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EXTENDED WKB ANALYSIS FOR THE LINEAR VECTORIAL WAVE
EQUATION IN THE HIGH-FREQUENCY REGIME∗

CHUNXIONG ZHENG† AND JIASHUN HU‡

Abstract. We introduce an asymptotic solution form, termed as extended Wentzel-Kramers-
Brillouin (E-WKB), to solve the high-frequency vectorial wave equation when the initial Cauchy data
are prescribed in the form of Wentzel-Kramers-Brillouin (WKB) function. The E-WKB form, formu-
lated as an integral of a family of Gaussian coherent states, can be regarded as an extension of the WKB
form. The domain of the integral is the Lagrangian submanifold induced by the underlying Hamiltonian
flow. Although the procedure of solving wave equations by using the E-WKB form is parallel to that of
the classical WKB analysis, the former can overcome the difficulty due to the presence of caustic points.
We present numerical tests on vectorial Schrödinger equation and Helmholtz equation to validate the
proposed asymptotic theory.
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1. Introduction
Wave propagation is a classical problem in physics and mathematics. For wave

equations with high-frequency characteristics, the geometrical optics method presents
us asymptotic solutions. This method assumes the solution u to admit the Wentzel-
Kramers-Brillouin (WKB) ansatz, see [1]:

u(x) =Aεexp[iS(x)/ε], Aε=
∞∑
j=0

(−iε)jAj .

In the WKB form, ε is the reverse of the high frequency, S is a smooth real function
called phase, and {Aj}∞j=0 is a sequence of smooth functions called amplitudes which
do not depend on the small asymptotic parameter ε. By substituting the ansatz into
the high-frequency equation and cancelling the exponential term, it allows us to obtain
a system of equations for S and Aj . The asymptotic approximation is then obtained by
solving the derived equation system.

In many situations, however, the phase S is not uniquely determined around the
caustic points, which leads to the well-known caustic problem when applying the WKB
method to the governing equation. Mathematically, the caustic problem arises from
the singularities of parametrization of the associated Lagrangian submanifold, which
can be solved by the canonical operator method developed by Maslov [2]. In Maslov’s
method, several local charts of the Lagrangian submanifold are chosen to ensure that the
submanifold can be represented as a graph manifold in Lagrangian coordinates. Then
local asymptotic solutions are constructed by employing WKB method in these local
charts. With the help of the Maslov index, local asymptotic solutions are assembled to
provide a global approximation. However, this method requires us to set up a specific
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partition of the associated Lagrangian submanifold. For high-dimensional problems,
this is not an easy task from the numerical point of view.

In 1960s, another semiclassical approximation method, called the Gaussian beam
approach, had been developed (see [3]) and later applied to the high-frequency wave
equation by Hörmander [4] and Ralston [5]. The Gaussian beam approach can solve
the caustic problem without the requirement to set up the partition of the associated
Lagrangian submanifold. In recent years, there are many investigations about this
method. For example, the Gaussian beam method has been applied to various types
of equations in [6, 7], higher order asymptotic solutions are given in [8–10], and the
accuracy analysis of this method is discussed in [11–14]. In 2014, Zheng [15] proved the
optimal error estimate for the first-order Gaussian beam approximation. The Gaussian
beam method can also be used to solve the boundary value problem of high-frequency
wave, see [16, 17]. For more literature on the Gaussian beam method, we refer the
readers to the review [18].

The method proposed in this paper is based on another form of solution ansatz which
can be regarded as an extension of the WKB form. The proposed asymptotic wave field
is defined as an integral of coherent states on a Lagrangian submanifold induced by the
Hamiltonian flow. This new ansatz, termed as extended WKB (E-WKB) form, can be
applied to scalar equations [19] as well as vectorial equations [20] to obtain approximate
solutions even around the caustic points. The key ingredient in those works is called
moving-frame technique. Since the caustic problem arises from the choice of singular
coordinates, we variate our choice of local coordinates by following a moving frame.
Then in each local domain, the phase and amplitude can be uniquely determined by
applying the classical WKB analysis to the transformed high-frequency equation in the
new coordinate. However, the moving-frame technique tends to be very complicated for
the vectorial wave problems, and the results obtained are difficult to generalize.

In this paper, we develop the E-WKB analysis in a way parallel to the classical
WKB analysis and recover the results obtained in [19,20] in a comprehensive way. The
motivation lies in that the unknowns are functions defined on the Lagrangian subman-
ifold. Thus we hope to derive the governing equation by directly using differential
operations on the corresponding submanifold instead of using local WKB analysis in
the moving frame. In order to clarify how the E-WKB analysis works, we first present
some key components of the classical WKB analysis and then generalize them to the
E-WKB case. Finally we discuss the application of the E-WKB analysis to the linear
vectorial wave equation in the high-frequency regime.

The rest of this paper is organized as follows. In Section 2 and Section 3, we
introduce some basic notations and recall fundamental material of the classical WKB
analysis. In Section 4, we introduce the E-WKB form and generalize the invariance
property of the classical WKB form to the E-WKB form. In Section 5 and 6, we work
out the governing equations of the phase and the amplitude functions in the vectorial
case. In Section 7, we report two numerical tests which both show a first-order accuracy
with respect to the asymptotic parameter. We conclude this paper in Section 8.

2. Preliminaries
In this section, we briefly give an introduction to Weyl quantization. We begin with

a unitary representation of the Heisenberg group.

2.1. Heisenberg group and its unitary representation. The Heisenberg
Lie group HN is R2N ×R equipped with the group law

(z,s)(w,t) = (z+w,s+ t+[z,w]/2), ∀z,w∈R2N , ∀s,t∈R.
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The bracket [·,·] refers to the symplectic inner product in R2N , i.e.,

[z,w] = q†u−p†v=z†Jw, z= (q;p), w= (v;u), ∀q,p,v,u∈RN .

