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CONSTRAINT ENERGY MINIMIZING GENERALIZED MULTISCALE
FINITE ELEMENT METHOD FOR DUAL CONTINUUM MODEL∗

SIU WUN CHEUNG† , ERIC T. CHUNG‡ , YALCHIN EFENDIEV§ , WING TAT LEUNG¶,

AND MARIA VASILYEVA‖

Abstract. The dual continuum model serves as a powerful tool in the modeling of subsurface
applications. It allows a systematic coupling of various components of the solutions. The system is
of multiscale nature as it involves high heterogeneous and high contrast coefficients. To numerically
compute the solutions, some types of reduced order methods are necessary. We will develop and
analyze a novel multiscale method based on the recent advances in multiscale finite element methods.
Our method will compute multiple local multiscale basis functions per coarse region. The idea is based
on some local spectral problems, which are important to identify high contrast channels, and an energy
minimization principle. Using these concepts, we show that the basis functions are localized, even in
the presence of high contrast long channels and fractures. In addition, we show that the convergence of
the method depends only on the coarse mesh size. Finally, we present several numerical tests to show
the performance.
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1. Introduction
Common in a wide variety of applications related to subsurface formations, one

needs to perform numerical simulations in domains containing discrete fractures, faults
and thin structures. The material properties within fractures can have a large difference
from the material properties in the background media, which can also contain highly
heterogeneous and high contrast regions. These large contrasts in material properties
and the complex geometries of the fractures lead to difficulties in traditional numerical
simulations due to the fact that solutions contain various scales and resolving these scales
requires huge computational costs. Our goal in this paper is to construct and analyze
reduced models for such problems. In classical upscaling approach, the computational
domain is decomposed into coarse blocks, not necessarily resolving scales, and effective
material property is computed for each coarse block [16, 47]. To compute effective
material properties, some local problems are solved. However, it is known that one
effective coefficient per coarse region is not enough to capture various properties of
the solutions, especially for regions with fractures and high contrast heterogeneities.
To overcome this drawback, the multi-continuum approaches are used [3, 5, 30, 43, 46,
49], where several effective medium properties are constructed. For example, in flow
problems, separate equations for the flow in the background (called matrix) and the flow
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within fractures are derived, and these quantities are coupled by some interaction terms.
The multi-continuum model thus provides a powerful tool for problems for subsurface
applications with fractures. One important component of our approach is a local fine
grid simulation, which is typical in many multiscale and numerical upscaling techniques.
In general, a fine grid simulation involving flow and transport in heterogenous fracture
media can be decomposed into two parts (we refer to [27] for an overview). First of
all, an unstructured fine mesh is needed to model the geometries of the fractures and
background heterogeneities. Secondly, using the fine mesh, the underlying physical
model is discretized. There are in literature a variety of numerical approaches. For
instances, in [4, 26, 29, 33], the standard Galerkin formulation is considered, in [19, 24,
34,36], the mixed finite element method is considered, and in [18,23], the discontinuous
Galerkin method is considered. Moreover, in [6, 22, 28, 38, 40, 44], the finite volume
scheme is investigated. A hybrid scheme combining the finite element method for the
pressure equation and the finite volume method for the transport equation has also been
considered [21,37,39].

Fluid flow in porous media with highly connected fracture network can be described
by dual continuum models, where we have coupled system of equations for porous matrix
and for fracture network with specific mass transfer between them [5,15,46]. Moreover,
dual continuum models are used to describe a wide range of scientific and engineering
applications, for example, complex processes in shale reservoirs, where such models are
used to describe a complex interaction of the organic and inorganic matter [1, 2]. In
simulations of the vuggy carbonate reservoirs, dual continuum models describe flow in
vugs/cavities and surrounding media [45,48,50]. In real world applications, properties of
the dual continuum models are highly heterogeneous and leads to the construction of the
fine grids to also resolve small scale heterogeneity in level of mesh construction. Direct
simulation on the fine grid is computationally expensive and some model reduction
techniques should be used.

The reduced model we developed in this paper is motivated by the generalized mul-
tiscale finite element method (GMsFEM) [7,9,17], which can be seen as a generalization
of the multiscale finite element method (MsFEM). We will construct multiscale basis
functions that can couple various continua as well as effects of high contrast channels.
The main idea of GMsFEM is to identify local dominant modes by the use of local
spectral problems defined in some suitable snapshot spaces. These ideas are important
in identifying influences of high contrast channels and regions, which are required to
be represented individually by separate basis functions. In this regard, the GMsFEM
shares some similarities with the multi-continuum approaches (see [10]). The idea of
constructing local basis functions using spectral problem has also been used by various
domain decomposition methods [20, 31, 32]. We remark that the convergence of the
GMsFEM is related to the decay of the eigenvalues of the local spectral problems [14].

It is in general not an easy task to derive a multiscale method with a convergence
depending only on the coarse mesh size and independent of scales and contrast. To
obtain multiscale methods with mesh-dependent convergence, several approaches are
considered in literature [8, 12,25,35,41,42]. The theory of GMsFEM motivates the use
of local spectral problems to capture the effects of high contrast channels. This idea is
also used in obtaining mesh-dependent convergence [8, 12,25].

In this paper, we will develop and analyze a novel multiscale method for a dual
continuum model with a convergence depending only on the coarse mesh size and inde-
pendent of scales and contrast. Our ideas are motivated by the constraint energy mini-
mizing generalized multiscale finite element method (CEM-GMsFEM) [8,12]. There are
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two ingredients of our methodology. First of all, we will construct a set of local auxiliary
multiscale basis functions, as in GMsFEM. These functions are dominant eigenfunctions
of local spectral problems, and the number of these functions is the same as the number
of high contrast channels. We emphasize that this is the minimal number of degrees
of freedoms required to represent channelized effects. We also remark that these eigen-
functions are crucial in the construction of localized basis functions. The second key
component is multiscale basis functions. These functions are obtained by minimizing
an energy functional subject to certain constraints. These constraints are formulated
using the auxiliary functions with the purpose of obtaining localized multiscale basis
functions. In particular, for each of the auxiliary function, the constraints require that
the minimizer of the energy functional is orthogonal, in a weighted L2 sense, to all
other auxiliary functions except the selected one. For the selected auxiliary functions,
the constraints require the minimizer of the energy functional to satisfy a normalized
condition. Combining the effects of auxiliary functions and energy minimization, we
show that the minimizer of the energy functional has exponential decay property, and
is very small outside an oversampling region obtained by the support of the selected
auxiliary function. Moreover, the resulting multiscale method obtained by a Galerkin
formulation has a mesh-dependent convergence rate. We remark that one can also
perform adaptivity as in [11,13,14].

