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QUALITATIVE ANALYSIS OF AN INTEGRATED
CHEMOTAXIS-FLUID MODEL: GLOBAL EXISTENCE AND

EXTENSIBILITY CRITERION∗

JISHAN FAN† , LULU JING‡ , GEN NAKAMURA§ , AND KUN ZHAO¶

Abstract. In this paper, we study the global existence and extensibility criterion of large-amplitude
solutions to a chemotaxis-fluid model in bounded domains. The model under consideration is an
integrated version of several recently studied models in bio-fluids, which is a coupled system of partial
differential equations with strong nonlinearities. The results obtained in this paper appear to be among
the first ones for the integrated model.
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1. Introduction
As one of the contemporary research topics on the crossroads of mathematical

biology and fluid dynamics, the investigation of the mutual influences of chemotaxis and
hydrodynamics has been actively conducted for more than a decade. Among the first
generation of mathematical models describing chemotaxis-fluid interactions, the Keller-
Segel-Navier-Stokes system proposed by Tuval et al. [17] has been widely recognized
by researchers in the area, its success being a consequence of its capability to describe
some of the fundamental phenomena in biofluids, such as the formation of plumes [7].
In the simplest form, the original Keller-Segel-Navier-Stokes system reads:

∂tu+u ·∇u+∇π= ∆u−n∇φ,
∇·u= 0,

∂tn+u ·∇n= ∆n−∇·(nχ(p)∇p),
∂tp+u ·∇p= ∆p−nf(p),

(1.1)

x∈Rd, t>0, where the unknown functions u,π,n,p denote the fluid velocity field, scalar
pressure, bacteria density, and oxygen concentration, respectively. The functions χ(p)
and f(p) are given smooth functions of p describing the so-called chemotactic sensi-
tivity and oxygen consumption rate, respectively. In the derivation of the model, the
Boussinesq approximation was applied to reflect the effect due to heavy bacteria, where
the function φ denotes the potential function produced by various physical mechanisms,
e.g., gravitational force (φ(x) =xd) or centrifugal force (φ(x) =g(|x|)).

Since its initiation in the early 2000s, the Keller-Segel-Navier-Stokes system (1.1)
has been frequently utilized in the scientific computations of chemotaxis-fluid inter-
actions. In the pioneering work [7], Chertock-Fellner-Kurganov-Lorz-Markowich suc-
cessfully produced the formation of plumes in the numerical simulations of the model,
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which is consistent with the experimental results reported in [17], and inspired much of
the later works dealing with the rigorous analysis of the model. We refer the readers
to [5, 6, 9–11, 14, 15] and the references therein for a series of studies of the qualitative
behavior of solutions to (1.1), such as existence, uniqueness, regularity, extensibility
criteria and long-time behavior, under various initial and/or boundary conditions.

On the other hand, depending on specific biological / physical considerations, a fam-
ily of variants of the model (1.1) has been proposed to account for particular mechanisms
in chemotaxis-fluid interactions. Of relevance to this work, we would like to point out
the following generalized versions of (1.1):

• The model with porous medium-like diffusion [8]:


∂tu+u ·∇u+∇π= ∆u−n∇φ,
∇·u= 0,

∂tn+u ·∇n= ∆nm−∇·(nχ(p)∇p),
∂tp+u ·∇p= ∆p−nf(p),

(1.2)

accounting for the finite size of bacteria.

• The self-consistent model with porous medium-like diffusion [8]:


∂tu+u ·∇u+∇π= ∆u−n∇φ+nχ(p)∇p,
∇·u= 0,

∂tn+u ·∇n= ∆nm−∇·(nχ(p)∇p)+∇·(n∇φ),

∂tp+u ·∇p= ∆p−nf(p),

(1.3)

containing the effect of potential force on cells and the effect of chemotactic
force on the fluid.

• The model with general chemotactic sensitivity [19]:


∂tu+u ·∇u+∇π= ∆u−n∇φ,
∇·u= 0,

∂tn+u ·∇n= ∆n−∇·(nS(x,n,q)∇q),
∂tq+u ·∇q= ∆q−q+n.

(1.4)

• The model with double chemical signals [13]:

∂tu+u ·∇u+∇π= ∆u−nf ,
∇·u= 0,

∂tn+u ·∇n= ∆n−∇·(n∇p)−∇·(n∇q),
∂tp+u ·∇p= ∆p−np,
∂tq+u ·∇q= ∆q−q+n.

(1.5)

Along with the proposition of the models, the qualitative properties, such as global well-
posedness and long-time behavior, of solutions under various initial and/or boundary
conditions have been studied in the corresponding references.
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In this paper, we consider the following coupled chemotaxis-fluid model:

∂tu+u ·∇u+∇π= ∆u+n∇φ+nS∇p+nS∇q,
∇·u= 0,

∂tn+u ·∇n= ∆nm−∇·(nS∇p)−∇·(nS∇q)−∇·(n∇φ),

∂tp+u ·∇p= ∆p−np,
∂tq+u ·∇q= ∆q−q+n,

(1.6)

(1.7)

(1.8)

(1.9)

(1.10)

x∈Rd, t>0, where S=S(x,n,p,q) denotes the general chemotactic sensitivity, which is
an integrated system incorporating the various mechanisms presented in (1.2)–(1.5), in-
cluding nonlinear diffusion, self-consistency, general chemotactic sensitivity and double
chemical signals.

From the point of view of physical / biological applications, the integrated model is
capable of describing more realistic situations than those portrayed by (1.1)–(1.5). On
the other hand, however, the additional nonlinearities (comparing with those in (1.1)–
(1.5)) and stronger coupling between the solution components make the mathematical
analysis of the integrated model a significant challenge. As a starting point of research,
we devote this paper to the rigorous analysis of some of the fundamental qualitative
behaviors of the integrated model, such as the existence, regularity and extensibility
criterion of large-amplitude solutions subject to appropriate initial and boundary con-
ditions.

Considering its physical / biological applications, we study an initial-boundary value
problem of the model (1.6)–(1.10) supplemented with the following initial and boundary
conditions:

(u,n,p,q)(x,0) = (u0,n0,p0,q0)(x), x∈Ω, (1.11)

u|∂Ω =0, ∇nm ·n|∂Ω = 0, ∇p ·n|∂Ω = 0, ∇q ·n|∂Ω = 0, t≥0, (1.12)

where Ω⊂Rd is a bounded convex domain with smooth boundary ∂Ω, and n is the unit
outward normal vector to ∂Ω.

The objective of this paper is twofold. First, for the model with porous medium-like
diffusion (i.e., m>1), we prove the global existence of large-amplitude strong solutions
subject to the initial and boundary conditions, (1.11)–(1.12), when the space dimen-
sion is two and under appropriate growth conditions on the chemotactic sensitivity
function S(x,n,p,q). Second, for the model with linear diffusion (m= 1), we establish
an extensibility criterion of large-amplitude classical solutions in scaling invariant en-
ergy spaces for the three-dimensional case. We achieve the goals by utilizing Lr-based
energy methods. To the authors’ knowledge, these are among the first generation of
analytical results concerning the qualitative behaviors of large-amplitude solutions to
the integrated model (1.6)–(1.10).

Before stating the main results, we introduce some notations for convenience.

Notation 1.1. Throughout this paper, ‖·‖Lr ,‖·‖L∞ and ‖·‖W s,r denote respectively
the norms of the usual Lebesgue measurable spaces Lr(Ω), L∞(Ω) and the usual Sobolev
space W s,r(Ω). When r= 2, we denote the norm ‖·‖W s,2 by ‖·‖Hs . Unless otherwise
specified, C will denote a generic constant which is independent of the unknown func-
tions, but may depend on Ω, T and initial data. The value of the constant may vary
line by line according to the context.

