
COMMUN. MATH. SCI. c© 2020 International Press

Vol. 18, No. 2, pp. 535–570

EMERGENT BEHAVIORS OF THE DISCRETE-TIME KURAMOTO
MODEL FOR GENERIC INITIAL CONFIGURATION∗

XIONGTAO ZHANG† AND TINGTING ZHU‡

Abstract. In this paper, we will study the emergent dynamics of the discrete Kuramoto model for
generic initial data. This is an extension of the previous work [Ha et al., J. Math. Phys., 60(5):051508,
2019], in which the initial configurations are supposed to be within a half circle. More precisely, we
will provide the theory of discrete gradient flow which can be applied to general Euler iteration scheme.
Therefore, as a direct application, we conclude the emergence of synchronization of discrete Kuramoto
model. Moreover, we obtain for small mesh size that, the synchronization will occur exponentially fast
after some steps for initial data in non-bipolar set and sufficiently large coupling strength.
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1. Introduction
Collective dynamics of complex systems exist all around the world, in which self-

propelled individuals organize themselves into a particular motion through simple rules.
For instance, the aggregation of bacteria, flocking of birds, swarming of fish, and even
the motion of galaxy can be considered as various types of complex systems [2, 7, 8,
17, 32, 39, 45, 47, 53–56]. To model such collective dynamics, several phenomenological
models were proposed and have been studied analytically and numerically [4–6, 9, 11,
14–19, 23, 25, 30, 33, 35–37, 41, 42, 48]. Recently, due to the relation with engineering
applications such as control of robots, sensor networks and formation of unmanned
aerial vehicles etc., the collective behaviors in complex systems have been extensively
studied [40, 43–46]. In this paper, we will consider the well-known Kuramoto model
describing the motion of oscillators on the unit circle S1. The dynamics of Kuramoto
model are given by the following ordinary differential equations:

θ̇i=Ωi+
K

N

N∑
j=1

sin(θj−θi). (1.1)

where θi∈R and Ωi are the phase and a natural frequency of i-th oscillator, respectively.
The Kuramoto model (1.1) has been extensively studied in many papers, to name a few,
synchronization and stability [1,10,12,21,22,26,28,31,32,34,38,49], mean-field limit and
corresponding neutral stability in kinetic Kuramoto model [3,29,50,51], Landau damp-
ing around incoherent state and partial phase locked state [20, 24] and the sensitivity
analysis [27].

However, the continuous-time model is an ideal one and every time when we per-
form numerical simulations for the continuous-time model, we can only use discrete-time
model. Thus, it is necessary to study the corresponding discrete-time model. To dis-
cretize the continuous-time model (1.1), we follow [28] to choose the forward Euler
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method. More precisely, for fixed time-step size h :=Δt>0, let θhi (n) be the phase for
the i-th agent evaluated at the n-th step. Then, for the original Kuramoto model, the
dynamics of θhi (n) is governed by the following discrete system:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
θhi (n+1)=θhi (n)+hΩi+

hK

N

N∑
j=1

sin(θhj (n)−θhi (n)), n=0,1, · · · , 1≤ i≤N,

θhi (0)=θ0i ,

N∑
i=1

θ0i =0.

(1.2)

The discrete-time model has an advantage that, the time-asymptotic behavior of a
non-all-to-all and non-symmetric model can be obtained by studying a corresponding
all-to-all symmetric system after several steps of iteration, while this kind of analysis
cannot be directly applied to the continuous model [8,13,41,42,48]. Therefore, in order
to understand the large-time behavior of Kuramoto oscillators, it’s very important to
study the discrete Kuramoto model under symmetric topology, i.e. (1.2). However,
there are two main difficulties while dealing with the discrete Kuramoto model (1.2).
First, we cannot follow the analysis on continuous model to construct the differential
equation of diameter, because of the existence of error along the iteration. Thus we have
to carefully estimate the higher order error and yield the time-asymptotic behavior.
Secondly, since the half circle is an invariant set for large coupling strength and, the
authors in [28] studied the identical model in half circle and non-identical model in a
quarter, respectively. However, the half circle is no more an invariant set for generic
initial data, thus we have to develop some new technique to overcome this kind of
difficulty. In [31], the authors applied the properties of gradient flow to prove for
continuous-time model that, frequency synchronization will occur for generic initial
data, provided the coupling strength is sufficiently large. Therefore, it is very natural
to ask whether similar results can be rigorously proved for discrete-time model. More
precisely, we address the following questions in the present paper:

• Question A: (Discrete gradient flow) Since the right-hand side of the itera-
tion scheme (1.2) preserves the gradient structure, is it possible to construct
the equilibrium state and the corresponding convergence as in continuous-time
model?

• Question B: (Synchronization) Can we combine the discrete gradient flow struc-
ture and higher order estimates on iteration errors to verify the emergence of
the synchronization for generic initial data, and can we obtain the asymptotic
convergence rate?

Our main results in the present paper are three-fold. First, we will estimate the
higher order error in the general discrete gradient flow and prove the asymptotic con-
vergence of the discrete gradient flow. Different from the continuous version, we have to
construct a convex combination of two adjacent steps to control the error from the iter-
ation, and thus yield the desired result (see Theorem 3.1). Secondly, based on the good
approximation between continuous-time model and discrete-time model, we will study
the identical discrete-time Kuramoto model and show, for almost all initial data, the
exponential convergence to either phase synchronization state or bipolar state. More-
over, we will construct all possible equilibrium states for identical discrete Kuramoto
model, which is the same as the continuous model (see Theorem 4.1). Third, we will
follow the similar idea in [31] and apply the discrete gradient flow theory to prove the
emergence of synchronization for non-identical discrete Kuramoto model (see Theorem
5.1).



XIONGTAO ZHANG AND TINGTING ZHU 537

The rest of the present paper is organized as follows. In Section 2, we will review
some well known preliminary results such as the asymptotic behavior of the continu-
ous Kuramoto model, the total error estimates of the Euler scheme, the �Lojasiewicz
inequality and the corresponding convergence result of gradient flow, etc. In Section
3, we will provide the theory of discrete gradient flow and prove it by higher order of
error estimates. In Section 4, we will construct all the possible equilibrium states of the
identical discrete Kuramoto model and show the exponential convergence of almost all
initial data to one of the equilibrium states. In Section 5, based on the results in the
previous sections, we will prove the emergence of the synchronization of discrete non-
identical Kuramoto model for almost all initial data, provided the coupling strength is
suffciently large. Finally, Section 6 will be devoted to a brief summary.

2. Preliminaries
In this section, we will review some previous results for the continuous Kuramoto

model (1.1) in both identical and nonidentical cases. Then, we will introduce some well
known lemmas such as total error for discrete Euler scheme and asymptotic behavior of
gradient flow, which will be mainly used in the later sections.

2.1. Identical Kuramoto model. In this part, we will review some previous
results for identical Kuramoto model. First, we introduce the definition of order pa-
rameter which has been widely used in the study of Kuramoto model. More precisely,
for a configuration Θ=Θ(t)=(θ1(t),θ2(t), · · · ,θN (t)) governed by (1.1), the Kuramoto
order parameters are defined by the following relation:

reiφ :=
1

N

N∑
k=1

eiθk , θj(0)=θ0j , r0 :=

∣∣∣∣∣∣
1

N

N∑
j=1

eiθ
0
j

∣∣∣∣∣∣ . (2.1)

For identical oscillators, if we add all N equations together, we will find the mean
velocity to be equal to the common natural velocity Ωi=Ω, i.e.

1

N

N∑
i=1

θ̇i=
1

N

N∑
i=1

Ωi=Ω.

Then we let θ̄i=θi−Ωt and θ̄i will satisfy the Kuramoto model with zero natural veloc-
ity. Therefore, without loss of generality, we may assume Ωi=0 for all i. Then, we first
recall the result in [3, 31] which provided the possible asymptotic states for identical
Kuramoto oscillators.

Lemma 2.1 ( [3]). Let Θ=(θ1, . . . ,θN ) be a solution to the identical Kuramoto model

(1.1) with initial phases Θ0 satisfying 1
N

∑N
j=1θ

0
j =0 and r0>0, where r0 is defined in

(2.1). Then, we have

lim
t→∞ |θj(t)−φ(t)|=0 or π mod 2π, for all j=1, . . . ,N.

Lemma 2.2 ( [3, 31]). Let Θ=(θ1, . . . ,θN ) be a solution to the identical continuous
Kuramoto model (1.1) with natural frequency Ωi and initial configuration Θ0 satisfying

Ωi=0,
1

N

N∑
j=1

θ0j =0, θ0i �=θ0j mod 2π, i �= j, r0>0, (2.2)
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where r0 is defined in (2.1). Moreover, we define the synchronization set Is and bipolar
set Ib as follows,

Is :={j : lim
t→∞ |θj(t)−φ(t)|=0 mod 2π}, Ib :={j : lim

t→∞ |θj(t)−φ(t)|=π mod 2π}.

Then, we have |Ib|≤1, where |A| is the cardinality of the set A.

Remark 2.1. In the proof of Lemma 2.1 in [3], the authors constructed the time-
asymptotic limits of φ(t) and θj(t) (j=1, . . . ,N), which are given as follows,

lim
t→+∞φ(t)=− 1

N

N∑
j=1

kjπ :=φ∗, lim
t→+∞θj(t)=kjπ+φ∗, kj ∈Z.

Moreover, the condition θ0i �=θ0j mod 2π means the initial data are chosen in the set

R
N \
(
∪i �=j {Θ :θi=θj mod 2π}∪{Θ : r0=0}

)
.

As the sets {Θ :θi=θj mod 2π} and {Θ : r0=0} are all lower dimensional manifolds in
R

N , we immediately conclude that the sets ∪i �=j{Θ :θi=θj mod 2π} and {Θ : r0=0} are
measure zero in R

N . Therefore, Lemma 2.2 holds for almost all initial data Θ0∈RN .

2.2. Nonidentical Kuramoto model. In this part, we will review some results
for nonidentical Kuramoto oscillators. Actually, there are many works related to the
nonidentical Kuramoto model, but we will mainly focus on the asymptotic properties
of oscillators on half circle and whole circle, respectively.

Lemma 2.3 ( [10]). Let Θ=Θ(t) be the global smooth solution to the continuous
Kuramoto model (1.1) subject to initial data θi(0)=θ0i and satisfying

0<D(Θ0)<π, D(Ω)>0, K >Ke,

where Ke=
D(Ω)

sinD(Θ0)
. Then there exists t0>0 such that

D(Θ(t))≤arcsin(sinD(Θ0)) for t≥ t0.

Lemma 2.4 ( [31]). Suppose that the initial configuration Θ0 and the natural frequen-
cies Ωi satisfy the conditions below⎧⎪⎪⎪⎨

⎪⎪⎪⎩
1

N

N∑
j=1

Ωj =0,
1

N

N∑
j=1

θ0j =0, θ0j ∈ [−π,π), 1≤ j≤N,

r0>0, θ0j �=θ0k, 1≤ j �=k≤N, max
1≤j≤N

|Ωj |<∞.

(2.3)

Then there exists a positive constant K∞>0 such that, for sufficiently large coupling
strength K>K∞, there exists an asymptotic phase-locked state Θ∞ satisfying

lim
t→∞ ||Θ(t)−Θ∞||∞=0,

where the norm || · ||∞ is the standard l∞-norm in R
N .

Remark 2.2. Actually, in the original papers [10, 31], the authors constructed more
detailed structures in the proofs of Lemma 2.3 and Lemma 2.4.
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(1) The authors in [10] actually constructed a positive constant D∞∈ (0, π2 ), such that
D(Θ(t))<D∞ for t≥ t0.

(2) For initial data satisfying (2.3) and sufficiently large coupling strength K≥K∞,
the authors in [31] actually constructed positive constants N0, l and a time T∗ such
that,

N0∈Z+∩
(
N

2
,N

]
, l∈

(
0,2arccos

N−N0

N0

)
, max

1≤j,k≤N0

|θj(T∗)−θk(T∗)|<l.

2.3. Preliminary lemmas. In this part, we will provide some well known clas-
sical results which we will frequently use in the later sections. We first review the
classical numerical analysis for the Euler scheme. Consider Cauchy problems for the
first-order autonomous ODE system and its corresponding discretized system obtained
by the one-step forward Euler scheme with the same initial data: for T ∈ (0,∞),

{
dy
dt =f(y), 0≤ t≤T,

y(0)=y0,
and

{
yn+1=yn+hf(yn), n≥0,

y0=y(0).
(2.4)

Then, a standard convergence result from the discretized system to the continuous
system in (2.4) can be summarized in the following proposition. We first introduce
“truncation error” Eh1 (n) and “global error” Eh2 (n) as follows.

