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STABILITY AND BACK FLOW OF BOUNDARY LAYERS FOR
WIND-DRIVEN OCEANIC CURRENT∗

SHENGBO GONG† , XIANG WANG‡ , AND YAGUANG WANG§

Abstract. The proposal of this paper is to study the well-posedness and properties of solutions to
the boundary layer problem for wind-driven oceanic current, which differs from the classical Prandtl
boundary layer equations with a nonlocal integral term arising from the Coriolis force. First, under
Oleinik’s monotonic condition [O.A. Oleinik, Dokl. Akad. Nauk SSSR, 150(4):28–31, 1963] on the
tangential velocity field, we obtain the local well-posedness of the boundary layer problem by using the
Crocco transformation. Secondly, we show that the back flow point appears at the physical boundary in
a finite time under certain constraint on the growth rate of the tangential velocity when both the initial
tangential velocity and the upstream velocity are monotonically increasing with respect to the normal
variable of the boundary, even if the momentum of the outer flow is favorable for the classical Prandtl
equations, in the sense with this favorable condition there will be no back flow in the two-dimensional
Prandtl boundary layer. This shows that the factor of the Coriolis force stimulates the appearance of
the back flow of the boundary layer.
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1. Introduction
In this paper, we study the well-posedness and qualitative properties of solutions

to the following initial and boundary value problem for the boundary layer equations
in DT ={0≤ t≤T,0≤x≤X,y≥0},

∂tu+u∂xu+v∂yu−∂2
yu=∂tU+U∂xU+

∫ y
+∞(U−u)dy′,

∂xu+∂yv= 0,

u|t=0 =u0(x,y), u|x=0 =u1(t,y),

(u,v)|y=0 = (0,0), lim
y→+∞

u(t,x,y) =U(t,x).

(1.1)

where (u,v) represents the velocity field in the boundary layer, and U(t,x) is the tan-
gential velocity of the outer flow. The problem (1.1) describes the motion of the
oceanic current near the western coast in some regimes, which can be derived from
the Navier-Stokes-Coriolis equations in the small viscosity and Coriolis parameter limit
under certain constraints. The detailed derivation of the problem (1.1) from the Navier-
Stokes-Coriolis equations will be given in Appendix A, it also can be found in [26]. By
observation, the equations given in (1.1) differ from the classical Prandtl boundary layer
equation studied in [15, 17, 19], only by the additional integral term, which arises from
the Coriolis force.

In the boundary layer, it is well known that the tangential velocity changes fast in
the normal direction and the vorticity is unbounded in the small viscosity limit. There-
fore, in order to study the stability of the two-dimensional boundary layer, a reasonable
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approach is to control the vorticity of the flow under the monotonicity condition on the
tangential velocity field,

uy(t,x,y)>0, ∀ y≥0, (1.2)

under which the vorticity in the boundary layer keeps the sign unchanged. In 1963,
Oleinik [15] obtained the existence of a classical solution to the two-dimensional classical
Prandtl equation in the monotonic class by introducing the Crocco transformation. One
motivation of this paper is to study the influence of the integral term on the local well-
posedness of (1.1) in the monotonic class by developing the idea given in [15, 17]. In
contrast with the classical Prandtl equation, we will see that both, the equation and
the boundary condition given in the problem (2.2), derived from (1.1) by using the
Crocco transformation, have nonlocal terms with the integral of 1−η

ω . Thus, we need

to estimate this quantity 1−η
ω carefully and it also appears when one establishes the

maximal principle for this problem.
On the other hand, it is an important problem to study whether the monotonicity

of the solution to the problem (1.1) is preserved when the time evolves, this is closely
related to the back flow of boundary layer, which is an important physical event, even-
tually leading to the separation of boundary layer. The first back flow point is defined
as (t0,x0,0) at which

uy(t0,x0,0) = 0, (1.3)

and

uy(t,x,y)>0, for all 0≤ t<t0, 0≤x≤X, 0≤y<+∞. (1.4)

The second aim of this paper is to investigate whether there exists a back flow point
for the time evolution of the system (1.1) when both the initial tangential velocity and
the upstream velocity are in the monotonic class with respect to the normal variable
of the boundary. In fact, one can observe that the integration

∫ y
+∞(U−u)dy′ in the

equation plays a role in decelerating the flow. In particular, the integral term could
be the dominating one near the boundary, which ensures that the total force near the
boundary is negative, even if the momentum Ut+UUx is favorable for the classical
Prandtl equation studied in [28]. Consequently, we can obtain the occurrence of the
back flow point under certain condition by developing the Lyapunov functional argument
given in [27], in which it is interesting to see that the integral term has a damaging effect
on the monotonicity of flow.

Now we state the main results of this paper. First, we have the following result on
the local well-posedness of the problem (1.1):

Theorem 1.1. For any given X>0 and T0>0, assume that the initial and boundary
data u0∈C8([0,X]×R+), u1∈C8([0,T0]×R+) and the outer flow U ∈C8([0,T0]× [0,X])
satisfy the compatibility conditions of the problem (1.1) up to order 6. In addition, for
all y>0, u0y(x,y)>0 and u1y(t,y)>0, and there exist positive constants C1 and C2

such that

C1(1− u0

U(0,x)
)≤ u0y

U(0,x)
≤C2(1− u0

U(0,x)
) (1.5)

and

C1(1− u1

U(t,0)
)≤ u1y

U(t,0)
≤C2(1− u1

U(t,0)
). (1.6)
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Then, the problem (1.1) admits a unique classical solution (u,v) in DT for some 0<
T <T0. Moreover, one has

M1(1− u

U
)≤ uy

U
≤M2(1− u

U
), ∀(t,x,y)∈DT , (1.7)

for some constants M2≥M1>0.

The second result concerns the appearance of a back flow point in the evolution
of the boundary layer under certain growth rate constraint of the initial and boundary
data, even though both the initial tangential velocity and upstream flow are strictly
increasing with respect to the normal variable of the boundary.

Theorem 1.2.
(1) For any fixed X,T >0, and λ>0 being given in (3.1), if there exists a positive

constant k such that the outflow, the initial and boundary data satisfy

max
DT

(
u0y

U(0,x)−u0
,

u1y

U(t,0)−u1
e−λt

)
<k, (1.8)

and

Ut+UUx
U

≤ e
−λt

k
(1−2δ) (1.9)

for a positive constant 0<δ< 1
2 . Then, the first zero point of ∂yu(t,x,y), when the time

evolves, should be at the boundary {y= 0}, if it exists for some time t>0.