Concerning the global existence of large-amplitude solutions to (1.6)–(1.12), we have
the following:
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Theorem 1.1. Consider the initial-boundary value problem (1.6)–(1.12) and let d= 2.
Suppose that S=S(x,n,p,q)∈C2(Ω× [0,∞)3) satisfies the following condition:

|S(x,n,p,q)|≤S0(1+n)−α, ∀(x,n,p,q)∈Ω× [0,∞)3, (1.13)

for some constants S0>0 and α≥0. Suppose also that

m+α<2, 1<m<
3

2
,

1

2
<α<1 (1.14)

or

m+α>2,
3

2
<m<2, 0<α<

1

2
, (1.15)

where m is the coefficient of nonlinear diffusion in Equation (1.8). Let u0∈H2(Ω),

(p0,q0)∈W 2− 2
r ,r(Ω) and n0∈Ck(Ω) for some 4<r<∞ and k>0. Suppose that ∇·u0 =

0, n0≥0, p0≥0, q0≥0 in Ω, and u0 =0, ∇nm0 ·n= 0, ∇p0 ·n= 0 and ∇q0 ·n= 0 on ∂Ω.
Suppose also that φ=φ(x) is a smooth function satisfying ∇φ ·n= 0 on ∂Ω. Then the
initial-boundary value problem (1.6)–(1.12) has a strong solution satisfying

‖u‖L∞(0,T ;H1∩L∞) +‖u‖L2(0,T ;H2) +‖∂tu‖L2(0,T ;L2)≤C,
‖(p,q)‖

L∞(0,T ;W 2− 2
r
,r)

+‖(∂tp,∂tq)‖Lr(0,T ;Lr) +‖(p,q)‖Lr(0,T ;W 2,r)≤C,

‖n(·,t)‖L∞(0,T ;L∞)≤C,
(1.16)

for any given T >0, where the constant is independent of the unknown functions.

Remark 1.1. In the statement of Theorem 1.1, by a strong solution to the initial-
boundary value problem (1.6)–(1.12), we mean a quadruple of functions (u,n,p,q), which
satisfies the system of equations (1.6)–(1.10) in the sense of distributions and the initial
and boundary conditions (1.11)–(1.12) in the classical sense, and possess the regularities
as stated in (1.16). Similar definition can be found in [18], and we omit the details to
simplify the presentation.

For the three-dimensional case, we have the following extensibility criterion for
large-amplitude classical solutions to the initial-boundary value problem (1.6)–(1.12)
with linear diffusion.

Theorem 1.2. Consider the initial-boundary value problem (1.6)–(1.12) with m=
1 and let d= 3. Suppose that S=S(x,n,p,q)∈C2(Ω× [0,∞)3) satisfies the following
condition:

|S|+ |∂xS|+ |∂nS|+ |∂pS|+ |∂qS|≤S1, ∀(x,n,p,q)∈Ω× [0,∞)3, (1.17)

for some positive constant S1. Let (u0,n0,p0,q0)∈H2(Ω). Suppose that ∇·u0 = 0,
n0≥, p0≥0, and q0≥0 in Ω, and u0 =0, ∇n0 ·n= 0, ∇p0 ·n= 0 and ∇q0 ·n= 0 on
∂Ω. Suppose also that φ=φ(x) is a smooth function satisfying ∇φ ·n= 0 on ∂Ω.
Let (u,n,p,q)∈L∞(0,T ;H2)∩L2(0,T ;H3) be a local classical solution to the initial-
boundary value problem (1.6)–(1.12) for some 0<T <∞. If the following hold true:

u∈L2(0,T ;BMO), ∇p∈L
2r
r−3 (0,T ;Lr), ∇q∈L

2s
s−3 (0,T ;Ls) (1.18)

for some 3<r,s≤∞, then the solution (u,n,p,q) can be extended beyond T .
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Remark 1.2. In the statement of Theorem 1.2, BMO is the space of functions with
bounded mean oscillation, whose norm is defined by

‖f‖BMO≡‖f‖L2 +[f ]BMO,

with

[f ]BMO≡ sup
x∈Ω

R∈(0,d)

1

|ΩR(x)|

∫
ΩR(x)

|f(y)−fΩR(x)|dy,

fΩR(x)≡
1

|ΩR(x)|

∫
ΩR(x)

f(y)dy,

where ΩR(x)≡BR(x)∩Ω, BR(x) is the ball with center x and radius R, and d is the
diameter of Ω. Moreover, |ΩR(x)| denotes the Lebesgue measure of ΩR(x).

Remark 1.3. We observe that (1.18) is optimal from the point of view of scaling
invariance. Indeed, when m= 1 and neglecting the linear lower order term q in (1.10),
it can be shown that (1.6)–(1.10) is invariant under the scaling transform:

u→uλ≡λu(λ2t,λx), π→πλ≡λ2π(λ2t,λx),

n→nλ≡λ2n(λ2t,λx), p→pλ≡p(λ2t,λx),

q→ qλ≡ q(λ2t,λx), φ→φλ≡φ(λ2t,λx),

S→Sλ≡S(λx,nλ,pλ,qλ),

(1.19)

which indicates that the functional spaces in (1.18) are energy critical for the corre-
sponding variables.

We prove Theorems 1.1 and 1.2 by using Lr-based energy methods. Major difficul-
ties in the proof of Theorem 1.1 come from the strong coupling between the chemotactic
and hydrodynamic parts of the system, and the high order nonlinearities arising from
the porous medium-like diffusion and chemotaxis-induced nonlinear diffusion. We over-
come the difficulties by renovating classical energy methods based on the fundamental
inequalities, such as the Hölder, Young and Gagliardo-Nirenberg inequalities, and ap-
plying standard theory of the heat equation. On the other hand, the BMO setting in
the extensibility criterion, (1.18), raises a significant technical barrier for the proof of
Theorem 1.2, since the BMO-norm of a function comes out as a penalty term when
one improves the usual Sobolev embedding: W 1,γ ↪→L∞ (3<γ<∞) by a logarithmic
correction, see Lemma 3.1. We survive the situation by carefully monitoring the energy
bound within a small time interval near the end of the lifespan of the local solution,
and deriving an iterative scheme based on the classical theory of the heat equation to
close the overall energy estimates.

The rest of this paper is organized as follows. In Section 2 and Section 3, we prove
Theorem 1.1 and Theorem 1.2, respectively, by deriving a priori estimates. The paper
finishes with concluding remarks in Section 4.

2. Proof of Theorem 1.1
This section is devoted to the proof of Theorem 1.1. First of all, we note that the

local existence of strong solutions to the initial-boundary value problem (1.6)–(1.12) can
be established by applying a similar regularization procedure as in [18] (mainly to avoid
possible singularities stemming from the porous medium-like diffusion) to construct a
sequence of approximate solutions, then carrying out standard energy estimation and
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taking proper limits by standard compactness arguments. The heart of the matter is
the a priori estimates of the solution. Hence, in what follows we shall focus on deriving
the a priori estimates of the local solution, in order to extend it to be a global one. We
divide the proof into several steps.

Step 1. First of all, since the initial functions n0, p0 and q0 are non-negative, it
follows from (1.8), (1.9) and (1.10) and similar arguments in [8] (see Section 3.1 of [8])
that

n(x,t)≥0, p(x,t)≥0, q(x,t)≥0, ∀(x,t)∈Ω×(0,T ), (2.1)

where T >0 denotes the lifespan of the local strong solution. As a result of the positivity
of n(x,t), by testing (1.9) with pβ−1 for any β≥2 and using (1.7) and the boundary
conditions, we can show that

d

dt

(
‖p‖β

Lβ

)
+β(β−1)

∫
Ω

|p|β−2|∇p|2dx+βn‖p‖β
Lβ

= 0,

which implies ‖p(·,t)‖Lβ ≤‖p0(·)‖Lβ . By letting β→∞, we obtain

‖p(t)‖L∞ ≤‖p0‖L∞ .

Note that p0∈W 2− 2
r ,r(Ω) for some 4<r<∞, it follows from the Sobolev embedding

W 2− 2
r ,r(Ω) ↪→C1, r−4

2r (Ω) that

‖p(t)‖L∞ ≤C, ∀t∈ (0,T ), (2.2)

where the constant depends only on the initial data.
Next, we derive some relatively easy estimates from (1.8)–(1.10). By integrating

(1.8) over Ω×(0,t) and using (1.7), the boundary conditions for u, n, p, q and the
boundary condition for φ as specified in the statement of Theorem 1.1, we get∫

Ω

n(x,t)dx=

∫
Ω

n0(x)dx. (2.3)

As a result of (2.3), by integrating (1.10) over Ω, we see that

d

dt

∫
Ω

q(x,t)dx+

∫
Ω

q(x,t)dx=

∫
Ω

n(x,t)dx=

∫
Ω

n0(x)dx,

which gives ∫
Ω

q(x,t)dx≤e−t
∫

Ω

q0(x)dx+
(
1−e−t

)∫
Ω

n0(x)dx. (2.4)