Eh1 (n) :=
∥∥∥dy
dt

∣∣∣
t=nh

− yn+1−yn
h

∥∥∥, Eh2 (n) :=‖y(nh)−yn‖.

Lemma 2.5. [52] Let T,R∈ (0,∞) be positive constants, and suppose that the continuous
and discrete system satisfy

(1) The forcing function f is Lipschitz continuous on the open set D with Lipschitz
constant Lf :

D :={(t,y) : 0≤ t≤T, ‖y−y0‖≤R}, sup
y1 �=y2,y1,y2∈D

|f(y2)−f(y1)|
|y2−y1| =Lf <∞.

(2) The discrete values yn obtained by the discrete system in (2.4) satisfy

‖yn−y0‖≤R, for all n=0,1, · · · ,
[T
h

]
.

Then, we have the following consistency and convergence results.

(1) (Consistency): Maximal truncation error tends to zero, as time-step tends to zero:

lim
h→0

max
0≤n≤[T/h]

Eh1 (n)=0.

(2) (Convergence): The global error can be controlled by the truncation error, more
precisely,

Eh2 (n)≤
max

0≤n≤[T/h]
Eh1 (n)

Lf

(
eLfnh−1

)
, 0≤n≤ [T/h]. (2.5)
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Remark 2.3. Note that the term eLfnh−1 in the right-hand side of (2.5) grows
exponentially. Thus, the convergence result in Lemma 2.5 is valid only for a finite-time
interval.

Next, we introduce some properties of the gradient flow system and a simple inequality
of concave functions. The gradient flow structure is quite important to the emergence of
synchronization in Kuramoto model, while the sub-additive property of concave func-
tions will be frequently used in the later sections.

Lemma 2.6 ( [21]). (�Lojasiewicz inequality) Suppose that f :D⊆R
n→R is analytic

in the open set D. Let x̄ be a critical point of f , i.e., ∇f(x̄)=0. Then there exist r>0,
c>0, and η∈ [ 12 ,1) such that

‖∇f(x)‖≥ c|f(x)−f(x̄)|η, ∀x∈B(x̄,r).

Lemma 2.7 ( [21]). Suppose f(x) is an analytic function. Let x(t) be uniformly
bounded and follow a gradient flow with f(x) to be the potential, i.e., ẋ=−∇xf(x).
Then x(t) converges to a limit x∞.

Lemma 2.8. Let f(x) be a concave function defined on [0,+∞) and f(0)≥0, then f
is sub-additive on [0,+∞) i.e.

f(a)+f(b)≥f(a+b), a,b∈ [0,+∞).

Proof. Due to the fact that f(x) is concave and f(0)≥0, we immediately obtain
the following inequality

f(tx)=f(tx+(1− t) ·0)≥ tf(x)+(1− t)f(0)≥ tf(x), x∈ (0,+∞), 0≤ t≤1.

Therefore, for a,b∈ [0,+∞), we have

f(a)+f(b)=f

(
a(a+b)

a+b

)
+f

(
(a+b)b

a+b

)
≥ a

a+b
f(a+b)+

b

a+b
f(a+b)=f(a+b).

3. Discrete gradient flow
In this section, we will introduce an asymptotic stability for the discrete gradient

flow. It is well known that the gradient flow structure of dynamical system is very
important because it will generally lead to the stability of the system. For instance, the
author applied Lemma 2.6 and Lemma 2.7 in [21] to show the emergence of synchro-
nization of Kuramoto oscillators. However, the Lemma 2.7 cannot be directly applied
to the discrete model. Therefore, it is very important to establish a discrete version of
such kind of stability theory from the discrete gradient flow structure.

Theorem 3.1. Let x(n)=(x1(n),x2(n), . . . ,xN (n)) be a map from N to a convex
domain U and f(x) is analytic in this domain U . Moreover, we assume x(n) are
uniformly bounded and the dynamic of x(n) follows a gradient flow in discrete sense
with potential f(x), i.e.

x(n+1)−x(n)=−∇xf(x(n))h, (3.1)

where h is the mesh size. Then for sufficiently small h, there exists a x∞ such that

lim
n→+∞x(n)=x∞, ∇xf(x

∞)=0.
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Proof.
• (Step 1.) In the first step, we construct the limit x∞. Since x(n) is uniformly bounded
in U , we immediately obtain that there exists a subsequence x(nk) and x∞ such that

lim
k→+∞

x(nk)=x∞. (3.2)

In the following, we will prove that this subsequence limit is actually the limit of the
whole sequence.

• (Step 2.) In the second step, we show that x∞ is a critical point. As x(n) is uniformly
bounded and the domain U is convex, we can find a convex compact set D⊂U such that
x(n)∈D for all n. Then, as f(x) is analytic, the second-order derivatives of f(x) can
reach the maximum and minimum value in D. More precisely, there exists a positive
constant C such that

|∂xi∂xjf(x)|≤C, x∈D, C=max
i,j

max
x∈D

|∂xi∂xjf(x)|. (3.3)

Then let H(x) be the Hessian matrix at x, we apply the Taylor expansion to imply that
there exists a ξ(n) such that

f(x(n+1))−f(x(n))

=∇xf(x(n))(x(n+1)−x(n))+
1

2
(x(n+1)−x(n))H(ξ(n))(x(n+1)−x(n)). (3.4)

As D is convex, we know that ξ(n) also belongs to D and thus we can apply (3.3)
to conclude that |∂xi∂xjf(ξ(n))|≤C. Therefore, we combine (3.1), (3.3) and (3.4) to
obtain

f(x(n+1))−f(x(n))≤−|∇xf(x(n))|2h+NCh2

2
|∇xf(x(n))|2. (3.5)

Without loss of generality, we can again denote NC by constant C. Then for sufficiently
small h such that h< 2

C , (3.5) implies that

f(x(n+1))−f(x(n))≤−|∇xf(x(n))|2h(1− Ch

2
)<0. (3.6)

The inequality (3.6) shows that f(x(n)) is monotonic-decreasing. On the other hand,
as x(n) is uniformly bounded in D and f(x) is analytic in D, we obtain that f(x(n)) is
uniformly bounded. Therefore we can find a finite limit f∞ such that

| lim
n→+∞f(x(n))|= |f∞|<+∞. (3.7)

Thus, combining (3.7) and the continuity of f , we immediately obtain that

f(x∞)= lim
k→+∞

f(x(nk))=f∞.

Moreover, we add up the inequality (3.6) to obtain that

f(x(0))− lim
n→+∞f(x(n))=−

+∞∑
n=0

(f(x(n+1))−f(x(n)))≥
+∞∑
n=0

|∇xf(x(n))|2h(1− Ch

2
).
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As both f(x(0)) and limn→+∞f(x(n)) are finite and h is sufficiently small, the finiteness
of the sum of sequence |∇xf(x(n))|2 implies

lim
n→+∞ |∇xf(x(n))|=0.

Combining above formula, (3.2) and the continuity of |∇xf(x(n))|, we can conclude
that

|∇xf(x
∞)|= lim

k→+∞
|∇xf(x(nk))|=0. (3.8)

• (Step 3.) In this step, we connect the discrete-time profile to the continuous-time
profile. According to Lemma 2.6, there exist r>0, q>0, and η∈ [ 12 ,1) such that

‖∇f(x)‖≥ q|f(x)−f(x∞)|η, ∀x∈B(x∞,r). (3.9)

On the other hand, as f(x∞) is finite, without loss of generality, we assume f(x∞)=0.
Then we let

f̄(t)=
t−nh

h
f(x(n+1))+

(n+1)h− t

h
f(x(n)), nh≤ t≤ (n+1)h. (3.10)

Due to the monotonic decrease of f(x(n)), it is obvious that f̄(t) is Lipschitz continuous
with respect to t and monotonically decreasing to f(x∞)=0. More precisely, we combine
(3.5) and (3.10) and sufficiently small h to have

d

dt
f̄(t)=

f(x(n+1))−f(x(n))

h
≤−|∇xf(x(n))|2(1− Ch

2
)<0, lim

t→+∞ f̄(t)=f(x∞)=0.

(3.11)
Next we set g(t)=(f̄(t))1−η where η is from (3.9). From (3.10) and (3.11), we have
lim

t→+∞g(t)=0 and

d

dt
g(t)=(1−η)(f̄(t))−η d

dt
f̄(t)≤−(1−η)(f̄(t))−η|∇xf(x(n))|2(1− Ch

2
)<0. (3.12)

Then we apply (3.9), (3.10), (3.12) and the decreasing of f(x(n)) to have an estimate
of |∇xf(x(n))| in the interval nh<t< (n+1)h as follows

|∇xf(x(n))|

≤− d

dt
g(t)

(
t−nh

h f(x(n+1))+ (n+1)h−t
h f(x(n))

)η
(1−η)|∇xf(x(n))|(1− Ch

2 )

≤− d

dt
g(t)

[f(x(n))]
η

(1−η)|∇xf(x(n))|(1− Ch
2 )

. (3.13)

• (Step 4.) In this step, we will show that {x(n)} is a Cauchy sequence by contradiction,
after doing this we will obtain that lim

n→+∞x(n)=x∞. Now suppose not, then {x(n)}
does not converge to x∞. That is, there exists a positive constant l such that, for any
M there exists an integer nM ≥M satisfying

|x(nM )−x∞|≥ l. (3.14)
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Without loss of generality, we can assume that l is sufficiently small and l≤ r where r
is in (3.9). Therefore, the �Lojasiewicz inequality in (3.9) still holds in B(x∞,l). On the
other hand, due to (3.2), (3.7) and (3.11), we can find a sufficiently large n0 such that

|x(n0)−x∞|< l

2
, |g(t)|< lq(1−η)(1− Ch

2 )

4
, t≥n0h. (3.15)

Moreover, according to (3.14), we can find n∗ such that

|x(n∗)−x∞|≥ l, n∗>n0. (3.16)

Now we consider the difference between x(n∗) and x(n0). In fact, we apply (3.1) to
obtain

x(n∗)−x(n0)=

n∗−1∑
i=n0

(x(i+1)−x(i))

=

n∗−1∑
i=n0

(−∇xf(x(i))h)=

n∗−1∑
i=n0

∫ (i+1)h

ih

(−∇xf(x(i)))dt. (3.17)

Next, we combine (3.9), (3.13), (3.15) and (3.17) to obtain that

|x(n∗)−x(n0)|

≤
n∗−1∑
i=n0

∫ (i+1)h

ih

(
− d

dt
g(t)

[f(x(i))]η

(1−η)|∇xf(x(i))|(1− Ch
2 )

)
dt

≤
n∗−1∑
i=n0

∫ (i+1)h

ih

(
− d

dt
g(t)

1

(1−η)q(1− Ch
2 )

)
dt

=

n∗−1∑
i=n0

(g(ih)−g((i+1)h)

(1−η)q(1− Ch
2 )

)

=
g(n0h)−g(n∗h)
(1−η)q(1− Ch

2 )
≤ l

2
. (3.18)

Combining (3.15) and (3.18), we obtain that

|x(n∗)−x∞|≤ |x(n∗)−x(n0)|+ |x(n0)−x∞|<l, (3.19)

which is obviously contradictory to (3.16). Therefore, we conclude that lim
n→+∞x(n)=

x∞.

Remark 3.1. The identical and non-identical Kuramoto model can be treated as a
gradient flow on the circle and real line, respectively. As circle is a compact manifold, we
can directly apply Theorem 3.1 to conclude the existence of the asymptotic equilibrium
and the corresponding stability for identical Kuramoto model. While for non-identical
Kuramoto model, we can obtain the stability once we show the uniform boundedness
of the oscillators on the real line. However, in order to obtain the convergence rate, we
need to analyze the �Lojasiewicz exponent which is far from trivial.



544 DISCRETE-TIME KURAMOTO MODEL FOR GENERIC INITIAL CONFIGURATION

4. Discrete identical Kuramoto model
In this section, we will pay attention to the identical discrete Kuramoto model and

its large-time behavior. Due to the analysis in Section 2, without loss of generality, we
may assume that the natural frequencies for all particles are identically equal to zero.
According to Theorem 3.1 and Remark 3.1, although we can conclude the convergence
to the equilibrium state for identical oscillators, we cannot figure out any convergence
rate. Therefore, in this section, we will choose another manner to attain the convergence
and the corresponding rate.