(2) Moreover, when the initial velocity u0(x,y) satisfies∫ ∞
0

∫ X

0

(X−x)
3
2 ∂yu0√

(∂yu0)2 +u2
0

dxdy≥C∗, (1.10)

for a positive constant C∗ depending only on X, T , U , δ, λ and k, then there is a back
flow point (t∗,x∗)∈ (0,T )× [0,X], such that{

∂yu(t∗,x∗,0) = 0,

∂yu(t,x,y)>0, ∀0<t<t∗,x∈ [0,X],y≥0.
(1.11)

Remark 1.1. Compared with the results obtained in [27] for the classical Prandtl
equation, due to the additional integral term given in (1.1), here the condition of the
outflow momentum satisfying ∂tU+U∂xU <0 has been relaxed to the conditions given
in (1.8) and (1.9). It shows that the Coriolis force stimulates the appearance of the back
flow of the boundary layer for the problem (1.1).

Before the end of this section, let us briefly review the related work of the classical
Prandtl equation. As mentioned before, the local well-posedness of classical solutions
to the two-dimensional steady and unsteady Prandtl equation was obtained in the pi-
oneering work [15–17], with the monotonicity assumption on the tangential velocity
for the unsteady problem. This local well-posedness result of the two-dimensional un-
steady Prandtl equation was re-studied in [1, 13] by developing an energy method. A
local well-posedness of classical solutions to the three-dimensional Prandtl equation was
given in [12]. Under the assumption of adverse pressure gradient of the outflow, Oleinik
( [16,17]) and Suslov ( [24]) proved that the two-dimensional steady Prandtl boundary
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layer separates from the boundary. The asymptotic behavior of flow near the separation
point of the two-dimensional steady Prandtl equation was formally investigated by Gold-
stein in [10], and improved by Stewartson in [23]. A rigorous analysis of this asymptotic
behavior of flow near separation was first given by E and Caffarelli in an unpublished
manuscript mentioned in [7], then was studied in detail recently by Dalibard and Mas-
moudi in [4], and by Shen, Wang and Zhang in [22]. In [28], Xin and Zhang proved
that there is a global weak solution to the two-dimensional unsteady Prandtl equation
in the monotonic class under the assumption of the favorable pressure gradient. How-
ever, Moore ( [14]), Rott ( [20]) and Sears ( [21]) pointed out that the back flow point
defined as in (1.3)-(1.4), in general, is not a separation point in unsteady flow, and they
concluded that separation occurs at the point of zero shear stress within the boundary
layer, rather than on the surface as in the steady case, and it is a singular point of the
flow. Since then, many people studied singularities in boundary layers, cf. [2,9,25] and
references therein. Several rigorous results on the singularity formation of the classical
Prandtl equation were given in [3, 8, 11]. Recently, in [27] we have obtained a result on
the existence of a back flow point for the unsteady Prandtl equation, when the data
satisfy the monotonicity assumption but with an adverse pressure gradient.

The remainder of this paper is arranged as follows: In Section 2, we construct
the solution of the problem (1.1) by using the Crocco transformation. In Section 3,
we study the existence of the back flow point for the boundary layer described by the
problem (1.1), and conclude the results given in Theorem 1.2 by using a Lyapunov
functional argument. In Appendix A, by multi-scale analysis we derive the boundary
layer problem (1.1) from the Navier-Stokes-Coriolis equations in the small viscosity and
Coriolis parameter limit, and in Appendix B, we construct the auxiliary function used
in the barrier function in Lemma 3.2 for proving the first zero shear stress point being
on the boundary.

2. Local well-posedness in the monotonic class

In this section, we study the local well-posedness of the boundary layer problem
(1.1). In the monotonic class (1.2) of solutions, as in [15,17], we introduce the following
Crocco transformation

τ = t, ξ=x, η=
u

U
, ω=

uy
U
, (2.1)

then from (1.1), we know that the new unknown ω(τ,ξ,η) satisfies the following problem
for a degenerate parabolic equation with a nonlocal term in QT ={0<τ <T,0<ξ<
X,0<η<1} : 

ωτ +ηUωξ+Aωη+Bω−ω2ωηη = 1−η,

ω|τ=0 =ω0, ω|ξ=0 =ω1,

ω|η=1 = 0,
(
ωωη−

∫ 1

0
1−η′
ω dη′+C

)
|η=0 = 0,

(2.2)

where ωi=
uiy
U (i= 0,1),

A= (1−η)
Ut
U

+(1−η2)Ux−
∫ 1

η

1−η′

ω
dη′, B=

Ut
U

+ηUx, C=Ux+
Ut
U
.

Similar to [15,17], to solve the problem (2.2), we construct the approximation solutions
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via the following iteration scheme:
∂τω

n+ηU∂ξω
n+An−1∂ηω

n+Bωn−(ωn−1)2∂2
ηω

n= 1−η,

ωn|τ=0 =ω0, ωn|ξ=0 =ω1,

ωn|η=1 = 0,
(
ωn−1∂ηω

n−
∫ 1

0
1−η′
ωn−1 dη

′+C
)
|η=0 = 0,

(2.3)

where An−1 = (1−η)UtU +(1−η2)Ux−
∫ 1

η
1−η′
ωn−1 dη

′. The existence of ωn(n≥0) can be ob-
tained by extending the domain, constructing the zeroth-order approximate solution
and approximating the linear degenerate parabolic equation given in (2.3) by a non-
degenerate one, which is similar to that given in [17, pp. 201-211], and we omit the
details here.

Observing the structure of the problem (2.3), in order to obtain the convergence of
{ωn}n≥0, we shall study the uniform estimates of ωn

1−η and its derivatives up to order

two, which is different from the study given in [15,17] on the estimate of ωn in C2(QT )
for the classical Prandtl equations.

To study the upper and lower bounds of the solution ωn, denote by the lower barrier
function

V =m(2−e−a0η)(1−η)e−α0τ

and the upper barrier function

V =M(1−η)eβ0τ .

As in [17, Lemma 4.3.2], we have the following result:

Lemma 2.1. Suppose that ωn is a classical solution to the problem (2.3), then there
exist T >0, m>0, M >0 and properly large a0, α0, β0>0 such that the inequalities

V (τ,ξ,η)≤ωn(τ,ξ,η)≤V (τ,ξ,η) (2.4)

hold in QT for all n≥0.

This lemma can be proved in a way similar to that given in [17, Lemma 4.3.2] by
using the maximal principle for the problem (2.3), we omit the details for simplicity.

To study the estimates of the first and second-order derivatives of ωn

1−η , let V n=
ωneαη with a positive constant α to be chosen later, then we know that V n satisfies the
following problem:{

L0
n(V n)+B̂nV n=−(1−η)eαη,

V n−1(∂ηV
n−αV n)−

∫ 1

0
1−η′

V n−1e−αη′
dη′+C= 0, on η= 0,

(2.5)

with L0
n(V n) = (ωn−1)2∂2

ηV
n−∂τV n−ηU∂ξV n+Ân∂ηV

n, and

Ân=−(An−1 +2α(ωn−1)2),

B̂n=α2(ωn−1)2 +αAn−1−B.