The paper is organized as follows. In Section 2, we will introduce the dual continuum
model. Our multiscale method will be presented in Section 3 and analyzed in Section 4.
In Section 5, we will present some numerical tests. The paper ends with a conclusion
in Section 6.

2. Dual continuum model
We consider the following dual continuum model [5, 15,46]

c1
∂p1

∂t
−div(κ1∇p1)+σ(p1−p2) =f1,

c2
∂p2

∂t
−div(κ2∇p2)−σ(p1−p2) =f2,

(2.1)

in a computational domain Ω⊂R2. Here, for i= 1,2, ci is the compressibility, pi is the
pressure, κi is the permeability, and fi is the source function for the i-th continuum.
In addition, the continua are coupled through the mass exchange, and σ is a parameter
which accounts for the strength of mass transfer between the continua. One particular
application of the dual continuum model (2.1) is to represent the global interactive
effects of the unresolved fractures and the matrix.

Let Ω be a domain with high conductive channels (heterogeneous media)

Ω =Di
m∪Di

f , Di
f =∪nf

l=1D
i
f,l (2.2)

where indices m and f represent the two subdomains with low and high permeability,
nf is the number of high conductive channels, i is the continuum. We prescribe the
initial condition pi(0,·) =p0

i in Ω and the boundary condition pi(t,·) = 0 on ∂Ω for t>0.
Furthermore, we have

κi(x) =

{
κmi , x∈Di

m,

κfl,i, x∈Di
f,l,

, ci(x) =

{
cmi , x∈Di

m,

cfl,i, x∈Di
f,l,

, i= 1,2, l= 1,...,nf ,

where κfl,i and cfl,i are the permeability and compressibility on the l-th channel for the

continuum i in subdomain Di
f,l; κ

m
i and cmi are the permeability and compressibility in
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subdomain Di
m. Here, we assume the permeability fields are uniformly bounded, i.e.

0<κ≤κi(x)≤κ for x∈Ω, for i= 1,2. (2.3)

Let V = [H1
0 (Ω)]2. Also, for a subdomain D⊂Ω, we denote the restriction of V on

D by V (D), and the subspace of V (D) with zero trace on ∂D by V0(D). The weak
formulation of 2.1 then reads: find p= (p1,p2) such that p(t,·)∈V 0 and

c

(
∂p

∂t
,v

)
+aQ(p,v) = (f,v), (2.4)

for all v= (v1,v2) with v(t,·)∈V 0. Here, (·, ·) denotes the standard L2(Ω) inner product.
Moreover, the bilinear forms are defined as:

ci(pi,vi) =

∫
Di

m

cmi pividx+
∑
l

∫
Di

f,l

cfl,ipividx=

∫
Ω

ci(x)pividx,

c(p,v) =
∑
i

ci(pi,vi),

ai(pi,vi) =

∫
Di

m

κmi ∇pi ·∇vidx+
∑
l

∫
Di

f,l

κfl,i∇pi ·∇vidx=

∫
Ω

κi(x)∇pi ·∇vidx,

a(p,v) =
∑
i

ai(pi,vi),

q(p,v) =
∑
i

∑
l

∫
Ω

σ(pi−pl)vidx,

aQ(p,v) =a(p,v)+q(p,v), (f,v) =
∑
i

(fi,vi), (2.5)

3. Method description
In this section, we will describe the details of our proposed method. To start with,

we introduce the notions of coarse and fine meshes. We start with a usual partition
T H of Ω into finite elements, which does not necessarily resolve any multiscale features.
The partition T H is called a coarse grid and a generic element K in the partition T H
is called a coarse element. Moreover, H>0 is called the coarse mesh size. We let Nc
be the number of coarse grid nodes and N be the number of coarse elements. We also
denote the collection of all coarse grid edges by EH . We perform a refinement of T H to
obtain a fine grid T h, where h>0 is called the fine mesh size. It is assumed that the
fine grid is sufficiently fine to resolve the solution. An illustration of the fine grid and
the coarse grid and a coarse element are shown in Figure 3.1. We remark that the fine
grid is only used in solving local problems numerically. In our analysis, the fine grid
does not play a role as we assume that all local problems are solved continuously.

We define local bilinear forms on a coarse element Kj by:

a
(j)
i (pi,vi) =

∫
Kj

κi(x)∇pi ·∇vidx,

a(j)(p,v) =
∑
i

a
(j)
i (pi,vi),

q(j)(p,v) =
∑
i

∑
l

∫
Kj

σ(pi−pl)vidx,
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K

Fig. 3.1. An illustration of the fine grid and the coarse grid and a coarse element.

a
(j)
Q (p,v) =a(j)(p,v)+q(j)(p,v),

s
(j)
i (pi,vi) =

∫
Kj

κ̃i(x)pividx,

s(j)(p,v) =
∑
i

s
(j)
i (pi,vi), (3.1)

where κ̃i=κi
∑Nc

k=1 |∇χk|2 and {χk} is a set of bilinear partition of unity functions for
the coarse grid partition of the domain Ω. We also define the bilinear form s by:

s(p,v) =
∑
j

s(j)(p,v). (3.2)

Next, we will use the concept of GMsFEM to construct our auxiliary multiscale
basis functions. The auxiliary basis functions are coupled, and defined by a spectral

problem, which is to find a real number λ
(j)
k and a function φ

(j)
k ∈V (Kj) such that

a
(j)
Q (φ

(j)
k ,v) =λ

(j)
k s(j)(φ

(j)
k ,v) for all v∈V (Kj). (3.3)

We let λ
(j)
k be the eigenvalues of (3.3) arranged in ascending order in k, normalize

the eigenfunctions in the norm induced by the inner product s, and use the first Lj
eigenfunctions to construct our local auxiliary multiscale space

V (j)
aux= span{φ(j)

k : 1≤k≤Lj}. (3.4)

The global auxiliary multiscale space Vaux is then defined as the sum of these local
auxiliary multiscale spaces

Vaux=⊕Nj=1V
(j)
aux. (3.5)

Before we move on to discuss the construction of multiscale basis functions, we
introduce some tools which will be used to describe our method and analyze the con-
vergence. We first introduce the notion of φ-orthogonality. In a coarse block Kj , given

an auxiliary basis function φ
(j)
k ∈Vaux, we say that ψ∈V is φ

(j)
k -orthogonal if

s
(
ψ,φ

(j′)
k′

)
= δj,j′δk,k′ for 1≤k′≤Lj′ and 1≤ j′≤N. (3.6)
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We also introduce a projection operator π : [L2(Ω)]2→Vaux by π=
∑N
j=1πj , where πj :