Moreover, testing (1.9) by p and using (1.7) and (2.1), we deduce that

1

2

d

dt
‖p‖2L2 +‖∇p‖2L2 +

∫
Ω

np2dx= 0,

which yields ∫ T

0

‖∇p(t)‖2L2dt≤C. (2.5)
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Step 2. Now we derive some nonlinear estimates for n. Testing (1.8) by nm−2 and
using (1.7) and Young’s inequality, we can show that

m

m−1
‖∇nm−1‖2L2

=

∫
Ω

(S∇p+S∇q+∇φ) ·∇nm−1dx+
1

2−m
d

dt

∫
Ω

nm−1dx

≤ m

4(m−1)
‖∇nm−1‖2L2 +

3(m−1)

m

(
S2

0‖∇p‖2L2 +S2
0‖∇q‖2L2 +‖∇φ‖2L2

)
+

1

2−m
d

dt

∫
Ω

nm−1dx (2.6)

where 1<m<2. After rearranging terms, we obtain

3m

4(m−1)
‖∇nm−1‖2L2

≤ 3(m−1)

m

(
S2

0‖∇p‖2L2 +S2
0‖∇q‖2L2 +‖∇φ‖2L2

)
+

1

2−m
d

dt

∫
Ω

nm−1dx. (2.7)

Testing (1.10) by q and using (1.7), we infer that

1

2

d

dt
‖q‖2L2 +‖q‖2H1 =

∫
Ω

nqdx. (2.8)

For the term on the right-hand side of (2.8), by using the Hölder and Gagliardo-
Nirenberg inequalities, we can show that∫

Ω

nqdx≤‖n‖Lθ‖q‖
L

θ
θ−1

=‖nm−1‖
1

m−1

L
θ

m−1
‖q‖

L
θ
θ−1

≤C
(
‖nm−1‖

1
θ

L
1

m−1
‖∇nm−1‖1−

1
θ

L2 +‖nm−1‖
L

1
m−1

) 1
m−1

‖q‖
L

θ
θ−1

, (2.9)

where θ>1 is a constant to be determined. Note that

‖nm−1‖
L

1
m−1

=

(∫
Ω

n(x,t)dx

)m−1

=

(∫
Ω

n0(x)dx

)m−1

,

and x
1

m−1 is a convex function (since 1<m<2). Then we update (2.9) as∫
Ω

nqdx≤C
(
‖∇nm−1‖(1− 1

θ ) 1
m−1

L2 +1

)
‖q‖

L
θ
θ−1

≤C
(
‖∇nm−1‖(1− 1

θ ) 1
m−1

L2 +1

)
‖q‖H1

≤ 1

2
‖q‖2H1 +C+C ‖∇nm−1‖(1− 1

θ ) 2
m−1

L2 , (2.10)

where the Sobolev embedding: H1(Ω) ↪→Lr(Ω), Ω⊂R2, ∀1<r<∞, is applied. By
substituting (2.10) into (2.8), we obtain

d

dt
‖q‖2L2 +‖q‖2H1 ≤C+C ‖∇nm−1‖(1− 1

θ ) 2
m−1

L2 . (2.11)



816 INTEGRATED CHEMOTAXIS-FLUID MODEL WITH SUPERCRITICAL SENSITIVITY

By multiplying (2.11) with 4(m−1)
m S2

0 , we get

d

dt

(
4(m−1)

m
S2

0‖q‖2L2

)
+

4(m−1)

m
S2

0‖q‖2H1 ≤C+C ‖∇nm−1‖(1− 1
θ ) 2

m−1

L2 . (2.12)

By adding (2.12) to (2.7), we infer that

d

dt

(
4(m−1)

m
S2

0‖q‖2L2

)
+

(m−1)

m
S2

0‖q‖2H1 +
3m

4(m−1)
‖∇nm−1‖2L2

≤ C+C ‖∇nm−1‖(1− 1
θ ) 2

m−1

L2 +
3(m−1)

m

(
S2

0‖∇p‖2L2 +‖∇φ‖2L2

)
+

1

2−m
d

dt

∫
Ω

nm−1dx. (2.13)

By choosing

θ>1 and 1− 1

θ
<m−1 (note that 1<m<2⇐⇒ 1

2−m
>1), (2.14)

then applying Young’s inequality to the second term on the right-hand side of (2.13),
we can show that

d

dt

(
4(m−1)

m
S2

0‖q‖2L2

)
+

(m−1)

m
S2

0‖q‖2H1 +
3m

4(m−1)
‖∇nm−1‖2L2

≤ C+
3(m−1)

m

(
S2

0‖∇p‖2L2 +‖∇φ‖2L2

)
+

1

2−m
d

dt

∫
Ω

nm−1dx. (2.15)

By integrating (2.15) with respect to time, we obtain

4(m−1)

m
S2

0‖q‖2L2 +

∫ t

0

(
(m−1)

m
S2

0‖q‖2H1 +
3m

4(m−1)
‖∇nm−1‖2L2

)
dτ

≤ C(t+1)+
1

2−m

∫
Ω

nm−1dx. (2.16)

Note that 1<m<2, and∫
Ω

nm−1dx≤
(∫

Ω

n(x,t)dx

)m−1

|Ω|2−m=

(∫
Ω

n0(x)dx

)m−1

|Ω|2−m.

Hence, we obtain from (2.16) that

‖q‖2L2 +

∫ T

0

(
‖q‖2H1 +‖∇nm−1‖2L2

)
dt≤C. (2.17)

Step 3. Now we turn to the estimate of the velocity field. Testing (1.6) by u and
using (1.7), we have

1

2

d

dt
‖u‖2L2 +‖∇u‖2L2 =

∫
Ω

n∇φ ·udx+

∫
Ω

nS∇(p+q) ·udx≡ I1 +I2. (2.18)

For I1, by using the smoothness of φ and similar arguments as those in (2.9) and
(2.10), we can show that

|I1|≤C
∣∣∣∣∫

Ω

n|u|dx
∣∣∣∣≤C(‖∇nm−1‖(1− 1

θ ) 1
m−1

L2 +1

)
‖u‖H1

≤C
(
‖∇nm−1‖(1− 1

θ ) 1
m−1

L2 +1

)
‖∇u‖L2

≤ 1

4
‖∇u‖2L2 +C+C ‖∇nm−1‖(1− 1

θ ) 2
m−1

L2 ,
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where the Poincaré inequality is applied (due to the no-flow boundary condition for u).
By choosing θ= 1

2−m , we get

|I1|≤
1

4
‖∇u‖2L2 +C+C ‖∇nm−1‖2L2 . (2.19)

For I2, by using the assumption on the chemotactic sensitivity S(x,n,p,q) (cf.
(1.13)) and Gagliardo-Nirenberg and Poincaré inequalities, we can show that for any
2<s<∞,

|I2|≤S0

∫
Ω

|∇(p+q)| n

(1+n)α
|u|dx

≤S0

∫
Ω

|∇(p+q)|n1−α |u|dx

≤S0‖∇(p+q)‖L2‖n1−α‖Ls‖u‖
L

2s
s−2

≤C‖∇(p+q)‖L2‖n1−α‖Ls‖u‖
1− 2

s

L2 ‖∇u‖
2
s

L2 . (2.20)

By further applying the Young inequality, we can show that

C‖∇(p+q)‖L2‖n1−α‖Ls‖u‖
1− 2

s

L2 ‖∇u‖
2
s

L2

≤ 1

4
‖∇u‖2L2 +C‖∇(p+q)‖

s
s−1

L2 ‖n1−α‖
s
s−1

Ls ‖u‖
s−2
s−1

L2

≤ 1

4
‖∇u‖2L2 +C‖∇(p+q)‖2L2 +C‖n1−α‖

2s
s−2

Ls ‖u‖
2
L2 . (2.21)

Note that the temporal integral of the second term on the right-hand side of (2.21)
is finite. For the third term on the right-hand side of (2.21), by using Gagliardo-
Nirenberg interpolation inequality and (2.3), we can show that for any s> 1

1−α (note
that 0<α<1),

‖n1−α‖
2s
s−2

Ls =‖nm−1‖
s(1−α)
m−1 ·

2
s−2

L
s(1−α)
m−1

≤C
(
‖nm−1‖

1
s(1−α)

L
1

m−1
‖∇nm−1‖

1− 1
s(1−α)

L2 +‖nm−1‖
L

1
m−1

) s(1−α)
m−1 ·

2
s−2

≤C
(
‖∇nm−1‖

1− 1
s(1−α)

L2 +1

) s(1−α)
m−1 ·

2
s−2

. (2.22)

By taking s= 3−2m
2−m−α , we obtain

C

(
‖∇nm−1‖

1− 1
s(1−α)

L2 +1

) s(1−α)
m−1 ·

2
s−2

≤C+C‖∇nm−1‖2L2 . (2.23)

Note that under the conditions (1.14) or (1.15), it holds that s= 3−2m
2−m−α >

1
1−α . By

substituting (2.23) and (2.22) into (2.21), then substituting the result into (2.20), we
obtain

|I2|≤
1

4
‖∇u‖2L2 +C‖∇(p+q)‖2L2 +C‖u‖2L2 +C‖∇nm−1‖2L2‖u‖2L2 . (2.24)

By substituting (2.19) and (2.24) into (2.18), we have

1

2

d

dt
‖u‖2L2 +

1

2
‖∇u‖2L2 ≤C

(
‖∇nm−1‖2L2 +1

)
‖u‖2L2 +C

(
‖∇(p+q)‖2L2 +‖∇nm−1‖2L2 +1

)
.