Due to the nonlocal integration in Ân and the boundary condition at η= 0, we study
the first-order derivatives of V n

1−η with the aid of the following auxiliary functional

Φn= (
V nτ

1−η
)2 +(

V nξ
1−η

)2 +(V nη )2 +Kn
1 η+K0,
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where K0 and Kn
1 are positive constants to be determined later, especially the depen-

dence of Kn
1 on n will be specified.

Lemma 2.2. For some T , K0, Kn
1 >0 and suitably large α, the functional Φn satisfies{

L0
n(Φn)+RnΦn≥0, in QT,

∂ηΦn≥αΦn− α
2 Φn−1, on η= 0,

(2.6)

where Kn
1 depends only on

ωn−1
τ

1−η and
ωn−1
ξ

1−η , and Rn depends on ωn−1

1−η and its first-order
derivatives.

Proof. Here, we divide the proof into three steps.

Step1. The derivation of equation for Φn: For l∈{ξ,τ}, applying the operators

2
V nl

(1−η)2 ∂l and 2Vη∂η on the first equation given in (2.5), by a direct calculation, we

know that the functional Φn satisfies

L0
n(Φn)−ÂnK1 +2B̂nΦn−2B̂n(K1η+K0)+I1 +I2 +I3 = 0, (2.7)

where

I1 =−2(ωn−1)2(∂η(
V nξ

1−η
))2−2(ωn−1)2(∂η(

V nτ
1−η

))2−2(ωn−1)2(V nηη)2, (2.8)

and

I2 =−4(ωn−1)2
V nξ

(1−η)2
∂η(

V nξ
1−η

)+2
V nξ

(1−η)2
(∂ξ(ω

n−1)2)∂2
ηV

n+2V nη V
n
ηη∂η(ωn−1)2

−4(ωn−1)2 V nτ
(1−η)2

∂η(
V nτ

1−η
)+2

V nτ
(1−η)2

(∂τ (ωn−1)2)∂2
ηV

n,

I3 =−2
V nξ

(1−η)2
∂ξ(ηU)V nξ +

V nξ
(1−η)2

∂ξÂ
nV nη −2

Ân

1−η
(
V nξ

1−η
)2−2

V nτ
(1−η)2

∂τ (ηU)V nξ

+
V nτ

(1−η)2
∂τ Â

nV nη −2
Ân

1−η
(
V nτ

1−η
)2−2V nη U∂ξV

n+2V nη ∂ηÂ
nV nη +(V nη )2

+2
V nξ

(1−η)2
∂ξB̂

nV n+2
V nτ

(1−η)2
∂τ B̂

nV n+2V nη ∂ηB̂
nV n+2V nη ∂η((1−η)eαη).

Step 2. The estimates of I2 and I3. By using the Cauchy inequality, it is easy to know

that there is a constant c1 depending on V n−1

1−η and its derivatives such that for any
δ>0, we have

|I2|≤ δ((ωn−1)2(∂η(
V nξ

1−η
))2 +(ωn−1)2(∂η(

V nτ
1−η

))2 +(ωn−1)2(V nηη)2)

+
c1
δ

((
V nτ

1−η
)2 +(

V nξ
1−η

)2 +(V nη )2). (2.9)

Similarly, I3 can be bounded by

|I3|≤ c2((
V nτ

1−η
)2 +(

V nξ
1−η

)2 +(V nη )2)+c3, (2.10)

in which c2 depends on V n−1

1−η and its derivatives, and c3 depends only on V n−1

1−η .
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Thus, by plugging (2.8), (2.9) and (2.10) into (2.7) it follows that there is a large
K0 such that

L0
n(Φn)+RnΦn≥0, (2.11)

holds, where Rn depends on V n−1

1−η and its derivatives.

Step 3. The boundary condition for Φn at η= 0.

Obviously, one has that on {η= 0},

Φnη = 2
V nτ

1−η
∂η

(
V nτ

1−η

)
+2

V nξ
1−η

∂η

(
V nξ

1−η

)
+2V nη ∂ηV

n
η +Kn

1 :=Jτ1 +Jξ1 +J2 +Kn
1 .

(2.12)
By using the equation and the boundary condition given in (2.3), there holds

Jτ1 |η=0 = 2V nτ (∂ηV
n
τ +V nτ )

= 2(V nτ )2 +2V nτ

(
αV nτ −

V n−1
τ

(V n−1)2
(

∫ 1

0

1−η′

ωn−1
dη′+C)

− 1

V n−1
(

∫ 1

0

(1−η′)ωn−1
τ

(ωn−1)2
dη′−∂τC)

)
≥2(α+1)(V nτ )2− α

2
(V nτ )2− c4

α
(V n−1
τ )2− c5

α
max

∣∣ωn−1
τ

1−η
∣∣2−c6,

J2|η=0 = 2
(
αV n+

1

V n−1
(

∫ 1

0

1−η′

ωn−1
dη′−C)

) 1

(ωn−1)2

(
V nτ −ÂnV nη −B̂V n−(1−η)eαη

)
≥−α

2
(V nτ )2−c7,

and Jξ1 satisfies the same estimate as that of Jτ1 given above. Choose α large enough
such that c4

α ≤
α
2 and c5

α ≤
1
4 , and Kn

1 is given in the form

Kn
1 = K̂1 +

1

4
max

(∣∣ωn−1
τ

1−η
∣∣2 +

∣∣ωn−1
ξ

1−η
∣∣2) (2.13)

then from (2.12) we get

Φnη ≥αΦn− α
2

Φn−1−αK0−c8 +K̂1

≥αΦn− α
2

Φn−1

at the boundary η= 0, therefore it implies that (2.6) holds, which completes the proof
of this lemma.

Similarly, to study the second-order derivatives of V n

1−η , we introduce the following
second -order functional Ψn:

Ψn=
∑

∂l1 ,∂l2∈{∂τ ,∂ξ}

(∂l2∂l2
V n

1−η
)2 +

∑
∂l∈{∂τ ,∂ξ}

(∂lV
n
η )2 +(V nηη)2 +Nn

1 η+N0,

where N0 and Nn
1 are positive constants to be determined later.
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Lemma 2.3. There exist some N0>0, and Nn
1 >0 depending on the second-order deriva-

tive of ωn−1

1−η with respect to τ and ξ, such that Ψn satisfies:{
L0
n(Ψn)+CnΨn+Dn≥0, in QT,

∂ηΨn≥αΨn− α
2 Ψn−1, on η= 0,

(2.14)

where Cn depends on ωn−1

1−η and its first and second-order derivatives, and Dn depends

on ωn

1−η , ωn−1

1−η , ωn−2

1−η and their first-order derivatives.

Proof. The first inequality given in (2.14) can be obtained in the same way as
given in the proof of Lemma 2.2, so we omit the detailed calculation. To verify the
second inequality given in (2.14), by definition

∂ηΨn= 2
V nl1l2
1−η

∂η

(
V nl1l2
1−η

)
+2V nlη∂ηV

n
lη +2V nηη∂ηV

n
ηη+Nn

1 =:J3 +J4 +J5 +Nn
1 .

