
COMMUN. MATH. SCI. c© 2020 T. Morales de Luna, M.J. Castro Dı́az and C. Chalons

Vol. 18, No. 3, pp. 781–807

HIGH-ORDER FULLY WELL-BALANCED LAGRANGE-PROJECTION
SCHEME FOR SHALLOW WATER∗

TOMÁS MORALES DE LUNA† , MANUEL J. CASTRO DÍAZ‡ , AND

CHRISTOPHE CHALONS§

Abstract. In this work we propose a novel strategy to define high-order fully well-balanced
Lagrange-projection finite volume solvers for balance laws. In particular, we focus on the 1D shallow
water system as it is a reference system of balance laws with non-trivial stationary solutions. Nev-
ertheless, the strategy proposed here could be extended to other interesting balance laws. By fully
well-balanced, it is meant that the scheme is able to preserve stationary smooth solutions. Following
[M.J. Castro et al., in Handbook of Numerical Analysis, 18:131175, 2017], we exploit the idea of using
a high-order well-balanced reconstruction operator for the Lagrangian step. Nevertheless, this is not
enough to achieve well-balanced high-order during the projection step. We propose here a new projec-
tion step that overcomes this difficulty and that reduces to the standard one in case of conservation
laws. Finally, some numerical experiments illustrate the good behaviour of the scheme.

Keywords. Shallow water; Finite volume method; High-order well-balanced schemes; Lagrangian
formulation.
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1. Introduction

Basics. The goal of this paper is to design high-order fully well-balanced finite
volume Lagrange-projection numerical schemes for balance laws. In particular we focus
on the shallow water system. As is usual in Lagrange-projection schemes, we use the
standard Lagrange-projection decomposition to naturally decouple the acoustic and
transport phenomena. We refer, for instance, the reader to [9–13, 15, 16] for various
applications of such a strategy. It is the purpose of this contribution to set the basis of an
extension to higher order accuracy, preserving all (or a representative set of) stationary
solutions, which is non-trivial due to the Lagrange-projection decomposition.

As pointed before, in the present work, we will be especially interested in the nu-
merical approximation of the solutions of shallow-water-like systems, whose prototype
in Eulerian coordinates is given by

∂th+∂x(hu) = 0,

∂t(hu)+∂x

(
hu2 +g

h2

2

)
=−gh∂xz,

(1.1)

where z(x) denotes a given smooth topography, g>0 is the gravity constant, while the
water depth h≥0 and velocity u depend on the space and time variables, namely x∈R
and t∈ [0,∞), and are the so-called primitive variables. However, there would be no
difficulty to apply a similar approach as the one proposed here to more general systems
than (1.1), including for instance sediment transport bedload and suspension, turbidity
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versité Paris-Saclay, 78035 Versailles, France (christophe.chalons@uvsq.fr).

781

mailto:tomas.morales@uco.es
mailto:mjcastro@uma.es
mailto:christophe.chalons@uvsq.fr


782 HIGH-ORDER WB LAGRANGE-PROJECTION SCHEME FOR SW

currents and other geophysical systems like the ones studied in [14, 17, 23, 25]. For the
sake of conciseness, (1.1) will be given the following condensed form

∂tU+∂xF(U) =S(U)∂xz, (1.2)

where U= (h,hu)T , F(U) = (hu,hu2 +gh2/2)T and S(U) = (0,−gh)T . In what follows
we shall denote the discharge by q=hu. We assume that the initial water depth h(x,t=
0) =h0(x) and velocity u(x,t= 0) =u0(x) are given at time t= 0. At last, recall that the
left-hand side of (1.1) is strictly hyperbolic over the phase space Ω ={(h,hu)T ∈R2 | h>
0} with two genuinely nonlinear characteristic fields associated with the eigenvalues
{u−c,u+c} where the sound speed is defined by c=

√
gh.

In addition to the high-order accuracy, we expect our scheme to satisfy the now very
well-known (fully) well-balanced property. It is meant that discrete approximations of
the smooth stationary solutions of (1.1), governed by the ordinary differential system
∂xF (U) =S(U)∂xz or equivalently

q= constant,
u2

2
+g(h+z) = constant, (1.3)

should be preserved exactly. The particular “lake at rest” stationary solution corre-
sponds to

h+z= constant, u= 0. (1.4)

Note that most of the schemes proposed in the literature are focused on these particular
stationary solutions and they are said to be well-balanced. We refer, for instance,
the reader to the recent book [20] for a review on the design of well-balanced schemes.
However, some numerical schemes also preserve equilibria (1.3) with a non-zero velocity,
leading to the so-called fully well-balanced property. We refer, for instance, the reader
to [2,4,7,24,26,29]. The objective here is to extend to high-order the recent contribution
[9] where we propose a first-order fully well-balanced Lagrange-projection scheme.

The shallow-water equations in Lagrangian coordinates. As already said, we
aim at proposing a high-order and fully well-balanced numerical scheme based on a
Lagrange-projection decomposition. Therefore, the so-called Lagrangian coordinates
which amount to describing the flow by following the fluid motion, will play an impor-
tant role. With this in mind, and for any given “fluid particle” ξ, we introduce the
characteristic curves {

∂x

∂t
(ξ,t) =u(x(ξ,t),t),

x(ξ,0) = ξ,
(1.5)

and given any function (x,t)→U(x,t) in Eulerian coordinates, we denote by

U(ξ,t) =U(x(ξ,t),t) (1.6)

its counterpart in Lagrangian coordinates (ξ,t). Note that the new functions U in
Lagrangian coordinates depend on the variables t and ξ. Moreover, remark that for any
steady state U(x) with non-zero velocity, its Lagrangian counterpart U(ξ,t) depends
on time. This will be a major difficulty in preserving such steady states as they are not
stationary solutions in the Lagrangian framework.

To go further, note that if we define

L(ξ,t) =
∂x

∂ξ
(ξ,t), (1.7)
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which satisfies {
∂L

∂t
(ξ,t) =∂ξu(x(ξ,t),t),

L(ξ,0) = 1,
(1.8)

we also have

∂tL(ξ,t) =∂ξu(x(ξ,t),t) =∂ξu(ξ,t),

and for all U

∂ξU(ξ,t) =L(ξ,t)∂xU(x,t) and ∂tU(ξ,t) =∂tU(x,t)+u(x,t)∂xU(x,t).

Therefore and since the shallow water Equations (1.1) in Eulerian coordinates are equiv-
alent for smooth solutions to{

∂th+u∂xh+h∂xu= 0,
∂t(hu)+u∂x(hu)+hu∂xu+∂xp+gh∂xz= 0,

(1.9)

where we have set p=gh2/2, we get by multiplying the two equations by L(ξ,t) that{
L∂th+h∂ξu= 0,

L∂t(hu)+hu∂ξu+∂ξp+gh∂ξz= 0,
(1.10)

and finally, since ∂tL(ξ,t) =∂ξu(ξ,t) (see above),{
∂t(Lh) = 0,

∂t(Lhu)+∂ξp+gh∂ξz= 0.
(1.11)

The functions now depend on (ξ,t) in (1.11), instead on (x,t) in (1.1).