[L2(Kj)]
2→Vaux is given by

πj(v) =

Lj∑
k=1

s(j)(v,φ
(j)
k )

s(j)(φ
(j)
k ,φ

(j)
k )

φ
(j)
k for all v∈ [L2(Kj)]

2. (3.7)

Next, we construct our global multiscale basis functions. The global multiscale

basis function ψ
(i)
j ∈V is defined as the solution of the following constrained energy

minimization problem

ψ
(j)
k = argmin

{
aQ(ψ,ψ) :ψ∈V is φ

(j)
k -orthogonal

}
. (3.8)

The minimization problem (3.8) is equivalent to the following variational problem: find

ψ
(j)
k ∈V and µ

(j)
k ∈Vaux such that

aQ(ψ
(j)
k ,w)+s(w,µ

(j)
k ) = 0 for all w∈V,

s(ψ
(j)
k −φ

(j)
k ,ν) = 0 for all ν ∈Vaux.

(3.9)

K j

K j ,1

Fig. 3.2. An illustration of an oversampled domain formed by enlarging Kj with 1 coarse grid layer.

Motivated by the construction of global multiscale basis functions, we define our lo-
calized multiscale basis functions. For each element Kj , an oversampled domain formed
by enlarging the coarse grid block Kj by m coarse grid layers. An illustration of an
oversampled domain is shown in Figure 3.2. The localized multiscale basis function

ψ
(j)
k,ms∈V0(Kj,m) is defined as the solution of the following constrained energy mini-

mization problem

ψ
(j)
k,ms= argmin

{
aQ(ψ,ψ) :ψ∈V0(Kj,m) is φ

(j)
k -orthogonal

}
. (3.10)

The minimization problem (3.10) is equivalent to the following variational problem: find

ψ
(j)
k,ms∈V0(Kj,m) and µ

(j)
k,ms∈Vaux such that

aQ(ψ
(j)
k,ms,w)+s(w,µ

(j)
k,ms) = 0 for all w∈V0(Kj,m),

s(ψ
(j)
k,ms−φ

(j)
k ,ν) = 0 for all ν ∈Vaux.

(3.11)
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We use the localized multiscale basis functions to construct the multiscale finite
element space, which is defined as

Vms= span{ψ(j)
k,ms : 1≤k≤Lj ,1≤ j≤N}. (3.12)

The multiscale solution is then given by: find pms= (pms,1,pms,2) with pms(t,·)∈Vms
such that for all v= (v1,v2) with v(t,·)∈Vms,

c

(
∂pms
∂t

,v

)
+aQ(pms,v) = (f,v). (3.13)

4. Convergence analysis
In this section, we will analyze the proposed method. First, we define the following

norms and semi-norms on V :

‖p‖2c = c(p,p),

‖p‖2a=a(p,p),

|p|2q = q(p,p),

‖p‖2aQ =aQ(p,p),

‖p‖2s =s(p,p).

(4.1)

For a subdomain D=
⋃
j∈JKj composed by a union of coarse grid blocks, we also define

the following local norms and semi-norms on V :

‖p‖2a(D) =
∑
j∈J

a(j)(p,p),

|p|2q(D) =
∑
j∈J

q(j)(p,p),

‖p‖2aQ(D) =
∑
j∈J

a
(j)
Q (p,p),

‖p‖2s(D) =
∑
j∈J

s(j)(p,p).

(4.2)

The flow of our analysis goes as follows. First, we prove the convergence using the global
multiscale basis functions. With the global multiscale basis functions constructed, the
global multiscale finite element space is defined by

Vglo= span{ψ(j)
k : 1≤k≤Lj ,1≤ j≤N}, (4.3)

and an approximated solution pglo= (pglo,1,pglo,2), where pglo(t,·)∈Vglo, is given by

c

(
∂pglo
∂t

,v

)
+aQ(pglo,v) = (f,v), (4.4)

for all v= (v1,v2) with v(t,·)∈Vglo. Next, we give an estimate of the difference between

the global multiscale functions ψ
(j)
k and the local multiscale basis functions ψ

(j)
k,ms, in

order to show that using the multiscale solution pms provides similar convergence results
as the global solution pglo. For this purpose, we denote the kernel of the projection

operator π by Ṽ . Then, for any ψ
(j)
k ∈Vglo, we have

aQ(ψ
(j)
k ,w) = 0 for all w∈ Ṽ , (4.5)
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which implies Ṽ ⊆V ⊥glo, where V ⊥glo is the orthogonal complement of Vglo with respect

to the inner product aQ. Moreover, since dim(Vglo) = dim(Vaux), we have Ṽ =V ⊥glo and

V =Vglo⊕ Ṽ .
In addition, we introduce some operators which will be used in our analysis, namely

Rglo :V →Vglo given by: for any u∈V , the image Rglou∈Vglo is defined by

aQ(Rglou,v) =aQ(u,v) for all v∈Vglo, (4.6)

and similarly, Rms :V →Vms given by: for any u∈V , the image Rmsu∈Vms is defined
by

aQ(Rmsu,v) =aQ(u,v) for all v∈Vms. (4.7)

We also define C :V →V given by: for any u∈V , the image Cu∈V is defined by

(Cu,v) = c(u,v) for all v∈V. (4.8)

Moreover, the operator A :D(A)→ [L2(Ω)]2 is defined on a subspace D(A)⊂V by: for
any u∈D(A), the image Au∈ [L2(Ω)]2 is defined by

(Au,v) =aQ(u,v) for all v∈V. (4.9)

We will first show the projection operator Rglo onto global multiscale finite element
space has a good approximation property with respect to the aQ-norm and L2-norm.