By using the equation and the boundary condition given in (2.3), there are constants
cj (9≤ j≤13) depending on Φi (n−2≤ i≤n), such that it holds

J3|η=0 = 2V nl1l2(V nl1l2 +∂ηV
n
l1l2)

≥2(α+1)(V nl1l2)2− α
2

(V nl1l2)2− c9
α

(V n−1
l1l2

)2− c10

α
max

∣∣ωnl1l2
1−η

∣∣2−c11,

J4|η=0≥−
1

2
(V nlτ )2−c12,

J5|η=0≥−c13.

Next, let α be large enough such that c9
α ≤

α
2 and c10

α ≤
1
4 , and choose Nn

1 in the form

Nn
1 = N̂1 +

1

4
max

∣∣ωn−1
l1l2

1−η
∣∣2

with N̂1 properly large, there holds

∂ηΨn≥αΨn− α
2

Ψn−1−αN0−c14 +N̂1

≥αΨn− α
2

Ψn−1,

from which the second inequality of (2.14) follows.

Lemma 2.4. For some T >0 and the solution ωn of the problem (2.3) in QT , we have
that ωn

1−η and its derivatives up to order two are bounded uniformly in n≥1.

Proof. It suffices to show that there exist M1, M2 and T >0 such that Φk≤M1,
Ψk≤M2 for all k≥0. We prove it by induction, assume that it holds for all 0≤k≤n−1.

Let Φn1 = Φne−γτ with γ large enough such that Rn−γ≤−1 in QT . According to
Lemma 2.2, it follows that Φn1 satisfies

L0
n(Φn1 )+(Rn−γ)Φn1 ≥0, in QT, (2.15)

and

∂ηΦn1 ≥αΦn1 −
α

2
Φn−1

1 , on η= 0.
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Therefore, by applying the maximal principle to the Equation (2.15), Φn1 can only attain
its positive maximum at either τ = 0, ξ= 0 or η= 0.

If it happens at either τ = 0 or ξ= 0, then we know from (2.13) that

Φn1 = Φne−γτ ≤Φn<k1 +
1

4
M1,

where the constant k1 is determined only by the initial and boundary data.
If Φn1 attains its positive maximum on QT at η= 0, it follows from the boundary

condition in (2.6) that at this point,

Φn1 ≤
1

2
Φn−1

1 ≤ 1

2
M1.

In summary, we conclude that for all (τ,ξ,η)∈QT ,

Φn1 (τ,ξ,η)≤max{1

2
M1,k1 +

1

4
M1}.

Thus, Φn≤M1 holds on QT1 if we initially choose M1 = 4k1 and eγT1 = 2.
Similarly, by using Lemma 2.3 we can obtain that there is T2>0 such that Ψn≤M2

holds on QT2
. Finally, by taking T = min{T1,T2}>0, then Φn≤M1 and Ψn≤M2 hold

on QT for all n≥1.

Based on the above result, we are ready to give the proof of Theorem 1.1.

Proof. (Proof of Theorem 1.1.) Since the Crocco transformation is invertible in
the monotonic class (1.2), it suffices to prove the well-posedness of the problem (2.2),
the reverse from ω to u refers to [17].

To show the convergence of ωn, let us introduce

θn=
ωn

1−η
, and Pn= (θn−θn−1)e−ατ+βη

with the parameters α and β to be chosen later.

Denote Ân−1 =An−1 +2 (ωn−1)2

1−η and B̂n−1 =B− An−1

1−η , then from (2.3), we know
that Pn satisfies

(ωn−1)2∂2
ηP

n−∂τPn−ηU∂ξPn−(2β(ωn−1)2 +Ân−1)∂ηP
n−ΛPn+R(Pn−1) = 0,

(2.16)

where

Λ=−β2(ωn−1)2 +α−βÂn−1 +B̂n−1,

R(Pn−1)=(1−η)(ωn−1 +ωn−2)∂2
ηθ
n−1Pn−1+

θn−1

1−η

∫ 1

η

(1−η′)2

ωn−1ωn−2
Pn−1e−βη

′+βηdη′

−(

∫ 1

η

(1−η′)2

ωn−1ωn−2
Pn−1e−βη

′+βηdη′+2(ωn−1 +ωn−2)Pn−1)∂ηθ
n−1.

In addition, at η= 0, we also have that

∂ηP
n−SPn+K(Pn−1) = 0, (2.17)

where S= βωn−1+θn−1

ωn−1 and K(Pn−1) =
(1−η)∂ηθ

n−1−θn−1

ωn−1 Pn−1 +
∫ 1

0
Pn−1e−βη

′

θn−1θn−2 dη
′.
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Now we choose proper constants α and β, such that the inequalities∣∣∣R(Pn−1)

Λ

∣∣∣≤ qmax
QT

|Pn−1|,
∣∣∣K(Pn−1)

S

∣∣∣≤ qmax
QT

|Pn−1|

hold for some positive constant 0<q<1. Therefore, by noting the above estimates and
the fact that Pn= 0 at τ = 0 and ξ= 0, we apply the maximal principle for the problem
(2.16)-(2.17) to obtain

max
QT

|Pn|≤ qmax
QT

|Pn−1|.

This implies that the series
∞∑
n=1

Pn is uniformly convergent.

On the other hand, due to the uniform boundedness of the first and second-order
derivatives of ωn

1−η , one has

ωn→ω uniformly in C1(QT ), as n→+∞.

Meanwhile, it follows from the equation given in (2.3) that ωnηη also converges uniformly
to ωηη for any η<1 . Hence, ω is a classical solution to (2.2).

Similarly we can obtain the uniqueness of the solution to the problem (2.2) by
considering the difference θ= ω−ω̃

1−η of two solutions ω and ω̃. It ends the proof of this
theorem.

3. Back flow of the boundary layer
In this section, we investigate the effect of the integral term

∫ y
+∞(U−u)dy′ on the

formation of the vanishing shear stress point during the evolution of the solution of
(1.1) in the monotonic class, which leads to the back flow phenomenon ( [27]) after this
point.

For given X>0 and T >0, we assume that the boundary layer problem admits a
classical solution in the monotonic class uy(t,x,y)>0 for all (t,x,y)∈{0≤ t≤T,0≤x≤
X,0≤y<+∞}, otherwise the vanishing shear stress point has already occurred.

Comparing the system (2.2) with the model derived from the Prandtl equation,
the integrations in the equation and the boundary condition bring us new difficulties
in exploring the features of the solution, especially when using the maximal principle.
In addition, there is a non-negative source term 1−η in the equation, formally, it may
prevent the appearance of the back flow. However, if we take V =C(t,x)(1−η) as a
barrier function, then this source term can be exactly balanced by the term

−
∫ 1

η

1−η′

V
dη′Vη.