In the above, (q;p) expresses column vectors in an economical form, and J denotes the
standard symplectic matrix, i.e.,

(q;p) =

(
q
p

)
, J =

(
0 I
−I 0

)
.

The symbol I stands for the unit matrix, with a dimension generally clearly determined
from the context. Here and hereafter, all vectorial objects are arranged in the column
form, and we use the symbol † to denote their real transpose. A unitary representation
of the Heisenberg group HN (scaled by ε>0) is given by

ρε(z,s) = exp{i([z,W ]−s)/ε}, W = (X;εD), D=−i∇.

In the above, X and D denote the position and momentum operators, respectively.
Throughout this paper, we make the convention that ρε(z)≡ρε(z,0). For any f ∈
L2(RN ), it holds that (see page 21 in [21])

[ρε(z)f ](x) = exp
[
−ip† (x+q/2)/ε

]
f(x+q). (2.1)

2.2. Weyl quantization. For any proper smooth function H=H(z) defined
on the phase space R2N , the symplectic Fourier transform of H is denoted as Ĥ, i.e.,

Ĥ(w) = (2π)−2N

∫
H(z)exp(i[z,w])dz.

The Weyl quantization of H, denoted by H(W ), is defined by

H(W ) =

∫
Ĥ(w)exp(i[w,W ])dw=

∫
Ĥ(w)ρε(εw)dw. (2.2)

It is straightforward to verify that

∇̂pH(w) = ivĤ(w), ∇̂qH(w) =−iuĤ(w), w= (v;u),

where ∇q and ∇p stand for the derivatives with respect to position and momentum
variables, respectively. Therefore, given any polynomial function f(v,u), it holds that

f(−i∇p,i∇q)H(z) =

∫
w=(v;u)

f(v,u)Ĥ(w)exp(i[w,z])dw. (2.3)

In the language of the Weyl quantization (2.2), in this paper we are concerned with the
Cauchy problem of the following general high-frequency vectorial wave equation

H(W )uε(x) = 0. (2.4)

3. WKB analysis
WKB function is an important concept in the high-frequency asymptotic theory,

which gives an intrinsic sparse representation of a highly oscillatory wave field. In this
section, we recall some basic elements of the WKB theory. For the sake of generality,
we consider the WKB function which takes values in a separated Hilbert space H.
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Definition 3.1. By an H-valued WKB function defined on a connected domain
Ω⊂RN , we mean

ϕ(x) =Aε(x)exp[iS(x)/ε] (3.1)

with Aε∈C∞(Ω,H) and S∈C∞(Ω,R). Moreover, Aε admits an asymptotic expansion

Aε∼A0 +(−iε)A1 +(−iε)2A2 + ·· · ,

where Ak ∈C∞(Ω,H) for all k≥0.

Definition 3.2. We define the associated Lagrangian submanifold of the WKB
function ϕ(x), see (3.1), as a graph submanifold in the phase space R2N ,

Λ ={z= (q;p)|p=∇S(q),∀q∈Ω}. (3.2)

The following result plays a key role in the classical geometrical optics. It reveals that
the image of a WKB function under the action a Weyl-quantized operator is still a
WKB function with variated amplitude function.

Theorem 3.1. Suppose that H=H(z) is an operator-valued smooth function acting
on a separated Hilbert space H. For all A∈C∞(Ω,H), asymptotically it holds that

H(W )A(x)exp[iS(x)/ε] = [T0A(x)+(−iε)T1A(x)+ ·· ·]exp[iS(x)/ε],

where {Tj} is a sequence of local differential operators acting on C∞(Ω,H). In particu-
lar, the first two operators are given by

T0A(x) =H(z)A(x),

T1A(x) =∇pH(z) ·∇A(x)+
1

2
tr
[
∇2S(x)∇2

pH(z)+∇†q∇pH(z)
]
A(x),

where z= (x;∇S(x)).

In order to find an approximate solution ϕ(x) of Equation (2.4) in the WKB form
(3.1), we substitute the WKB ansatz ϕ(x) into Equation (2.4) and apply Theorem 3.1
to compute the transformed WKB function. By setting the coefficients of the zeroth-
and the first-order terms in ε to be zero, we derive

H(z)A0(x) = 0,

H(z)A1(x)+T1A0(x) = 0, (3.3)

where z= (x;∇S(x)). The first equation is equivalent to the fact that z lies in the
zero level set of some energy surface of H(z) and A0(z) belongs to the corresponding
eigenspace. More precisely, there exists an eigenvalue λ(z) of H(z) and its associated
eigenspace Eλ(z) such that

λ(z) = 0, A0(x)∈Eλ(z), ∀z= (x;∇S(x)).

Now we know that the phase function S(x) satisfies the Hamilton-Jacobi equation:

λ(x;∇S(x)) = 0. (3.4)
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Let us assume that the dimension of the eigenspace Eλ(z) is a constant κ and {bβ(z)}κβ=1

forms a smooth basis. Since A0(x)∈Eλ(z), it can be represented as a linear combination
of the bβ(z), i.e.,

A0(x) =
∑
β

σβ(x)bβ(z),

where {σβ(x)}κβ=1⊂C∞(RN ,C). By introducing the projection P(z) of H onto Eλ(z),
the Equation (3.3) is simplified to be independent of A1(x), i.e.,

P(z)T1A0(x) = 0. (3.5)

By representing Equation (3.5) in terms of {σβ(x)}κβ=1, we obtain:

∑
β

[
Sα,β ·∇σβ(x)+Wα,βσ

β(x)+
1

2
Lα,βσ

β(x)

]
= 0, (3.6)

where

Wα,β(z) = 〈bα(z),∇pH(z) ·∇bβ(z)〉,
Sα,β(z) = 〈bα(z),∇pH(z)bβ(z)〉,
Lα,β(z) = 〈bα(z),tr

[
∇2S(x)∇2

pH(z)+∇†q∇pH(z)
]
bβ(z)〉.