The Lagrange-projection algorithm. The proposed algorithm based on a Lagrange-
projection decomposition to solve (1.1) will simply consist in first solving system (1.11)
in Lagrangian coordinates, and then to come back to the Eulerian coordinates by a
projection step. The details will be given hereafter. The extension to high-order of
this two-step algorithm is not straightforward, more so if we want to preserve smooth
stationary solutions with moving water as well. The major difficulty comes from the fact
that the stationary solutions in the Lagrangian framework depend on time. In order to
obtain a fully well-balanced Lagrange-projection scheme, we exploit the idea of using a
high-order well-balanced reconstruction operator for the Lagrangian step. Nevertheless,
this is not enough to achieve well-balanced high-order during the projection step. We
propose here a new projection step that overcomes this difficulty.

Outline of the paper. The paper is organized in such a way that the high-order and
well-balanced properties are treated separately. More precisely, one first considers in the
next section the case of a flat topography, which makes the source term in (1.1) trivial
(∂xz= 0), and focus ourselves on the high-order extension of the Lagrange-projection
scheme. Then, we show in Section 3 how to deal with the general case of a non-constant
topography and satisfy at the same time the high-order accuracy and fully well-balanced
properties. At last, Section 4 collects some numerical results in order to illustrate the
behavior of the proposed strategies.
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2. The case of a flat topography
In this section, the topography is taken to be flat, leading to the classical shallow

water system over flat bottom or, in a more general framework the barotropic gas
dynamics equations, in Eulerian coordinates:{

∂th+∂x(hu) = 0,
∂t(hu)+∂x(hu2)+∂xp= 0,

(2.1)

and in Lagrangian coordinates: {
∂t(Lh) = 0,

∂t(Lhu)+∂ξp= 0.
(2.2)

In order to approximate the solutions of this system, space and time will be dis-
cretized using a space step ∆x and a time step ∆t into a set of cells [xi−1/2,xi+1/2)
and instants tn=n∆t, where xi+1/2 = i∆x and xi= (xi−1/2 +xi+1/2)/2 are respectively
the cell interfaces and cell centers, for i∈Z and n∈N. For a given initial condition
x 7→U0(x) where U= (h,hu)t, we will consider a discrete initial data U0

i which ap-
proximates 1

∆x

∫ xi+1/2

xi−1/2
U0(x)dx, for i∈Z. Therefore, the proposed algorithm aims at

computing an approximation Un
i of 1

∆x

∫ xi+1/2

xi−1/2
U(x,tn)dx where x→U(x,tn) is the ex-

act solution of the shallow water equations at all times tn, n∈N. Given the sequence
{Un

i }i∈Z, it is a matter of defining the sequence {Un+1
i }i∈Z, n∈N.

Using these notations, the overall Lagrange-projection algorithm can be described
as follows: for a given discrete state Un

i = (h,hu)ni , i∈Z that describes the system at
instant tn, the computation of the approximation Un+1

i = (h,hu)n+1
i at the next time

level is a two-step process defined by

(1) Update Un
i to U

n+1

i by approximating the solution of (1.11) in Lagrangian
coordinates, which is referred to as the Lagrangian step,

(2) Update U
n+1

i to Un+1
i by going back to the Eulerian coordinates, referred to

as the projection (or transport) step.

In this section, we aim at proposing a high-order (in space and time) approximation
of these two steps, in such a way that the overall algorithm is high-order too. To do
so, we will focus first on the high-order approximation in space, so that the time is
left continuous and a semi-discrete-in-time scheme shall be proposed. Afterwards, an
explicit Runge-Kutta scheme will be applied to obtain a high-order in time scheme.

2.1. The Lagrangian step. First of all, we consider for the ξ variable the same
space discretization as for the x variable, that is to say ∆ξ= ∆x, ξi+1/2 =xi+1/2 and
ξi=xi for all i. Therefore, it is natural to approximate (2.2) by the semi-discrete-in-time
scheme 

d

dt
(Lh)i(t) = 0,

d

dt
(Lhu)i(t) =− 1

∆x

(
π∗i+1/2(t)−π∗i−1/2(t)

)
,

(2.3)

where

π∗i±1/2(t)≈p(ξi±1/2,t)
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and with, according to (1.8),

Li(0) = 1,

and

Li(t) =
1

∆x

(∫ xi+1/2

xi−1/2

∂x

∂ξ
(ξ,t)dξ

)
=
x∗i+1/2(t)−x∗i−1/2(t)

∆x
, (2.4)

where x∗i±1/2(t) naturally represents the position at time t of the exact trajectory defined
by the ordinary differential equation{

∂x

∂t
(ξi±1/2,t) =u(x(ξi±1/2,t),t),

x(ξi±1/2,0) = ξi±1/2,
(2.5)

that is

x∗i±1/2 =x(ξi±1/2,t). (2.6)

In what follows and for the sake of simplicity we shall not write the dependence on time
whenever there is no ambiguity. Following the ideas presented in [9, 10, 12, 13, 18], in
order to solve (2.3) we use as a base scheme a first-order finite volume method based
on a relaxation approach. This will result in the definition of two numerical fluxes at
the interface π∗i+1/2(Ui,Ui+1) and u∗i+1/2(Ui,Ui+1) consistent with the true starred

values, namely u∗(U,U) =u(U) and π∗(U,U) =p(U) for all U. We refer the reader
to [9,10,12,13,18] for a detailed description of this relaxation scheme. Nevertheless the
inter-cell reconstructed values will be defined in the next subsection.

2.1.1. High-order approximation in space. In order to construct a high-
order approximation in space, we make use of a reconstruction operator of order s
that associates to a given sequence {Ui}i∈Z two new sequences {Ui+1/2+}i∈Z and
{Ui+1/2−}i∈Z such that whenever

Ui(t) =
1

∆x

∫ xi+1/2

xi−1/2

U(x,t)dx

for some smooth vector function x→U(x,t), then

Ui+1/2±=U(xi+1/2,t)+O(∆xs)

for all i. In practice, Ui+1/2± are computed as follows:

Ui−1/2+(t) =Pt
i(xi−1/2) and Ui+1/2−(t) =Pt

i(xi+1/2),

where x→Pt
i(x) represents a vector of polynomials reconstructed on the cell

[xi−1/2,xi+1/2) using for instance ENO or WENO techniques, see [28]. These poly-
nomials are expected to be conservative in the sense that for all i

1

∆x

∫ xi+1/2

xi−1/2

Pt
i(x)dx=Ui(t).

In a very classical way, we thus set

u∗i+1/2 =u∗(Ui+1/2−,Ui+1/2+), π∗i+1/2 =π∗(Ui+1/2−,Ui+1/2+)
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for all i. More explicitly, following [9, 10,12,18], we set

u∗i+1/2 =u∗(Ui+1/2−,Ui+1/2+) :=
1

2
(ui+1/2−+ui+1/2+)− 1

2ai+1/2
(pi+1/2+−pi+1/2−),

π∗i+1/2 =π∗(Ui+1/2−,Ui+1/2+) :=
1

2
(pi+1/2−+pi+1/2+)−

ai+1/2

2
(ui+1/2+−ui+1/2−),

and pi+1/2±=g(hi+1/2±)2/2 for all i.

Here, the constant ai+1/2 has to be chosen sufficiently large for the sake of stability,
and more precisely larger than the Lagrangian sound speed according to the well-known
subcharacteristic condition. In practice it is required that ai+1/2 is greater than the
values h

√
gh at the interface:

ai+1/2 = max
{
hi+1/2−

√
ghi+1/2−,hi+1/2+

√
ghi+1/2+

}
.