Hence, one could not simply view it as a source term. On the other hand, formally from
the boundary condition given in (2.2) one may have ωωη(τ,ξ,0)>0 if ω

1−η is sufficiently
small, this could lead to the appearance of back flow in boundary layer. For this reason,
let us first give an upper bound result of ω in QT ={0≤ τ ≤T,0≤ ξ≤X,0≤η≤1}.

Lemma 3.1. For given X, T >0, and a fixed

λ>‖Uτ
U

+ηUξ‖L∞([0,T ]×[0,X]) +‖Uτ
U

+(1+η)Uξ‖L∞([0,T ]×[0,X]), (3.1)
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if there is positive constant k satisfying

ω0(ξ,η)<k(1−η), ω1(τ,η)e−λτ <k(1−η) (3.2)

and

Uτ +UUξ
U

<
e−λτ

k
(3.3)

for all 0≤η<1, 0≤ τ ≤T and 0≤ ξ≤X, then the inequalities

ω(τ,ξ.η)e−λτ ≤k(1−η) and ωωη(τ,ξ,0)>0 (3.4)

hold for the classical solution ω of (2.2) in QT .

Proof.
(1) If the first assertion given in (3.4) is true, then from the boundary condition

given in (2.2) we have that

ωωη(τ,ξ,0) =

∫ 1

0

1−η′

ω(τ,ξ,η′)
dη′− UUξ+Uτ

U
≥ e
−λτ

k
− UUξ+Uτ

U
>0 (3.5)

holds by using (3.3). Thus, the second assertion given in (3.4) holds.

(2) We shall use the maximal principle to prove the first inequality of (3.4). Setting
ω̃=ωe−λτ with λ being given in (3.1), from (2.2) we know that ω̃ satisfies

ω̃τ +ηUω̃ξ+(Ã−
∫ 1

η

1−η′

ω̃
dη′e−λτ )ω̃η+(B+λ)ω̃−ω2ω̃ηη = (1−η)e−λτ , (3.6)

where Ã= (1−η)UτU +(1−η2)Uξ.
Denote by

L1(Φ) := Φτ +ηUΦξ+(Ã−
∫ 1

η

1−η′

Φ
dη′e−λτ )Φη+(B+λ)Φ−ω2Φηη. (3.7)

Setting F (τ,ξ,η) =k(1−η), with k being given in (3.2), it is easy to have

L1(F ) = (1−η)e−λτ +k(B+λ− Ã

1−η
)(1−η)> (1−η)e−λτ =L1(ω̃) (3.8)

for 0≤η<1, by noting that λ> |B|L∞+ | Ã1−η |L∞ .

If the first inequality of (3.4) does not hold in QT , then ω̃−F >0 at some point in
the domain QT . From (3.2), we know that

(ω̃−F )
∣∣
η=1

= 0, (ω̃−F )
∣∣
τ=0

<0, (ω̃−F )
∣∣
ξ=0

<0,

then by continuity, there must be a first time τ0>0 and the smallest ξ0>0, and 0≤η0<1
such that

(F − ω̃)(τ0,ξ0,η0) = 0, F − ω̃≥0 (3.9)

for all points in {0≤ τ ≤ τ0,0≤ ξ≤ ξ0,0≤η<1}. On the other hand, from the computa-
tion given in (3.5) and using (3.3), (3.9) we have ωη(τ0,ξ0,0)>0. Obviously, Fη =−k<0,
so F − ω̃ is strictly decreasing in η at (τ0,ξ0,0). Thus, from (3.9) we get 0<η0<1, and{

η0 is a minimal point of (F − ω̃)(τ0,ξ0,η),

∂τ (F − ω̃)(τ0,ξ0,η0)≤0, ∂ξ(F − ω̃)(τ0,ξ0,η0)≤0.
(3.10)
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Consequently, it follows that

L1(F )−L1(ω̃) = (F − ω̃)τ +ηU(F − ω̃)ξ+(A−
∫ 1

η

1−η′

ω̃
dη′e−λτ )(F − ω̃)η

+(B+λ)(F − ω̃)+

∫ 1

η

(1−η′)(F − ω̃)

ω̃F
dη′e−λτFη−ω2(F − ω̃)ηη≤0 (3.11)

at (τ0,ξ0,η0), which is a contradiction to (3.8). Hence F ≥ ω̃ in QT , which ends the
proof of this lemma.

Remark 3.1.
(1) The conditions given in (3.2) and (3.3) immediately follow from the assumptions

given in Theorem 1.2.

(2) If the outer flow satisfies

U(τ,ξ)>0, Uτ +UUξ≤0, ∀0≤ τ ≤T,0≤x≤X, (3.12)

then (3.3) does not give any constraint on k>0. Otherwise, if (3.12) is changed as

U(τ,ξ)>0, max
0≤τ≤T,0≤x≤X

(Uτ +UUξ)>0, (3.13)

then the conditions given in (3.2)-(3.3) imply that the initial, boundary data and the
outer flow of the problem (2.2) should satisfy the constraint

max
QT

(
ω0(ξ,η)

1−η
,
ω1(τ,η)

1−η
e−λτ

)
<

Ue−λτ

max
[0,T ]×[0,X]

(Uτ +UUξ)
. (3.14)

Next, we will make use of the smallness of ω in QT and the reverse force
∫ 1

0
1−η
ω dη

to prove the existence of the vanishing shear stress point. First of all, by developing the
idea given in [27], we have the following result.

Lemma 3.2. Under the same assumption as given in Lemma 3.1, the first vanishing
shear stress point (τ?,ξ?,η?), i.e.

ω(τ?,ξ?,η?) = 0, ω(τ,ξ,η)>0, ∀0≤ τ <τ∗,0≤ ξ≤X,0≤η<1, (3.15)

can only occur at the physical boundary, i.e. η?= 0.

Proof.
(1) If the conclusion is not true, it means there is an interior point, 0<η?<1, such

that (3.15) holds. Then, the Crocco transformation (2.1) is invertible in the region
Q?={0<τ <τ?,0<ξ<X,0<η<1}.

(2) In order to use the comparison principle for the problem (2.2) after the Crocco
transformation, fix three different points ηi (i=1, 2, 3) with 0<η1<η2<η3<1, and
choose a non-negative function φ(η) satisfying

1) φ(η) =αη for 0≤η≤η1,

2) φ′(η)≥0 for η∈ [η1,η2],

3)
∫ 1

η
1−η′
φ(η′)dη

′φ′(η) =σ(η)(η−1) for η∈ [η2,η3],

4) φ(η) = 1−η for η∈ [η3,1],
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for a positive constant α>0, where σ(η) is a smooth function defined on [η2,η3] satisfying
0≤σ(η)≤1 and σ(η2) = 0. The construction of φ(η) satisfying the above third condition
shall be given in Appendix B.