For the case N =2, the two particles are always contained in a half circle. Then,
it is obvious that phase synchronization will emerge except for initial data such that
|θ1(0)−θ2(0)|=π. Therefore, we will only discuss the case when N ≥3. According to
Remark 2.1, almost all initial data Θ0 satisfy the condition (2.2). Thus, it is reasonable
for us to study the discrete model with the initial configuration with property (2.2).
Then, according to Lemma 2.2, the bipolar set Ib has cardinality no more than one in
the continuous Kuramoto model. Therefore, we can split the set of initial data with
property (2.2) into two subsets,{

A1(K) :={Θ0 | |Ib(Θ0)|=0, Θ0 satisfies (2.2)} ,
A2(K) :={Θ0 | |Ib(Θ0)|=1, Θ0 satisfies (2.2)} . (4.1)

Note that A1 and A2 depend on K. More precisely, so far for a fixed initial data, we
cannot determine whether it will remain in A1 (or A2) when K changes. Then, applying
the conservation of the total phases, we can further construct the asymptotic limits in
Remark 2.1, based on the settings Is and Ib in Lemma 2.2. More precisely, for case A1,
we can represent the limits of φ(t) and θj(t) as below

lim
t→+∞φ(t)=− 1

N

N∑
j=1

2kjπ :=φ∗
0, lim

t→+∞θj(t)=2kjπ+φ∗
0, kj ∈Z, j=1, . . . ,N. (4.2)

Similarly, for case A2, without loss of generality, we assume that Ib={N}. Then the
limits of φ(t) and θj(t) can be further represented as⎧⎪⎪⎨
⎪⎪⎩

lim
t→+∞φ(t)=− 1

N
[

N−1∑
j=1

2kjπ+(2kN +1)π] :=φ∗
1

lim
t→+∞θj(t)=2kjπ+φ∗

1, j=1, . . . ,N−1, lim
t→+∞θN (t)=(2kN +1)π+φ∗

1.

(4.3)

Note that all the above analysis is based on the continuous Kuramoto model, but the
classification (4.1) of initial data can still be applied to the study of discrete Kuramoto
model. Then we have the following theorem for identical discrete Kuramoto model.

Theorem 4.1 (Identical Kuramoto). For any K>0 and N ≥3, we let Θh(n)=
(θh1 (n), . . . ,θ

h
N (n)) be a solution to the discrete identical Kuramoto model (1.2) with

initial phase Θ0 satisfying the following conditions:

Ωi=0,
1

N

N∑
j=1

θ0j =0, r0>0, θ0i �=θ0j mod 2π, i �= j, 1≤ i,j≤N.

Then, with the time-step h sufficiently small, there exists a phase-locked state Θ∞ ,
constants C>0,α>0, and a step ne>0 such that

‖Θh(n)−Θ∞‖∞<Ce−α(n−ne)h, n≥ne,
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where C,α are both dependent on the initial configuration. Moreover, all the possible
asymptotic phase-locked states can be expressed as follows:

(1) Θ∞=(2k1π+φ∗
0, . . . ,2kNπ+φ∗

0), or

(2) Θ∞=(2k1π+φ∗
1, . . . ,2kN−1π+φ∗

1,(2kN +1)π+φ∗
1),

where ki∈Z, i=1,2, . . . ,N.

In the following, we will fix K and prove Theorem 4.1 by studying the dynamics of
discrete Kuramoto model with initial data in A1 and A2 respectively.

4.1. Case A1 (phase synchronization). For initial data Θ0∈A1, we have
|Ib|=0. Then it follows from (4.2) that for any given ε>0 and any i∈Is, we can find
a time Tε>0 and a equilibrium state φ∗

0 such that

|θi(Tε)−2kiπ−φ∗
0|<ε, i∈Is, (4.4)

where Is is defined in Lemma 2.2 and θi(t) is the solution to the continuous Kuramoto
model (1.1) with initial data Θ0 and identical natural frequencies. Then, the solution
to the discrete identical Kuromoto model (1.2) on the interval [0,Tε] can be well ap-
proximated by the solution to the continuous model with same initial data, provided
the step size h is sufficiently small. Therefore, we can obtain a good estimate on the
oscillators for discrete-time model based on the approximation.

Then we define the effective phase Θ̂h(n) for the discrete identical Kuramoto model
with respect to the initial data Θ0 as below,

θ̂hi (n)=θhi (n)−2kiπ−φ∗
0, n=0,1, . . . i=1,2, . . . ,N. (4.5)

Note in this case, every oscillator belongs to Is. Then, the effective phases for the
oscillators in the synchronization group Is, can be defined as follows,⎧⎪⎨

⎪⎩
Θ̂h

s := (θ̂hi1 , . . . , θ̂
h
i|Is|), ik ∈Is, θ̂hM :=max

j∈Is

θ̂hj , θ̂hm :=min
j∈Is

θ̂hj ,

D(Θ̂h
s ) := max

i,j∈Is

|θ̂hi − θ̂hj |= θ̂hM − θ̂hm.
(4.6)

Remark 4.1. The definition of the effective phase depends on φ∗
0 which is the

asymptotic limit of the oscillators with initial data in A1. Therefore, the effective
phases actually depend on the initial data. More precisely, for any given fixed initial
data satisfying (2.2), we can define corresponding effective phases.

Lemma 4.1. For N ≥3, we let Θh(n)=(θh1 (n),θ
h
2 (n), . . . ,θ

h
N (n)) be a solution to the

discrete identical Kuramoto model (1.2) with initial data Θ0∈A1. Then for any given
ε>0 and sufficiently small step size h�1, we can find a positive integer l such that

D(Θ̂h
s (l))<ε,

where A1 and Θ̂h
s are defined in (4.1) and (4.6) respectively.

Proof. We will show the proof by two steps.

• (Step 1.) In this step, to avoid confusion, we will denote the solution to discrete-time
model by θhi (n) and the solution to the continuous-time model by θi(t). According to
(4.1)-(4.4), for a given initial data Θ0∈A1 and positive constant ε, we can find a time
Tε>0 and a equilibrium state φ∗

0 such that (4.4) holds, i.e.

|θi(Tε)−2kiπ−φ∗
0|<

ε

4
, i∈Is,
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where θi(Tε) is the solution to the continuous Kuramoto model (1.1) at time Tε. On the
other hand, based on the result in Lemma 2.5 about the global error in Euler’s scheme,
there exist constants M>0 and LM >0 which are both independent of i=1,2, . . . ,N
such that

|θi(nh)−θhi (n)|≤MeLMTεh, n=0,1, . . . ,l, i=1,2, . . . ,N,

where h= Tε

l and l is a positive integer. Then for the ε given in (4.4), we choose the

step size h sufficiently small such that MeLMTεh< ε
4 . Moreover, we require Tε

h to be an
integer and denote it by l. Therefore, we have

|θi(nh)−θhi (n)|<
ε

4
, n=0,1, . . . ,l, i=1,2, . . . ,N. (4.7)

When n= l, we have Tε= lh and thus we apply (4.4) and (4.7) to obtain that

|θhi (l)−2kiπ−φ∗
0|≤ |θi(Tε)−θhi (l)|+ |θi(Tε)−2kiπ−φ∗

0|<
ε

2
, i∈Is. (4.8)

• (Step 2.) In this step, we will use θhi (n) to denote the n-th step of the solution to
the discrete-time model. According to the definition of effective phase in (4.5) and the
estimate (4.8), we immediately have

|θ̂hi (l)|<
ε

2
, i∈Is.

Hence, we find a step l such that

D(Θ̂h
s (l))= max

i,j∈Is

|θ̂hi (l)− θ̂hj (l)|<ε, i,j∈Is.

According to Lemma 4.1, in order to study the large-time behavior of the discrete-
time Kuramoto model, we can set l to be the initial step. Therefore, without loss of
generality, we may assume that the initial configuration satisfies the properties below,

D(Θ̂h
s (0))= θ̂hN (0)− θ̂h1 (0)<ε, θ̂hN (0)>θ̂hN−1(0)> · · ·>θ̂h1 (0). (4.9)

Moreover, according to the discrete Kuramoto model (1.2), initial configuration Θ0

satisfying (2.2) and the definition of effective phase Θ̂h(n) in (4.5), we immediately
conclude that Θ̂h(n) satisfies the identical discrete Kuramoto model below

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

θ̂hi (n+1)= θ̂hi (n)+
Kh

N

N∑
j=1

sin(θ̂hj (n)− θ̂hi (n)), i=1,2, . . . ,N,

N∑
i=1

θ̂hi (0)=0.

(4.10)

Lemma 4.2. For N ≥3, we let Θ̂h(n)=(θ̂h1 (n), . . . , θ̂
h
N (n)) be a solution to the discrete

identical Kuramoto model (4.10) with the initial configuration satisfying (4.9) i.e.

D(Θ̂h
s (0))= θ̂hN (0)− θ̂h1 (0)<ε, θ̂hN (0)>θ̂hN−1(0)> · · ·>θ̂h1 (0). (4.11)
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where ε is a sufficient small positive constant. Then we conclude that the effective phase
diameter is uniformly bounded by the same ε in (4.11) and the order of the effective phase
will be preserved for all n i.e.{

D(Θ̂h
s (n))<ε, n=0,1,2, . . . ,

θ̂hN (n)>θ̂hN−1(n)> · · ·>θ̂h1 (n), n=0,1,2, . . . .

Proof.
• (Step 1.) In the first step, we assume D(Θ̂h

s (n))<ε holds for all steps n, then we
claim that the order of the oscillators is preserved for all steps n i.e.

θ̂hN (n)>θ̂hN−1(n)> · · ·>θ̂h1 (n), n=0,1,2, . . . . (4.12)

Actually, according to (4.11), the order (4.12) automatically holds for the initial step
Θ̂(0). Now we assume that the order (4.12) is preserved for step k, i.e.

θ̂hN (k)>θ̂hN−1(k)> · · ·>θ̂h1 (k). (4.13)

Then, for the step k+1, the difference of θ̂hi (k+1) and θ̂hi−1(k+1), where i=2,3, · · · ,N,
satisfies the following equation,

θ̂hi (k+1)− θ̂hi−1(k+1)

=θ̂hi (k)− θ̂hi−1(k)+
Kh

N

N∑
j=1

sin(θ̂hj (k)− θ̂hi (k))−
Kh

N

N∑
j=1

sin(θ̂hj (k)− θ̂hi−1(k))

=θ̂hi (k)− θ̂hi−1(k)−
Kh

N

i−1∑
j=1

[
sin(θ̂hi (k)− θ̂hj (k))−sin(θ̂hi−1(k)− θ̂hj (k))

]

−Kh

N

N∑
j=i

[
sin(θ̂hj (k)− θ̂hi−1(k))−sin(θ̂hj (k)− θ̂hi (k))

]

=I1+I2+I3. (4.14)

The first term I1 is obviously positive due to the assumption (4.13). For I2 and I3,
we note that i and i−1 are two adjacent oscillators. Therefore, according to the order
(4.13), the differences θ̂hi (k)− θ̂hj (k) and θ̂hi−1(k)− θ̂hj (k) are of the same sign for all

j �= i, i−1. Moreover, as D(Θ̂h
s (k))<ε�1, the difference θ̂hi (k)− θ̂hj (k) and sin(θ̂hi (k)−

θ̂hj (k)) are of the same sign. Then, we can apply Lemma 2.8 to obtain⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−
i−1∑
j=1

[
sin(θ̂hi (k)− θ̂hj (k))−sin(θ̂hi−1(k)− θ̂hj (k))

]
≥−(i−1)sin(θ̂hi (k)− θ̂hi−1(k)),

−
N∑
j=i

[
sin(θ̂hj (k)− θ̂hi−1(k))−sin(θ̂hj (k)− θ̂hi (k))

]
≥−(N− i+1)sin(θ̂hi (k)− θ̂hi−1(k)).

(4.15)

We combine (4.14) and (4.15) and apply the inequality sinx<x for x>0 to obtain the
estimate of the oscillator difference at (k+1)-th step as below,

θ̂hi (k+1)− θ̂hi−1(k+1)

>θ̂hi (k)− θ̂hi−1(k)−Kh(θ̂hi (k)− θ̂hi−1(k))=(1−Kh)(θ̂hi (k)− θ̂hi−1(k)).