In other words, the treatment of the Lagrange step exactly fits within the framework
of standard high-order finite volume schemes.

2.2. The projection step. In order to project the piece-wise constant approx-
imate values of LU(ξ,t), U= (h,hu)t, obtained on each cell (ξi−1/2,ξi+1/2) at the end
of the first step, it is now a matter of defining a high-order approximation of U(x,t), on
the Eulerian cells (xi−1/2,xi+1/2). With this in mind, we first notice the (trivial but)
key property ∫ x(ξr,t)

x(ξl,t)

U(x,t)dx=

∫ ξr

ξl

L(ξ,t)U(ξ,t)dξ. (2.7)

Given a time t≥0 we define ξ̂i+1/2(t) such that

x(ξ̂i+1/2(t),t) =xi+1/2.

Thus, for any time T ≥0, ξ̂(T ) corresponds to the origin of the characteristic x(ξ̂i+1/2,t)
such that at time t=T coincides with xi+1/2 (see Figure 2.1).

Fig. 2.1. Sketch of the connection between Lagrangian and Eulerian coordinates

Remark that, given a fixed time T ≥0, we have for any t≥0
∂x

∂t
(ξ̂i+1/2(T ),t) =u(x(ξ̂i+1/2(T ),t),t),

x(ξ̂i+1/2(T ),0) = ξ̂i+1/2(T ),
(2.8)
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which we may approximate (at first-order in time) by

xi+1/2 =x(ξ̂i+1/2(T ),T )≈x(ξ̂i+1/2(T ),0)+T
∂x

∂t
(ξ̂i+1/2(T ),0)≈ ξ̂i+1/2 +T u∗i+1/2.

(2.9)

Remark 2.1. Although this definition means that one should solve the characteristic
(2.8) backwards, we will see that we have to compute differences such as ξ̂i+1/2−ξi+1/2.

We shall assume that ξ̂i+1/2−ξi+1/2≈xi+1/2−x∗i+1/2 with a similar precision to the
prescribed Runge-Kutta method when doing the time-stepping. Therefore, in practice,
we compute the values x∗i+/2 by a forward Euler-type step and replace ξ̂i+1/2−ξi+1/2

by xi+1/2−x∗i+1/2.

Then, we naturally set for U= (h,hu)t,

Ui(t) =
1

∆x

∫ xi+1/2

xi−1/2

U(x,t)dx

=
1

∆x

∫ x(ξ̂i+1/2(t),t)

x(ξ̂i−1/2(t),t)

U(x,t)dx=
1

∆x

∫ ξ̂i+1/2(t)

ξ̂i−1/2(t)

L(ξ,t)U(ξ,t)dξ

and we split the integral as follows

Ui(t) =
1

∆x

∫ ξi−1/2

ξ̂i−1/2(t)

L(ξ,t)U(ξ,t)dξ

+
1

∆x

∫ ξi+1/2

ξi−1/2

L(ξ,t)U(ξ,t)dξ+
1

∆x

∫ ξ̂i+1/2(t)

ξi+1/2

L(ξ,t)U(ξ,t)dξ.

Note that the middle integral in the right-hand-side naturally equals (LU)i(t) and this
quantity is known from the first step. It remains to evaluate the other two integrals
with high-order accuracy in space.

2.2.1. First-order approximation. As a preliminary scheme, it is interesting
to note that at first-order accuracy in the time interval [tn,tn+1], writing the dependence
on tn or tn+1 as a superscript (.)n or (.)n+1 respectively, we may set

(LU)n+1
i−1/2 =

{
(LU)n+1

i−1 , for ξi−1/2>ξ̂i−1/2,

(LU)n+1
i , for ξi−1/2≤ ξ̂i−1/2,

or equivalently

(LU)n+1
i−1/2 =

{
(LU)n+1

i−1 , for x∗,n+1
i−1/2 >xi−1/2,

(LU)n+1
i , for x∗,n+1

i−1/2≤xi−1/2,

where, we are considering

x∗,n+1
i+1/2 =xi+1/2 +∆tu∗i+1/2,

xi+1/2 = ξ̂i+1/2 +∆tu∗i+1/2.
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We are led to set

1

∆x

∫ ξi−1/2

ξ̂i−1/2

L(ξ,∆t)U
n+1

(ξ)dξ=
ξi−1/2− ξ̂i−1/2

∆x
(LU)n+1

i−1/2

and similarly

1

∆x

∫ ξ̂i+1/2

ξi+1/2

L(ξ,∆t)U
n+1

(ξ)dξ=
ξ̂i+1/2−ξi+1/2

∆x
(LU)n+1

i+1/2.

Therefore, we get

Un+1
i =

ξi−1/2− ξ̂i−1/2

∆x
(LU)n+1

i−1/2 +(LU)n+1
i +

ξ̂i+1/2−ξi+1/2

∆x
(LU)n+1

i+1/2

=(LU)n+1
i − ∆t

∆x

(
u∗,ni+1/2(LU)n+1

i+1/2−u
∗,n
i−1/2(LU)n+1

i−1/2

)
,

where

(LU)n+1
i−1/2 =

{
(LU)n+1

i−1 , for x∗,n+1
i−1/2 >xi−1/2,

(LU)n+1
i , for x∗,n+1

i−1/2≤xi−1/2.

As we will see in the next subsection, this approach is especially well-adapted to be
extended to high-order accuracy, although it does not correspond to the “usual” first-
order projection step as underlined in the following remark.

Remark 2.2. The “usual” projection step, see for instance [9], amounts to defining

U
n+1

i−1/2 =

{
U
n+1

i−1 , for ξi−1/2>ξ̂i−1/2,

U
n+1

i , for ξi−1/2≤ ξ̂i−1/2,
(2.10)

or equivalently

U
n+1

i−1/2 =

{
U
n+1

i−1 , for x∗,n+1
i−1/2 >xi−1/2,

U
n+1

i , for x∗,n+1
i−1/2≤xi−1/2,

(2.11)

and to set, first

1

∆x

∫ ξi−1/2

ξ̂i−1/2

L(ξ,∆t)U
n+1

(ξ)dξ

=U
n+1

i−1/2

1

∆x

∫ ξi−1/2

ξ̂i−1/2

L(ξ,∆t)dξ=U
n+1

i−1/2

1

∆x

∫ ξi−1/2

ξ̂i−1/2

∂ξx(ξ,∆t)dξ

=U
n+1

i−1/2

x(ξi−1/2,∆t)−x(ξ̂i−1/2,∆t)

∆x
=
x∗,n+1
i−1/2−xi−1/2

∆x
U
n+1

i−1/2,

and second (in a similar way)

1

∆x

∫ ξ̂i+1/2

ξi+1/2

L(ξ,∆t)U
n+1

(ξ)dξ
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=U
n+1

i+1/2

1

∆x

∫ ξ̂i+1/2

ξi+1/2

L(ξ,∆t)dξ=U
n+1

i+1/2

1

∆x

∫ ξ̂i+1/2

ξi+1/2

∂ξx(ξ,∆t)dξ

=U
n+1

i+1/2

x(ξ̂i+1/2,∆t)−x(ξi+1/2,∆t)

∆x
=
xi+1/2−x∗,n+1

i+1/2

∆x
U
n+1

i+1/2.