We choose a barrier function F (τ,η) =εφ(η)e−Mτ , with the parameters ε small and
M>0 large to be determined later, such that

ω0>F (0,η), ω1e
−λτ >F (τ,η), for 0≤ τ ≤ τ?,η∈ [0,1). (3.16)

We are going to prove that there is M>0 large such that

ω̃≥F (3.17)

in Q?, with ω̃=ωe−λτ . Letting τ→ τ−? , ξ→ ξ? and η→η?, from (3.17) it yields

ω̃(τ?,ξ?,η?)≥εφ(η?)e
−Mτ∗ >0. (3.18)

This is a contradiction to the assumption ω(τ?,ξ?,η?) = 0.

(3) Define the operator L2 by

L2ψ :=ψτ +ηUψξ+Ãψη+(B+λ)ψ−ω2ψηη

−
(
χ[0,η2](η)

∫ 1

η

1−η′

ω̃
dη′+χ(η2,1](η)

∫ 1

η

1−η′

ψ
dη′
)
e−λτψη

with Ã being given in (3.6), χ[0,η2](η) and χ[η2,1](η) being the characteristic functions
on [0,η2] and (η2,1], respectively.

In the next point (4), we shall determine a large M>0 such that

L2F −L2ω̃= (F − ω̃)τ +ηU(F − ω̃)ξ+A(F − ω̃)η+(B+λ)(F − ω̃)−ω2(F − ω̃)ηη

−[χ[0,η2](η)

∫ 1

η

1−η′

ω̃
dη′+χ(η2,1](η)

∫ 1

η

1−η′

ω̃
dη′]e−λτ (F − ω̃)η

+χ(η2,1](η)

∫ 1

η

(1−η′)(F − ω̃)

Fω̃
dη′e−λτFη

<0 (3.19)

in Q∗.
Now, assume that the assertion (3.17) fails. From (3.16), we suppose that the first

zero point of ω̃−F in Q∗ is (τ0,ξ0,η0), and{
ω̃(τ0,ξ0,η)−F (τ0,η)≥0, ∀0≤η≤1,

ω̃(τ,ξ,η)−F (τ,η)>0, ∀0≤ τ <τ0,0≤ ξ≤X,0≤η<1.

By noting from (3.4) that ω̃(τ,ξ,0)>0, one has 0<η0<1. Thus, η0 is the minimal point
of ω̃(τ0,ξ0,η)−F (τ0,η) on [0,1].

Noting Fη≤0 in [η2,1], from the expression of L2F −L2ω̃ given in (3.19) we have

L2F −L2ω̃≥0, at (τ0,ξ0,η0)

which is a contradiction to (3.19). Thus, the inequality (3.17) holds in Q∗ when (3.19)
is true.

(4) It remains to verify the inequality (3.19) by choosing M properly large.
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First, from (3.6) we know that ω̃=ωe−λτ satisfies:

L2ω̃= (1−η)e−λτ , (3.20)

For η∈ [0,η1], by a direct calculation, one has

L2F =εαe−Mτ (Ã+(B+λ−M)η−
∫ 1

η

1−η′

ω̃
dη′e−λτ )

=εαe−Mτ (C+(λ−M)η−
∫ 1

η

1−η′

ω̃
dη′e−λτ )<0 (3.21)

when M ≥λ, by using (3.2) and (3.4).
For η∈ [η1,η2], by definition, one has

L2F =εe−Mτ (Ãφ′(η)+(B+λ−M)φ−ω2φ′′−
∫ 1

η

1−η′

ω̃
dη′e−λτφ′(η))

≤εe−Mτ [Ãφ′(η)+(B+λ−M)φ−ω2φ′′]<0, (3.22)

when M is large enough, by using φ′(η)≥0 and φ(η)≥αη1>0 on [η1,η2].
For η∈ [η2,η3], by a direct calculation it follows that

L2F =εe−Mτ [Ãφ′(η)+(B+λ−M)φ−ω2φ′′]−
∫ 1

η

1−η′

φ
dη′φ′(η)e−λτ

<−
∫ 1

η

1−η′

φ
dη′φ′(η)e−λτ =σ(η)(1−η)e−λτ ≤L2ω̃, (3.23)

when M is large enough, by using that φ is bounded from below and 0≤σ(η)≤1 on
[η2,η3].

When η∈ [η3,1), since φ(η) = 1−η, we have

L2F =εe−Mτ [−Ã+(B+λ−M)(1−η)]+(1−η)e−λτ

<L2ω̃, (3.24)

when M is large enough.
Summarizing (3.20)-(3.24), we get the conclusion (3.19). It ends the proof of this

lemma.

Based on the above two lemmas, we are ready to prove the back flow result given in
Theorem 1.2. The proof idea is inspired from the Lyapunov functional approach given
in [27] for the classical Prandtl equation.

Proof. (Proof of Theorem 1.2.) Assume that ω is a classical solution of the
problem (2.2) in QT , introduce the Lyapunov functional for 0≤ τ ≤T ,

G(τ) =

∫ X

0

∫ 1

0

ψ(ξ)√
ω2(τ,ξ,η)+η2

dξdη (3.25)

where ψ(ξ) = (X−ξ) 3
2 . Due to the invertibility of the Crocco transformation, it suffices

to prove that the functional G(τ) will blow up in a finite time under the assumptions.
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Denoting W (τ,ξ,η) = 1√
ω2+η2

, from (2.2) we know that W satisfies

Wτ +ηUWξ+(Ã−
∫ 1

η

1−η′

ω
dη′)Wη =BW +η(

∫ 1

η

1−η′

ω
dη′− Uτ +UUξ

U
)W 3

− ω3

(ω2 +η2)
3
2

ωηη−
(1−η)ω

(ω2 +η2)
3
2

. (3.26)

Therefore, one has

dG(τ)

dτ
=

∫ X

0

∫ 1

0

{
−ηUWξ− [(Ã−

∫ 1

η

1−η′

ω
dη′)Wη−BW ]+η(

∫ 1

η

1−η′

ω
dη′

−Uτ +UUξ
U

)W 3− ω3

(ω2 +η2)
3
2

ωηη−
(1−η)ω

(ω2 +η2)
3
2

}
ψ(ξ)dξdη

: =
5∑
i=0

Ii. (3.27)

Now, it remains to estimate the five terms given on the right-hand side of (3.27)
one by one. The main idea is to prove the blowup of G in virtue of the cubic term W 3

in the equation. Note that the coefficient of the cubic term is only positive for η away
from the upper bound η= 1. However, by the definition of W , it is controllable for η≥ δ
for any δ>0.

For this reason, we can estimate the cubic term in the following way:

I3 =

∫ X

0

(

∫ 1

δ

+

∫ δ

0

)η(

∫ 1

η

1−η′

ω
dη′− Uτ +UUξ

U
)W 3ψ(ξ)dξdη

=

∫ X

0

∫ δ

0

η(

∫ 1

η

1−η′

ω
dη′− Uτ +UUξ

U
)W 3ψ(ξ)dξdη−c1(τ,X)

≥ e
−λτ

k

∫ X

0

∫ δ

0

η(2δ−η)W 3ψ(ξ)dξdη−c1(τ,X), (3.28)

by using (1.9), with

c1(τ,X) =

∫ X

0

∫ 1

δ

η(

∫ 1

η

1−η′

ω
dη′− Uτ +UUξ

U
)W 3ψ(ξ)dξdη.