In the above, the notation 〈·,·〉 stands for the inner product of the Hilbert space H.
Thus, in principle, we can solve the phase and the leading term of amplitude from (3.4)
and (3.6) and obtain an approximate solution in the classical WKB form (3.1).

4. Extended WKB function
In this section, we introduce the concept of E-WKB function, which is a generaliza-

tion of the classical WKB function. Besides the simple algebraic relation between the
components of a WKB function and the related E-WKB function, the importance of the
E-WKB function also comes from the fact that the action of a Weyl-quantized operator
preserves its form. As we have seen, the invariance property plays an important role in
the classical WKB analysis.

Definition 4.1. Let λ(z) be a smooth real-valued function defined in the phase
space R2N . By a λ-submanifold Λ, we mean a Lagrangian submanifold generated by
continuously displacing a connected isotropic submanifold ΛIN−1 of dimension N−1
according to the λ-Hamiltonian vector field. Besides, we assume that Λ is topologically
isomorphic to ΛIN−1×R.

According to the above definition, Λ can be parameterized as z=z(z0;t) which
obeys the Hamiltonian system

ż=J∇λ(z), z(z0;0) =z0∈ΛIN−1. (4.1)

If the initial isotropic submanifold ΛIN−1 can be parametrized by (ξ1,·· · ,ξN−1), then
the tangent space at z∈Λ is represented by a matrix C ∈R2N×N , where

C=

[
∂z

∂ξ1
·· · ∂z

∂ξN−1

∂z

∂t

]
. (4.2)
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Definition 4.2. We define the ε-scaled fundamental coherent state function of di-
mension N as

φε(x) = (2πε)−N/2 exp
(
−x2/2ε

)
.

For any (z,S)∈R2N ×R with z= (q;p), the phase space translation of φε(x) is defined
as

φεz,S(x) =ρε(−z,−S)φε(x).

From Equation (2.1), we derive the following explicit form

φεz,S(x) = (2πε)−N/2 exp(iS/ε)exp
[
ip†(x−q/2)/ε

]
exp

[
−(x−q)2/2ε

]
.

Definition 4.3. Given a separated Hilbert space H and a scalar Hamiltonian λ(z), an
associated H-valued E-WKB function is referred to as an integral of the following form∫

z=(q;p)∈Λ

Aεzφεz,Szdνz, (4.3)

where Λ is a λ-submanifold, Sz ∈C∞(Λ,R) is a generating function of the differential
1-form p†dq−d(p†q)/2 on Λ, and Aεz admits an asymptotic expansion with respect to ε:

Aεz∼A0,z+(−iε)A1,z+(−iε)2A2,z+ ·· · ,

where Ak,z ∈C∞(Λ,H) for all k≥0.

The E-WKB function is indeed an extension of the classical WKB function, as is
revealed in the following theorem.

Theorem 4.1. Given a WKB function

ϕ(x) =A(x)exp[iS(x)/ε]

with A and S defined on a connected domain Ω∈RN , and A∈C∞0 (Ω). Let Λ be the
associated Lagrangian submanifold of ϕ. Then the WKB function ϕ admits a pointwise
E-WKB representation of the following form

ϕ(x) =

∫
z=(q;p)∈Λ

Azφεz,Sz (x)dνz+O(ε),

where

Sz =S(q)−p†q/2, Az = det−
1
2
[
I− i∇2S(q)

]
A(q). (4.4)

The proof of this theorem can be found in [19].

4.1. Invariance property of E-WKB functions. In this section, we prove the
invariance property of the E-WKB form under the action of a Weyl-quantized operator.
The key point is to transform the multiplication operation in terms of x to the differential
operation in terms of z.

Lemma 4.1. Let us denote by Πz ∈R2N×2N the projection onto the tangent plane of
the Lagrangian submanifold Λ at z∈Λ. Then for all z= (q;p)∈Λ, it holds that

(xk−qk)φεz,Sz (x) = iεE†z,k∇Λφ
ε
z,Sz (x), (4.5)
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where ∇Λ is the gradient operator on Λ and

Ez,k = Πz

[
−iek
−ek

]
.

In the above, ek represents the k-th standard basis of RN .

Proof. Since dSz =p†dq−d(p†q)/2, it is straightforward to verify that

iεE†z,k∇Λφ
ε
z,Sz =E†z,kΠz

[
i(x−q)
−(x−q)

]
φεz,Sz

=
[
−ie†k −e

†
k

]
Πz

[
iI
−I

]
(x−q)φεz,Sz .

Moreover, from the fact that Λ is a Lagrangian submanifold, it holds that

[
−iI −I

]
Πz

[
iI
−I

]
= I,

which ends the proof.

By iteratively applying the result obtained in Lemma 4.1 and integration by parts,
we have the following result.

Lemma 4.2. For all Az ∈C∞0 (Λ,H) and all multi-indexes α, it holds that∫
z∈Λ

(x−q)αAzφεz,Szdνz =O(εm), |α|= 2m−1 or 2m.

In particular, we have∫
z∈Λ

(xk−qk)Azφεz,Szdνz = (−iε)

∫
z∈Λ

divΛ(AzEz,k)φεz,Szdνz,∫
z∈Λ

(xm−qm)(xn−qn)Azφεz,Szdνz = (−iε)

∫
z∈Λ

Tz,mnAzφεz,Szdνz+O(ε2),

where

Tz,mn=E†z,m∇Λ(−qn).

Proof. By Equation (4.5) and integration by parts, we derive∫
z∈Λ

(xk−qk)Azφεz,Szdνz = iε

∫
z∈Λ

AzE†z,k∇Λφ
ε
z,Szdνz

= (−iε)

∫
z∈Λ

divΛ(AzEz,k)φεz,Szdνz.

Furthermore, it holds that∫
z∈Λ

(xm−qm)(xn−qn)Azφεz,Szdνz

= (−iε)

∫
z∈Λ

divΛ((xn−qn)AzEz,m)φεz,Szdνz
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= (−iε)

∫
z∈Λ

[
E†z,m∇Λ(xn−qn)Az+(xn−qn)divΛ(AzEz,m)

]
φεz,Szdνz

= (−iε)

∫
z∈Λ

Tz,mnAzφεz,Szdνz+O(ε2).