(2.25)
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By applying the Grönwall inequality to (2.25) and using (2.5) and (2.17), we have

‖u(t)‖2L2 +

∫ T

0

‖∇u(t)‖2L2 dt≤C. (2.26)

Step 4. Now we continue to the higher order estimates of q. Testing (1.10) by
qs−1 (s>2), denoting v≡ q s2 and using (1.7) and (2.17), we have

1

s

d

dt
‖v‖2L2 +

4(s−1)

s2
‖∇v‖2L2 +‖v‖2L2 =

∫
Ω

nv
2(s−1)
s dx. (2.27)

For the right-hand side of (2.27), we can show that for any 1<θ<s,∫
Ω

nv
2(s−1)
s dx≤‖n‖Lθ‖v

2(s−1)
s ‖

L
θ
θ−1

=‖n‖Lθ‖v‖
2(s−1)
s

L
2(s−1)
s
· θ
θ−1

≤C ‖n‖Lθ
(
‖v‖

s
s−1 ·

θ−1
θ

L2 ‖v‖1−
s
s−1 ·

θ−1
θ

H1

) 2(s−1)
s

=C ‖n‖Lθ‖v‖
2(θ−1)
θ

L2 ‖v‖
2(s−θ)
sθ

H1 . (2.28)

By applying the Young inequality, we can show that

C ‖n‖Lθ‖v‖
2(θ−1)
θ

L2 ‖v‖
2(s−θ)
sθ

H1 ≤ 2(s−1)

s2
‖v‖2H1 +C‖n‖

sθ
sθ−s+θ
Lθ

‖v‖
2s(θ−1)
sθ−s+θ
L2 . (2.29)

For the second term on the right-hand side of (2.29), we can show that

‖n‖
sθ

sθ−s+θ
Lθ

=‖nm−1‖
1

m−1 ·
sθ

sθ−s+θ

L
θ

m−1

≤C
(
‖nm−1‖

1
θ

L
1

m−1
‖∇nm−1‖1−

1
θ

L2 +‖nm−1‖
L

1
m−1

) 1
m−1 ·

sθ
sθ−s+θ

≤C
(
‖∇nm−1‖1−

1
θ

L2 +1
) 1
m−1 ·

sθ
sθ−s+θ

, (2.30)

where 1
m−1 ·

sθ
sθ−s+θ >1. Note that when 1<m< 3

2 , by taking θ= 3−2m

3−2m− 2(m−1)
s

and

s> 2(m−1)
3−2m , it is straightforward to verify that(

1− 1

θ

)
1

m−1
· sθ

sθ−s+θ
= 2,

which implies

‖n‖
sθ

sθ−s+θ
Lθ

≤C
(
‖∇nm−1‖2L2 +1

)
. (2.31)

On the other hand, when 3
2 <m<2, it is easy to verify that(

1− 1

θ

)
1

m−1
· sθ

sθ−s+θ
<2.
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In this case, by applying the Young inequality to (2.30), we can show that

‖n‖
sθ

sθ−s+θ
Lθ

≤C
(
‖∇nm−1‖2L2 +1

)
. (2.32)

Further notice that 2s(θ−1)
sθ−s+θ <2. Hence, we update (2.29) as

C ‖n‖Lθ‖v‖
2(θ−1)
θ

L2 ‖v‖
2(s−θ)
sθ

H1 ≤ 2(s−1)

s2
‖v‖2H1 +C

(
‖∇nm−1‖2L2 +1

)(
‖v‖2L2 +1

)
. (2.33)

By substituting (2.33) into (2.27), we obtain

1

s

d

dt
‖v‖2L2 +

2(s−1)

s2
‖∇v‖2L2 +

(s−1)2 +1

s2
‖v‖2L2 ≤C

(
‖∇nm−1‖2L2 +1

)(
‖v‖2L2 +1

)
.

(2.34)
By applying the Grönwall inequality to (2.34) and using (2.17), we can show that

‖v(t)‖2L2 +

∫ T

0

‖v(t)‖2H1dt≤C,

which, together with the definition of v= q
s
2 , implies

‖q‖L∞(0,T ;Ls)≤C,


∀max

{
2(m−1)

3−2m
,2

}
<s<∞, 1<m<

3

2
,

2<s<∞, 3

2
<m<2.

(2.35)

Step 5. Testing (1.9) by −∆p and using (1.7), we have

1

2

d

dt
‖∇p‖2L2 +‖∆p‖2L2 =−

∫
Ω

2∑
i,j=1

(∂xjui)(∂xip)(∂xjp)dx+

∫
Ω

np∆pdx

≤‖∇u‖L2‖∇p‖2L4 +‖p‖L∞‖n‖L2‖∆p‖L2

≤‖∇u‖L2‖∇p‖2L4 +C ‖n‖L2‖∆p‖L2 , (2.36)

where (2.2) is applied. By applying Gagliardo-Nirenberg interpolation inequality, we
can show that

‖∇p‖2L4 ≤C
(
‖p‖L∞‖∆p‖L2 +‖∇p‖2L2

)
.

Since ∇p ·n|∂Ω = 0, we deduce that

‖∇p‖2L2 =−
∫

Ω

p∆pdx≤‖p‖L2‖∆p‖L2 ≤‖p‖L∞ |Ω|
1
2 ‖∆p‖L2 ,

which implies

‖∇p‖2L4 ≤C ‖p‖L∞‖∆p‖L2 .

So we update (2.36) as

1

2

d

dt
‖∇p‖2L2 +‖∆p‖2L2 ≤C ‖∇u‖L2‖p‖L∞‖∆p‖L2 +C ‖n‖L2‖∆p‖L2

≤ 1

4
‖∆p‖2L2 +C ‖∇u‖2L2 +C ‖n‖2L2 , (2.37)
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which implies

1

2

d

dt
‖∇p‖2L2 +

3

4
‖∆p‖2L2 ≤C ‖∇u‖2L2 +C ‖n‖2L2 , (2.38)

Testing (1.10) by −∆q and using (1.7) and Gagliardo-Nirenberg inequality, we can
show that

1

2

d

dt
‖∇q‖2L2 +‖∆q‖2L2 +‖∇q‖2L2

= −
∫

Ω

n∆qdx+

∫
Ω

(u ·∇q)∆qdx

≤ ‖n‖L2‖∆q‖L2 +‖u‖L4‖∇q‖L4‖∆q‖L2

≤ ‖n‖L2‖∆q‖L2 +C ‖u‖
1
2

L2‖∇u‖
1
2

L2

(
‖∇q‖

1
2

L2‖∆q‖
1
2

L2 +‖∇q‖L2

)
‖∆q‖L2

≤ 1

4
‖∆q‖2L2 +C ‖n‖2L2 +C ‖u‖2L2‖∇u‖2L2‖∇q‖2L2 +C ‖u‖L2‖∇u‖L2‖∇q‖2L2

≤ 1

4
‖∆q‖2L2 +C ‖n‖2L2 +C ‖∇u‖2L2‖∇q‖2L2 +C ‖∇u‖2L2‖∇q‖2L2 , (2.39)

where (2.26) and Poincaré inequality are applied. After rearranging terms, we have

1

2

d

dt
‖∇q‖2L2 +

3

4
‖∆q‖2L2 +‖∇q‖2L2 ≤C ‖n‖2L2 +C ‖∇u‖2L2‖∇q‖2L2 . (2.40)

Testing (1.8) by nm−1 and using (1.7), we deduce that

1

m

d

dt

∫
Ω

nmdx+m(m−1)

∫
Ω

n2m−3|∇n|2dx

= (m−1)

∫
Ω

nm−1S∇(p+q) ·∇ndx+(m−1)

∫
Ω

nm−1∇φ ·∇ndx

≤ S0(m−1)

∫
Ω

nm−1|∇(p+q)||∇n|dx+C(m−1)

∫
Ω

nm−1|∇n|dx

≤ m(m−1)

4

∫
Ω

n2m−3|∇n|2dx+C

∫
Ω

ndx+C

∫
Ω

n|∇(p+q)|2dx.