For the term I1 given in (3.27), by using integrating by parts,

I1 =

∫ 1

0

ηU(τ,0)W (τ,0,η)ψ(0)dη+

∫ X

0

∫ 1

0

ηW (Uξψ(ξ)+Uψ′(ξ))dξdη

≥−c2(τ,X)G(τ)+c3(τ,X)+

∫ X

0

∫ δ

0

ηWUψ′(ξ)dξdη

≥−(

∫ X

0

∫ δ

0

η(2δ−η)W 3ψ(ξ)dξdη)
1
3 (

∫ X

0

∫ δ

0

η(2δ−η)−
1
2U

3
2
|ψ′(ξ)| 32
ψ

1
2

dξdη)
2
3

−c2(τ,X)G(τ)+c3(τ,X)

≥−e
−λτ

2k

∫ X

0

∫ δ

0

η(2δ−η)W 3ψ(ξ)dξdη−c2(τ,X)G(τ)+c3(τ,X)−c4(τ,X),
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with c2(τ,X) = max
0≤η≤1,0≤ξ≤X

|ηUξ|,

c3(τ,X) =

∫ X

0

∫ 1

δ

ηWUψ′(ξ)dξdη

and

c4(τ,X) = (
8keλτ

27
)

1
2

∫ X

0

∫ δ

0

η(2δ−η)−
1
2U

3
2
|ψ′(ξ)| 32
ψ

1
2

dξdη.

For the term I2 of (3.27), one has

I2 =

∫ X

0

(
(Ã−

∫ 1

η

1−η′

ω
dη′)W

)∣∣
η=0

ψ(ξ)dξ+

∫ X

0

∫ 1

0

(Ãη+B+
1−η
ω

)Wψ(ξ)dξdη

=−
∫ X

0

ωη(τ,ξ,0)ψ(ξ)dξ+

∫ X

0

∫ 1

0

(
1−η
ω
−ηUξ)Wψ(ξ)dξdη

≥−
∫ X

0

ωη(τ,ξ,0)ψ(ξ)dξ+

∫ X

0

∫ 1

0

1−η
ω

Wψ(ξ)dξdη−c2(τ,X)G

and

I4 =

∫ X

0

ωη(τ,ξ,0)ψ(ξ)dξ+3

∫ X

0

∫ 1

0

η2ω2ω2
η−ηω3ωη

(ω2 +η2)
5
2

ψ(ξ)dξdη

≥
∫ X

0

ωη(τ,ξ,0)ψ(ξ)dξ+
3

2

∫ X

0

∫ 1

0

η2ω2ω2
η−ω4

(ω2 +η2)
5
2

ψ(ξ)dξdη

≥
∫ X

0

ωη(τ,ξ,0)ψ(ξ)dξ+
3

2

∫ X

0

∫ 1

0

η2ω2ω2
η

(ω2 +η2)
5
2

ψ(ξ)dξdη− 3

2
G(τ).

Combining the above four estimates for Ii (i=1, 2, 3, 4) and (3.27), it leads to

dG

dτ
≥e
−λτ

2k

∫ X

0

∫ δ

0

η(2δ−η)W 3ψ(ξ)dξdη+

∫ X

0

∫ 1

0

1−η
ω

Wψ(ξ)dξdη

−
∫ X

0

∫ 1

0

(1−η)ω

(ω2 +η2)
3
2

ψ(ξ)dξdη−(2c2(τ)+
3

2
)G−(c1(τ)−c3(τ)+c4(τ))

=
e−λτ

2k

∫ X

0

∫ δ

0

η(2δ−η)W 3ψ(ξ)dξdη+

∫ X

0

∫ 1

0

(1−η)η2

ω(ω2 +η2)
3
2

ψ(ξ)dξdη

−(2c2(τ)+
3

2
)G−(c1(τ)−c3(τ)+c4(τ))

≥e
−λτ

2k

∫ X

0

∫ δ

0

η(2δ−η)W 3ψ(ξ)dξdη−(2c2(τ)+
3

2
)G−(c1(τ)−c3(τ)+c4(τ)).

(3.29)

By using Cauchy-Schwartz’s inequality, then

dG

dτ
≥e
−λτ

2k
(

∫ X

0

∫ δ

0

Wψ(ξ)dξdη)3(

∫ X

0

∫ δ

0

[η(2δ−η)]−
1
2ψ(ξ)dξdη)−2

−(2c2(τ)+
3

2
)G−(c1(τ)−c3(τ)+c4(τ))
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≥c5e
−λτ

k
(G−

∫ X

0

∫ 1

δ

Wψ(ξ)dξdη)3−(2c2(τ)+
3

2
)G−(c1(τ)−c3(τ)+c4(τ)),

(3.30)

with c5 = 1
2 (
∫X

0

∫ δ
0

[η(2δ−η)]−
1
2ψ(ξ)dξdη)−2.

Since
∫X

0

∫ 1

δ
Wψ(ξ)dξdη≤ c6(X), it is reduced as

dG

dτ
≥ c5e

−λτ

k
(G−c6(X))3−(2c2(τ)+

3

2
)G−(c1(τ)−c3(τ)+c4(τ)), (3.31)

which implies that G̃(τ) =G(τ)−c6(X) satisfies

dG̃

dτ
≥ c5e

−λτ

k
G̃3−(2c2(τ)+

3

2
)G̃−c7(τ) (3.32)

with c7(τ) = c1(τ)−c3(τ)+c4(τ)+c6(τ)(2c2(τ)+ 3
2 ).

Thus, G̃(τ) will go to infinity at some time τ̄ ∈ (0,T ] if the initial data G̃(0) is large
enough, which is equivalent to that limτ→τ̄G(τ) = +∞ as G(0) is large. This implies
that ω(τ̄ , ξ̄,0) = 0 for some 0<τ̄ ≤T and 0<ξ̄≤X, which is the vanishing shear stress
point at the physical boundary η= 0. It ends the proof of this theorem.

Acknowledgements. This research was partially supported by the National Nat-
ural Science Foundation of China (NNSFC) under Grant No. 11631008.