548 DISCRETE-TIME KURAMOTO MODEL FOR GENERIC INITIAL CONFIGURATION

Now, we can choose h sufficiently small so that 1−Kh>0. Then, according to (4.13),
we have

θ̂hi (k+1)− θ̂hi−1(k+1)>0, i=2,3, . . . ,N.

Therefore, it follows by induction principle that the order (4.12) holds for each step n
and we finish the proof of our claim.

• (Step 2.) In this step, we claim that D(Θ̂h
s (n))<ε holds for all steps n. We will

prove our claim by contradiction. Actually, suppose the inequality D(Θ̂h
s (n))<ε does

not hold for all n. Then, there exists the “stoping step” n0 such that{
D(Θ̂h

s (n))<ε�1, 0≤n≤n0,

D(Θ̂h
s (n0+1))≥ε.

(4.16)

Using the same argument as in step 1, we can immediately conclude that the order
(4.12) is preserved for each step 0≤n≤n0+1, i.e.,

θ̂hi (n)>θ̂hi−1(n), i=2,3, · · · ,N, 0≤n≤n0+1. (4.17)

Then, according to (4.17), the diameter can be represented asD(Θ̂h
s (n))= θ̂hN (n)− θ̂h1 (n)

for all steps 0≤n≤n0+1. Therefore, the phase diameter of the (n0+1)-th step can be
obtained as below,

D(Θ̂h
s (n0+1))= θ̂hN (n0+1)− θ̂h1 (n0+1)

=θ̂hN (n0)− θ̂h1 (n0)+
Kh

N

N∑
j=1

sin(θ̂hj (n0)− θ̂hN (n0))−Kh

N

N∑
j=1

sin(θ̂hj (n0)− θ̂h1 (n0)). (4.18)

Then, due to (4.16) and (4.17), we can apply the same argument in step 1 and Lemma
2.8 to obtain that

N∑
j=1

sin(θ̂hj (n0)− θ̂hN (n0))−
N∑
j=1

sin(θ̂hj (n0)− θ̂h1 (n0))≤−N sin(θ̂hN (n0)− θ̂h1 (n0))<0.

(4.19)
Therefore, we combine (4.18) and (4.19) to obtain that

θ̂hN (n0+1)− θ̂h1 (n0+1)<θ̂hN (n0)− θ̂h1 (n0)<ε,

which is contradictory to (4.16)2. Therefore, we finish the proof of our claim and

conclude that D(Θ̂h
s (n))<ε holds for all steps n.

Combining Lemma 4.1 and Lemma 4.2, we know that, for all initial data Θ0∈A1,
the diameter of effective phase and the corresponding order will be invariant after a
particular time l. Next, we will study the asymptotic synchronization behaviors of
oscillators in Is={1,2, . . . ,N} for discrete system. The following result states that the
convergence to zero of effective phase diameter is at least exponential, which implies that
the effective phases of all oscillators in Is will converge to zero at least exponentially.

Lemma 4.3. For N ≥3, we let Θ̂h=(θ̂h1 (n), . . . , θ̂
h
N (n)) be a solution to the discrete

identical Kuramoto model (4.10) with the initial configuration satisfying D(Θ̂h
s (0))<ε,
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where ε is a sufficiently small positive real number. Then, there exists a positive number
h0>0 such that if 0<h<h0, we have⎧⎪⎪⎨

⎪⎪⎩
D(Θ̂h

s (n))<D(Θ̂h
s (0))exp

(
−K sinε

2ε
nh

)
,

|θ̂hj (n)|<D(Θ̂h
s (0))exp

(
−K sinε

2ε
nh

)
, n=0,1,2, . . . , j∈Is.

(4.20)

Proof. We can apply Lemma 2.8 and the same argument as in the proof of Lemma
4.2 to obtain that

D(Θ̂h
s (n+1))= θ̂hN (n+1)− θ̂h1 (n+1)≤ θ̂hN (n)− θ̂h1 (n)−Khsin(θ̂hN (n)− θ̂h1 (n)). (4.21)

Since the function sinx
x is monotonically decreasing in [0,ε] when ε is sufficiently small,

we can apply Lemma 4.2 to obtain that

D(Θ̂h
s (n))= θ̂hN (n)− θ̂h1 (n)<ε,

sin(θ̂hN (n)− θ̂h1 (n))

θ̂hN (n)− θ̂h1 (n)
>

sinε

ε
. (4.22)

Hence, we combine (4.21) and (4.22) to obtain

θ̂hN (n+1)− θ̂h1 (n+1)< (1−Kh
sinε

ε
)(θ̂hN (n)− θ̂h1 (n)). (4.23)

Then, the iteration of (4.23) leads to the estimate of the diameter of effective phases at
step n as below,

D(Θ̂h
s (n))<

(
1−Kh

sinε

ε

)n

(θ̂hN (0)− θ̂h1 (0))=D(Θ̂h
s (0))exp

[
nh

log(1−Kh sinε
ε )

h

]
.

(4.24)

Now, we can choose the step size sufficiently small to guarantee
(
1−Kh sinε

ε

)
>0, so

that the last term in (4.24) is well defined. Moreover, according to L’Hospital’s rule, we
have

lim
h→0

log(1−Kh sinε
ε )

h
=−K sinε

ε
. (4.25)

The estimates (4.24) and (4.25) imply that there exists a positive constant h0 such that
if 0<h<h0, we have

log(1−Kh sinε
ε )

h
<−K sinε

2ε
, D(Θ̂h

s (n))<D(Θ̂h
s (0))exp

(
−K sinε

2ε
nh

)
, n≥0. (4.26)

Moreover, from (4.10) and the fact
N∑
j=1

θ̂hj (0)=0, we immediately obtain that
N∑
j=1

θ̂hj (n)=

0 holds for all steps n. Therefore, (4.26) implies that

|θ̂hj (n)|=
∣∣∣∣∣θ̂hj (n)−

∑N
i=1 θ̂

h
i (n)

N

∣∣∣∣∣≤
∑N

i=1 |θ̂hj (n)− θ̂hi (n)|
N

≤D(Θ̂h
s (n)),

which finishes the proof of the lemma.



550 DISCRETE-TIME KURAMOTO MODEL FOR GENERIC INITIAL CONFIGURATION

Remark 4.2. For initial data Θ0∈A1, we can construct φ∗
0 as in (4.2) based on the

asymptotic behavior of continuous-time model. Then the relationship between θ̂hi (n)
and θhi (n) can be written as below

θ̂hi (n)=θhi (n)−2kiπ−φ∗
0, i∈Is.

Note ki and φ∗
0 satisfying (4.2) i.e. lim

t→+∞ |θi(t)−2kiπ−φ∗
0|=0, where θi(t) is the solution

to the continuous model with initial data Θ0∈A1. Therefore, Lemma 4.1, Lemma 4.2,
Lemma 4.3 and (4.2) together show that, for initial data Θ0∈A1, the solution to the
discrete identical Kuramoto model and the solution to the continuous Kuramoto model
have the same asymptotic limits, i.e.

lim
n→+∞ |θ

h
i (n)−2kiπ−φ∗

0|= lim
t→+∞ |θi(t)−2kiπ−φ∗

0|=0, i∈Is.

4.2. Case A2 (bipolar formation). For initial data Θ0∈A2, we have |Ib|=1
and |Is|=N−1. Without loss of generality, we suppose that

Is={1,2, . . . ,N−1}, Ib={N}.
From (4.3), for any given positive constant ε�1, we can find a large enough time Tε>0
such that all oscillators are close to their corresponding limit, i.e.⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

lim
t→+∞φ(t)=− 1

N
[
N−1∑
j=1

2kjπ+(2kN +1)π] :=φ∗
1

|θN (Tε)−(2kN +1)π−φ∗
1|<

ε

4
, N ∈Ib,

|θj(Tε)−2kjπ−φ∗
1|<

ε

4
, j∈Is.

(4.27)

Similar to (4.5), for the discrete-time Kuramoto model, we can define the effective phase
for oscillators in Is and Ib respectively. More precisely, we let

θ̂hi (n)=θhi (n)−2kiπ−φ∗
1−

π

N
, n=0,1,2, · · · i=1,2, . . . ,N. (4.28)

According to (4.27) and (4.28), it is obvious that θ̂hi (n) satisfy the identical Kuramoto
model (4.10). Then, similar as Lemma 4.1, we can prove that the solution of the discrete
Kuramoto model with initial data Θ0∈A2 is close to the solution of the continuous
model with same initial data. More precisely, we define the effective phases for the
oscillators in the synchronization group Is as follows,⎧⎪⎨

⎪⎩
Θ̂h

s := (θ̂hi1 , . . . , θ̂
h
i|Is|), ik ∈Is, θ̂hM :=max

j∈Is

θ̂hj , θ̂hm :=min
j∈Is

θ̂hj ,

D(Θ̂h
s ) := max

i,j∈Is

|θ̂hi − θ̂hj |= θ̂hM − θ̂hm.
(4.29)

Then, we can apply, (4.27)-(4.29) and Lemma 2.5 to have the following lemma without
proof.
Lemma 4.4. For N ≥3, we let Θh(n)=(θh1 (n),θ

h
2 (n), . . . ,θ

h
N (n)) be a solution to the

discrete identical Kuramoto model (1.2) with initial data Θ0∈A2. Then for any given
ε>0 and sufficiently small step size h�1, we can find a positive integer l such that

|θ̂hN (l)−N−1

N
π|< ε

2
, D(Θ̂h

s (l))<ε, |θ̂hi (l)+
1

N
π|< ε

2
, i=1, · · · ,N−1,

where N ∈Ib, A2 and Θ̂h
s are defined in (4.1) and (4.29) respectively.
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4.2.1. (The synchronization group Is). We first study the oscillators in
the set Is. Then, similar as in Case A1, we can set l as the initial step and study the
large-time behavior after l. In fact, we have the following result which is almost the
same as Lemma 4.2.

Lemma 4.5. For N ≥3, we let Θ̂h(n)=(θ̂h1 (n), . . . , θ̂
h
N (n)) be a solution to the discrete

identical Kuramoto model (4.10) and Θ̂h
s =(θ̂h1 , . . . , θ̂

h
N−1). Moreover, we let the initial

configuration satisfy the following properties,

D(Θ̂h
s (0))= θ̂hN−1(0)− θ̂h1 (0)<ε, θ̂hN−1(0)>θ̂hN−2(0)> · · ·>θ̂h1 (0), (4.30)

where ε is a sufficiently small positive constant. Then we conclude that the effective
phase diameter of Θ̂h

s is uniformly bounded by the same ε in (4.30) and the order of the
effective phases in Θ̂h

s will be preserved for all n i.e.{
D(Θ̂h

s (n))<ε, n=0,1,2, . . . ,

θ̂hN−1(n)> · · ·>θ̂h1 (n), n=0,1,2, . . . .

Proof.
• (Step1.) If D(Θ̂h

s (n))<ε holds for all steps n, the proof of the first part of Lemma
4.5 is done. Then we will prove by induction that the order of oscillators in Θ̂h

s will be
preserved for all steps n. In fact, for the initial step, we have

θ̂hN−1(0)>θ̂hN−2(0)> · · ·>θ̂h1 (0).

Now we assume that the order is preserved for step k, then we claim that the order will
be preserved for step k+1. Actually, we can estimate the difference of θ̂hi (k+1) and

θ̂hi−1(k+1), where i=2,3, · · · ,N−1, as follows,

θ̂hi (k+1)− θ̂hi−1(k+1)

=θ̂hi (k)− θ̂hi−1(k)+
Kh

N

N∑
j=1

(
sin(θ̂hj (k)− θ̂hi (k))−sin(θ̂hj (k)− θ̂hi−1(k))

)
. (4.31)

Then, we apply Lemma 2.8 and the mean value theorem to estimate the summation
part of (4.31) as below,

N∑
j=1

[sin(θ̂hj (k)− θ̂hi (k))−sin(θ̂hj (k)− θ̂hi−1(k))]

=
[
sin(θ̂hN (k)− θ̂hi (k))−sin(θ̂hN (k)− θ̂hi−1(k))

]

+

N−1∑
j=1

[
sin(θ̂hj (k)− θ̂hi (k))−sin(θ̂j(k)− θ̂hi−1(k))

]

≥−(N−1)sin(θ̂hi (k)− θ̂hi−1(k))−cos θ̂∗i,i−1(θ̂
h
i (k)− θ̂hi−1(k))

≥−N(θ̂hi (k)− θ̂hi−1(k)), (4.32)

where the value of θ∗i,i−1 is a constant between θ̂hN (k)− θ̂hi (k) and θ̂hN (k)− θ̂hi−1(k), and
the last inequality holds because the order of oscillators at step k is preserved. Thus,
we combine the above estimates (4.31), (4.32) and let h sufficiently small to obtain

θ̂hi (k+1)− θ̂hi−1(k+1)≥ (1−Kh)(θ̂hi (k)− θ̂hi−1(k))>0. (4.33)
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Therefore, it follows by induction that the order of the oscillators in Θ̂h
s is preserved for

each step n.