Lemma 4.1. Let u∈D(A). Then we have u−Rglou∈ Ṽ and

‖u−Rglou‖aQ ≤CHκ−
1
2 Λ−

1
2 ‖Au‖[L2(Ω)]2 , (4.10)

and

‖u−Rglou‖[L2(Ω)]2 ≤CH2κ−1Λ−1‖Au‖[L2(Ω)]2 , (4.11)

where

Λ = min
1≤j≤N

λ
(j)
Lj+1. (4.12)

Proof. From (4.6), we see that u−Rglou∈V ⊥glo= Ṽ . Taking v=Rglou∈Vglo in (4.6),
we have

aQ(u−Rglou,Rglou) = 0. (4.13)

Therefore, we have

‖u−Rglou‖2aQ =aQ(u−Rglou,u−Rglou)

=aQ(u−Rglou,u)

=aQ(u,u−Rglou)

= (Au,u−Rglou)

≤‖κ̃− 1
2Au‖[L2(Ω)]2‖u−Rglou‖s, (4.14)
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where κ̃(x) = min{κ̃i(x),κ̃l,i(x)}. Since u−Rglou∈ Ṽ , we have πj(u−Rglou) = 0 for all
j= 1,2,. ..,N and

‖u−Rglou‖2s =
N∑
j=1

‖u−Rglou‖2s(Kj)

=
N∑
j=1

‖(I−πj)(u−Rglou)‖2s(Kj). (4.15)

By the orthogonality of the eigenfunctions φ
(j)
k , we have

N∑
j=1

‖(I−πj)(u−Rglou)‖2s(Kj)≤
1

Λ

N∑
j=1

‖u−Rglou‖2aQ(Kj)≤
1

Λ
‖u−Rglou‖2aQ . (4.16)

Finally, using the fact that |∇χk|=O(H−1), we obtain the first estimate (4.10).
For the second estimate (4.11), we use a duality argument. Define w∈V by

aQ(w,v) = (u−Rglou,v) for all v∈V. (4.17)

Then we have

‖u−Rglou‖2[L2(Ω)]2 = (u−Rglou,u−Rglou) =aQ(w,u−Rglou). (4.18)

Taking v=Rglow∈Vglo in (4.6), we have

aQ(u−Rglou,Rglow) = 0. (4.19)

Note that w∈D(A) and Aw=u−Rglou. Hence

‖u−Rglou‖2[L2(Ω)]2 =aQ(w−Rglow,u−Rglou)

≤‖w−Rglow‖aQ‖u−Rglou‖aQ
≤
(
CHκ−

1
2 Λ−

1
2 ‖Aw‖[L2(Ω)]2

)(
CHκ−

1
2 Λ−

1
2 ‖Au‖[L2(Ω)]2

)
≤CH2κ−1Λ−1‖u−Rglou‖[L2(Ω)]2‖Au‖[L2(Ω)]2 . (4.20)

We remark that the quantity Λ is contrast independent as we include all eigenfunc-
tions corresponding to small contrast-dependent eigenvalues in our basis construction.

We are now going to prove the global basis functions are localizable. For each
coarse block K, we define B to be a bubble function with B(x)>0 for all x∈ int(K)
and B(x) = 0 for all x∈∂K. We will take B=

∏
jχ

ms
j where the product is taken over

all vertices j on the boundary of K, and {χj} is a set of bilinear partition of unity
functions for the coarse grid partition of the domain Ω. Using the bubble function, we
define the constant

Cπ = sup
K∈T H ,ν∈Vaux

s(ν,ν)

s(Bν,ν)
. (4.21)

We also define

λmax= max
1≤j≤N

max
1≤k≤Lj

λ
(j)
k . (4.22)
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Lemma 4.2. For all vaux∈Vaux, there exists a function v∈V such that

π(v) =vaux, ‖v‖2aQ ≤D‖vaux‖
2
s, supp(v)⊂ supp(vaux). (4.23)

We write D= 2(1+2C2
pσκ

−1)(CT +λ2
max), where CT is the square of the maximum

number of vertices over all coarse elements, and Cp is a Poincaré constant.

Proof. Let vaux∈V (j)
aux with ‖vaux‖s(Kj) = 1. We consider the following minimiza-

tion problem defined on a coarse block Kj .

v= argmin
{
aQ(ψ,ψ) : ψ∈V0(Kj), s(j)(ψ,ν) =s(j)(vaux,ν) for all ν ∈V (j)

aux

}
. (4.24)

We will show that the minimization problem (4.24) has a unique solution. First, we note
that the minimization problem (4.24) is equivalent to the following variational problem:

find v∈V0(Kj) and µ∈V (j)
aux such that

a
(j)
Q (v,w)+s(j)(w,µ) = 0 for all w∈V0(Kj),

s(j)(v−vaux,ν) = 0 for all ν ∈V (j)
aux.

(4.25)

The well-posedness of (4.25) is equivalent to the existence of v∈V0(Kj) such that

s(j)(v,vaux)≥C‖vaux‖2s(Kj), ‖v‖aQ(Kj)≤C‖vaux‖s(Kj), (4.26)

where C is a constant to be determined. Now, we take v=Bvaux∈V0(Kj). Then we
have

s(j)(v,vaux) =s(j)(Bvaux,vaux)≥C−1
π s‖vaux‖2s(Kj). (4.27)

On the other hand, since ∇vi=∇(Bvaux,i) =vaux,i∇B+B∇vaux,i, |B|≤1 and |∇B|2≤
CT
∑
k |∇χmsk |2, we have

‖v‖2a(Kj)≤2(CT ‖vaux‖2s(Kj) +‖vaux‖2aQ(Kj)). (4.28)

By the spectral problem (3.3), we have

‖vaux‖aQ(Kj)≤ max
1≤k≤Lj

λ
(j)
k ‖vaux‖s(Kj). (4.29)

Moreover, by Poincaré inequality, we have

|v|2q≤2σ‖v‖2L2(Kj)≤2C2
pσκ

−1‖v‖2a(Kj). (4.30)

Combining these estimates, we have

‖v‖2aQ(Kj)≤ (1+2C2
pσκ

−1)‖v‖2a(Kj)≤2(1+2C2
pσκ

−1)(CT +λ2
max)‖vaux‖2s(Kj). (4.31)

This shows that the minimization problem (4.24) has a unique solution v∈V0(Kj),
which satisfies our desired properties.

Here, we make a remark that we can assume D≥1 without loss of generality.
In order to estimate the difference between the global basis functions and localized

basis functions, we need the notion of a cutoff function with respect to the oversampling
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regions. For each coarse grid Kj and M>m, we define χM,m
j ∈ span{χmsk } such that

0≤χM,m
j ≤1 and χM,m

j = 1 on the inner region Kj,m and χM,m
j = 0 outside the region

Kj,M .
The following lemma shows that our multiscale basis functions have a decay prop-

erty. In particular, the global basis functions are small outside an oversampled region
specified in the lemma, which is important in localizing the multiscale basis functions.