By induction, for any multi-index α, we have∫
z∈Λ

Az(x−q)αφεz,Szdνz =O(εm), |α|= 2m−1 or 2m,

which ends the proof.

Now, we prove the invariance property of the E-WKB function.

Theorem 4.2. Suppose H=H(z) is a smooth operator-valued function acting on
a separated Hilbert space H. For Az ∈C∞0 (Λ,H), the following asymptotic expression
holds.

H(W )

∫
z∈Λ

Azφεz,Szdνz =

∫
z∈Λ

[T0Az+(−iε)T1Az+ ·· ·]φεz,Szdνz,

where {Tj} is a sequence of local differential operators acting on C∞0 (Λ,H). In particu-
lar, the first two operators are

T0Az =H(z)Az,

T1Az =
1

2
tr
[
Πz(iI−J)∇2H(z)

]
Az+divΛ [Πz(J− iI)∇H(z)Az].

Proof. Recalling the definition of the representation ρε, see (2.1), it is direct to
verify that

ρε(εw)ρε(−z)φε

=exp(i[w,z])exp
[
−εv†(v+iu)/2

]
exp[−(v+iu)†(x−q)]ρε(−z)φε,

which implies

ρε(εw)φεz,Sz = exp(i[w,z])exp
[
−εv†(v+iu)/2

]
exp[−(v+iu)†(x−q)]φεz,Sz . (4.6)

Recalling the definition of Weyl’s quantization (2.2), we then derive

H(W )

∫
z∈Λ

Azφεz,Szdνz

=

∫
w

∫
z∈Λ

Ĥ(w)Azρε(εw)φεz,Szdνzdw

=

∫
w=(v;u)

∫
z=(q;p)∈Λ

Ĥ(w)exp(i[w,z])Az exp
(
−εv†(v+iu)/2

)
×exp[−(v+iu)†(x−q)]φεz,Szdνzdw, (4.7)

where the last line comes from Equation (4.6). By the Taylor expansion of the expo-
nential terms, we have

exp
(
−εv†(v+iu)/2

)
exp[−(v+iu)†(x−q)]
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∼1− εv
†(v+ iu)

2
−(v+iu)†(x−q)+

[(v+iu)†(x−q)]2

2
+ ·· · .

Applying Lemma 4.2, we can discover the zeroth- and the first-order term in (4.7). In
fact, we obtain

T0Az =

∫
w=(v;u)

Ĥ(w)exp(i[w,z])Azdw=H(z)Az,

and

T1Az =

∫
w=(v;u)

T̃1(v;u)
[
Ĥ(w)exp(i[w,z])Az

]
dw,

where the operator T̃1(v;u) is defined as follows

T̃1(v;u)B(z) =− iv†(v+iu)

2
B(z)−divΛ [Ez(v+iu)B(z)]+

(v+iu)†Tz(v+iu)

2
B(z),

with

Ez =
[
Ez,1 ·· · Ez,N

]
= Πz

[
−iI
−I

]
, Tz = (Tz,mn).

The formula of T̃1 can be further simplified by summing the first and the last term, i.e.,

(v+iu)†Tz(v+iu)

2
− iv

†(v+ iu)

2
=

1

2
tr

[
Πz(iI−J)

(
−uu† uv†

vu† −vv†
)]

.

Thus, by applying inverse symplectic Fourier transformation (2.3), we obtain

T1Az =
1

2
tr
[
Πz(iI−J)∇2H(z)

]
Az+divΛ [Πz(J− iI)∇H(z)Az], (4.8)

which ends the proof.

4.2. Further simplification of T1 in the scalar case. In the preceding
section, we obtain the expression of the transformed E-WKB function under the action
of H(W ) by doing calculus on the submanifold Λ. If H is a scalar function and Λ is an
H-submanifold embedded into the zero level set of H, we can simplify the troublesome
term in (4.8) involving divergence on manifold to be a matrix operation. First, we notice
that

Πz(J− iI)∇H(z) =J∇H(z) =
∂

∂t
,

where
∂

∂t
stands for the t-coordinate vector field induced by the Hamiltonian H. Recall

the tangent frame C defined in (4.2), we derive its evolution equation by differentiating
the Hamilton system (4.1), i.e.,

Ċ=J∇2H(z)C. (4.9)

Let C=QP be the polar decomposition, then Equation (4.9) is equivalent to

Q̇P +QṖ =J∇2H(z)QP,
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By right-multiplying P−1 and left-multiplying Q†, we derive

Q†Q̇+ ṖP−1 =Q†J∇2H(z)Q.

Taking trace of the above equation yields

tr(ṖP−1) = tr[Q†J∇2H(z)Q] = tr[ΠzJ∇2H(z)],

which leads to

divΛ
∂

∂t
=

1

detP

∂

∂t
detP = tr(ṖP−1) = tr[ΠzJ∇2H(z)]

and

divΛ [Πz(J− iI)∇H(z)Az] = tr[ΠzJ∇2H(z)]Az+Ȧz.
Therefore, we have

T1Az =
1

2
tr
[
Πz(iI+J)∇2H(z)

]
Az+Ȧz. (4.10)

5. E-WKB analysis for vectorial wave equation
In this section, we apply the E-WKB analysis to Equation (2.4) in the vectorial

case. In other words, the Hamiltonian H=H(z) is a smooth self-adjoint operator-
valued function with compact resolvent, acting on a proper separated Hilbert space H.
In order to seek an approximate solution in the form of (4.3), i.e.,

uε=

∫
z∈Λ

[Az+(−iε)A1,z+ ·· ·]φεz,Szdνz, (5.1)

there are two main tasks to fulfill. One is to determine the Lagrangian submanifold Λ,
and the other is to derive the governing equations of the amplitudes Ak,z and the phase
Sz, which are functions defined on Λ. By applying Theorem 4.2, we know that if uε

given in (5.1) is a first-order asymptotic solution of the Equation (2.4), the following
equations must remain valid:

H(z)Az = 0, ∀z∈Λ, (5.2)

H(z)A1,z+T1Az = 0, ∀z∈Λ. (5.3)

From Equation (5.2), there exists an eigenvalue λ(z) and its corresponding eigenspace
E(z) of H(z) such that Λ is embedded into the zero level set of λ(z) and Az ∈E(z).
Furthermore, we assume that the dimension of E(z) is a constant κ. Then we form the
Lagrangian submanifold Λ by continuously displacing a connected isotropic submanifold
ΛIN−1 which is embedded into the zero level set of λ(z) according to the Hamiltonian

system (4.1). Moreover, let S0 be a generating function of the differential 1-form p†dq−
d(p†q)/2 constrained on the isotropic submanifold ΛN−1

I , then the solution Sz of the
following ODE problem

Ṡz+[z,ż]/2 = 0, Sz |t=0=S0∈C∞(ΛIN−1,R) (5.4)

is also a generating function of that differential 1-form constrained on the Lagrangian
submanifold Λ. Now, only the amplitude function Az remains to be determined. As
in the classical WKB analysis, we introduce the projection P(z) from H to E(z) and
derive the following equation independent of A1,z from Equation (5.3),

P(z)T1Az = 0, ∀z∈Λ. (5.5)

In the vectorial case, the Equation (5.5) is more complicated to deal with than in the
scalar case. In the next section, we first introduce some useful results on the difference
between the Hamiltonian H(z) and λ(z).
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5.1. Some useful results. We introduce a new term H̃(z) which measures the
difference between the Hamiltonian and the scalar one λ(z), i.e.,

H̃(z) =H(z)−λ(z).

Given any smooth function B(z) defined in a neighborhood of Λ with B(z)∈E(z), we
have

H̃(z)B(z) = [H(z)−λ(z)]B(z) = 0.

By differentiating the above equation with respect to z, we have

∇H̃(z)B(z)+H̃(z)∇B(z) = 0, (5.6)

∇2H̃(z)B(z)+∇H̃(z)∇†B(z)+∇B(z)∇†H̃(z)+H̃(z)∇2B(z) = 0. (5.7)

Since

P(z)H̃(z) =P(z)[H(z)−λ(z)] = 0,

applying the projection operator P onto (5.6) and (5.7) yields

P(z)∇H̃(z)B(z) = 0, (5.8)

and

P(z)∇2H̃(z)B(z)+P(z)∇H̃(z)∇†B(z)+
[
P(z)∇H̃(z)∇†B(z)

]†
= 0. (5.9)

5.2. Simplification of the Operator P(z)T1. Recalling the definition of T1

in (4.8), we make the following decomposition.

T1B(z) =
1

2
tr
[
Πz(iI−J)∇2H(z)

]
B(z)+divΛ [Πz(J− iI)∇H(z)B(z)]

=
1

2
tr
[
Πz(iI−J)∇2λ(z)

]
B(z)+divΛ [Πz(J− iI)∇λ(z)B(z)]

+
1

2
tr
[
Πz(iI−J)∇2H̃(z)

]
B(z)+divΛ

[
Πz(J− iI)∇H̃(z)B(z)

]
≡�1 +�2,

where �1 refers to the second line, and �2 refers to the third line.
We notice that �1 is exactly the expression of T1 in the scalar case, which can be

simplified as (4.10), i.e.,

�1 =
1

2
tr
[
Πz(iI+J)∇2λ(z)

]
B(z)+ Ḃ(z), z∈Λ. (5.10)

To simplify �2, we perform a direct computation and obtain

divΛ

[
Πz(J− iI)∇H̃(z)B(z)

]
=tr

[
Πz(J− iI)∇†(∇H̃(z)B(z))

]
+divΛ [Πz(J− iI)]∇H̃(z)B(z). (5.11)

Applying the projection operator P onto Equation (5.11) and recalling (5.8), we know
that for all z∈Λ, it holds that

P(z)divΛ

[
Πz(J− iI)∇H̃(z)B(z)

]
=P(z)tr

[
Πz(J− iI)∇†(∇H̃(z)B(z))

]
.
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By applying (5.9) and the above result, we arrive at

P(z)�2 =P(z)
1

2
tr
[
Πz(iI−J)∇2H̃(z)

]
B(z)−P(z)tr

[
Πz(iI−J)∇†(∇H̃(z)B(z))

]
=

1

2
tr
[
Πz(iI−J)

(
−P(z)∇2H̃(z)B(z)−2P(z)∇H̃(z)∇†B(z)

)]
=

1

2
tr

[
Πz(iI−J)

([
P(z)∇H̃(z)∇†B(z)

]†
−P(z)∇H̃(z)∇†B(z)

)]
=

1

2
tr
[
Πz

(
JP(z)∇H̃(z)∇†B(z)+P(z)∇H̃(z)∇†B(z)J

)]
=

1

2
tr
[
Πz{J,P(z)∇H̃(z)∇†B(z)}

]
.

In the above, {A,B}=AB+BA denotes the anti-commutator. For any E(z)-valued
smooth function B(z) defined on the phase space R2N , let us introduce the following
matrix-E(z)-valued operator L as

LB(z) =P(z)∇H̃(z)∇†B(z). (5.12)

With this operator introduced, we then have

P(z)�2 =
1

2
tr[Πz{J,L}]B(z).