• (Step2.) In step 1, we show the order is preserved if the diameter is uniformly small.
In this step, we will prove by contradiction that D(Θ̂h

s (n))<ε for all n, and then the
proof in step 1 is also closed. In fact, we assume D(Θ̂h

s (n))<ε does not hold for all
steps n. Then, same as in Lemma 4.2, there exists a step n0 such that,{

D(Θ̂h
s (n))<ε�1, 0≤n≤n0,

D(Θ̂h
s (n0+1))≥ε.

(4.34)

Using the same argument as in Step1, we can obtain that, for each step 0≤n≤n0+1,
the order is preserved, i.e.,

θ̂hi (n)>θ̂hi−1(n), i=2,3, · · · ,N−1, 0≤n≤n0+1. (4.35)

Now, according to the discrete iteration scheme, we can express the phase diameter
D(Θ̂h

s (n)) at (n0+1)-th step as below,

D(Θ̂h
s (n0+1))= θ̂hN−1(n0)− θ̂h1 (n0)

+
Kh

N

N∑
j=1

sin(θ̂hj (n0)− θ̂hN−1(n0))−Kh

N

N∑
j=1

sin(θ̂hj (n0)− θ̂h1 (n0)). (4.36)

According to (4.34) and (4.35), the terms (θ̂hj (n0)− θ̂hN−1(n0)) are negative and close

to zero, while (θ̂hj (n0)− θ̂h1 (n0)) are positive and close to zero. Therefore, we can apply
Lemma 2.8 and mean value theorem to obtain,

N∑
j=1

[sin(θ̂hj (n0)− θ̂hN−1(n0))−sin(θ̂hj (n0)− θ̂h1 (n0))]

=
N−1∑
j=1

[sin(θ̂hj (n0)− θ̂hN−1(n0))−sin(θ̂hj (n0)− θ̂h1 (n0))]

+sin(θ̂hN (n0)− θ̂hN−1(n0))−sin(θ̂hN (n0)− θ̂h1 (n0))

≤−(N−1)sin(θ̂hN−1(n0)− θ̂h1 (n0))−cosθ∗N−1,1(θ̂
h
N−1(n0)− θ̂h1 (n0))

≤−(N−1)
sinε

ε
(θ̂hN−1(n0)− θ̂h1 (n0))+(θ̂hN−1(n0)− θ̂h1 (n0)), (4.37)

where the last inequality follows from the fact that sinx
x is monotonically decreasing in

[0,ε] when ε is sufficiently small, and θ∗N−1,1 is a constant between θ̂hN (n0)− θ̂hN−1(n0)

and θ̂hN (n0)− θ̂h1 (n0). Therefore, we combine (4.36), (4.37) and the fact that N ≥3 to
obtain that

θ̂hN−1(n0+1)− θ̂h1 (n0+1)≤
[
1−Kh

N

(
(N−1)

sinε

ε
−1

)]
(θ̂hN−1(n0)− θ̂h1 (n0)). (4.38)

As limε→0
sinε
ε =1 and ε is sufficiently small, we immediately conclude from (4.38) that

for sufficiently small h,

D(Θ̂h
s (n0+1))= θ̂hN−1(n0+1)− θ̂h1 (n0+1)≤ θ̂hN−1(n0)− θ̂h1 (n0)<ε,
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which is a contradiction to (4.34)2. Therefore, D(Θ̂h
s (n))<ε for all steps n and we finish

the proof of the lemma.

Next, we study the asymptotic synchronization behaviors of oscillators in Is. The
following result states that the convergence to zero of phase diameter D(Θ̂h

s (n)) is at
least exponential.

Lemma 4.6. For N ≥3, we let Θ̂h(n)=(θ̂h1 (n), . . . , θ̂
h
N (n)) be a solution to the discrete

identical Kuramoto model (4.10) and Θ̂h
s =(θ̂h1 , . . . , θ̂

h
N−1). Moreover, we assume that

the initial configuration satisfies the following conditions:

θ̂hN−1(0)>θ̂hN−2(0)> · · ·>θ̂h1 (0), D(Θ̂h
s (0))<ε,

where ε is a sufficiently small positive number. Then, the diameter D(Θ̂h
s (n)) is strictly

monotonically decreasing, and moreover there exist positive numbers h0 and α such that,
for 0<h<h0,

D(Θ̂h
s (0))exp{−2Knh}<D(Θ̂h

s (n))<D(Θ̂h
s (0))exp{−αnh} , n≥0.

Proof. According to Lemma 4.5, we know the order and diameter are both
preserved for Θ̂h

s (n). Moreover, we have the estimate (4.38). Then, the iteration of
(4.38) leads to the estimates of the diameter of Θ̂h

s (n) as below,

D(Θ̂h
s (n+1))<

[
1−Kh

N

(
(N−1)

sinε

ε
−1

)]n+1

D(Θ̂h
s (0)),

where N ≥3. As ε and h are sufficiently small, we can follow the proof of Lemma 4.3
and apply L’Hospital’s rule to obtain that

D(Θ̂h
s (n))<D(Θ̂h

s (0))exp{−αnh} , α=
K[(N−1) sinεε −1]

2N
>0, n≥0. (4.39)

On the other hand, according to Lemma 4.5, we can apply similar analysis in (4.37) to
obtain the following estimate,

D(Θ̂h
s (n+1))=θ̂hN−1(n)− θ̂h1 (n)+

Kh

N

N∑
j=1

sin(θ̂hj (n)− θ̂hN−1(n))−Kh

N

N∑
j=1

sin(θ̂hj (n)− θ̂h1 (n))

≥θ̂hN−1(n)− θ̂h1 (n)−Kh(θ̂hN−1(n)− θ̂h1 (n))

=(1−Kh)D(Θ̂h
s (n)). (4.40)

Then, following again the proof of Lemma 4.3, we apply (4.40) and L’Hospital’s rule
to obtain that

D(Θ̂h
s (n+1))≥ exp{−2K(n+1)h}D(Θ̂h

s (0)). (4.41)

Finally, we combine (4.39), (4.40) and (4.41) to finish the proof of the present lemma.

Remark 4.3. The results in this part only show the asymptotic synchronization of
Θ̂h

s , but we still do not know which equilibrium state does Θ̂h
s approach. To study the

asymptotic equilibrium state, we have to use the conservation of the mean phase of all
oscillators. Therefore, we need the information of the N -th oscillator.
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4.2.2. (The behavior of N-th oscillator). According to Remark 4.3, in order
to understand the asymptotic behavior of all oscillators, we have to study the behavior
of N -th oscillator. For the continuous Kuramoto model, Θ(t) will approach bipolar
formation if Θ0∈A2. However, for the same initial data Θ0∈A2, we cannot guarantee
the emergence of bipolar formation in discrete-time Kuramoto model, which may be
due to the instability of the bipolar formation in the continuous model. More precisely,
according to (4.27) and the definition of the efficient phases, we know that θi are close
to − π

N for i∈Is and θN is close to N−1
N π at Tε after a translation. Therefore, as bipolar

formation emerges asymptotically for Θ0∈A2, we immediately have

θ1(t)+π<θN (t)<θN−1(t)+π, Θ0∈A2, t≥Tε. (4.42)

Otherwise, all the particles will be contained in a half circle at some time t≥Tε, and
thus the complete synchronization will emerge asymptotically which is a well known
result for continuous identical Kuramoto model. However, as Θh(n) and Θ(nh) have
nonzero error, we cannot tell if (4.42) holds for Θh at step l, where l= Tε

h and Θh is
the solution to the discrete-time identical Kuramoto model with initial data Θ0∈A2.
Therefore, we will study the large-time behavior of discrete-time Kuramoto model with
initial data Θ0∈A2 in two different cases.

� Case (i): (bipolar emergence) According to Lemma 4.4, Θ̂h
s are close to − 1

N π for

i∈Is and θ̂hN is close to N−1
N π at step l. Let’s suppose (4.42) holds for Θ̂h(n) at any

step n≥ l, i.e. we assume

θ̂h1 (n)+π≤ θ̂hN (n)≤ θ̂hN−1(n)+π, n≥ l. (4.43)

Lemma 4.7. For N ≥3, let Θ̂h(n)=(θ̂h1 (n), . . . , θ̂
h
N (n)) be a solution to the discrete

identical Kuramoto model (4.10) and Θ̂h
s =(θ̂h1 , . . . , θ̂

h
N−1). Moreover, we assume that⎧⎪⎪⎪⎨

⎪⎪⎪⎩
θ̂hN−1(0)>θ̂hN−2(0)> · · ·>θ̂h1 (0),

D(Θ̂h
s (0))<ε, |θ̂hN (0)− (N−1)π

N
|< ε

4
,

θ̂h1 (n)+π≤ θ̂hN (n)≤ θ̂hN−1(n)+π, n≥0.

(4.44)

Then, for sufficiently small time-step h, we have⎧⎪⎨
⎪⎩
|θ̂hN (n)− (N−1)π

N
|< N−1

N
D(Θ̂h

s (0))e
−αnh,

|θ̂hj (n)+
π

N
|< 2N−1

N
D(Θ̂h

s (0))e
−αnh, j∈Is.

Proof. According to (4.27) and (4.28), the sum of effective phases is equal to zero.
Therefore, it is clear that∑N−1

i=1 (θ̂hi (n)+π)+ θ̂hN (n)

N
=

(N−1)π

N
. (4.45)

As the initial data satisfies (4.44), according to Lemma 4.6 and the condition (4.44)3,
we have for j∈Is that,∣∣∣θ̂hN (n)−(θ̂hj (n)+π)

∣∣∣< (θ̂hN−1(n)+π)−(θ̂h1 (n)+π)≤ e−αnhD(Θ̂h
s (0)). (4.46)
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Combining (4.45) and (4.46), we obtain that

|θ̂hN (n)−N−1

N
π|= |θ̂hN (n)−

∑N−1
i=1 (θ̂hi (n)+π)+ θ̂hN (n)

N
|

= |
∑N−1

i=1 [θ̂hN (n)−(θ̂hi (n)+π)]

N
|< N−1

N
D(Θ̂h

s (0))e
−αnh.

Finally, for i∈Is, we have

|θ̂hi (n)+
π

N
|= |θ̂hi (n)−(θ̂hN (n)−π)+(θ̂hN (n)−π)+

π

N
|

≤ |(θ̂hi (n)+π)− θ̂hN (n)|+ |θ̂hN (n)−N−1

N
π|< 2N−1

N
D(Θ̂h

s (0))e
−αnh.

Remark 4.4. Owing to (4.27) and (4.28), we obtain from Lemma 4.7 for (Case (i))
that ⎧⎪⎨

⎪⎩
∣∣θhN (n)−(2kN +1)π−φ∗

1

∣∣< N−1

N
D(Θ̂h

s (0))e
−αnh,

|θhj (n)−2kjπ−φ∗
1|<

2N−1

N
D(Θ̂h

s (0))e
−αnh, j∈Is.

� Case (ii): (phase synchronization) According to Lemma 4.7, we know the bipolar
formation will emerge if (4.44) holds. Then, the second case is that (4.44)3 does not

hold for some step. In other words, there exists a step ne≥ l such that, θ̂hN gets out of

the region (θ̂h1 (n)+π,θ̂hN−1(n)+π) for the first time at step ne. Then, as the step size

h is sufficiently small, it’s obvious that θ̂hN (ne) is either slightly smaller than θ̂h1 (ne)+π

or slightly greater than θ̂hN−1(ne)+π. As these two cases can be analyzed similarly, we
will only study the following case,{

θ̂hN−1(ne)<θ̂hN (ne)<θ̂h1 (ne)+π,

θ̂h1 (n)+π< θ̂hN (n)<θ̂hN−1(n)+π, l≤n<ne.
(4.47)

Remark 4.5. It’s possible that θ̂hN (ne)= θ̂h1 (ne)+π at step ne. However, according to

Lemma 4.6, we know the diameterD(Θ̂h
s ) will be nonzero at any finite step if it is nonzero

initially. Therefore, there must be some oscillator θ̂hi such that θ̂h1 (ne)<θ̂hi (ne)<θ̂hN .