Lemma 4.3. Given φ
(j)
k ∈V

(j)
aux and an oversampling region Kj,m with number of

layers m≥2. Let ψ
(j)
k,ms be a localized multiscale basis function defined on Kj,m given

by (3.10), and ψ
(j)
k be the corresponding global basis function given by (3.8). Then we

have

‖ψ(j)
k −ψ

(j)
k,ms‖

2
aQ ≤E‖φ

(j)
k ‖

2
s(Kj), (4.32)

where E= 24D2(1+Λ−1)

(
1+

Λ
1
2

2D
1
2

)1−m

.

Proof. By Lemma 4.2, there exists φ̃
(j)
k ∈V such that

π(φ̃
(j)
k ) =φ

(j)
k , ‖φ̃(j)

k ‖
2
aQ ≤D‖φ

(j)
k ‖

2
s, supp(φ̃

(j)
k )⊂Kj . (4.33)

We take η=ψ
(j)
k − φ̃

(j)
k ∈V and ζ= φ̃

(j)
k −ψ

(j)
k,ms∈V0(Kj,m). Then π(η) =π(ζ) = 0 and

hence η,ζ ∈ Ṽ . Again, by Lemma 4.2, there exists β∈V such that

π(β) =π(χm,m−1
j η), ‖β‖2aQ ≤D‖π(χm,m−1

j η)‖2s, supp(β)⊂Kj,m \Kj,m−1. (4.34)

Take τ =β−χm,m−1
j η∈V0(Kj,m). Again, π(τ) = 0 and hence τ ∈ Ṽ . Now, by the varia-

tional problems (3.9) and (3.11), we have

aQ(ψ
(j)
k −ψ

(j)
k,ms,w)+s(w,µ

(j)
k −µ

(j)
k,ms) = 0 for all w∈V0(Kj,m). (4.35)

Taking w= τ−ζ ∈V0(Kj,m) and using the fact that τ−ζ ∈ Ṽ , we have

aQ(ψ
(j)
k −ψ

(j)
k,ms,τ−ζ) = 0, (4.36)

which implies

‖ψ(j)
k −ψ

(j)
k,ms‖

2
aQ =aQ(ψ

(j)
k −ψ

(j)
k,ms,ψ

(j)
k −ψ

(j)
k,ms)

=aQ(ψ
(j)
k −ψ

(j)
k,ms,η+ζ)

=aQ(ψ
(j)
k −ψ

(j)
k,ms,η+τ)

≤‖ψ(j)
k −ψ

(j)
k,ms‖aQ‖η+τ‖aQ . (4.37)

Therefore, we have

‖ψ(j)
k −ψ

(j)
k,ms‖

2
aQ ≤‖η+τ‖2aQ

=‖(1−χm,m−1
j )η+β‖2aQ

≤2
(
‖(1−χm,m−1

j )η‖2aQ +‖β‖2aQ
)
. (4.38)
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For the first term on the right-hand side of (4.38), since ∇
(

(1−χm,m−1
j )ηi

)
= (1−

χm,m−1
j )∇ηi−ηi∇χm,m−1

j and |1−χm,m−1
j |≤1, we have

‖(1−χm,m−1
j )ηi‖2ai ≤2

(
‖ηi‖2ai(Ω\Kj,m−1) +‖ηi‖2si(Ω\Kj,m−1)

)
. (4.39)

On the other hand, we have

|(1−χm,m−1
j )η|2q≤|η|2q(Ω\Kj,m−1). (4.40)

For the second term on the right-hand side of (4.38), we first see that for Kj′ ⊂Kj,m−1,

s
(
χm,m−1
j η,φ

(j′)
k

)
=s(j′)

(
χm,m−1
j η,φ

(j′)
k

)
=s(j′)

(
η,φ

(j′)
k

)
= 0, (4.41)

since χm,m−1
j = 1 on Kj,m−1 and η∈ Ṽ . On the other hand, for Kj′ ⊂Ω\Kj,m,

s
(
χm,m−1
j η,φ

(j′)
k

)
=s(j′)

(
χm,m−1
j η,φ

(j′)
k

)
= 0, (4.42)

since χm,m−1
j = 0 on Ω\Kj,m. Therefore, we have supp

(
π(χm,m−1

j η)
)
⊂Kj,m \Kj,m−1.

Using (4.34) and |χm,m−1
j |≤1, we have

‖β‖2aQ ≤D‖π(χm,m−1
j η)‖2s(Kj,m\Kj,m−1)

≤D‖χm,m−1
j η‖2s(Kj,m\Kj,m−1)

≤D‖η‖2s(Kj,m\Kj,m−1). (4.43)

Since η∈ Ṽ , by the spectral problem (3.3), we obtain

‖η‖2s(Kj,m\Kj,m−1)≤Λ−1‖η‖2aQ(Ω\Kj,m−1). (4.44)

Combining these estimates, we have

‖ψ(j)
k −ψ

(j)
k,ms‖

2
aQ ≤(4+4Λ−1 +2DΛ−1)‖η‖2aQ(Ω\Kj,m−1)

≤6D(1+Λ−1)‖η‖2aQ(Ω\Kj,m−1). (4.45)

Next, we will prove a recursive estimate for ‖η‖2aQ(Ω\Kj,m−1). We take ξ= 1−χm−1,m−2
j .

Then ξ= 1 in Ω\Kj,m−1 and 0≤ ξ≤1. Hence, using ∇(ξ2ηi) = ξ2∇ηi+2ξηi∇ξ, we
have

|ξη|2a=a(η,ξ2η)+‖η‖2s(Kj,m−1\Kj,m−2), (4.46)

which results in

‖η‖2aQ(Ω\Kj,m−1)≤‖ξη‖
2
aQ ≤aQ(η,ξ2η)+‖η‖2s(Kj,m−1\Kj,m−2). (4.47)

We will estimate the first term on the right-hand side of (4.47). First, we note that, for

any coarse element Kj′ ⊂Ω\Kj,m−1, since ξ= 1 in Kj′ and η∈ Ṽ , we have

s
(
ξ2η,φ

(j′)
k′

)
=s
(
η,φ

(j′)
k′

)
= 0 for all k′= 1,2,. ..,Lj′ . (4.48)
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On the other hand, for any coarse element Kj′ ⊂Kj,m−2, since ξ= 0 in Kj,m−2, we have

s
(
ξ2η,φ

(j′)
k′

)
= 0 for all k′= 1,2,. ..,Lj′ . (4.49)

Therefore, supp(π(ξ2η))⊂Kj,m−1 \Kj,m−2. By Lemma 4.2, there exists γ∈V such that

π(γ) =π(ξ2η), ‖γ‖2aQ ≤D‖π(ξ2η)‖2s, supp(γ)⊂Kj,m−1 \Kj,m−2. (4.50)

Take θ= ξ2η−γ. Again, π(θ) = 0 and hence θ∈ Ṽ . Therefore, we have

aQ(ψ
(j)
k ,θ) = 0. (4.51)

Additionally, supp(θ)⊂Ω\Kj,m−2. Recall that, in (4.33), we have supp(φ̃
(j)
k )⊂Kj .