Combining the above with Equation (5.10) yields

P(z)T1B(z) =P(z)Ḃ(z)+
1

2
tr
[
Πz(iI+J)∇2λ(z)

]
B(z)+

1

2
tr(Πz{J,L})B(z). (5.13)

5.3. Derivation of amplitude equation. In order to express P(z)T1Az in
the form of (5.13), we first prove that L is well-defined as a pointwise map from E(z) to
E(z)2N×2N , i.e., a matrix with entries belonging to E(z). To be precise, suppose that
Az ∈E(z) with a representation Az =σβz bβ(z), where {bβ(z)}κβ=1 forms a smooth basis

for E(z). Here and hereafter, the Einstein summation convention is adopted. Let σβ(z)
be any smooth extension of σβz in a neighborhood of z. We have

L(σβ(z)bβ(z)) =P(z)∇H̃(z)∇†(σβ(z)bβ(z))

=σβzP(z)∇H̃(z)∇†bβ(z),

which is independent of the choice of extension.
Next we show that the action of L on E(z) is independent of the choice of basis of

E(z). Given another smooth set of basis functions {b̃β(z)}κβ=1 of E(z), we know that

there exists a smooth family of invertible matrices (cαβ(z)) such that b̃β(z) = cγβ(z)bγ(z).

Suppose that Az = σ̃βz b̃β(z) is a new representation, and B̃(z) is any extension of Az
under this new set of basis functions, we have

LB̃(z) = σ̃βzP(z)∇H̃(z)∇†b̃β(z)

= σ̃βzP(z)∇H̃(z)∇†
[
cγβ(z)bγ(z)

]
= σ̃βz c

γ
β(z)P(z)∇H̃(z)∇†bγ(z)

=σγzP(z)∇H̃(z)∇†bγ(z) =LB(z).
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Thus L is well-defined as a pointwise map from E(z) to E(z)2N×2N . As a result, the
Equation (5.13) holds for the leading order amplitude function Az ∈E(z),

P(z)Ȧz+
1

2
tr
[
Πz(iI+J)∇2λ(z)

]
Az+

1

2
tr(Πz{J,L})Az = 0. (5.14)

Using 〈· , ·〉 to denote the inner product of Hilbert Space H and setting

Mα,β(z) = 〈bα(z),bβ(z)〉,
$z = tr

[
Πz(iI+J)∇2λ(z)

]
,

Wα,β(z) = 〈bα(z), ḃβ(z)〉= 〈bα(z),∇bβ(z)J∇λ(z)〉,
Lα,β(z) = 〈bα(z),∇H̃(z)∇†bβ(z)〉,

the amplitude Equation (5.14) is equivalent to the following ODE system

Mα,β σ̇
β
z +Wα,βσ

β
z +

1

2
$zMα,βσ

β
z +

1

2
tr[Πz{J,Lα,β}]σβz = 0, (5.15)

where Πz =QQ†, Q=C(C†C)−
1
2 . Omitting the higher order terms in (5.1), we derive

a first-order asymptotic approximation of the solution uε through the following integral
on the Lagrangian submanifold Λ, i.e.,

uεE−WKB =

∫
Λ

Azφεz,Szdνz. (5.16)

6. Well-prepared data for time harmonic problem
In this section, we discuss the details on numerical computation of the time har-

monic problem (2.4) with well-prepared WKB-form incident value given on an incident
submanifold ΛN−1

I . Since for all z∈R2N , H(z) is a self-adjoint operator with compact
resolvent. This means that H(z) has countable eigenvalues {λα(z)} and their associated
eigenspace sets are {Eα(z)}. But not all the eigenspaces are suitable to give an incident
value on and not all the WKB functions can be chosen as an incident value. They must
satisfy some necessary conditions.

6.1. Compatible conditions. Suppose λ(z) is a specific eigenvalue such that
the corresponding zero level set forms a submanifold of dimension 2N−1 in the phase
space. The Cauchy data for the vectorial wave Equation (2.4) are prescribed on a
connected submanifold Γ of dimension N−1 in position space as follows:

uεI(x) =AI(x)exp[iSI(x)/ε], x∈Γ, (6.1)

where AI(x)∈C∞0 (Γ,H) and SI(x)∈C∞(Γ,R). Additional requirements should be im-
posed on Γ, SI(x), AI(x) and other quantities. We will clarify this point in the sequel.

First we intend to seek a local WKB solution associated with the λ-submanifold,

uε(x) = [A(x)+O(ε)]exp[iS(x)/ε].

As revealed, the phase function S(x) should satisfy the Hamilton-Jacobi Equation (3.4).
Confined to Γ, we have

∇S(x) =∇ΓSI(x)+∇⊥ΓS(x), x∈Γ.

Substituting the above into (3.4) yields

λ(x,∇ΓSI(x)+∇⊥ΓS(x)) = 0, x∈Γ. (6.2)
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Since Γ has a codimension of 1 in RN and ∇ΓSI(x) is determined by SI(x), the above
equation is actually a (generally) nonlinear algebraic equation with respect to ∇⊥ΓS(x).
We assume that Γ and SI are specified in a way such that there exists at least one
smooth family of solutions. Note that such kind of family might not be unique, and
different families typically correspond to different traveling wave modes.

By specifying the traveling wave mode, we derive an initial isotropic submanifold
ΛN−1
I in the phase space

ΛN−1
I ={(q;p)∈R2N | p=∇ΓSI(q)+∇⊥ΓS(q), q∈Γ}.

Obviously, ΛN−1
I is a graph submanifold. To ensure the existence of a local WKB

solution, we need to assume that a local continuous displacement of ΛN−1
I by the λ-

Hamiltonian flow forms a local graph Lagrangian submanifold. A sufficient condition
for this to be valid is the transversality of the velocity field to Γ. This means that for all
(q;p)∈ΛN−1

I , the velocity ∇pλ(q,p) has a nonvanishing normal component. Note that
AI(x) should lie in the eigenspace E(z), so the third compatible condition is

AI(qI)∈E(qI ;pI), ∀(qI ;pI)∈ΛN−1
I .