Then, if θ̂hN (ne)= θ̂h1 (ne)+π at step ne, the attraction from θ̂hi to θ̂h1 and θ̂hN will force
them to tend to be closer in the next step, i.e.

θ̂hN (ne+1)<θ̂h1 (ne+1)+π.

Therefore, we only need to study the case (4.47).

According to (4.47) and the Remark 4.5, we can find a positive constant η such that
the oscillators Θ̂h satisfy the following properties at step ne,

θ̂h1 (ne)< · · ·<θ̂hN−1(ne)<θ̂hN (ne), θ̂hN (ne)− θ̂h1 (ne)<η<π. (4.48)

Now, we can set ne as the initial data and study the large-time behavior of the discrete-
time model after the step ne.
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Lemma 4.8. For N ≥3, we let Θ̂h(n)=(θ̂h1 (n), . . . , θ̂
h
N (n)) be a solution to the discrete

identical Kuramoto model (4.10) with initial zero total phase
∑N

i=1 θ̂
0
i =0. Moreover, we

assume that the initial configuration satisfies the following conditions:

θ̂h1 (0)< · · ·<θ̂hN−1(0)<θ̂hN (0), D(Θ̂h(0))<η.

Then for n≥0, we have⎧⎨
⎩
D(Θ̂h(n))= max

1≤i,j≤N
|θ̂hi (n)− θ̂hj (n)|<η<π,

θ̂h1 (n)< · · ·<θ̂hN−1(n)<θ̂hN (n).

Proof. If D(Θ̂h(n))<η<π holds for all steps n, we can apply the same argument
in Lemma 4.5 to prove that the order of oscillators D(Θ̂h(n)) is preserved for any step n.
Therefore, we only need to verify the inequality D(Θ̂h(n))<η<π for n≥0. Actually,
suppose not, then there exists some step n0 such that{

D(Θ̂h(n))<η<π, n≤n0,

D(Θ̂h(n0+1))≥η.
(4.49)

Then, similar to the argument in Lemma 4.5, we can derive the order of Θ̂h(n) for time
steps not more than n0+1, i.e.

θ̂h1n)<θ̂h2 (n)< · · ·<θ̂hN (n), 0≤n≤n0+1. (4.50)

Then, applying Lemma 2.8 and monotonic decreasing of function sinx
x in (0,π), we

obtain the estimate for the phase diameter at the (n0+1)-th step as follows,

D(Θ̂h(n0+1))

= θ̂hN (n0)− θ̂h1 (n0)+
Kh

N

N∑
j=1

sin(θ̂hj (n0)− θ̂hN (n0))−Kh

N

N∑
j=1

sin(θ̂hj (n0)− θ̂h1 (n0))

≤
(
1−Kh

sinη

η

)
(θ̂hN (n0)− θ̂h1 (n0))

≤ θ̂hN (n0)− θ̂h1 (n0), (4.51)

where the last inequality holds if we choose sufficiently small h. Then (4.49)1 and (4.51)

immediately imply thatD(Θ̂h(n0+1))<η, which is obviously a contradiction to (4.49)2.

Therefore, we conclude D(Θ̂h(n))<η<π for n≥0, and thus the order (4.50) holds for
all n≥0.

Next, we study the asymptotic synchronization behaviors of N oscillators in (Case (ii)).
The following result states that the effective phases Θ̂h(n) will converge to zero expo-
nentially in (Case (ii)).

Lemma 4.9. For N ≥3, we let Θ̂h(n)=(θ̂h1 (n), . . . , θ̂
h
N (n)) be a solution to the discrete

identical Kuramoto model (4.10) with initial zero total phase
∑N

i=1 θ̂
0
i =0. Moreover, we

assume that the initial configuration satisfies the following conditions:

θ̂h1 (0)< · · ·<θ̂hN−1(0)<θ̂hN (0), D(Θ̂h(0))<η.
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Then, there exists a positive constant h0 such that for 0<h<h0,⎧⎪⎪⎨
⎪⎪⎩
D(Θ̂h(n))<D(Θ̂(0))exp

(
−K sinη

2η
nh

)
,

|θ̂hj (n)|<D(Θ̂(0))exp

(
−K sinη

2η
nh

)
, n≥0.

Proof. From Lemma 4.8 and the estimate (4.51), we can apply the same argument
in Lemma 4.3 to obtain the desired results.

Remark 4.6. Owing to (4.27) and (4.28), we obtain from Lemma 4.9 for (Case (ii))
that

|θhi (n)−2kiπ−φ∗
1−

π

N
|<D(Θ̂(0))exp

(
−K sinη

2η
nh

)
, i=1,2, . . . ,N.

Now, we are ready to prove Theorem 4.1.

Proof. (Proof of Theorem 4.1.) Actually, combining Remark 4.2 and Remark
4.4, we directly conclude that, for any initial data satisfying the condition in Theorem
4.1, we can find a time step ne and an equilibrium state Θ∞ such that

‖Θh(n)−Θ∞‖∞<Ce−α(n−ne)h, n≥ne,

where C, α and ne are positive constants depending on initial data. Moreover, according
to the expression of φ∗

0 and φ∗
1, the form of phase locked state in Remark 4.6 are

equivalent to the equilibrium state constructed in Remark 4.2. Therefore, we only have
two types of phase locked states as mentioned in Theorem 4.1, i.e.

(1) Θ∞=(2k1π+φ∗
0, . . . ,2kNπ+φ∗

0), or

(2) Θ∞=(2k1π+φ∗
1, . . . ,2kN−1π+φ∗

1,(2kN +1)π+φ∗
1),

where ki∈Z, i=1,2, . . . ,N , which finishes the proof of the theorem.

5. Discrete nonidentical Kuramoto model
In this section, we will consider the discrete non-identical Kuramoto model (1.2).

Actually, from the analysis in [28], if the initial data is contained in a quarter, then
the synchronization of the oscillators in discrete nonidentical Kuramoto model will be
guaranteed for sufficiently large coupling strength K. If the initial data is contained
in a half circle, Lemma 2.3 shows the oscillators in continuous nonidentical Kuramoto
model will concentrate into a quarter after finite time for sufficiently large coupling
strength. Therefore, combining Lemma 2.5 and the analysis in [28], we can conclude
the emergence of synchronization in nonidentical discrete-time model for sufficiently
large coupling strength. Moreover, if the initial data Θ0∈A1(K) for sufficiently largeK,
according to [31], both identical and nonidentical oscillators will concentrate into a small
region after finite time, provided the coupling strength is sufficiently large. Therefore,
we can again apply Lemma 2.5 and the analysis in [28] to obtain the emergence of
synchronization in the nonidentical discrete-time model.

However, if initial data Θ0∈A2(K) for a large K, although synchronization still
emerges in the continuous-time model, the oscillators may not move to the quarter.
Thus we cannot apply previous analysis to yield the emergence of synchronization in
the discrete-time model. Fortunately, we have Theorem 3.1 based on the gradient flow
structure of discrete model. Therefore, the strategy in [31] can be extended to the
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discrete version. More precisely, in order to show the emergence of synchronization,
we only need to show the uniform boundedness of the nonidentical oscillators. In the
following lemma, we will provide a sufficient condition for uniform bound of the first
N0 nonidentical oscillators.

Lemma 5.1. Let N ≥3, suppose that the initial configuration Θ(0) and natural fre-
quencies satisfy the following conditions,

1

N

N∑
j=1

θj(0)=0,
1

N

N∑
j=1

Ωj =0, θj(0)∈ [−π,π), 1≤ j≤N.

Moreover, we let N0, l and K be positive constants which satisfy the following conditions,

N0∈Z+∩
(
N

2
,N

]
, l∈

(
0,2arccos

N−N0

N0

)
,

max
1≤j,k≤N0

|θj(0)−θk(0)|<l, K >
D(Ω)

N0

N sinl− 2(N−N0)
N sin l

2

.
(5.1)

Then, for the solution Θh(n) to the discrete non-identical system (1.2), there exists a
positive constant h0 such that, for 0<h<h0 we have

max
1≤j,k≤N0

|θhj (n)−θhk (n)|<l, for all n≥0. (5.2)

Proof. Let Θh(n)=(θh1 (n),θ
h
2 (n), . . . ,θ

h
N (n)) be a solution to the discrete system

(1.2) subject to the initial configuration satisfying the conditions in the statements of
the theorem. Then l is obviously less than π, i.e. 0<l<π, owing to the assumption on
l in (5.1). Then, we will prove (5.2) by contradiction. In fact, suppose (5.2) does not
hold, then there exists a step n∗ such that⎧⎨

⎩
max

1≤j,k≤N0

|θhj (n)−θhk (n)|<l, 0≤n≤n∗,

max
1≤j,k≤N0

|θhj (n∗+1)−θhk (n∗+1)|≥ l.
(5.3)

Let P , p, Q and q be integers in [1,N0]. Without loss of generality, we may set the
P -th and p-th oscillators to be the maximum and minimum of the first N0 oscillators at
step n∗, respectively. Similarly, we let Q-th and q-th oscillators be the maximum and
minimum respectively of the first N0 oscillators at step n∗+1, i.e.

θhP (n∗)= max
1≤j≤N0

θhj (n∗), θhp (n∗)= min
1≤j≤N0

θhj (n∗),

θhQ(n∗+1)= max
1≤j≤N0

θhj (n∗+1), θhq (n∗+1)= min
1≤j≤N0

θhj (n∗+1).
(5.4)

Then, the phase diameter of the first N0 oscillators at (n∗+1)-th step can be expressed
by the n∗-th step information due to the iteration scheme,

θhQ(n∗+1)−θhq (n∗+1)

=θhQ(n∗)−θhq (n∗)+h(Ωp−Ωq)+
Kh

N

N∑
j=1

[sin(θhj (n∗)−θhQ(n∗))−sin(θhj (n∗)−θhq (n∗))]

≤θhQ(n∗)−θhq (n∗)+hD(Ω)− 2Kh

N
sin

θhQ(n∗)−θhq (n∗)
2

N∑
j=1

cos

(
θhj (n∗)− θhQ(n∗)+θhq (n∗)

2

)

(5.5)
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Now, we will first show that the last term in (5.5) is positive and then, we can apply
the estimates on the trigonometric functions to obtain desire results.

• Step 1. (Positivity) In the last term of (5.5), to deal with the summation of trigono-
metric functions, we may divide it into two parts as follows,

N∑
j=1

cos

(
θhj (n∗)−

θhQ(n∗)+θhq (n∗)
2

)

=

N∑
j=N0+1

cos

(
θhj (n∗)−

θhQ(n∗)+θhq (n∗)
2

)
+

N0∑
j=1

cos

(
θhj (n∗)−

θhQ(n∗)+θhq (n∗)
2

)
.