Hence θ and φ̃
(j)
k have disjoint supports, and

aQ(φ̃
(j)
k ,θ) = 0. (4.52)

Therefore, we obtain

aQ(η,θ) =aQ(ψ
(j)
k ,θ)−aQ(φ̃

(j)
k ,θ) = 0. (4.53)

Note that ξ2η=θ+γ. Using (4.50), we have

aQ(η,ξ2η) =aQ(η,γ)

≤‖η‖aQ(Kj,m−1\Kj,m−2)‖γ‖aQ(Kj,m−1\Kj,m−2)

≤D 1
2 ‖η‖aQ(Kj,m−1\Kj,m−2)‖π(ξ2η)‖s(Kj,m−1\Kj,m−2). (4.54)

For any coarse element Kj′ ⊂Kj,m−1 \Kj,m−2, since π(η) = 0, we have

‖π(ξ2η)‖s(Kj′ )
≤‖ξ2η‖s(Kj′ )

≤‖η‖s(Kj′ )
≤Λ−

1
2 ‖η‖aQ(Kj′ )

. (4.55)

Summing up over all Kj′ ⊂Kj,m−1 \Kj,m−2, we obtain

‖π(ξ2η)‖s(Kj,m−1\Kj,m−2)≤Λ−
1
2 ‖η‖aQ(Kj,m−1\Kj,m−2). (4.56)

Hence, the first term on the right-hand side of (4.47) can be estimated by

a(η,ξ2η)≤D 1
2 Λ−

1
2 ‖η‖2aQ(Kj,m−1\Kj,m−2). (4.57)

For the second term on the right-hand side of (4.47), a similar argument gives supp(ξη)⊂
Kj,m−1 \Kj,m−2, and

‖η‖s(Kj,m−1\Kj,m−2)≤Λ−
1
2 ‖η‖aQ(Kj,m−1\Kj,m−2). (4.58)

Putting (4.47), (4.57) and (4.58) together, we have

‖η‖2aQ(Ω\Kj,m−1)≤ (1+D
1
2 )Λ−

1
2 ‖η‖2aQ(Kj,m−1\Kj,m−2)≤2D

1
2 Λ−

1
2 ‖η‖2aQ(Kj,m−1\Kj,m−2).

(4.59)
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Therefore,

‖η‖2aQ(Ω\Kj,m−2) =‖η‖2aQ(Ω\Kj,m−1) +‖η‖2aQ(Kj,m−1\Kj,m−2)≥

(
1+

Λ
1
2

2D
1
2

)
‖η‖2aQ(Ω\Kj,m−1).

(4.60)

Inductively, we have

‖η‖2aQ(Ω\Kj,m−1)≤

(
1+

Λ
1
2

2D
1
2

)1−m

‖η‖2aQ(Ω\Kj)≤

(
1+

Λ
1
2

2D
1
2

)1−m

‖η‖2aQ . (4.61)

Finally, by the energy-minimizing property of ψ
(j)
k and (4.33), we have

‖η‖aQ =‖ψ(j)
k − φ̃

(j)
k ‖aQ ≤2‖φ̃(j)

k ‖aQ ≤2D
1
2 ‖φ(j)

k ‖s(Kj). (4.62)

Combining (4.45), (4.61) and (4.62), we obtain our desired result.

The above lemma motivates us to define localized multiscale basis functions in
(3.10). The following lemma suggests that, similar to the projection operator Rglo onto
the global multiscale finite element space, the projection operator Rms onto our localized
multiscale finite element space also has a good approximation property with respect to
the aQ-norm and L2-norm.

Lemma 4.4. Let u∈D(A). Let m≥2 be the number of coarse grid layers in the

oversampling regions in (3.10). If m=O

(
log

(
κ

H

))
, then we have

‖u−Rmsu‖aQ ≤CHκ−
1
2 Λ−

1
2 ‖Au‖[L2(Ω)]2 , (4.63)

and

‖u−Rmsu‖[L2(Ω)]2 ≤CH2κ−1Λ−1‖Au‖[L2(Ω)]2 . (4.64)

Proof. We write Rglou=
∑N
j=1

∑Lj

k=1α
(j)
k ψ

(j)
k , and define w=∑N

j=1

∑Lj

k=1α
(j)
k ψ

(j)
k,ms∈Vms. By the Galerkin orthogonality in (4.7), we have

‖u−Rmsu‖aQ ≤‖u−w‖aQ ≤‖u−Rglou‖aQ +‖Rglou−w‖aQ . (4.65)

Using Lemma 4.3, we see that

‖Rglou−w‖2aQ =

∥∥∥∥∥∥
N∑
j=1

Lj∑
k=1

α
(j)
k (ψ

(j)
k −ψ

(j)
k,ms)

∥∥∥∥∥∥
2

aQ

≤ (2m+1)d
N∑
j=1

∥∥∥∥∥∥
Lj∑
k=1

α
(j)
k (ψ

(j)
k −ψ

(j)
k,ms)

∥∥∥∥∥∥
2

aQ

≤E(2m+1)d
N∑
j=1

∥∥∥∥∥∥
Lj∑
k=1

α
(j)
k φ

(j)
k

∥∥∥∥∥∥
2

s
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=E(2m+1)d‖Rglou‖2s, (4.66)

where the last equality follows from the orthogonality of the eigenfunctions in (3.3).
Combining (4.65), (4.66), together with (4.10) in Lemma 4.1, we have

‖u−Rmsu‖aQ ≤CHκ−
1
2 Λ−

1
2 ‖Au‖[L2(Ω)]2 +E

1
2 (2m+1)

d
2 ‖Rglou‖s. (4.67)

Next, we are going to estimate ‖Rglou‖s. Using the fact that |∇χk|=O(H−1), we have

‖Rglou‖2s≤CH−2κ‖Rglou‖2[L2(Ω)]2 . (4.68)

Then, by Poincaré inequality, we have

‖Rglou‖2[L2(Ω)]2 ≤Cpκ
−1‖Rglou‖2aQ . (4.69)

By taking v=Rglou in (4.6), we obtain

‖Rglou‖2aQ =aQ(u,Rglou) = (Au,Rglou)≤CHκ− 1
2 ‖Au‖[L2(Ω)]2‖Rglou‖s. (4.70)

Combining these estimates, we have

‖Rglou‖s≤CH−1κκ−
1
2 ‖Au‖[L2(Ω)]2 . (4.71)

To obtain our desired result, we need

H−2κ(2m+1)
d
2E

1
2 =O(1). (4.72)

Taking logarithm, we have

log(H−2)+log(κ)+
d

2
log(2m+1)+

1−m
2

log

(
1+

Λ
1
2

3D
1
2

)
=O(1). (4.73)

Thus, taking m=O

(
log

(
κ

H

))
completes the proof of (4.63). The proof of (4.64)

follows from a duality argument as in Lemma 4.1.