Therefore, we get

Un+1
i =

x∗,n+1
i−1/2−xi−1/2

∆x
U
n+1

i−1/2 +
x∗,n+1
i+1/2−x

∗,n+1
i−1/2

∆x
U
n+1

i +
xi+1/2−x∗,n+1

i+1/2

∆x
U
n+1

i+1/2

=(LU)n+1
i − ∆t

∆x

(
u∗,ni+1/2U

n+1

i+1/2−u
∗,n
i−1/2U

n+1

i−1/2

)
, (2.12)

where

U
n+1

i−1/2 =

{
U
n+1

i−1 , for x∗,n+1
i−1/2 >xi−1/2,

U
n+1

i , for x∗,n+1
i−1/2≤xi−1/2.

(2.13)

In the above formulas, U
n+1

i are naturally defined by U
n+1

i = (LU)n+1
i /Ln+1

i . This
classical approach may be not suitable to the high-order extension because dividing by
Ln+1
i ≈1+∆t(∂ξu)i could introduce a first-order error with respect to time.

2.2.2. High-order approximation in space. In order to construct a high-
order approximation in space, we proceed as in the first step by making use of a similar
polynomial reconstruction operator of order s but now related to the piecewise average
values LUi(t). Again, we impose the conservation property, that is to say if we denote
ξ→LPt

i(ξ) the corresponding polynomial on the ith-cell,∫ ξi+1/2

ξi−1/2

LPt
i(ξ)dξ=LUi(t).

As for the first-order accuracy, it is a matter of defining the three integrals in the
right-hand side of

Ui(t) =
1

∆x

∫ ξi−1/2

ξ̂i−1/2(t)

L(ξ,t)U(ξ,t)dξ

+
1

∆x

∫ ξi+1/2

ξi−1/2

L(ξ,t)U(ξ,t)dξ+
1

∆x

∫ ξ̂i+1/2(t)

ξi+1/2

L(ξ,t)U(ξ,t)dξ.

Thanks to the conservation property of the reconstruction, the middle integral of the
right-hand-side naturally equals (LU)i(t). To evaluate the first and third integrals, we
simply suggest to use the polynomial reconstruction of LPt

i(ξ,t) in the corresponding
cell, that is to say, if we consider for instance the first integral

1

∆x

∫ ξi−1/2

ξ̂i−1/2(t)

L(ξ,t)U(ξ,t)dξ,

we will consider the polynomial ξ→LPt
i−1(ξ) of the cell i−1 if ξi−1/2>ξ̂i−1/2(t) and the

polynomial ξ→LPt
i(ξ) of the cell i otherwise. Then, denoting by ξ→LPt

i+1/2(ξ) the
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resulting polynomial we consider a Gauss quadrature formula exact for this polynomial
with nodes ξi+1/2,k and weights ωk, for k= 1,. ..,m.

The integral

1

∆x

∫ ξ̂i+1/2(t)

ξi+1/2

L(ξ,∆t)U(ξ,t)dξ

is calculated in a similar way and the projection step writes as

Ui(t) = (LU)i(t)−
ξi+1/2− ξ̂i+1/2

∆x

m∑
k=1

ωkLPt
i+1/2(ξi+1/2,k)

+
ξi−1/2− ξ̂i−1/2

∆x

m∑
k=1

ωkLPt
i−1/2(ξi−1/2,k).

Using u∗i±1/2 to integrate the characteristic backwards, we could replace ξi±1/2−
ξ̂i±1/2 by x∗i±1/2−xi±1/2.

2.3. High-order integration in time. So far, we focused ourselves on the
high-order accuracy in space. We now briefly discuss the high-order accuracy in time,
that we propose to deal with classical explicit Runge-Kutta TVD techniques, see [21,27].
However, two crucial remarks are in order. Firstly, the time integration of the exact
trajectories (1.8) to define x(ξ̂i+1/2,t

n) and Ln+1
i in the Lagrange and projection steps

must be treated using high-order Runge-Kutta TVD techniques.
Secondly, the main (additional) high-order Runge-Kutta TVD scheme must be ap-

plied to the overall algorithm, that is to say to the two-step process made of the Lagrange
and the projection step, and not to the Lagrange and the projection step separately to
avoid splitting errors.

More explicitly, assume that we have performed the stage s of the selected Runge-
Kutta TVD step. Therefore we have computed LUi(t

(s)) and Ui(t
(s)) at the time t(s)

of stage s by applying the Lagrangian and projection steps. Moreover, we assume that
the characteristic (2.5) has been computed also at this stage, obtaining x∗i+1/2(t(s)).

Then, from LUi(t
(s)) and Ui(t

(s)) we apply the Lagrangian step, which will give us
LUi(t

(s+1)). During this Lagrangian step we compute the velocities at the interfaces
u∗i+1/2(t(s)) which are used to advance the characteristic to the next Runge-Kutta step,

obtaining x∗i+1/2(t(s+1)). Now a projection step is performed to obtain Ui(t
(s+1)).

Another way to achieve high-order in time is to consider high-order ADER or Taylor
schemes like the one proposed in [15].

3. The case of a non-flat topography and well-balanced property
In this section, the topography is not taken to be flat anymore, meaning that

we consider the original system (1.1) in Eulerian coordinates, or (1.11) in Lagrangian
coordinates. Our objective is to show how to extend the high-order Lagrange-projection
scheme proposed in the previous section to this system, paying a particular attention
to the well-balanced property associated with stationary solutions satisfying

u2

2
+g(h+z) = constant, q= constant. (3.1)

Remark that this implies that any smooth stationary solution satisfies

∂x

(
hu2 +g

h2

2

)
+gh∂xz= 0.
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The main ingredients are the hydrostatic reconstruction originally introduced in
[1, 7, 9], and its extension to high-order accuracy introduced in [5] and based on space
reconstructions performed on the so-called fluctuations.

Considering the Lagrangian step, it is natural to replace the update formula (2.3)
by 

d

dt
(Lh)i(t) = 0,

d

dt
(Lhu)i(t) =− 1

∆x

(
π∗i+1/2(t)−π∗i−1/2(t)

)
−{gh∂ξz}ti,

(3.2)

where π∗i+1/2 still approximates the value of pressure at the interfaces, while {gh∂ξz}ti
approximates the spatial-average value of the exact source term, namely

{gh∂ξz}ti≈
1

∆x

∫ ξi+1/2

ξi−1/2

gh(ξ,t)∂ξz(ξ,t)dx.

The definition of such a semi-discrete scheme is based on the values π∗i+1/2(t) and

{gh∂ξz}ti. In what follows, we shall define these terms based on a well-balanced high-
order reconstruction procedure. Remark that here we are assuming a continuous recon-
struction bottom topography, otherwise (see for instance [7]) one would have to consider
the jumps at the interfaces and therefore π∗i+1/2(t) could differ to the left and to the
right of the interface.

Once the Lagrangian variables are computed, a projection step similar to the one
described for the case of flat bottom will be required. The scheme shall be decomposed
into three steps:

(1) Well-balanced high-order reconstruction

(2) Lagrangian step

(3) projection step
that we now give in details.

3.1. Well-balanced high-order reconstruction. In order to define a well-
balanced reconstruction strategy with high-order accuracy in space, we follow [5, 6, 8]
and perform a high-order polynomial reconstruction on the so-called fluctuations D
defined hereafter. More precisely, consider the cell averages {Ui(t)}i∈Z and assume
that for each cell i∈Z we can compute a stationary solution Ut,e

i (x) such that

1

∆x

∫ xi+1/2

xi−1/2

Ut,e
i (x)dx=Ui(t). (3.3)

Remark that although the stationary solution itself does not depend on time, the
selected stationary solution will not be in general the same. For each time t the given
stationary solution depends on the value Ui(t) and therefore varies through time.