(5.6)

For the first term, we apply the uniform boundedness of the trigonometric functions to
have the simple lower bound estimates as below,

N∑
j=N0+1

cos

(
θhj (n∗)−

θhQ(n∗)+θhq (n∗)
2

)
≥−(N−N0). (5.7)

For 1≤ j≤N0, according to (5.4), θP and θp are the maximum and minimum at n∗-th
step. Therefore, we can apply (5.3) to obtain the following estimate,∣∣∣∣∣θhj (n∗)−

θhP (n∗)+θhp (n∗)
2

∣∣∣∣∣
=

1

2

∣∣−(θhP (n∗)−θhj (n∗))+θhj (n∗)−θhp (n∗)
∣∣

≤ 1

2
max

{|θhj (n∗)−θhP (n∗)|, |θhj (n∗)−θhp (n∗)|
}≤ l

2
. (5.8)

Then, we apply (5.8) and the simple triangle inequality to obtain the estimate of the
last term in (5.6) as follows,∣∣∣∣∣θhj (n∗)−

θhQ(n∗)+θhq (n∗)
2

∣∣∣∣∣
≤
∣∣∣∣∣θhj (n∗)−

θhP (n∗)+θhp (n∗)
2

∣∣∣∣∣+
∣∣∣∣∣θ

h
P (n∗)+θhp (n∗)

2
− θhQ(n∗)+θhq (n∗)

2

∣∣∣∣∣
≤ l

2
+

1

2
max

{|θhP (n∗)−θhQ(n∗)|, |θhp (n∗)−θhq (n∗)|
}
. (5.9)

Next we will estimate |θhP (n∗)−θhQ(n∗)| and |θhp (n∗)−θhq (n∗)|, respectively. According
to the definition (5.4), it is clear that

θhQ(n∗)≤θhP (n∗), θhq (n∗)≥θhp (n∗),

θhQ(n∗+1)≥θhP (n∗+1), θhq (n∗+1)≤θhp (n∗+1).
(5.10)

Therefore, according to the iteration scheme (1.2) and the uniform bound of the trigono-
metric functions, the quantity |θhQ(n∗+1)−θhP (n∗+1)| can be estimated as below,
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θhQ(n∗+1)−θhP (n∗+1)

=(θhQ(n∗)−θhP (n∗))+h(ΩQ−ΩP )

+
Kh

N

N∑
j=1

[sin(θhj (n∗)−θhQ(n∗))−sin(θhj (n∗)−θhP (n∗))]

≤−(θhP (n∗)−θhQ(n∗))+hD(Ω)+2Kh. (5.11)

Thus, we combine (5.10) and (5.11) to obtain the estimate of the quantity |θhP (n∗)−
θhQ(n∗)| as follows,

|θhP (n∗)−θhQ(n∗)|=θhP (n∗)−θhQ(n∗)

≤−(θhQ(n∗+1)−θhP (n∗+1))+h(D(Ω)+2K)≤h(D(Ω)+2K).
(5.12)

Similarly, we can apply the same argument as above to obtain the estimate of the
difference between the p-th and q-th oscillators, i.e.

|θhq (n∗)−θhp (n∗)|≤h(D(Ω)+2K). (5.13)

Since 0<l<2arccos N−N0

N0
≤π, thus for sufficiently small h, we combine (5.9), (5.12)

and (5.13) to obtain for 1≤ j≤N0 that,∣∣∣∣∣θhj (n∗)−
θhQ(n∗)+θhq (n∗)

2

∣∣∣∣∣≤ l

2
+

D(Ω)+2K

2
h<

π

2
. (5.14)

Thus for 1≤ j≤N0, it is easy to see that

cos

(
θhj (n∗)−

θhQ(n∗)+θhq (n∗)
2

)
≥ cos

(
l

2
+

D(Ω)+2K

2
h

)
>0. (5.15)

Next, to estimate the sinusoidal part in (5.5), we have to study the difference between
the Q-th and q-th oscillators at step n∗. According to (5.3)1, (5.4) and (5.5), we can let
h be sufficiently small to obtain,

π>l>θhQ(n∗)−θhq (n∗)≥ l−hD(Ω)−2Kh>0, (5.16)

where we choose h< l
D(Ω)+2K . Thus we combine (5.32) and (5.16) to obtain the posi-

tivity of the last term in (5.5),

sin
θhQ(n∗)−θhq (n∗)

2

N∑
j=1

cos

(
θhj (n∗)−

θhQ(n∗)+θhq (n∗)
2

)
>0.

• Step 2. (Uniform bound) In this step, we will continue to prove the uniform bound
of the first N0 oscillators. According to the property of trigonometric functions and the
estimate (5.14), we obtain for small h>0 that,

cos

(
l

2
+

D(Ω)+2K

2
h

)
=cos

l

2
cos

(
D(Ω)+2K

2
h

)
−sin

l

2
sin(

D(Ω)+2K

2
h)
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≥ cos
l

2

[
1− (D(Ω)+2K)2

8
h2

]
−sin

(
D(Ω)+2K

2
h

)

≥ cos
l

2
−cos

l

2

(D(Ω)+2K)2

8
h2−D(Ω)+2K

2
h

≥ cos
l

2
−
[
cos

l

2

(D(Ω)+2K)2

8
+

D(Ω)+2K

2

]
h. (5.17)

Therefore, for sufficiently small h, we combine (5.14), (5.17) and the property of trigono-
metric functions to obtain that

N∑
j=1

cos

(
θhj (n∗)−

θhQ(n∗)+θhq (n∗)
2

)

=

⎛
⎝ N0∑

j=1

+

N∑
j=N0+1

⎞
⎠cos

(
θhj (n∗)−

θhQ(n∗)+θhq (n∗)
2

)

≥N0 cos
l

2
−N0

(
cos

l

2

(D(Ω)+2K)2

8
+

D(Ω)+2K

2

)
h−(N−N0). (5.18)

According to (5.1), we have N0 cos
l
2−(N−N0)>0. Moreover, for simplicity, we define

the following notation,

A :=N0

(
cos

l

2

(D(Ω)+2K)2

8
+

D(Ω)+2K

2

)
>0.

Then, by choosing h sufficiently small such that (5.18) holds and, moreover, h<
N0 cos

l
2−(N−N0)

A , we obtain

N∑
j=1

cos

(
θhj (n∗)−

θhQ(n∗)+θhq (n∗)
2

)
≥N0 cos

l

2
−(N−N0)−Ah>0. (5.19)

On the other hand, according to the iteration scheme (5.5) and the positivity in (5.15)
and (5.16), we obtain that

θhQ(n∗+1)−θhq (n∗+1)≤θhQ(n∗)−θhq (n∗)+hD(Ω).

Then, according to (5.3) and the definition (5.4), we can choose h sufficiently small such
that h< l

D(Ω) to obtain that

⎧⎪⎨
⎪⎩
π>l>θhQ(n∗)−θhq (n∗)≥ l−hD(Ω)>0,

sin
θhQ(n∗)−θhq (n∗)

2
≥ sin

l−hD(Ω)

2
>0.

(5.20)

Then, we combine (5.20) and the properties of trigonometric functions to obtain for
sufficiently small h that

sin
l−hD(Ω)

2
=sin

l

2
cos

hD(Ω)

2
−cos

l

2
sin

hD(Ω)

2

≥ sin
l

2
−sin

l

2

(D(Ω))2

8
h2−D(Ω)

2
h≥ sin

l

2
−Bh, (5.21)
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where B := sin l
2
(D(Ω))2

8 + D(Ω)
2 >0. Then based on the choices of small h, we may com-

bine (5.5), (5.14), (5.19)-(5.21) to yield that

θhQ(n∗+1)−θhq (n∗+1)

≤θhQ(n∗)−θhq (n∗)+hD(Ω)− 2Kh

N
sin

l−hD(Ω)

2

[
N0 cos

l

2
−(N−N0)−Ah

]

≤θhQ(n∗)−θhq (n∗)+hD(Ω)− 2Kh

N

(
sin

l

2
−Bh

)[
N0 cos

l

2
−(N−N0)−Ah

]

≤θhQ(n∗)−θhq (n∗)+hD(Ω)− 2Kh

N
sin

l

2

[
N0 cos

l

2
−(N−N0)

]
+Ch2+Eh2

≤θhQ(n∗)−θhq (n∗)+h[−F +(C+E)h], (5.22)

where for notational simplicity, we apply the notations A in (5.19) and B in (5.21) to
further define C, E and F as below,⎧⎪⎪⎨

⎪⎪⎩
C :=

2KB

N

[
N0 cos

l

2
−(N−N0)

]
>0, E :=

2KA

N
sin

l

2
>0,

F :=
2K

N
sin

l

2

[
N0 cos

l

2
−(N−N0)

]
−D(Ω)>0,

(5.23)

where F >0 is due to the assumption on K in (5.1). Therefore, we combine the con-
straints on h in (5.14), (5.19), (5.20) and further choose h< F

C+E to set h0 as below,

h0 :=min

{
π− l

D(Ω)+2K
,

N0 cos
l
2−(N−N0)

A
,

l

D(Ω)
,

F

C+E

}
.

Then for the mesh size 0<h<h0, we combine (5.3), (5.22) and (5.23) to obtain that

l≤θhQ(n∗+1)−θhq (n∗+1)≤θhQ(n∗)−θhq (n∗)<l,

which is obviously a contradiction. Therefore, we complete the proof of of the lemma.

In the next lemma, we will make the first N0 oscillators as a reference and imply
the uniform boundedness of all oscillators. Thus, the gradient flow structure guarantees
the convergence of the solution to the static state.

Lemma 5.2. Let N ≥3, suppose that the initial configuration Θ(0) and natural fre-
quencies satisfy the following conditions,

1

N

N∑
j=1

θj(0)=0,
1

N

N∑
j=1

Ωj =0, , θj(0)∈ [−π,π), 1≤ j≤N.

Moreover, we let N0, l and K be positive constants which satisfy the following conditions,

N0∈Z+∩
(
N

2
,N

]
, l∈

(
0,2arccos

N−N0

N0

)
,

max
1≤j,k≤N0

|θj(0)−θk(0)|<l, K >
D(Ω)

N0

N sinl− 2(N−N0)
N sin l

2

.
(5.24)
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Then, for the solution Θh(n) to the discrete non-identical system (1.2), there exists a
positive constant h0 and an equilibrium state Θ∞ such that, for 0<h<h0 we have

sup
0≤n<+∞

D(Θh(n))≤4π+2l, lim
n→+∞ ||Θ

h(n)−Θ∞||∞=0.

Proof. We will prove the lemma in two steps. In the first step, we will show the
uniform boundedness of the phase diameter D(Θh(n)). While in the second step, we
will apply the gradient flow structure and Theorem 3.1 to prove the convergence of the
phases of oscillators.

• Step A. (Uniform bound of relative distance) In this step, we will study the dynamics
of the oscillators {θh1 (n), . . . ,θhN (n)} and prove by contradiction that the relative distance
between any two oscillators is uniformly bounded. Suppose not, i.e.

limsup
n→+∞

D(Θh(n))=+∞.

In Lemma 5.1, we already prove the uniform bound of the first N0 oscillators. Therefore
we may define

S0(n) :={θh1 (n), . . . ,θhN0
(n)}, S−1 :=S0−2π, S1 :=S0+2π,

Then, combining the zero mean phase property and the assumption
limsupn→+∞D(Θh(n))=+∞, we immediately conclude that, at least one oscilla-
tor in the set {θhN0+1, . . . ,θ

h
N} is unbounded with respect to S0(n), say θhN0+1. Then

before it tends to −∞ or +∞, this oscillator will enter the neighborhood of one of the
sets Sk, k=−1,1. Without loss of generality, we may assume θhN0+1 gets into S1 for
some steps. In other words, we may assume that there exists a step ne such that

max
1≤k≤N0

|θhN0+1(ne)−(θhk (ne)+2π)|<l.

Then, we claim that the oscillator θhN0+1 will stay in the above region for all steps after
ne. More precisely,

max
1≤k≤N0

|θhN0+1(n)−(θhk (n)+2π)|<l, for all n≥ne. (5.25)

Suppose (5.25) does not hold, then there exists a step n∗, satisfying n∗≥ne, such that⎧⎪⎨
⎪⎩

max
1≤j≤N0

|θhN0+1(n)−(θhj (n)+2π)|<l, ne≤n≤n∗,

max
1≤j≤N0

|θhN0+1(n∗+1)−(θhj (n∗+1)+2π)|≥ l.
(5.26)

According to (5.26) and Lemma 5.1, there exist two possibilities at (n∗+1)-th step.
More precisely, θhN0+1(n∗+1) is either greater than

(
min1≤j≤N0

θhj (n∗+1)+2π+ l
)
, or

less than
(
max1≤j≤N0

θhj (n∗+1)−2π− l
)
. As the two cases can be dealt with in the

same manner, in the following, we will only study the case below,

θhN0+1(n∗+1)−
(

min
1≤j≤N0

θhj (n∗+1)+2π

)
≥ l. (5.27)

Let’s assume the q-th oscillator to be the minimum in the first N0 oscillators at step
n∗+1. Then, we have the estimate of (5.27) as below,
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θhN0+1(n∗+1)−(θhq (n∗+1)+2π)

=θhN0+1(n∗)−(θhq (n∗)+2π)+h(ΩN0+1−Ωq)

+
Kh

N

N∑
j=1

[sin(θhj (n∗)−θhN0+1(n∗))−sin(θhj (n∗)−(θhq (n∗)+2π))]

≤θhN0+1(n∗)−(θhq (n∗)+2π)+hD(Ω)− 2Kh

N

(
sin

θhN0+1(n∗)−(θhq (n∗)+2π)

2

)

×
N∑
j=1

cos

(
θhj (n∗)−

θhN0+1(n∗)+(θhq (n∗)+2π)

2

)
. (5.28)

Similar to Lemma 5.1, we will show the positivity of the last term. Actually, according
to the iteration scheme (1.2) and (5.27), we have

θhN0+1(n∗)−(θhq (n∗)+2π)

=θhN0+1(n∗+1)−(θhq (n∗+1)+2π)−h(ΩN0+1−Ωq)

−Kh

N

N∑
j=1

[sin(θhj (n∗)−θhN0+1(n∗))−sin(θhj (n∗)−(θhq (n∗)+2π))]

≥ l−hD(Ω)−2Kh. (5.29)

Then, we combine (5.26) and (5.29) and choose a sufficiently small h such that h<
l

D(Ω)+2K to obtain the following estimates,

0<θhN0+1(n∗)−(θhq (n∗)+2π)<l<π, sin
θhN0+1(n∗)−(θhq (n∗)+2π)

2
>0. (5.30)

Next, we will study the cosine part in (5.28). Note θhq (n∗) is not the minimum in the
first N0 oscillators at the step n∗. Therefore, we may assume the p-th oscillator to be
minimum of the first N0 oscillators, i.e.