After rearranging terms, we have

1

m

d

dt

∫
Ω

nmdx+
3m(m−1)

4

∫
Ω

n2m−3|∇n|2dx≤C
∫

Ω

n0 dx+C

∫
Ω

n|∇(p+q)|2dx,

(2.41)
where (2.3) is applied. For the second term on the right-hand side of (2.41), we can
show that ∫

Ω

n|∇(p+q)|2dx≤η
∫

Ω

n2mdx+C

∫
Ω

|∇(p+q)|
4m

2m−1 dx, (2.42)

where η>0 is a constant to be determined. By using the Gagliardo-Nirenberg inequality,
we deduce that∫

Ω

n2mdx=
∥∥∥n 2m−1

2

∥∥∥ 4m
2m−1

L
4m

2m−1
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≤C
(∥∥∥n 2m−1

2

∥∥∥ 1
2m

L
2

2m−1

∥∥∥∇n 2m−1
2

∥∥∥1− 1
2m

L2
+
∥∥∥n 2m−1

2

∥∥∥
L

2
2m−1

) 4m
2m−1

≤C
(∥∥∥∇n 2m−1

2

∥∥∥1− 1
2m

L2
+1

) 4m
2m−1

≤C
(∥∥∥∇n 2m−1

2

∥∥∥2

L2
+1

)
. (2.43)

In a similar fashion, we can show that∫
Ω

|∇(p+q)|
4m

2m−1 dx≤C
(
‖∆(p+q)‖ξL2‖p+q‖1−ξ

L`
+‖p+q‖L`

) 4m
2m−1

, (2.44)

where ` is a positive number to be determined and

ξ= ξ(`)≡
1
` + 1

4m
1
` + 1

2

.

We observe that since 1<m<2, ξ(`) is strictly decreasing for `∈ (0,∞), and ξ
(

1
m−1

)
=

2m−1
2m . Hence, for some fixed number `0 such that

max

{
1

m−1
,
2(m−1)

3−2m
,2

}
<`0<∞,

by using (2.2) and (2.35) we deduce that

C
(
‖∆(p+q)‖ξL2‖p+q‖1−ξ

L`0
+‖p+q‖L`0

) 4m
2m−1 ≤C

(
‖∆(p+q)‖ξL2 +1

) 4m
2m−1

≤C‖∆(p+q)‖ξ
4m

2m−1

L2 +C

≤η‖∆(p+q)‖2L2 +C, (2.45)

where the Young inequality is applied and η>0 is a constant to be determined. By
substituting (2.45) into (2.44), we have∫

Ω

|∇(p+q)|
4m

2m−1 dx≤η‖∆(p+q)‖2L2 +C. (2.46)

By substituting (2.43) and (2.46) into (2.42), we obtain∫
Ω

n|∇(p+q)|2dx≤ηC
∥∥∥∇n 2m−1

2

∥∥∥2

L2
+ηC ‖∆(p+q)‖2L2 +C(η+1), (2.47)

By substituting (2.47) into (2.41), we have

1

m

d

dt

∫
Ω

nmdx+
3m(m−1)

4

∫
Ω

n2m−3|∇n|2dx

≤ C

∫
Ω

n0 dx+ηC
∥∥∥∇n 2m−1

2

∥∥∥2

L2
+ηC ‖∆(p+q)‖2L2 +C(η+1). (2.48)

Note that ∫
Ω

n2m−3|∇n|2dx=
4

(2m−1)2

∥∥∥∇n 2m−1
2

∥∥∥2

L2
.
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So we update (2.48) as

1

m

d

dt

∫
Ω

nmdx+
3m(m−1)

(2m−1)2

∥∥∥∇n 2m−1
2

∥∥∥2

L2

≤ C

∫
Ω

n0 dx+ηC
∥∥∥∇n 2m−1

2

∥∥∥2

L2
+ηC ‖∆(p+q)‖2L2 +C(η+1). (2.49)

By adding up (2.38), (2.40) and (2.49), we obtain

d

dt

(
1

2
‖∇p‖2L2 +

1

2
‖∇q‖2L2 +

1

m

∫
Ω

nmdx

)
+

3

4
‖∆p‖2L2

+
3

4
‖∆q‖2L2 +‖∇q‖2L2 +

3m(m−1)

(2m−1)2

∥∥∥∇n 2m−1
2

∥∥∥2

L2

≤ C ‖∇u‖2L2‖∇q‖2L2 +C ‖∇u‖2L2 +C ‖n‖2L2 +C

∫
Ω

n0 dx

+ηC
∥∥∥∇n 2m−1

2

∥∥∥2

L2
+ηC ‖∆(p+q)‖2L2 +C(η+1). (2.50)

Note that since m>1, by Hölder’s inequality and (2.43), we can show that

‖n‖2L2 =

∫
Ω

n2 dx≤
(∫

Ω

n2mdx

) 1
m

|Ω|
m−1
m ≤C

(∥∥∥∇n 2m−1
2

∥∥∥2

L2
+1

) 1
m

≤η
∥∥∥∇n 2m−1

2

∥∥∥2

L2
+C,

by which we update (2.50) as

d

dt

(
1

2
‖∇p‖2L2 +

1

2
‖∇q‖2L2 +

1

m

∫
Ω

nmdx

)
+

3

4
‖∆p‖2L2

+
3

4
‖∆q‖2L2 +‖∇q‖2L2 +

3m(m−1)

(2m−1)2

∥∥∥∇n 2m−1
2

∥∥∥2

L2

≤ C ‖∇u‖2L2‖∇q‖2L2 +C ‖∇u‖2L2 +C

∫
Ω

n0 dx

+ηC
∥∥∥∇n 2m−1

2

∥∥∥2

L2
+ηC ‖∆(p+q)‖2L2 +C(η+1). (2.51)

By choosing η>0 to be sufficiently small, we can further update (2.51) as

d

dt

(
1

2
‖∇p‖2L2 +

1

2
‖∇q‖2L2 +

1

m

∫
Ω

nmdx

)
+

1

2
‖∆p‖2L2

+
1

2
‖∆q‖2L2 +‖∇q‖2L2 +

3m(m−1)

2(2m−1)2

∥∥∥∇n 2m−1
2

∥∥∥2

L2

≤ C ‖∇u‖2L2‖∇q‖2L2 +C ‖∇u‖2L2 +C

∫
Ω

n0 dx+C. (2.52)

By applying the Grönwall inequality to (2.52) and using (2.26), we can show that

‖∇p‖2L2 +‖∇q‖2L2 +

∫
Ω

nmdx+

∫ T

0

(
‖∆p‖2L2 +‖∆q‖2L2 +

∥∥∥∇n 2m−1
2

∥∥∥2

L2

)
dt≤C,
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which further implies ∫ T

0

∫
Ω

n2m(x,t)dxdt≤C, (2.53)

according to (2.43), and

‖(p,q)‖L∞(0,T ;H1) +‖(p,q)‖L2(0,T ;H2) +‖(∂tp,∂tq)‖L2(0,T ;L2)≤C, (2.54)

by virtue of (1.9) and (1.10).

Step 6. Testing (1.8) by nj (2≤ j <∞) and using (1.7), we compute

1

j+1

d

dt

∫
Ω

nj+1dx+
4jm

(j+m)2

∫
Ω

|∇n
j+m

2 |2dx

=
2j

j+m

∫
Ω

Sn
j−m+2

2 ∇(p+q) ·∇n
j+m

2 dx+
2j

j+m

∫
Ω

n
j−m+2

2 ∇φ ·∇n
j+m

2 dx

≤ jm

(j+m)2

∥∥∥∇n j+m2 ∥∥∥2

L2
+C

∥∥∥n j−m+2−2α
2

∥∥∥2

Lk
‖∇(p+q)‖2

L
2k
k−2

+C

∫
Ω

nj−m+2dx, (2.55)

where (1.13) and the smoothness of φ are applied and 2<k<∞ is to be determined.
After rearranging terms, we have

1

j+1

d

dt

∫
Ω

nj+1dx+
3jm

(j+m)2

∫
Ω

|∇n
j+m

2 |2dx

≤ C
∥∥∥n j−m+2−2α

2

∥∥∥2

Lk
‖∇(p+q)‖2

L
2k
k−2

+C

∫
Ω

nj−m+2dx. (2.56)

For the first term on the right-hand side of (2.56), by using the Gagliardo-Nirenberg
and Young inequalities, we have

‖∇(p+q)‖2
L

2k
k−2
≤C

(
‖∆(p+q)‖

4
k

L2‖∇(p+q)‖2−
4
k

L2 +‖∇(p+q)‖2L2

)
≤C

(
‖∆(p+q)‖2L2 +‖∇(p+q)‖2L2

)
, ∀2<k<∞.