Then, for any given i, we define the stencil {i− l,...,i+r} and for k= i− l,...,i+r
the differences

Dk,i(t) =Uk(t)− 1

∆x

∫ xk+1/2

xk−1/2

Ut,e
i (x)dx,

on which we will apply a standard reconstruction operator of order s and denote

Pt
i(x;Xi−l,...,Xi+r)



792 HIGH-ORDER WB LAGRANGE-PROJECTION SCHEME FOR SW

with the property

Pt
i(x;0,...,0) = 0.

For instance, if one considers second-order accuracy and the usual MUSCL [22] recon-
struction approach, one is led to consider

Pt
i(x;Xi−1,Xi,Xi+1) =Xi+si

x−xi
∆x

,

with the following definition of the slope si using the well-known minmod limiter,

si= minmod(Xi+1−Xi,Xi−Xi−1).

Then, we set

Pt
i(x) =Pt

i(x;Di−l,i(t),...,Di+r,i(t)), x∈Ci.

At last, we define the following reconstruction function of the conservative variable U,
namely

Ut
i(x) =Pt

i(x)+Ut,e
i (x), x∈Ci.

Note that the function x→Ut
i(x) is not polynomial, but reads like the sum of a poly-

nomial contribution and a portion of a stationary curve associated to the cell Ci, the
average of which is equal to Ui.

Note that system (3.3) may not have a unique solution:

• If (3.3) has no solution, then U t,ei (x)≡0 is chosen in the first stage and the
reconstruction operator reduces to the standard one. Notice that the recon-
struction operator is still well-balanced, since (3.3) has always at least one
solution when the operator is applied to the cell averages of a stationary so-
lution. Observe also that U t,ei (x)≡Ui(t) could also be chosen. This would be
in fact equivalent since subtracting a constant to the cell values of the stencil
would give an equivalent polynomial.

• If (3.3) has more than one solution, a criterion to select one of them is needed:
see, for instance, [16].

Remark 3.1. The main constraint when defining Ut,e
i (x) is that whenever {Ui(t)}

correspond to the cell averages of a steady state, then {Dk,i(t)} should be 0. Moreover,
we shall assume that the bottom is given by a known function z(x), so that any station-
ary solution Ue(x) may be computed from (3.1). Fixing two constant values Q,E, then
we set Ue(x) = (he(x),Q)T where he(x) is computed by solving the cubic polynomial

Q2

2
+(g(he(x)+z(x))−E)(he(x))2 = 0. (3.4)

More explicitly, assume that the cell averages are defined by means of a quadrature
formula in the interval [xi−1/2,xi+1/2] with quadrature points xi,k and weights ωk for
k= 1,. ..,m.

Ui(t) =
m∑
k=1

ωkU(xi,k,t)≈
1

∆x

∫ xi+1/2

xi−1/2

Ui(x,t)dx,
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and fixing Q= qi(t), then it is sufficient to find the constant E such that ht,ei,k satisfies:

m∑
k=1

ωkh
t,e
i,k(E) =hi(t),

Q2

2(ht,ei,k)2
+g(ht,ei,k+z(xi,k)) =E. k= 1,. ..,m,

The previous non-linear equation could be solved by Newton’s method, using as initial
guess for E

E=
q2
i (t)

2h2
i (t)

+g(hi(t)+zi).

In fact, two or three iterations of Newton’s method are needed to obtain convergence.
The cubic equation is solved using the Cardano formula.

This will assure that

1

∆x

∫ xi+1/2

xi−1/2

Ui(x,t)dx≈
m∑
k=1

ωkU(xi,k,t) =Ui(t)

and whenever the cell averages Ui(t) correspond to a steady state, then we will get

Dj,i(t) =Uj(t)−
m∑
k=0

ωkU
t,e
i (xj,k) = 0, for j= i− l,.. .,i+r.

Nevertheless, some special care should be taken when we are near a sonic point, as
in such situations the stationary solution may be not uniquely defined from (3.1).

A similar procedure has been introduced in [16] and we refer the reader to it for a
detailed description. Moreover, one could consider more complex models where satisfy-
ing (3.3) is not straightforward. A more general approach has been introduced in [19]
based on the solution of an optimization problem.

Remark 3.2. There are some situations where computing Ut,e
i (x) satisfying (3.3) is

easier.

• In the particular case that we are interested only in preserving lake-at-rest
steady states, then previous procedure automatically gives Ut,e

i (x) = (hi(t)+
zi−z(x),0)T which will grant that lake-at-rest solutions will be preserved. In
fact, we could directly use the previous expression without solving the non-
linear problem.

• In order to develop a fully well-balanced second-order solver, then it is sufficient
to consider hi(x)t,e such that

q2
i (t)

2
+(g(ht,ei (x)+z(x))−Ei)(ht,ei (x))2 = 0,

with Ei=
qi(t)

2

2hi(t)2
+g(hi(t)+zi). If the mid-point quadrature is used, then we

have

1

∆x

∫ xi+1/2

xi−1/2

ht,ei (x)dx≈ht,ei (xi) =hi(t).
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3.2. The Lagrangian step. We show in this section how to extend the dis-
cretization of the Lagrangian step in order to satisfy both the high-order accuracy and
well-balanced properties. Again, we first focus on the space discretization. Therefore,
the time is left continuous and we assume as given the cell averages {U0

i }i∈Z at the
initial time t= t0, which are reconstructed as described before. In order to make the
notation less cumbersome, we shall not write explicitly the dependence of the selected
stationary solution Ue

i on time. This leads to the function

U0
i (x) =P0

i (x)+Ue
i (x), x∈Ci, (3.5)

where we have used clear notations between the so-called fluctuation and equilibrium
parts. More generally

Ut
i(x) =Pt

i(x)+Ue
i (x), x∈Ci, (3.6)

for later times. In the following, we will also use the notation Uf
i (x,t) =Pt

i(x) for the
sake of clarity. Based on these reconstructions and as motivated above, we naturally
set 

d

dt
(Lh)i(t) = 0,

d

dt
(Lhu)i(t) =− 1

∆x

(
π∗i+1/2(t)−π∗i−1/2(t)

)
−{gh∂ξz}ti,

(3.7)

with (LU)i(t0) =U0
i , and where the interfacial pressures are defined by

π∗i+1/2(t) =π∗(Ut
i+1/2−,U

t
i+1/2+)

for all i where

Ut
i−1/2+ = lim

x→xi−1/2

Ut
i(x), Ut

i+1/2−= lim
x→xi+1/2

Ut
i(x).