Appendix A. Derivation of the problem (1.1). To derive (1.1), we consider
the vanishing viscosity limit for the incompressible geophysical equation with rotation, it
is governed by the following problem for the Navier-Stokes-Coriolis equations (see [5,18])
in {t>0,x∈R,Y >0}:

β(∂tu
β,ν +uβ,ν∂xu

β,ν +vβ,ν∂Y u
β,ν)+xvβ,ν +∂xP

β,ν =κ1 +ν∆uβ,ν ,
β(∂tv

β,ν +uβ,ν∂xv
β,ν +vβ,ν∂Y v

β,ν)−xuβ,ν +∂Y P
β,ν =κ2 +ν∆vβ,ν ,

uβ,νx +vβ,νY = 0,
(uβ,ν ,vβ,ν)|Y=0 = (0,0),

(uβ,ν ,vβ,ν)|t=0 = (uβ,ν0 ,vβ,ν0 ),

(A.1)

where κ= (κ1,κ2)T represents the shear tensor created by wind, the term x(vβ,ν ,−uβ,ν)
is due to the Coriolis force. The parameters β and ν are relatively small due to the
large scale effect.

First, as (β,ν)→ (0,0), from (A.1) it is easy to deduce formally that{
u0,0 =−curlκ

u0,0
x +v0,0

Y = 0, v0,0|Y=0 = 0

It is easy to know that u0,0 defined above does not satisfy the no-slip boundary condition
given in (A.1) in general. Therefore, as in [15,17,19], boundary layers should be involved
to describe the limit of uβ,ν as β, ν go to zero.

For the special case of β=O(ν
1
3 ), we have a balance between convection, Coriolis

force and viscosity of the fluid near the boundary by choosing the thickness of bound-
ary layer as ε=ν

1
3 . Applying the classical boundary layer theory ( [19]), we take the
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following ansatz for the solutions (uβ,ν ,vβ,ν) and P β,ν of (A.1):

uβ,ν(t,x,Y ) =
∞∑
j=0

ν
j
3 (uI,j(t,x,Y )+uB,j(t,x, Y

ν
1
3

)),

vβ,ν(t,x,Y ) =
∞∑
j=0

ν
j
3 (vI,j(t,x,Y )+vB,j(t,x, Y

ν
1
3

)),

P β,ν(t,x,Y ) =
∞∑
j=0

ν
j
3 (P I,j(t,x,Y )+PB,j(t,x, Y

ν
1
3

)).

with the terms like uB,j(j= 0,1,·· ·) exponentially decaying in the fast variable y= Y

ν
1
3

.

Plugging the above expansion into the problem (A.1), for points away from Y = 0,
gathering the terms of the order of O(1) leads to

xvI,0 +∂xP
I,0 =κ1,

−xuI,0 +∂Y P
I,0 =κ2,

uI,0x +vI,0Y = 0.

(A.2)

It implies that uI,0 =−curlκ, and then

uB,0|y=0 = curlκ(t,x,0). (A.3)

Meanwhile, to solve the problem (A.1) up to the order of O(ε2), we also have
xvI,1 +∂xP

I,1 =−∂tuI,0−uI,0∂xuI,0−vI,0∂Y uI,0,
−xuI,1 +∂Y P

I,1 =−∂tvI,0−uI,0∂xvI,0−vI,0∂Y vI,0,
uI,1x +vI,1Y = 0.

(A.4)

For points near the boundary, it follows from the divergence-free condition and the
matching condition at infinity that

vB,0(t,x,y)≡0. (A.5)

As a result, we have vI,0|Y=0 =−vB,0|y=0 = 0, which is the boundary condition for
solving the problem (A.2).

Similarly, gathering the terms of the order O(ε−1) in the equation of vβ,ν in (A.1),
we obtain

PB,0(t,x,y)≡0. (A.6)

On the other hand, setting Y =ν
1
3 y for the term uI,j etc., taking the Taylor expan-

sions of terms varying in Y =ν
1
3 y at y= 0 and collecting the terms of O(ε) and O(1) in

the equations of uβ,ν and vβ,ν , respectively, we have
∂t(uI,0 +uB,0)+(uI,0 +uB,0)∂x(uI,0 +uB,0)+(vB,1 +vI,1 +y∂Y vI,0)∂yu

B,0

+x(vB,1 +vI,1 +y∂Y vI,0)+∂x(PB,1 +P I,1 +y∂Y P I,0) =y∂Y κ1 +∂2
yu

B0,

−x(uI,0 +uB,0)+∂Y P I,0 +∂yP
B,1 = 0,

∂x(uI,0 +uB,0)+∂yv
B,1 +∂Y vI,0 = 0,

(A.7)

where f denotes the trace f(t,x,0) of f(t,x,Y ) at Y = 0. Combining (A.7) with (A.2)
and (A.4), it follows that

∂tu
B,0 +(uI,0 +uB,0)∂xu

B,0 +uB,0∂xuI,0 +(vB,1 +vI,1 +y∂Y vI,0)∂yu
B,0

+xvB,1 +∂xP
B,1 =∂2

yu
B0,

−xuB,0 +∂yP
B,1 = 0,

∂xu
B,0 +∂yv

B,1 = 0.

(A.8)
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From the second equation of (A.8), we know that

∂xP
B,1(t,x,y) =

∫ y

∞
uB,0(t,x,z)dz−xvB,1.

Setting (u,v) = (uB,0,vB,1 +vI,1 +y∂Y vI,0), from (A.8) we get that{
∂tu+(uI,0 +u)∂xu+u∂xuI,0 +v∂yu−

∫ +∞
y

udz=∂2
yu,

∂x(u+uI,0)+∂yv= 0,
(A.9)

which are exactly the equations we considered in (1.1) if we introduce new u for u+uI,0.

Appendix B. Construction of the auxiliary function φ(η). In this appendix,
we construct the function φ(η) introduced in the proof of Lemma 3.2. To satisfy the
condition for φ(η) given in the proof of Lemma 3.2, we require that φ(η) satisfies∫ 1

η′

1− η̃
φ(η̃)

dη̃φ′(η′) =σ(η′)(η′−1) (B.1)

as η′∈ [η2,1], for any given smooth function σ(η) satisfying that 0≤σ(η)≤1, σ(η2) = 0
and σ(η) = 1 when η3≤η≤1. Integrating (B.1) with respect to η′ over [η,1] for η2<η<
1, one gets that ∫ 1

η

1−η′

φ(η′)
dη′φ(η) =

∫ 1

η

(σ(η′)+1)(1−η′)dη′. (B.2)

Letting F (η) =
∫ 1

η
1−η′
φ(η′)dη

′, we know from (B.2) that

F ′(η)

F (η)
=γ(η), (B.3)

with

γ(η) =− 1−η∫ 1

η
(σ(η′)+1)(1−η′)dη′

. (B.4)

For any η2≤η<η3, integrating (B.3) over [η,η3] it follows that

1−η3

F (η)
= exp

(∫ η3

η

γ(η′)dη′
)

which implies ∫ 1

η

1−η′

φ(η′)
dη′= (1−η3)exp

(
−
∫ η3

η

γ(η′)dη′
)
. (B.5)

By differentiating the identity (B.5), we get

φ(η) =
1

1−η3

∫ 1

η

(σ(η′)+1)(1−η′)dη′ ·exp

(∫ η3

η

γ(η′)dη′
)
. (B.6)
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