Note that according to (1.14) or (1.15), it holds that 2<m+2α<3, which implies

(j−1)k

2
<

(j−m+2−2α)k

2
<
jk

2
.

Since j≥2, there exists k0>2, such that j k0≤2(j+1). Hence, we can show that∥∥∥n j−m+2−2α
2

∥∥∥2

Lk0
≤C

∫
Ω

nj+1dx+C.

Moreover, since 1<m<2, it holds that j <j−m+2<j+1. Hence, we can show that∫
Ω

nj−m+2dx≤C
∫

Ω

nj+1dx+C.

By using the above estimates, we update (2.56) as

1

j+1

d

dt

∫
Ω

nj+1dx+
3jm

(j+m)2

∫
Ω

|∇n
j+m

2 |2dx
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≤ C

(∫
Ω

nj+1dx

)(
‖(p,q)‖2H2 +1

)
+
(
‖(p,q)‖2H2 +1

)
. (2.57)

By applying the Grönwall inequality to (2.57) and using (2.54), we can show that∫
Ω

nj+1dx+

∫ T

0

∫
Ω

|∇n
j+m

2 |2 dxdt≤C, ∀2<j<∞. (2.58)

Step 7. Testing (1.6) by ∇π−∆u and using (1.7), we derive

1

2

d

dt
‖∇u‖2L2 +‖∇π−∆u‖2L2

=

∫
Ω

(n∇φ+nS∇p+nS∇q−u ·∇u) ·(∇π−∆u)dx

≤ C (‖n‖L2 +‖n‖L4‖∇p‖L4 +‖n‖L4‖∇q‖L4 +‖u‖L4‖∇u‖L4)‖∇π−∆u‖L2

≤ C
(

1+‖∇p‖L4 +‖∇q‖L4 +‖u‖
1
2

L2‖∇u‖L2‖∆u‖
1
2

L2

)
‖∇π−∆u‖L2

≤ 1

2
‖∇π−∆u‖2L2 +C+C‖∇p‖2L4 +C‖∇q‖2L4 +C‖∇u‖4L2 , (2.59)

where the smoothness of φ, (2.58), (2.26) and the well-known H2-estimate of the Stokes
system:

‖u‖H2 ≤C ‖∇π−∆u‖L2 ,

are applied. After rearranging terms, we get from (2.59) that

1

2

d

dt
‖∇u‖2L2 +

1

2
‖∇π−∆u‖2L2 ≤C+C‖∇p‖2L4 +C‖∇q‖2L4 +C‖∇u‖4L2 . (2.60)

By applying the Grönwall inequality to (2.60) and using (2.26) and (2.54), we can show
that

‖u‖L∞(0,T ;H1) +‖u‖L2(0,T ;H2) +‖∂tu‖L2(0,T ;L2)≤C. (2.61)

Step 8. With the a priori estimates established in the previous steps, we now apply
standard theory for the heat equation to derive the desired estimates of the solution as
stated in Theorem 1.1.

First, by the standard L∞-estimate of the heat equation (cf. [2]), it follows from
(1.10), (2.58), and (2.61) that

‖q‖L∞(0,T ;L∞)≤C. (2.62)

Next, we decompose p as p≡p1 +p2, where p1 and p2 satisfy
∂tp1−∆p1 =−∇·(up), (x,t)∈Ω×(0,T ),

∇p1 ·n= 0, (x,t)∈∂Ω×(0,T ),

p1(x,0) = 0, x∈Ω,

(2.63)

and 
∂tp2−∆p2 =−np, (x,t)∈Ω×(0,T ),

∇p2 ·n= 0, (x,t)∈∂Ω×(0,T ),

p2(·,0) =p0, x∈Ω,

(2.64)
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respectively. By using (2.2), (2.58), (2.61) and the classical theory for the heat equation
(cf. [2]), it can be shown that

‖∇p1‖Lr(0,T ;Lr)≤C‖up‖Lr(0,T ;Lr)

≤C‖u‖Lr(0,T ;Lr)≤C‖u‖L∞(0,T ;H1)≤C, (2.65)

and

‖∂tp2‖Lr(0,T ;Lr) +‖p2‖Lr(0,T ;W 2,r)≤C
(
‖p0‖

W 2− 2
r
,r +‖np‖Lr(0,T ;Lr)

)
≤C (2.66)

for any 2≤ r<∞. Hence, it holds that

‖∇p‖Lr(0,T ;Lr)≤C. (2.67)

In a similar fashion, we can show that

‖∇q‖Lr(0,T ;Lr)≤C. (2.68)

Now, we observe that the Equation (1.9) can be rewritten as

∂tp−∆p=f ≡−u ·∇p−np.

Note that according to (2.61), (2.67), (2.2) and (2.58), it holds that f ∈Lr(0,T ;Lr), and
thus we have

‖p‖
L∞(0,T ;W 2− 2

r
,r)

+‖∂tp‖Lr(0,T ;Lr) +‖p‖Lr(0,T ;W 2,r)≤C. (2.69)

Similarly, we can show that

‖q‖
L∞(0,T ;W 2− 2

r
,r)

+‖∂tq‖Lr(0,T ;Lr) +‖q‖Lr(0,T ;W 2,r)≤C. (2.70)

Lastly, by applying the same estimates as those in [12,20], one can show that

‖u‖L∞(0,T ;L∞) +‖n‖L∞(0,T ;L∞)≤C (2.71)

The combination of (2.61), (2.69), (2.70) and (2.71) gives the desired estimates of the
solution as recorded in (1.16). This completes the proof of Theorem 1.1.

3. Proof of Theorem 1.2
In this section, we complete the proof of Theorem 1.2. For the reader’s convenience,

we recall the system of equations:

∂tu+u ·∇u+∇π−∆u=n∇φ+nS∇p+nS∇q,
∇·u= 0,

∂tn+u ·∇n−∆n=−∇·(nS∇p)−∇·(nS∇q)−∇·(n∇φ),

∂tp+u ·∇p−∆p=−np,
∂tq+u ·∇q−∆q+q=n,

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

x∈R3, t>0, which is supplemented with the initial and boundary conditions:

(u,n,p,q)(x,0) = (u0,n0,p0,q0)(x), x∈Ω, (3.6)

u|∂Ω =0, ∇nm ·n|∂Ω = 0, ∇p ·n|∂Ω = 0, ∇q ·n|∂Ω = 0, t≥0, (3.7)
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where Ω⊂R3 is a bounded convex domain with smooth boundary ∂Ω, and n is the
unit outward normal vector to ∂Ω. Moreover, the chemotactic sensitivity S(x,n,p,q)∈
C2(Ω× [0,∞)3) is assumed to satisfy

|S|+ |∂xS|+ |∂nS|+ |∂pS|+ |∂qS|≤S1, ∀(x,n,p,q)∈Ω× [0,∞)3, (3.8)

for some positive constant S1.
In what follows, we will show that a local solution (u,n,p,q)∈L∞(0,T ;H2)∩

L2(0,T ;H3) can be extended beyond 0<T <∞, provided that the solution satisfies
the extensibility criterion:

u∈L2(0,T ;BMO), ∇p∈L
2r
r−3 (0,T ;Lr), ∇q∈L

2s
s−3 (0,T ;Ls) (3.9)

for some 3<r,s≤∞, where BMO stands for the space of functions with bounded
mean oscillation. As usual, in order to prove that the local classical solution can be
extended beyond the local lifespan under the additional regularity assumption (3.9), we
need to show that the L∞(0,T ;H2) norm of the solution is finite, and in particular,
‖(u,n,p,q)‖H2(T−)<∞. In the proof of the main result, we shall utilize the following
two lemmas.

Lemma 3.1. Let Ω be a domain in R3. Then it holds that

‖f‖L∞(Ω)≤C
(

1+‖f‖BMO(Ω)

√
log
(
e+‖f‖W 1,γ(Ω)

))
(3.10)

for ∀f ∈W 1,γ
0 (Ω) with 3<γ<∞, where the constant depends only on Ω and γ.

Proof. When Ω =R3 , (3.10) is proved by Ogawa [16]. For a bounded domain
Ω⊂R3 with smooth boundary, we define

f̃ ≡

{
f x∈Ω,

0 x∈Ωc≡R3\Ω.