We are now ready to establish our main theorem, which estimates the error between
the solution p and the multiscale solution pms.

Theorem 4.1. Suppose f ∈ [L2(Ω)]2. Let m≥2 be the number of coarse grid layers
in the oversampling regions in (3.10). Let p be the solution of (2.4) and pms be the

solution of (3.13). If m=O

(
log

(
κ

H

))
, then we have

‖p(T, ·)−pms(T, ·)‖2c +

∫ T

0

‖p−pms‖2aQdt≤CH
2κ−1Λ−1

(
‖p0‖2aQ +

∫ T

0

‖f‖2[L2(Ω)]2 dt

)
.

(4.74)

Proof. Taking v=
∂p

∂t
in (2.4), we have

∥∥∥∥∂p∂t
∥∥∥∥2

c

+
1

2

d

dt
‖p‖2aQ =

(
f,
∂p

∂t

)
≤C‖f‖2[L2(Ω)]2 +

1

2

∥∥∥∥∂p∂t
∥∥∥∥2

c

. (4.75)



678 CEM-GMsFEM FOR DUAL CONTINUUM MODEL

Integrating over (0,T ), we have

1

2

∫ T

0

∥∥∥∥∂p∂t
∥∥∥∥2

c

dt+
1

2
‖p(T, ·)‖2aQ ≤C

(
‖p0‖2aQ +

∫ T

0

‖f‖2[L2(Ω)]2dt

)
. (4.76)

Similarly, taking v=
∂pms
∂t

in (3.13) and integrating over (0,T ), we have

1

2

∫ T

0

∥∥∥∥∂pms∂t

∥∥∥∥2

c

dt+
1

2
‖pms(T, ·)‖2aQ ≤C

(
‖p0‖2aQ +

∫ T

0

‖f‖2[L2(Ω)]2dt

)
. (4.77)

On the other hand, from (2.4), we see that

Ap=f−C ∂p
∂t
, (4.78)

and therefore

‖Ap‖[L2(Ω)]2 ≤C
(
‖f‖[L2(Ω)]2 +

∥∥∥∥∂p∂t
∥∥∥∥
c

)
. (4.79)

By the definition of p in (2.4) and pms in (3.13), for all v∈Vms,t∈ (0,T ), we have

c

(
∂(p−pms)

∂t
,v

)
+aQ(p−pms,v) = 0. (4.80)

Therefore, we have

1

2

d

dt
‖p−pms‖2c +‖p−pms‖2aQ

= c

(
∂(p−pms)

∂t
,p−pms

)
+aQ(p−pms,p−pms)

= c

(
∂(p−pms)

∂t
,p−Rmsp

)
+aQ(p−pms,p−Rmsp)

≤
∥∥∥∥∂(p−pms)

∂t

∥∥∥∥
c

‖p−Rmsp‖c+‖p−pms‖aQ‖p−Rmsp‖aQ

≤
(∥∥∥∥∂p∂t

∥∥∥∥
c

+

∥∥∥∥∂pms∂t

∥∥∥∥
c

)
‖p−Rmsp‖c+

1

2
‖p−pms‖2aQ +

1

2
‖p−Rmsp‖2aQ . (4.81)

Integrating over (0,T ) and using (4.79) with Lemma 4.4, we have

1

2
‖p(T, ·)−pms(T, ·)‖2c +

1

2

∫ T

0

‖p−pms‖2aQdt

≤
∫ T

0

(∥∥∥∥∂p∂t
∥∥∥∥
c

+

∥∥∥∥∂pms∂t

∥∥∥∥
c

)
‖p−Rmsp‖cdt+

1

2

∫ T

0

‖p−Rmsp‖2aQdt

≤

(∫ T

0

(∥∥∥∥∂p∂t
∥∥∥∥
c

+

∥∥∥∥∂pms∂t

∥∥∥∥
c

)2

dt

) 1
2
(∫ T

0

‖p−Rmsp‖2c dt

) 1
2

+
1

2

∫ T

0

‖p−Rmsp‖2aQdt

≤

(∫ T

0

(∥∥∥∥∂p∂t
∥∥∥∥
c

+

∥∥∥∥∂pms∂t

∥∥∥∥
c

)2

dt

) 1
2
(∫ T

0

CH4κ−2Λ−2

(
‖f‖[L2(Ω)]2 +

∥∥∥∥∂p∂t
∥∥∥∥
c

)2

dt

) 1
2
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+

∫ T

0

CH2κ−1Λ−1

(
‖f‖[L2(Ω)]2 +

∥∥∥∥∂p∂t
∥∥∥∥
c

)2

dt

≤CH2κ−1Λ−1

∫ T

0

(∥∥∥∥∂p∂t
∥∥∥∥2

c

+

∥∥∥∥∂pms∂t

∥∥∥∥2

c

+‖f‖2[L2(Ω)]2

)
dt. (4.82)

Finally, combining (4.76), (4.77) and (4.82), we obtain our desired result.

5. Numerical examples
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Fig. 5.1. Media used in numerical experiments. κ1 (left) and κ2 (right).

In this section, we present two numerical examples. We perform numerical ex-
periments with high-contrast media to see the orders of convergence of our proposed
method in energy norm and L2 norm. We will also study the effects of the number of
oversampling layers m on the quality of the approximations. In all the experiments, we
take the spatial domain to be Ω = (0,1)2 and the fine mesh size to be h= 1/256. An
example of the media κ1 and κ2 used in the experiments is illustrated in Figure 5.1. In
the figure, the contrast values, i.e. the ratio of the maximum and the minimum in Ω, of
the media are κ1 = 104 and κ2 = 104. We will also see the effects of the contrast values
of the media on the error, while the configurations of the media remain unchanged.