θhp (n∗)+2π= min
1≤j≤N0

θhj (n∗)+2π. (5.31)

Then, we can split the cosine part in (5.28) into two parts and apply the boundedness
property of trigonometric functions to obtain that

N∑
j=1

cos

(
θhj (n∗)−

θhN0+1(n∗)+(θhq (n∗)+2π)

2

)

=

⎛
⎝ N0∑

j=1

+
N∑

j=N0+1

⎞
⎠cos

(
(θhj (n∗)+2π)− θhN0+1(n∗)+(θhq (n∗)+2π)

2

)

≥
N0∑
j=1

cos

(
θhj (n∗)+2π− θhN0+1(n∗)+(θhq (n∗)+2π)

2

)
−(N−N0). (5.32)
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Then the summation in (5.32) can be estimated term by term. In fact, for j-th oscillator
where 1≤ j≤N0, we have∣∣∣∣∣(θhj (n∗)+2π)− θhN0+1(n∗)+(θhq (n∗)+2π)

2

∣∣∣∣∣
≤
∣∣∣∣∣(θhj (n∗)+2π)− (θhp (n∗)+ l+2π)+(θhp (n∗)+2π)

2

∣∣∣∣∣
+

∣∣∣∣∣ (θ
h
p (n∗)+ l+2π)+(θhp (n∗)+2π)

2
− θhN0+1(n∗)+(θhq (n∗)+2π)

2

∣∣∣∣∣
=I1+I2. (5.33)

For I1, as the diameter of the first N0 oscillators are uniformly bounded by l, we apply
(5.26)1, (5.30) and (5.31) to obtain that∣∣∣∣∣(θhj (n∗)+2π)− (θhp (n∗)+ l+2π)+(θhp (n∗)+2π)

2

∣∣∣∣∣
=

1

2

∣∣(θhj (n∗)+2π)−(θhp (n∗)+ l+2π)+(θhj (n∗)+2π)−(θhp (n∗)+2π)
∣∣

≤ 1

2
max

{|(θhj (n∗)+2π)−(θhp (n∗)+ l+2π)|, |(θhj (n∗)+2π)−(θhp (n∗)+2π)|}
≤ l

2
. (5.34)

For I2, we first deal with the difference between θhp (n∗) and θhq (n∗). According to the
definition of p-th and q-th oscillators in (5.27) and (5.31), we have

(θhp (n∗)+2π)−(θhq (n∗)+2π)≤0, (θhp (n∗+1)+2π)−(θhq (n∗+1)+2π)≥0. (5.35)

Therefore, according to the iteration scheme (1.2) and (5.35), we have the following
estimates for the difference,

(θhq (n∗)+2π)−(θhp (n∗)+2π)

=−[(θhp (n∗+1)+2π)−(θhq (n∗+1)+2π)
]
+h(Ωp−Ωq)

+
Kh

N

N∑
j=1

[sin(θhj (n∗)−θhp (n∗))−sin(θhj (n∗)−θhq (n∗))]

≤hD(Ω)+2Kh. (5.36)

Then we will deal with the difference between θhp (n∗)+ l+2π and θhN0+1(n∗) in I2.
Similar to the estimate in (5.36), we can estimate the difference between p-th and q-th
oscillators at step n∗+1 as below,

(θhp (n∗+1)+2π)−(θhq (n∗+1)+2π)

=−[(θhq (n∗)+2π)−(θhp (n∗)+2π)
]
+h(Ωp−Ωq)

+
Kh

N

N∑
j=1

[sin(θhj (n∗)−θhp (n∗))−sin(θhj (n∗)−θhq (n∗))]
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≤hD(Ω)+2Kh. (5.37)

Then, we directly apply the iteration scheme (1.2), (5.27) and (5.37) to obtain the
estimate of the difference between θhp (n∗)+ l+2π and θhN0+1(n∗) as below,

(θhp (n∗)+ l+2π)−θhN0+1(n∗)

=
[
(θhq (n∗+1)+ l+2π)−θhN0+1(n∗+1)

]
+[θhp (n∗+1)−θhq (n∗+1)]

+h(ΩN0+1−Ωp)+
Kh

N

N∑
j=1

[sin(θhj (n∗)−θhN0+1(n∗))−sin(θhj (n∗)−θhp (n∗))]

≤2hD(Ω)+4Kh. (5.38)

Therefore, by choosing h sufficiently small, we combine the estimates (5.33), (5.34),
(5.36), and (5.38) to obtain for 1≤ j≤N0 that∣∣∣∣∣(θhj (n∗)+2π)− θhN0+1(n∗)+(θhq (n∗)+2π)

2

∣∣∣∣∣≤ l

2
+

3D(Ω)+6K

2
h<

π

2
, (5.39)

Combining (5.30) and (5.39), we obtain that the last term in (5.28) is positive. There-
fore, we can apply the same argument in the second step of the proof of Lemma 5.1 to
show that there exists a positive constant h0 such that

θhN0+1(n∗+1)−(θhq (n∗+1)+2π)<l, 0<h<h0,

which is obviously a contradiction to (5.27). Thus the proof of claim (5.25) is completed.
Moreover, the case when oscillator θhN0+1 enters the set S−1 at step ne can be dealt with
the same method. Therefore, we combine Lemma 4.1 and (5.25) to obtain that

max
1≤j≤N0

θhj (n)−2π− l<θhN0+1(n)< min
1≤j≤N0

θhj (n)+2π+ l, n≥ne. (5.40)

Equation (5.40) immediately implies the uniform bound of the diameter D(Θh(n)),
which is a contradiction to the assumption limsupn→+∞D(Θh(n))=+∞. Therefore,
we conclude that the diameter D(Θh(n)) is uniformly bounded. Moreover, according to
(5.40), we have

sup
0≤n<+∞

D(Θh(n))≤4π+2l. (5.41)

• Step 2. (Asymptotic synchronization) According to the conservation of the total
phase, we have zero total phase for any solution to (1.2) with initial data stated in the
lemma. This directly impies that

|θhk (n)|≤D(Θh(n))≤ sup
0≤n≤+∞

D(Θh(n))<4π+2l.

Then we exploit Theorem 3.1 to obtain that for sufficiently small 0<h<h0, there exists
Θ∞ such that

lim
n→+∞ ||Θ

h(n)−Θ∞||∞=0.
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Now, we are ready to prove the main theorem in the present section. For any given
initial data, we only need to check if the conditions in Lemma 5.2 hold at some step.
As in [31], the authors already verified this in the continuous model, we can simply use
the approximation between continuous model and discrete model to obtain the desired
results.

Theorem 5.1. Let N ≥3, suppose that the initial configuration Θ0 and natural
frequencies Ωi satisfy the conditions (2.3) and

r0>0, θ0j �=θ0k, 1≤ j �=k≤N, ||Ω||∞= max
1≤j≤N

|Ωj |<∞.

Then, there exists a large coupling strength K∞>0 and a small mesh size h0>0 such
that, if K>K∞ and 0<h<h0, then the emergence of phase-locked state will asymptot-
ically occur. More precisely, we can find a phase locked state Θ∞ such that the solution
to system (1.2) with initial data Θ0 satisfying

lim
n→∞ ||Θ

h(n)−Θ∞||∞=0,

provided that K>K∞ and 0<h<h0. Moreover, for any fixed K>K∞, if Θ0∈A1(K),
then the convergence rate would be exponentially fast after nε, i.e.

||Θh(n)−Θ∞||∞≤ e−C(n−nε)h,

where C is a positive constant.

Proof. According to [31], for continuous model and the same initial condition,
for a fixed initial data Θ0, we can find a sufficient large K∞. If the coupling strength
K≥K∞, then there exists a time Tε such that the conditions in Lemma 5.2 hold at Tε.

N0=N−1, l∈
(
0,2arccos

N−N0

N0

)
,

max
1≤j,k≤N0

|θj(Tε)−θk(Tε)|<l, K>
D(Ω)

N0

N sinl− 2(N−N0)
N sin l

2

.
(5.42)

Then, we apply the continuity of the solution Θ(t) and the approximation property in
Lemma 2.5 to conclude for sufficiently small h that, there exists a step nε such that

N0=N−1, l∈
(
0,2arccos

N−N0

N0

)
, K >

D(Ω)
N0

N sinl− 2(N−N0)
N sin l

2

,

max
1≤j,k≤N0

|θhj (nε)−θhk (nε)|<l, nεh≤Tε≤ (nε+1)h.

(5.43)

Now, we combine Lemma 5.2 and (5.43) to conclude that, for any fixed initial data
Θ0, there exist constants K∞ and h0 such that the phase locked state Θ∞ will emerge
asymptotically, provided K>K∞ and 0<h<h0, i.e.

lim
n→∞ ||Θ

h(n)−Θ∞||∞=0.

Moreover, if further Θ0∈A1(K) for a fixed K>K∞ then, according to the above analy-
sis, the solution ΘI(t) of the identical continuous-time model with coupling strength K
will concentrate in a small region, inside the quarter for instance, after time Tε. Then



568 DISCRETE-TIME KURAMOTO MODEL FOR GENERIC INITIAL CONFIGURATION

by the choice of K∞, we know the solution ΘNI(t) of nonidentical continuous model
will be very close to ΘI(t) at Tε. Therefore, Θ

NI(Tε) also belong to a quarter. Finally,
we let h sufficiently small so that the solution Θh(n) of the nonidentical discrete model
will be in a quarter at nε too, where nε has been introduced in (5.43). Thus, we can
apply the results in [28] to conclude the exponential decay of the solution Θh(n) to Θ∞

after nε, i.e.

||Θh(n)−Θ∞||∞≤ e−C(n−nε)h,

where C is a positive constant.

6. Summary

In this paper, we first provided a discrete version of the gradient flow theory, and ac-
cordingly prove the emergence of synchronization of the discrete-time Kuramoto model
in both identical and non-identical cases. Then, in order to yield the convergence rate,
we apply the approximation between continuous model and discrete model to obtain the
exponential decay rate for discrete identical Kuramoto model. Moreover, according to
the definition (4.1), for initial data Θh

0 ∈A1, we proved that the time-asymptotic equi-
librium states of discrete and continuous models coincide with each other. For initial
data Θh

0 ∈A2, we cannot prove this, which may be due to the instability of the bipolar
states. Finally, for non-identical model, we apply the theory of discrete gradient flow
to yield the emergence of synchronization. However, so far, we can only obtain the
exponential decay for initial data in A1(K) when K is sufficiently large. Therefore, we
can apply the results in [28] to conclude the uniform-in-time convergence from discrete
Kuramoto model to continuous Kuramoto model in this case. The case Θh

0 ∈A2(K) will
be studied in our future work.
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[5] J.A. Cañizo, J.A. Carrillo, and J. Rosado, A well-posedness theory in measures for some kinetic
models of collective motion, Math. Models Meth. Appl. Sci., 21:515–539, 2011. 1

[6] J.A. Carrillo, M.R. D’Orsogna, and V. Panferov, Double milling in self-propelled swarms from
kinetic theory, Kinet. Relat. Models, 2:363–378, 2009. 1

[7] J.A. Carrillo, M. Fornasier, G. Toscani, and F. Vecil, Particle, kinetic, and hydrodynamic models of
swarming, in G. Naldi, L. Pareschi and G. Toscani (eds.), Mathematical Modeling of Collective
Behavior in Socio-Economic and Life Sciences. Modeling and Simulation in Science, Engineering
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