Then we have (cf. [1, p.71])

‖f̃‖W 1,γ(R3 ) =‖f‖W 1,γ(Ω),

and it is obvious that

‖f̃‖L∞(R3 ) =‖f‖L∞(Ω), and ‖f̃‖BMO(R3 )≤C‖f‖BMO(Ω).

Thus (3.10) is proved.

Lemma 3.2 ( [3]). Let Ω⊂R3 be a bounded domain with smooth boundary. Then it
holds that

‖f‖2L4(Ω)≤C‖f‖L2(Ω)‖f‖BMO(Ω). (3.11)

For the proof of Theorem 1.2, first of all, we note that the estimates (2.1)–(2.5) are
still valid in the three-dimensional case. We divide the subsequent proof into several
steps.



JISHAN FAN, LULUNJING, GEN NAKAMURA, AND KUN ZHAO 827

Step 1. Testing (3.3) by ni−1 (i≥2), using (3.2), (3.8) and denoting w≡n i
2 , we

infer that

1

i

d

dt
‖w‖2L2 +

4(i−1)

i2
‖∇w‖2L2

=
2(i−1)

i

∫
Ω

w(∇p+∇q) ·∇wdx+
2(i−1)

i

∫
Ω

w∇φ ·∇wdx,

which implies

d

dt
‖w‖2L2 +

4(i−1)

i
‖∇w‖2L2

= 2(i−1)

∫
Ω

w(∇p+∇q) ·∇wdx+2(i−1)

∫
Ω

w∇φ ·∇wdx. (3.12)

For the first term on the right-hand side of (3.12), by Hölder’s inequality, we have

2(i−1)

∣∣∣∣∫
Ω

w(∇p+∇q) ·∇wdx

∣∣∣∣
≤ 2(i−1)(‖w∇p‖L2 +‖w∇q‖L2)‖∇w‖L2

≤ 2(i−1)
(
‖∇p‖Lr‖w‖

L
2r
r−2

+‖∇q‖Ls‖w‖
L

2s
s−2

)
‖∇w‖L2 (3.13)

for some 3<r,s≤∞. By applying the Gagliardo-Nirenberg interpolation inequality, we
can show that

‖∇p‖Lr‖w‖
L

2r
r−2
≤C‖∇p‖Lr

(
‖w‖1−

3
r

L2 ‖∇w‖
3
r

L2 +‖w‖L2

)
,

‖∇q‖Ls‖w‖
L

2s
s−2
≤C‖∇q‖Ls

(
‖w‖1−

3
s

L2 ‖∇w‖
3
s

L2 +‖w‖L2

)
.

So we update (3.13) as

2(i−1)

∣∣∣∣∫
Ω

w(∇p+∇q) ·∇wdx

∣∣∣∣
≤ C‖∇p‖Lr

(
‖w‖1−

3
r

L2 ‖∇w‖
1+ 3

r

L2 +‖w‖L2‖∇w‖L2

)
+C‖∇q‖Ls

(
‖w‖1−

3
s

L2 ‖∇w‖
1+ 3

s

L2 +‖w‖L2‖∇w‖L2

)
≤ (i−1)

i
‖∇w‖2L2 +C

(
‖∇p‖

2r
r−3

Lr +‖∇q‖
2s
s−3

Ls

)
‖w‖2L2 +C‖w‖2L2 , (3.14)

where the Young inequality is applied. Moreover, for the second term on the right-hand
side of (3.12), by using the smoothness of φ, we can show that

2(i−1)

∣∣∣∣∫
Ω

w∇φ ·∇wdx

∣∣∣∣≤C‖w‖L2‖∇w‖L2 ≤ (i−1)

i
‖∇w‖2L2 +C‖w‖2L2 . (3.15)

By substituting (3.14) and (3.15) into (3.12), we have

d

dt
‖w‖2L2 +

2(i−1)

i
‖∇w‖2L2 ≤C

(
‖∇p‖

2r
r−3

Lr +‖∇q‖
2s
s−3

Ls

)
‖w‖2L2 +C‖w‖2L2 . (3.16)
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By applying the Grönwall inequality to (3.16) and using (3.9), we infer that

‖n‖L∞(0,T ;Li) +‖n‖L2(0,T ;H1)≤C, ∀2≤ i<∞. (3.17)

Step 2. Testing (3.5) by q and using (3.2), we compute

1

2

d

dt
‖q‖2L2 +‖∇q‖2L2 +‖q‖2L2 ≤‖n‖L2‖q‖L2 ≤ 1

2
‖n‖2L2 +

1

2
‖q‖2L2 ,

which implies

1

2

d

dt
‖q‖2L2 +‖∇q‖2L2 +

1

2
‖q‖2L2 ≤

1

2
‖n‖2L2 . (3.18)

By integrating (3.18) with respect to t and using (3.17), we have

‖q(t)‖2L2 +

∫ T

0

‖q(t)‖2H1dt≤C, ∀t∈ (0,T ]. (3.19)

It follows from (3.5), (3.2), (3.17), and the standard L∞-estimate of the heat equation
that

‖q‖L∞(0,T ;L∞)≤C. (3.20)

Step 3. Testing (3.1) by u and using (3.2), (3.8) and (3.17), we derive

1

2

d

dt
‖u‖2L2 +‖∇u‖2L2 =

∫
Ω

(nS∇p+nS∇q+n∇φ) ·udx

≤ C
(
‖∇p‖Lr‖n‖

L
2r
r−2

+‖∇q‖Ls‖n‖
L

2s
s−2

+‖n‖L2

)
‖u‖L2

≤ C (‖∇p‖Lr +‖∇q‖Ls +1)‖u‖L2

≤ 1

2
‖u‖2L2 +C

(
‖∇p‖2Lr +‖∇q‖2Ls +1

)
≤ 1

2
‖u‖2L2 +C

(
‖∇p‖

2r
r−3

Lr +‖∇q‖
2s
s−3

Ls +1

)
, (3.21)

where 3<r,s≤∞. By applying the Grönwall inequality to (3.21) and using (3.9), we
infer that

‖u‖L∞(0,T ;L2) +‖u‖L2(0,T ;H1)≤C. (3.22)

Next, we shall move on to the estimation of the higher frequencies of the velocity
field. As the classical situation encountered in the three-dimensional incompressible
Navier-Stokes equations, the main difficulty in building up the higher order regularity
of the velocity field comes from the nonlinear convection term in (3.1), which essentially
leads to the Beale-Kato-Majda blowup criterion [4]. In our case, since we are to utilize
the temporal cumulation of the BMO norm of the velocity field as an extensibility
(blowup) criterion, the situation is even worse than that in [4], due to, as was mentioned
in the Introduction, the BMO-norm of a function being a penalty term as one replaces
the usual Sobolev embedding: W 1,γ ↪→L∞ (3<γ<∞) by a logarithmic correction,
see (3.10). In what follows, we overcome the difficulty by performing a somewhat
“microanalysis” by monitoring the growth of the energy bound of the solution within
a small time interval near the end of the lifespan of the local solution, and using an
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iterative argument based on the classical theory of the heat equation to close the energy
estimates.

Step 4. Testing (3.1) by ∂tu and using (3.2), (3.8) and (3.10), we compute

1

2

d

dt
‖∇u‖2L2 +‖∂tu‖2L2

=

∫
Ω

(n∇φ+nS∇p+nS∇q) ·∂tudx−
∫

Ω

(u ·∇u) ·∂tudx

≤ C
(
‖n‖L2 +‖n‖

L
2r
r−2
‖∇p‖Lr +‖n‖

L
2s
s−2
‖∇q‖Ls

)
‖∂tu‖L2

+‖u‖L∞‖∇u‖L2‖∂tu‖L2

≤ 1

2
‖∂tu‖2L2 +C‖u‖2L∞‖∇u‖2L2 +C

(
1+‖∇p‖2Lr +‖∇q‖2Ls

)
≤ 1

2
‖∂tu‖2L2 +C

[
1+‖u‖2BMO log(e+‖u‖W 1,γ )

]
‖∇u‖2L2

+C

(
1+‖∇p‖

2r
r−3

Lr +‖∇q‖
2s
s−3

Ls

)
,

where 3<r,s≤∞. After rearranging terms, we have

1

2

d

dt
‖∇u‖2L2 +

1

2
‖∂tu‖2L2

≤ C
[
1+‖u‖2BMO log(e+‖u‖W 1,γ )

]
‖∇u‖2L2 +C

(
1+‖∇p‖

2r
r−3

Lr +‖∇q‖
2s
s−3

Ls

)
. (3.23)