5.1. Experiment 1. In this experiment, we consider the dual continuum model
in the steady state, i.e.

−div(κ1∇p1)+σ(p1−p2) =f1,

−div(κ2∇p2)−σ(p1−p2) =f2,
(5.1)

where the configuration of the media κ1 and κ2 are illustrated in Figure 5.1. The conduc-
tivity values in the background are fixed to be κm1 = 1 and κm2 = 1, while the conductivity

values κf1 and κf2 in the channels are high. The physical parameter for mass transfer
is set to be σ= 1. The source functions are taken as f1(x,y) = 2π2 sin(πx)sin(πy) and
f2(x,y) = 1 for all (x,y)∈Ω. The steady-state Equation (5.1) has a weak formulation:
find p= (p1,p2) with pi∈V such that

aQ(p,v) = (f,v), (5.2)

for all v= (v1,v2) with vi∈V . The numerical solution is then given by: find pms=
(pms,1,pms,2) with pms,i∈Vms such that

aQ(pms,v) = (f,v), (5.3)
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Fig. 5.2. Plots of numerical solution: pms,1 (left) and pms,2 (right)

H m aQ error order L2 error order
1/8 4 33.4293% – 15.8783% –
1/16 6 5.7191% 2.55 0.6265% 4.66
1/32 7 1.2437% 2.20 0.0504% 3.64
1/64 9 0.3585% 1.79 0.0067% 2.91

Table 5.1. History of convergence with 6 basis functions in Experiment 1.

H m aQ error order L2 error order
1/8 4 43.9247% – 34.2923% –
1/16 6 7.7963% 2.49 1.0463% 5.03
1/32 7 1.5417% 2.34 0.0709% 3.88
1/64 9 0.4993% 1.63 0.0124% 2.52

Table 5.2. History of convergence with 4 basis functions in Experiment 1.

m κ= 104 κ= 105 κ= 106

3 22.4683% 51.0835% 69.4279%
4 6.3274% 10.1892% 25.6786%
5 5.7205% 5.7978% 6.4329%
6 5.7122% 5.7220% 5.7231%

Table 5.3. Comparison of aQ error with different number of layers m and contrast value κ in
Experiment 1.

for all v= (v1,v2) with vi∈Vms. In other words, we have pms=Rmsp according to the
definition (4.7), and the theoretical orders of convergence follow Lemma 4.4.

Figure 5.2 illustrates the numerical solution of the steady-state flow problem. Ta-
bles 5.1–5.3 record the error in L2 norm and aQ norm with various settings. In Table 5.1,

we take the conductivity values in the channels to be κf1 = 104 and κf2 = 106. We use 6 ba-
sis functions per oversampled region since there are 6 small eigenvalues in the spectrum,
and according to our analysis, we need to include the first 6 spectral basis functions in
the auxiliary space to have good convergence. As we refine coarse mesh size H, we fix
the number of oversampling layers to be m≈9log(1/H)/log(64), which is suggested by
our analysis. The results show that the numerical approximations are very accurate,
and the errors converge with refinement of the coarse mesh size. Table 5.2 shows the
same quantities when the number of basis functions used in each coarse region is reduced
to 4. By comparing to Table 5.1, it can be seen that the errors are larger than those
when we use 6 basis functions. Figure 5.3 depicts the log-log plot (in exponential base)
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of L2 error and energy error against coarse mesh size H. The least-squares fit suggests
that we obtain a better convergence order in our numerical experiment compared with
the theoretical result. Table 5.3 compares the aQ error with various combinations of
number of layers m and contrast value κ, where the conductivity values in the channels
are the same, with 6 basis functions per coarse region and coarse mesh size H= 1/16.
It can be seen that with a larger oversampled region, the error decreases. On the other
hand, the error increases with the contrast value.
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Fig. 5.3. Log-Log plot for errors in Experiment 1. Left: energy error; the slope for 6 basis
functions is 2.18 and for 4 basis functions is 2.17. Right: L2 error; the slope for 6 basis functions is
3.73 and for 4 basis functions is 3.82.
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Fig. 5.4. Source function f2 in Experiment 2.

H m ∆t aQ error order L2 error order
1/8 4 1 92.0441% – 58.6453% –
1/16 6 0.5 20.9725% 2.13 5.2984% 3.47
1/32 7 0.25 6.7504% 1.64 0.7718% 2.78
1/64 9 0.125 1.9074% 1.82 0.0934% 3.05

Table 5.4. History of convergence with 6 basis functions in Experiment 2.

5.2. Experiment 2. In this experiment, we consider the time-dependent dual
continuum model (2.1). We are interested in finding a numerical approximation in
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Fig. 5.5. Plots of numerical solution at different time instants: pms,1 (left) and pms,2 (right) in
Experiment 2.
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Fig. 5.6. Log-Log plot for errors in Experiment 2. Left: energy error; the slope for 6 basis
functions is 1.84. Right: L2 error; the slope for 6 basis functions is 3.07.
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the temporal domain [0,T ], where the final time is set to be T = 5. The configuration
of the media κ1 and κ2 are illustrated in Figure 5.1. The conductivity values in the
background are set to be κm1 = 10−1 and κm2 = 100, while the values in the channels are

taken as κf1 = 104 and κf2 = 106. The velocities in the background are taken as cm1 = 101

and cm2 = 103, while the values in the channels are taken as cf1 = 102 and cf2 = 104. The
physical parameter for mass transfer is set to be σ= 25. The source functions are taken
as time-independent, where f1(t,x,y) = 0 for all (t,x,y)∈ [0,T ]×Ω and f2 is depicted
in Figure 5.4. The initial condition is given as p1(0,x,y) = 0 and p2(0,x,y) = 0 for all
(x,y)∈Ω.

Figure 5.5 illustrates the numerical solutions at time instants t= 1.25, t= 2.5 and
t= 5 respectively. Table 5.4 records the error in L2 norm and aQ norm with 6 basis
functions per oversampled region and number of oversampling layers set to be m≈
9log(1/H)/log(64). Again, the results show that the numerical approximations are very
accurate, and the errors converge with refinement of the coarse mesh size. Figure 5.6
shows the log-log plots of the energy error and L2 error against coarse mesh size H
in exponential base. The least-squares fits again illutstrate our method provides good
convergence rates.

6. Conclusions

In this paper, we present the CEM-GMsFEM for a dual continuum model. The
method is based on a set of multiscale basis functions. To find the basis, we first obtain
the auxiliary basis functions, which are important to identify high contrast channels
and fracture networks. Then, we solve an energy minimization problem with some
constraints related to the auxiliary functions. We show that the basis functions are
localized and that the resulting method has a mesh-dependent convergence. Finally, we
present some numerical results to confirm the theory.
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