6.2. Initial phase and amplitude for E-WKB solution. To determine the
first-order E-WKB asymptotic solution (5.16), we need to specify the initial phase and
amplitude function on the initial isotropic submanifold ΛN−1

I . By Theorem 4.1, we have

Sz =SI(q)−p†q/2, ∀z= (q;p)∈ΛN−1
I , (6.3)

and

Az = det−
1
2

(
I− i

∂p

∂q

)
AI(q), ∀z= (q;p)∈ΛN−1

I . (6.4)

Therefore, to determine Az on the initial submanifold, we need to compute
∂p

∂q
for all

z∈ΛN−1
I . Let y be a coordinate of Γ, which is also a coordinate of the graph manifold

ΛN−1
I . Then (y,t) forms a coordinate for the Lagrangian submanifold Λ. As defined in

(4.2), we have

C=
∂(q;p)

∂(y;t)
=

[
U
V

]
, U,V ∈RN×N .

Thanks to the Hamiltonian system (4.1), it holds that

U =
∂q

∂(y;t)
=

[
∂q

∂y
∇pλ(q;p)

]
,

V =
∂p

∂(y;t)
=

[
∂p

∂y
−∇qλ(q;p)

]
.

This leads to

∂p

∂q
=

∂p

∂(y;t)

∂(y;t)

∂q
=V U−1, z∈ΛN−1

I . (6.5)
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6.3. First-order E-WKB approximation. After determining the initial
isotropic submanifold ΛN−1

I and the initial data functions Az, Sz and C|ΛN−1
I

, we will

derive the following E-WKB asymptotic solution in the global (y,t) coordinates

uεE−WKB =

∫
(y,t)∈Γ×R

Azφεz,Sz det(C†C)
1
2 dydt. (6.6)

Until now, we have obtained evolution equations for rays, moving frames, phase
function and amplitude functions, see (4.1), (4.9), (5.4), (5.15) respectively. These
equations consist of the following ODE system from which we can compute the E-WKB
approximate solution.

ż=J∇λ(z),

Ċ=J∇2λ(z)C,

Ṡz+[z,ż]/2 = 0,

Mα,β σ̇
β
z +Wα,βσ

β
z +

1

2
$zMα,βσ

β
z +

1

2
tr(Πz{J,Lα,β})σβz = 0.

(6.7)

The initial condition is specified on ΛN−1
I as

z|t=0 = (qI ,pI)∈ΛN−1
I ,

C|t=0 =C|ΛN−1
I

,

Sz|t=0 =Sz|ΛN−1
I

,

σαz |t=0 =σαz |ΛN−1
I

.

7. Numerical tests
In this section, we apply the E-WKB analysis to vectorial Schrödinger equation and

2-D Helmholtz equation to check the effectiveness of our method. There are three main
steps in the E-WKB analysis. First, we formulate the problem in the canonical form
(2.4) and derive the eigen-pair λ(z) and E(z) for the Hamiltonian H(z). Second, we
choose incident data which are of WKB form defined on an N−1 dimensional manifold
Γ in the position space. The last part is to solve the ODE system (6.7) and compute
the integral (6.6) on the Lagrangian submanifold. In both the examples, a first-order
convergence rate of the asymptotic error is demonstrated, even beyond the caustic
points.

7.1. Vectorial Schrödinger equation. In this subsection, we consider the
vectorial Schrödinger equation

−iε ∂
∂t

u− ε
2

2

∂2

∂x2
u+V (x)u= 0, (7.1)

where the potential is prescribed as

V (x) =
x2

2
+

(
cos2x −sin2x
−sin2x −cos2x

)
.

The initial data are specified in the WKB form

uI(x) = exp(−16(x−2)2)exp

(
ix2

6ε

)(
cosx
−sinx

)
. (7.2)
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In order to apply the theory developed in this paper, the time evolution problem
is transformed into a time harmonic one by regarding t as a “position” variable. By
introducing the dual variables of x and t as p and η, we can rewrite the Hamiltonian

−iε ∂
∂t
− ε

2

2

∂2

∂x2
+
x2

2
+

(
cos2x −sin2x
−sin2x −cos2x

)
as Weyl quantization of the following vector valued function defined in phase space

H(q,t,p,η) =η+
p2 +q2

2
+

(
cos2q −sin2q
−sin2q −cos2q

)
.

The eigen-pairs of H are

λ+ =η+
p2 +q2

2
+1, b+ =

(
cosq
−sinq

)
,

λ−=η+
p2 +q2

2
−1, b−=

(
sinq
cosq

)
,

which represent two separate energy surfaces. Since the initial vector (7.2) is parallel
to b+, the solution is constrained on the top energy surface, i.e., λ+, during evolution.
Then rays are traced by the Hamiltonian system associated with λ+:

ż=J∇λ+(z).

More explicitly, if we introduce the hidden temporal variable as τ , we obtain

dq

dτ
=p, t= τ,

dp

dτ
=−q, dη

dτ
= 0.

In particular, for initial point (q0,0,p0,η0), the exact solution of q can be expressed as

q(τ) = q0 cos(τ)+p0 sin(τ). (7.3)

Next step is to determine the incident submanifold ΛI in phase space, which should
be of dimension 1. We truncate the support set of the incident data (7.2) as Γ = [1,3].
Then we obtain the parameterization of the incident submanifold ΛI

ΛI =

{
(q,t,p,η)|q∈Γ, t= 0, p= q/3, η=−5q2

9
−1

}
,

where p is determined by phase at t= 0, i.e., SI(x) =x2/6 and η is obtained by solving
local WKB solution from the Hamilton-Jacobi equation

λ+(q,t,∇SI ,η) =η+
∇2SI +q2

2
+1 = 0.