Regarding the source term {gh∂ξz}ti and by linearity with respect to h, we use the
equilibrium and fluctuation decomposition (3.6) to set

{gh∂ξz}ti ={ghe∂ξz}ti+{gh
f
∂ξz}ti

where with clear notations

−{ghe∂ξz}ti =− 1

∆x

∫ ξi+1/2

ξi−1/2

gh
e

i (ξ,t)∂ξz(ξ,t)dξ=
1

∆x

∫ ξi+1/2

ξi−1/2

∂ξ

(
hu

e

iu
e
i +pei

)
(ξ,t)dξ

=
1

∆x
hu

e

i (t)
(
uei+1/2−(t)−uei−1/2+(t)

)
+

1

∆x

(
pei+1/2−(t)−pei−1/2+(t)

)
with

pei±1/2∓(t) =pei (x(ξi±1/2,t),t) =g
(hei (x(ξi±1/2,t),t))

2

2
,

and

uei±1/2∓(t) =uei (x(ξi±1/2,t),t).
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Finally,

{ghf∂ξz}ti =
1

∆x

∫ ξi+1/2

ξi−1/2

gh
f

i (ξ,t)∂ξz(ξ,t)dξ

is computed via a (high-order) Gaussian quadrature formula with nodes xi,k and weights
ωk for k= 1,. ..,m, leading to

{ghf∂ξz}ti =g
m∑
k=1

ωih
f

i (xi,k,t)∂ξz(xi,k).

3.3. The projection step. In order to get the high-order accuracy property,
the projection step proposed here is similar to the case of flat topography in the sense
that it is based on polynomial reconstructions of LUi(t). However, in order to satisfy
the well-balanced property we propose a new projection algorithm that exactly pre-
serves the smooth stationary solutions, that, as pointed before, depend on time in the
Lagrangian framework. This new projection algorithm exploits again the decomposition
into stationary and fluctuation parts as in [5, 8]. More precisely we aim at performing
high-order polynomial reconstructions on the fluctuation parts of LUi(t). Before going
on, it is therefore a matter of defining the fluctuation and equilibrium parts of LUi(t).
With this in mind, we consider that the equilibrium part of LUi(t), that we denote by
LU

e

i (t), is given by nothing but (3.7) applied to the equilibrium solution Ue
i (x), namely


d

dt
(Lh

e
)i(t) = 0,

d

dt
(Lhu

e
)i(t) =− 1

∆x

(
pei+1/2−(t)−pei−1/2+(t)

)
−{ghe∂ξz}ti,

(3.8)

with LU
e

i (t0) =Ue
i . Defining now the fluctuation part by the consistency relation

LU
f

i (t) =LUi(t)−LU
e

i (t)

we notice that
d

dt
(Lh

f
)i(t) = 0,

d

dt
(Lhu

f
)i(t) =− 1

∆x

(
π∗i+1/2−p

e
i+1/2−−π

∗
i−1/2 +pei−1/2+

)
−{ghf∂ξz}ti,

(3.9)

with LU
f

i (t0) =P0
i .

Remark that here L is the same for both LU
f

and LU
e

and given by (1.8).
Then, in agreement with Section 2.2, we set

Ui(t) =
1

∆x

∫ ξi−1/2

ξ̂i−1/2(t)

L(ξ,t)U(ξ,t)dξ

+
1

∆x

∫ ξi+1/2

ξi−1/2

L(ξ,t)U(ξ,t)dξ+
1

∆x

∫ ξ̂i+1/2(t)

ξi+1/2

L(ξ,t)U(ξ,t)dξ
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which is equivalent to

Ui(t) =
1

∆x

∫ ξi−1/2

ξ̂i−1/2(t)

L(ξ,t)U
e
(ξ,t)dξ

+
1

∆x

∫ ξi+1/2

ξi−1/2

L(ξ,t)U
e
(ξ,t)dξ+

1

∆x

∫ ξ̂i+1/2(t)

ξi+1/2

L(ξ,t)U
e
(ξ,t)dξ

+
1

∆x

∫ ξi−1/2

ξ̂i−1/2(t)

L(ξ,t)U
f
(ξ,t)dξ

+
1

∆x

∫ ξi+1/2

ξi−1/2

L(ξ,t)U
f
(ξ,t)dξ+

1

∆x

∫ ξ̂i+1/2(t)

ξi+1/2

L(ξ,t)U
f
(ξ,t)dξ.

Note that again

1

∆x

∫ ξi+1/2

ξi−1/2

L(ξ,t)U
f
(ξ,t)dξ= (LU

f
)i(t).

Using now the notation ξei+1/2(t) such that

xe(ξei+1/2,t) =xi+1/2, (3.10)

where we have considered the characteristic given by the velocity of the stationary
solution 

∂xe

∂t
(ξ,t) =ue(x(ξ,t),t),

x(ξ,0) = ξ,
(3.11)

and the relation

Ue
i =

1

∆x

∫ xi+1/2

xi−1/2

Ue
i (x)dx=

1

∆x

∫ ξi−1/2

ξe
i−1/2

(t)

L(ξ,t)U
e
(ξ,t)dξ+

+
1

∆x

∫ ξi+1/2

ξi−1/2

L(ξ,t)U
e
(ξ,t)dξ+

1

∆x

∫ ξei+1/2(t)

ξi+1/2

L(ξ,t)U
e
(ξ,t)dξ, (3.12)

we get

Ui(t) =Ue
i +

1

∆x

∫ ξei−1/2(t)

ξ̂i−1/2(t)

L(ξ,t)U
e
(ξ,t)dξ− 1

∆x

∫ ξei+1/2(t)

ξ̂i+1/2(t)

L(ξ,t)U
e
(ξ,t)dξ

+(LU
f
)i(t)+

1

∆x

∫ ξi−1/2

ξ̂i−1/2(t)

L(ξ,t)U
f
(ξ,t)dξ− 1

∆x

∫ ξi+1/2

ξ̂i+1/2(t)

L(ξ,t)U
f
(ξ,t)dξ. (3.13)

Remark that (3.10) will be approached numerically. It is not necessary to compute
the values ξei+1/2 exactly, which in general is impossible. The only constraint is that

ξei+1/2 and ξ̂i+1/2 coincide when we are in the case of a steady state solution in order
to guarantee the fully well-balanced property, what is simple to achieve by integrating
both characteristic curves with the same solver.
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Now we proceed exactly as in Section 2.2.2 and define polynomial reconstructions

of LP
#,t

i where # stands for e or f (the equilibrium and fluctuation parts) satisfying
as usual the conservation property

1

∆x

∫ ξi+1/2

ξi−1/2

LP
#,t

i (x)dx=LU
#

i (t)

and use these polynomials, together with high-order Gauss quadrature formulas, to eval-
uate the integrals. Of course, we consider the polynomials ξ→LP#,t

i−1(ξ), ξ→LP#,t
i (ξ),

or ξ→LP#,t
i+1(ξ) depending on whether ξ is to the left or to the right of the values ξi±1/2.

3.4. Fully well-balanced property. In this section, we prove that the scheme
is fully well-balanced. Therefore, we assume that the initial data is a smooth stationary
solution that we denote by x→Ue(x) and that for all i the initial values hi(t= 0) and
(hu)i(t= 0) are defined by the cell averages of this initial data.

By definition, the equilibrium and fluctuation decomposition (3.5) gives

P0
i (x) = 0 and Ue

i (x) =Ue(x)

for all i. Therefore, the well-balanced high-order reconstruction corresponds exactly to
the stationary solution and the fluctuation part is 0. This gives immediately

Ui+1/2−(t) =Ui+1/2+(t) =Ue
i+1/2,

u∗i+1/2 =uei+1/2, and π∗i+1/2 =pei+1/2.

As a consequence, the Lagrangian step gives (LU
f
)i(t) = 0 and (LU)i(t) = (LU

e
)i(t)

for all t. Moreover, in this case we clearly have ξ̂i+1/2 = ξei+1/2 so that from (3.13) it is

clear that Ui(t) =Ue
i for all t, which means that the discrete solution is an equilibrium

solution for all times. By continuity, it coincides with the initial condition.

