R∪{+∞} be a proper lower semicontinous function.
a and b are fixed positive constants. Consider a sequence {x(l)} that satisfies

(H1). (Sufficient decrease condition). For each l,

f(x(l+1))+a‖x(l+1)−x(l)‖2≤f(x(l));

(H2). (Relative error condition). For each l, there exists w(l+1)∈∂f(x(l+1)) such
that

‖w(l+1)‖≤ b‖x(l+1)−x(l)‖;

(H3). (Continuity condition). There exists a subsequence {x(lk)} and x̃ such that

x(lk)→ x̃ and f(x(lk))→f(x̃), as k→∞.

If f has the KL property at the cluster point x̃ specified in (H3), then the sequence
{x(l)} converges to x̄= x̃ as l→∞ and x̄ is a critical point.
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