It is remarkable that for p0 = q0/3, and τ =π−tan−1 3≈1.89, we have q(τ) = 0, which
means that all rays concentrate over q= 0 at τ . The ODE system is formulated as
follows. For rays and frames, we have

ż=J∇λ+(z),

Ċ=J∇2λ+(z)C,
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with initial data specified as

zI =




q
0
q/3

−5q2/9−1


, CI =

(
∂zI
∂q

∂zI
∂τ

)
=




1 q/3
0 1
1/3 −q

−10q/9 0


=

(
U
V

)
. (7.4)

For phase and amplitude, they satisfy the following governing equations

Ṡz+[z,ż]/2=0, (7.5)

σ̇z+〈b+,∇†b+J∇λ+〉σz+
1

2
tr
[
Πz(iI+J)∇2λ+

]
σz+

1

2
tr(Πz{J,L})σz =0, (7.6)

where

∇†b+=
(
∂qb+ ∂tb+ ∂pb+ ∂ηb+

)
,

Πz =C(C†C)−1C†,

Lij = 〈b+,∂i(H−λ+)∂jb+〉, i,j∈{1,2,3,4},

with ∂1=∂q, ∂2=∂t, ∂3=∂p, ∂4=∂η.
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Fig. 7.1. Relative error
||û−uε||.

||û||.
between reference solution û and E-WKB solution uε. They

are measured in L2 and L∞ at t=1 (left) and t=3 (right). The numerical solutions are computed
with ε=10−2/2k with k=0,1, · ·· ,4.

By (6.3)-(6.4), the initial data for phase and amplitude are specified as

Sz =SI(q)−
p†q

2
=0,

σz =exp(−16(q−2)2)det−
1
2 (I− iV U−1), z∈ΛI .

In the numerical implementation of E-WKB method, Γ is discretized equidistantly into
200 nodes, and the ODE system (7.4)-(7.6) is solved by the classical Runge-Kutta
method, with ∆t=2×10−3. The relative error is computed in domain [−5,5] between
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the E-WKB approximate solution and the reference solution which is computed by
operator splitting spectral method. Both L2 and L∞ norms are chosen to demonstrate
the error convergence. As is demonstrated in Figure. 7.1, at t= 1 and t= 3, the E-
WKB approximate solution converges at an order O(ε). Caustics have no effect on the
performance of our algorithm.

7.2. Helmholtz equation. In this numerical experiment, we consider the 2-D
Helmholtz equation,

∆P (x)+ω2P (x) = 0, x∈R2, (7.7)

with prescribed incident pressure

Pinc(x) =
H

(2)
0 (ωr)

H
(2)
0 (ω)

, r= |x|. (7.8)

The total pressure field has an analytical expression

P (x) =
2J0(ωr)

H
(2)
0 (ω)

, r= |x|,

where H
(2)
0 stands for the second kind Hankel function of order 0, J0 is the first kind

Bessel function of order 0.
Although (7.7) is a scalar equation, and can be solved by the scalar-type E-WKB

method introduced in [19], we can transform (7.7) into the following vectorial form

−P − iε∇·U= 0,

−U− iε∇P = 0,

where ε=ω−1. The above system is equivalent to the general vectorial wave equation
(2.4) with

uε= (P ;U), H=

[
−1 p†

p −I

]
.

In this experiment, we are interested in the following eigenpair of H,

λ(q,p) = |p|−1, b=
[
|p| p1 p2

]†
.

Therefore, we assume that the incident wave propagates inward and is proportional to
b. Moreover, the incident surface is assumed to be Γ ={x||x|= rI} and the Lagrangian
submanifold lies in λ(q,p) = 0. As a result, we obtain the formulation of the 1-D initial
submanifold,

ΛI ={(q1,q2,p1,p2)|q1 = rI cosθ, q2 = rI sinθ, p1 =−cosθ, p2 =−sinθ, θ= [0,2π]}.

Thus, we derive the parameterization of the incident surface as well as the representation
of the tangent space,

z=


rI cosθ
rI sinθ
−cosθ
−sinθ

, C=

[
∂z

∂θ

∂z

∂t

]
=


−rI sinθ −cosθ
rI cosθ −sinθ
sinθ 0
−cosθ 0

=

(
U
V

)
.
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Since p=(−cosθ,−sinθ), we choose SI(x)=−|x| so that p=∇SI(q). In order to rewrite
the incident pressure (7.8) into the WKB form, we solve for the amplitude from the
following vectorial equation with the help of the assumption that the incident wave is
proportional to b,

(
Pinc(x)

U

)
=AI(x)exp

(
iSI(x)

ε

)
, x∈Γ.

Note that the first entry of b is |p|=1, as is required by the Hamilton-Jacobi equation
λ(x,∇SI(x))=0. Then, we obtain

AI(x)=
H

(2)
0 (ωr)

H
(2)
0 (ω)

exp

(
−iSI(x)

ε

)
b.

By (6.3)-(6.4), we obtain the initial values of phase and amplitude on ΛI :

Sz =SI(q)−p†q/2=−rI
2
,

σz =
H

(2)
0 (ωrI)

H
(2)
0 (ω)

exp

(
−iSI(q)

ε

)
det−

1
2 (I− iV U−1), z∈ΛI .

(7.9)

The final two steps of the E-WKB method are to solve the ODE system (6.7) with
initial data (7.9) and compute the integral (6.6) on the Lagrangian submanifold.
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Fig. 7.2. Left: Pressure field with ω=50, rI =2. Right: Relative error
||û−uε||.

||û||.
between the

exact solution û and the approximate one uε. The norms are chosen as L2 and L∞ respectively.

The left of Figure 7.2 shows the numerical solution for pressure field. In this case,
all rays gather at the origin, which results in greater pressure there. In the right picture
of Figure 7.2, we demonstrate a first-order asymptotic convergence rate of the relative
error between the approximate solution and the exact one when measured in L2 and
L∞ norms.
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8. Conclusion
In this paper, we perform the E-WKB analysis to linear vectorial wave equations in

the high-frequency regime. The new procedure based on the E-WKB form is parallel to
the classical WKB analysis, but remains valid even in the case of the caustic problem.
Compared to the local WKB analysis developed in [19], first-order approximate solution
is obtained in a more comprehensive way in this paper. It is hoped that high order
approximations can be derived via the E-WKB analysis.
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