3.5. High-order integration in time. Again, this step is strictly identical
to the case of a flat topography and it can be easily proved that it does not affect the
well-balanced property.

3.6. Remarks. In this section, we give two important remarks. The first one
states that for a flat topography, the scheme proposed here is equivalent to that of the
previous section. The second one states that at the first-order accuracy, the scheme is
equivalent to the fully well-balanced scheme recently proposed in [9].

Let us first consider a flat topography. In this case, the fluctuations are simply
given by

Dk,i(t) =Uk(t)−Ui(t)

so that the reconstruction function of the conservative variable U is given by

Ut
i(x) =Pt

i(x;Ui−l(t)−Ui(t),. ..,Ui+r(t)−Ui(t))+Ui(t).

Under the additional assumption that the reconstruction operator of order s satisfies
the property

Pt
i(x;Xi−l,...,Xi+r) =Pt

i(x;Xi−l−Y,...,Xi+r−Y )+Y for all Y, (3.14)
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we get

Ut
i(x) =Pt

i(x;Ui−l(t),. ..,Ui+r(t)),

which means that a very standard reconstruction process is considered. Then, since z
is constant, (3.7) boils down to

d

dt
(Lh)i(t) = 0,

d

dt
(Lhu)i(t) =− 1

∆x

(
π∗i+1/2(t)−π∗i−1/2(t)

) (3.15)

with initial condition (LU)i(t0) =U0
i , which is strictly equivalent to the evolution of

the Lagrangian step in the case of a flat topography. (3.9) but with initial condi-
tion Pt0

i (x;Ui−l(t0)−Ui(t0),. ..,Ui+r(t0)−Ui(t0)). As far as the evolution (3.8) of the
equilibrium part is concerned, the time derivatives are clearly equal to zero, so that
(LU

e
)i(t) =U0

i for all times t. By definition of the fluctuation part, we deduce that

(LU
f
)i(t) = (LU)i(t)−U0

i . (3.16)

Finally, (3.13) gives

Ui(t) =U0
iU

e
(ξ,t)dξU

e
(ξ,t)dξ

+(LU
f
)i(t)+

1

∆x

∫ ξi−1/2

ξ̂i−1/2(t)

L(ξ,t)U
f
(ξ,t)dξ− 1

∆x

∫ ξi+1/2

ξ̂i+1/2(t)

L(ξ,t)U
f
(ξ,t)dξ. (3.17)

Invoking (3.16) and again the property of the reconstruction operator (3.14), it is clear
that the projection step is equivalent to the one proposed for a flat topography.

Assume now that we consider the first-order version of the scheme. In this case, the
fluctuation part at the initial time equals zero (note that Di,i= 0), and (3.7) and (3.8)
are strictly equivalent (same equations and same initial condition) so that the fluctuation

part is always equal to zero. In addition, we clearly have ξ̂i−1/2(t) = ξei−1/2(t) so that

(3.13) gives

Ui(t) =Ue
i =

1

∆x

∫ ξi−1/2

ξe
i−1/2

(t)

L(ξ,t)U
e
(ξ,t)dξ

+
1

∆x

∫ ξi+1/2

ξi−1/2

L(ξ,t)U
e
(ξ,t)dξ

1

∆x

∫ ξei+1/2(t)

ξi+1/2

L(ξ,t)U
e
(ξ,t)dξ

and therefore

Ui(t) =
1

∆x

∫ ξi−1/2

ξ̂i−1/2(t)

L(ξ,t)U(ξ,t)dξ

+
1

∆x

∫ ξi+1/2

ξi−1/2

L(ξ,t)U(ξ,t)dξ+
1

∆x

∫ ξ̂i+1/2(t)

ξi+1/2

L(ξ,t)U(ξ,t)dξ.

Easy calculations show that this projection step is equivalent to the one proposed in [9]
with the choice given in Equation (26) of the corresponding Section 3.2. Finally, let
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(a) Surface (b) Velocity

Fig. 4.1. Initial and final time evolution

(a) Surface (b) Discharge

Fig. 4.2. Comparison at final times for 100 cell volumes

us remark that we do not discuss here any special treatment for wet/dry fronts or the
positivity-preserving properties of the scheme and it is out of the scope of this work.
Nevertheless, we recall that the first-order fully well-balanced Lagrange-projection [9]
is positivity-preserving and we could combine this scheme together with the strategy
proposed by Zhang et al. [30] to obtain a high-order positivity-preserving scheme.

4. Numerical experiments
The objective of this section is to test the numerical scheme introduced here. For

the first three numerical tests we have used the well-balanced version of the scheme, that
is, we set Ut,e

i (x) as described in Remark 3.2 in order to preserve lake-at-rest steady
states. In the fourth test case we shall compare this well-balanced version with the fully
well-balanced one, where Ut,e

i (x) is defined by using the general expression of steady
states with moving water. Second order and third order versions of the scheme will be
used. Unless said otherwise, open boundary conditions are used. In general, a ghost-cell
technique is used for boundaries.

4.1. Accuracy test. We perform first an accuracy test for the scheme. To do
so, let us consider in the interval [0,1] a bottom topography given by

z(x)=0.1+0.1cos(2πx).
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No. of cells
h q

L1 error order L1 error order
25 1.85e-02 0.00 1.29e-01 0.00
50 1.34e-02 0.47 8.28e-02 0.64
100 8.58e-03 0.64 4.70e-02 0.82
200 5.09e-03 0.75 2.51e-02 0.90
400 2.83e-03 0.85 1.30e-02 0.95

Table 4.1. L1 errors and numerical orders of accuracy: first-order scheme.

No. of cells
h q

L1 error order L1 error order
25 1.07e-02 0.00 4.04e-02 0.00
50 4.14e-03 1.37 1.21e-02 1.74
100 1.25e-03 1.73 3.25e-03 1.89
200 3.34e-04 1.91 8.16e-04 1.99
400 8.43e-05 1.99 2.01e-04 2.02

Table 4.2. L1 errors and numerical orders of accuracy: second-order scheme.

No. of cells
h q

L1 error order L1 error order
25 6.94e-03 0.00 1.39e-02 0.00
50 1.64e-03 2.08 3.75e-03 1.89
100 2.85e-04 2.53 8.80e-04 2.09
200 4.06e-05 2.81 1.39e-04 2.66
400 5.85e-06 2.80 2.10e-05 2.73

Table 4.3. L1 errors and numerical orders of accuracy: third-order scheme.

Then consider an initial free surface given by

h(x,t= 0)+z(x) = 1.1+0.1sin(4πx),

and set the velocity initially to u= 0. We compute a reference solution by using the
second-order scheme on a very fine grid with 3200 points up to the time t= 0.2 with
periodic boundary conditions and we compare with the reference solution for different
grid meshes using the first, second and third-order well-balanced schemes. Initial and
final times are shown in Figure 4.1 and the comparison for the three schemes with 100
cell points is shown in Figure 4.2. The L1-norm errors are shown in Tables 4.1, 4.2 and
4.3.

4.2. Perturbation of a lake at rest. Let us consider a lake-at-rest initial
condition in the interval [0,1] given by

z(x) = 0.5exp(−200(x−0.5)2), h+z= 1.0, u= 0,

and we consider an initial small perturbation on the water surface

h(x,t= 0)+z(x) = 1+0.05exp(−1000(x−0.3)2).
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(a) Surface (b) Discharge

Fig. 4.3. Evolution of a perturbation from a lake at rest. Comparison with the reference lake-
at-rest solution.

We simulate this perturbation of the steady state with the third-order well-balanced
Lagrange-projection scheme using 400 cell volumes and open boundary conditions. Fig-
ure 4.3 shows the difference of the computed solutions when compared with the unper-
turbed lake-at-rest steady state. As expected, the perturbation propagates towards the
boundaries until they leave the domain. Afterwards, the unperturbed solution remains.
Remark that once the steady state is reached, the scheme preserves it as expected up
to an error of order 10−13.

4.3. Transcritical flow with shock. Let us consider now a test from [3]. The
space domain is [0,25] and the bottom topography is given by

z(x)=

{
0.2−0.05(x−10)2, if 8<x<12,
0, otherwise,

the initial data are h=0.33 and q=0.18, and boundary conditions are q(x=0)=0.18
and h(x=25,t)=0.33. Open boundary conditions are chosen for the other variables
at each boundary. The final time is t=200. Figures 4.4 and 4.5 show the comparison
between the second and third-order well-balanced Lagrange-projection schemes with 200
cell points compared with a reference solution with 1000 points using a path-conservative
HLL scheme (see [6]). We remark that here we get to a stationary solution which is not
smooth. Therefore the scheme presented here will not necessarily preserve such a steady
state. Nevertheless, the results obtained with the Lagrange-projection technique is
comparable to the reference solution and the solution obtained is good. Some deviations
from the final steady state are obtained as expected, which is specially seen on the
discharge and at the shock.

4.4. Perturbation of a steady state with non-zero velocity. The objective
now is to test the fully well-balanced scheme. Let us consider a stationary solution with
non-zero velocity. To do so we set as bottom topography

z(x)=0.5exp(−200(x−0.5)2);

and we consider the subcritical stationary solution given by




qe(x)=0.5,

(qe(x))2

2(he(x))2
+g(he(x)+z(x))=9.935.
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(a) Surface (b) Surface (zoom)

Fig. 4.4. Transcritical flow with shock

(a) Discharge (b) Discharge (zoom)

Fig. 4.5. Transcritical flow with shock

The fully well-balanced Lagrange-projection scheme preserves such a steady state as
expected. The well-balanced scheme is not able to preserve this type of steady state
and introduces small perturbations in the stationary solution as it is shown in Figure
4.6. Figures 4.6(a) and 4.6(b) show the differences between the numerical solution and
the prescribed steady state at time t=0.1 for the surface and discharge respectively.
The numerical solutions are computed with the second-order well-balanced (WB) and
the fully well-balanced (fully WB) scheme with 400 volume cells. In Figures 4.6(c) and
4.6(d) we see the evolution at different times of the perturbations introduced by the
well-balanced scheme. Again we see that the solution is not preserved although the
perturbations are small.

We consider now a perturbation on the water thickness of this steady state given
by

h(x,t=0)=he(x)+0.05exp(−1000(x−0.2)2).

The initial condition is shown in Figure 4.7.
We shall solve the system with this initial condition using 400 volume cells on the

interval [−0.2,1].
Let us first compare the second-order well-balanced and fully well-balanced scheme.

The results are shown in Figures 4.8, where, in each figure the difference between the
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(a) Final free surface perturbation (b) Final discharge perturbation

(c) Free surface perturbation (WB scheme) (d) Discharge perturbation (WB scheme)

Fig. 4.6. Comparison of the well-balanced (WB) and fully well-balanced (fully WB) Lagrange
projections schemes for a stationary solution with moving water.

(a) Surface and bottom (b) Discharge

Fig. 4.7. Perturbation of a stationary steady state with non-zero velocity: initial condition

numerical solution for the perturbation and the original unperturbed steady state are
shown. Similar to the previous case, the well-balanced scheme adds some small per-
turbations to the steady state part, while this is not the case for fully well-balanced
scheme.

Now, we shall compare the second and third-order fully well-balanced Lagrange-
projection schemes. The results are shown in Figures 4.9, where the differences between
the numerical solution for the perturbation and the original unperturbed steady state
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(a) Free surface perturbation (b) Free surface perturbation

(c) Discharge perturbation (d) Discharge perturbation

Fig. 4.8. Perturbation of a stationary steady state with non-zero velocity: Surface and discharge
perturbations with respect to the unperturbed steady state for the well-balanced and fully well-balanced
Lagrange projection schemes.

No. of cells
h q

L1 error order L1 error order
25 2.65e-03 0.00 8.99e-03 0.00
50 1.26e-03 1.07 4.20e-03 1.10
100 4.90e-04 1.36 1.45e-03 1.54
200 1.29e-04 1.92 3.85e-04 1.91
400 3.06e-05 2.08 9.24e-05 2.06

Table 4.4. L1 errors and numerical orders of accuracy: second-order fully well-balanced scheme.

No. of cells
h q

L1 error order L1 error order
25 2.25e-03 0.00 9.38e-03 0.00
50 1.24e-03 0.86 3.68e-03 1.35
100 3.81e-04 1.70 1.08e-03 1.76
200 7.35e-05 2.37 2.02e-04 2.42
400 1.18e-05 2.64 3.18e-05 2.67

Table 4.5. L1 errors and numerical orders of accuracy: third-order fully well-balanced scheme.
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(a) Free surface perturbation (b) Free surface perturbation

(c) Discharge perturbation (d) Discharge perturbation

Fig. 4.9. Perturbation of a stationary steady state with non-zero velocity: Surface and discharge
perturbations with respect to the unperturbed steady state for the second and third-order fully well-
balanced Lagrange projection schemes.

are shown. As expected, the scheme preserves exactly the areas where we find the
prescribed well-balanced solution. For small times, both schemes are similar. For the
final time, the third-order scheme has better accuracy.

A convergence test has been performed for the second and third-order fully well-
balanced schemes. The results are shown in Tables 4.4 and 4.5.

5. Conclusions

We have developed a high-order fully well-balanced approach extension for the
Lagrangian-projection scheme introduced in [9, 10, 12, 13, 18]. The proposed technique
produces good results when applied to shallow water system. Note that, the Lagrange-
projection scheme may be extended to other systems and applications such as bedload
sediment transport, turbidity currents, Ripa system, etc. Future works will consider
the extension to multi-dimensional domains and high-order semi-implicit schemes.
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[19] I. Gómez, M.J. Castro, and C. Parés, High-order well-balanced methods for systems of balance
laws: a control-based approach, submitted to Math. Comput. 3.1

[20] L. Gosse, Computing Qualitatively Correct Approximations of Balance Laws: Exponential-Fit,
Well-Balanced and Asymptotic-Preserving, SEMA, SIMAI, Springer, Series, Springer-Verlag,
Mailand, 2013. 1

[21] S. Gottlieb and C.-W. Shu, Total variation diminishing Runge-Kutta schemes, Math. Comput.,
67(221):73–85, 1998. 2.3

[22] B. van Leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to
Godunov’s method, J. Comput. Phys., 32(1):101–136, 1979. 3.1

[23] T. Morales de Luna, M.J. Castro Dı́az, C. Parés Madroñal, and E.D. Fernández Nieto, On a shal-
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