By applying the Grönwall inequality to (3.23) and using (3.9), we deduce that for any
0<t0<t≤T ,

‖∇u(t)‖2L2 ≤
[
‖∇u(t0)‖2L2 +C

∫ t

t0

(
1+‖∇u‖2L2 +‖∇p‖

2r
r−3

Lr +‖∇q‖
2s
s−3

Ls

)
dτ

]
×exp

{
log[e+y(t)]

∫ t

t0

‖u‖2BMOdτ

}
≤ C exp

{
log[e+y(t)]

∫ t

t0

‖u‖2BMOdτ

}
, (3.24)

where

y(t)≡ sup
[t0,t]

‖u(s)‖W 1,γ , 3<γ≤6. (3.25)

Since u∈L2(0,T ;BMO), for any ε<1, there exists t0<T , such that∫ T

t0

‖u‖2BMOdτ ≤ ε. (3.26)

Hence, we update (3.24) as

‖∇u(t)‖2L2 ≤C[e+y(t)]ε, ∀t0<t≤T, (3.27)

where the constant C depends on ‖u(t0)‖2L2 . Later, we will choose an appropriate value
of ε to close the energy estimates, by which t0 will be fixed. By substituting (3.27) into
(3.23), we have

1

2

d

dt
‖∇u‖2L2 +

1

2
‖∂tu‖2L2
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≤ C
[
1+‖u‖2BMO log(e+‖u‖W 1,γ )

]
[e+y(t)]ε+C

(
1+‖∇p‖

2r
r−3

Lr +‖∇q‖
2s
s−3

Ls

)
≤ C

[
1+‖u‖2BMO log(e+y(T ))

]
[e+y(T )]ε+C

(
1+‖∇p‖

2r
r−3

Lr +‖∇q‖
2s
s−3

Ls

)
. (3.28)

Integrating (3.28) over (t0,T ) and using (3.26), we infer that∫ T

t0

‖∂tu‖2L2dτ

≤ ‖∇u(t0)‖2L2 +C [e+y(T )]ε+C [e+y(T )]ε log(e+y(T ))

∫ T

t0

‖u‖2BMOdτ+C

≤ C+C [e+y(T )]ε+C [e+y(T )]ε log(e+y(T ))
ε

≤ C[e+y(T )]2ε. (3.29)

Moreover, by using (3.27), (3.29), and (3.17), we can show that

‖u‖H2

≤ C‖∇π−∆u‖L2

= C‖∂tu+u ·∇u−n∇φ−nS∇p−nS∇q‖L2

≤ C‖∂tu‖L2 +C‖u‖L6‖∇u‖L3 +C‖n‖L2 +C‖n‖
L

2r
r−2
‖∇p‖Lr +C‖n‖

L
2s
s−2
‖∇q‖Ls

≤ C‖∂tu‖L2 +C‖∇u‖3L2 +
1

2
‖u‖H2 +C+C‖∇p‖Lr +C‖∇q‖Ls , (3.30)

where we have applied the following interpolation inequalities in R3:

‖u‖L6 ≤C‖∇u‖L2 ,

‖∇u‖L3 ≤C‖∇u‖
1
2

L2‖∇2u‖
1
2

L2 .

After rearranging terms and squaring on both sides, we get from (3.30) that

‖u‖2H2 ≤C‖∂tu‖2L2 +C‖∇u‖6L2 +C+C‖∇p‖2Lr +C‖∇q‖2Ls . (3.31)

Integrating (3.31) over (t0,T ) and using (3.27) and (3.29), we infer that∫ T

t0

‖u‖2H2dτ ≤C[e+y(T )]3ε. (3.32)

Step 5. Now we decompose p as p≡p1 +p2, where p1 and p2 satisfy
∂tp1−∆p1 =−∇·(up), (x,t)∈Ω×(0,T ),

∇p1 ·n= 0, (x,t)∈∂Ω×(0,T ),

p1(x,0) = 0, x∈Ω,

(3.33)

and 
∂tp2−∆p2 =−np, (x,t)∈Ω×(0,T ),

∇p2 ·n= 0, (x,t)∈∂Ω×(0,T ),

p2(·,0) =p0, x∈Ω,

(3.34)
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respectively. It follows from the classical theory for heat equation [2] and (2.2) that

‖∇p1‖L6(t0,T ;L6)≤C‖up‖L6(t0,T ;L6)≤C‖u‖L6(t0,T ;L6).

By using Gagliardo-Nirenberg inequality and (3.27), we can show that∫ T

t0

‖u‖6L6 dτ ≤C
∫ T

t0

‖∇u‖6L2 dτ ≤C(T − t0)[e+y(T )]3ε≤C [e+y(T )]3ε,

which implies

‖∇p1‖L6(t0,T ;L6)≤C [e+y(T )]
1
2 ε. (3.35)

Similarly, by using (3.17) and (2.2), one can show that

‖∇p2‖L6(t0,T ;L6)≤C‖p2‖L6(t0,T ;W 2,6)≤C
(
‖p0‖

W 2− 1
3
,6 +‖np‖L6(t0,T ;L6)

)
≤C, (3.36)

whence

‖∇p‖L6(t0,T ;L6)≤C [e+y(T )]
1
2 ε. (3.37)

In a similar fashion, we can show that

‖∇q‖L6(t0,T ;L6)≤C[e+y(T )]
1
2 ε. (3.38)

Step 6. We note that the Equation (3.3) can be rewritten as

∂tn−∆n=−∇·(un+nS∇p+nS∇q+n∇φ). (3.39)

By using (3.27), (3.37), (3.38) and the standard L∞-estimate of the heat equation, one
can show that

‖n‖L∞(t0,T ;L∞)≤C [e+y(T )]
1
2 ε. (3.40)

It then follows from (3.40) and the previous estimates that

‖∇n‖L6(t0,T ;L6)≤C[e+y(T )]ε. (3.41)

Observe that the Equation (3.4) can be rewritten as

∂tp−∆p=f ≡−u ·∇p−np with ‖f‖L3(t0,T ;L3)≤C[e+y(T )]ε, (3.42)

and thus we have

‖∂tp‖L3(t0,T ;L3) +‖p‖L3(t0,T ;W 2,3)≤C[e+y(T )]ε. (3.43)

Similarly, we have

‖∂tq‖L3(t0,T ;L3) +‖q‖L3(t0,T ;W 2,3)≤C[e+y(T )]ε. (3.44)

It then follows from (3.27), (3.37), (3.38), (3.40), (3.41), (3.8) and the smoothness of φ
that the right-hand side of (3.39) satisfies the estimate: ‖g‖L3(t0,T ;L3)≤C[e+y(T )]2ε,
where g≡−∇·(un+nS∇p+nS∇q+n∇φ). Therefore

‖∂tn‖L3(t0,T ;L3) +‖n‖L3(t0,T ;W 2,3)≤C[e+y(T )]2ε. (3.45)
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Step 7. Applying ∂t to (3.1), testing by ∂tu and using (3.2), we observe that

1

2

d

dt
‖∂tu‖2L2 +‖∇∂tu‖2L2

=−
∫

Ω

(∂tu ·∇u) ·∂tudx+

∫
Ω

∂tn∇φ ·∂tudx+

∫
Ω

∂t(nS)∇(p+q) ·∂tudx

+

∫
Ω

nS∇∂t(p+q) ·∂tudx ≡ I1 +I2 +I3 +I4. (3.46)

In what follows, we shall estimate I1,...I4 within the time interval [t0,T ]. To bound I1,
by using the Gagliardo-Nirenberg inequality and (3.27), we can show that

|I1|≤‖∇u‖L2‖∂tu‖2L4 ≤C‖∇u‖L2‖∂tu‖
1
2

L2‖∇∂tu‖
3
2

L2

≤ 1

2
‖∇∂tu‖2L2 +C‖∇u‖4L2‖∂tu‖2L2

≤ 1

2
‖∇∂tu‖2L2 +C[e+y(T )]2ε‖∂tu‖2L2 . (3.47)

For I2, by using the smoothness of φ, we have

|I2|≤‖∇φ‖L∞‖∂tn‖L2‖∂tu‖L2 ≤‖∂tu‖2L2 +C‖∂tn‖2L2

≤‖∂tu‖2L2 +C‖∂tn‖2L3

≤‖∂tu‖2L2 +C‖∂tn‖3L3 +C. (3.48)

By using (3.8), we estimate I3 as

|I3|=
∣∣∣∣∫

Ω

[
S∂tn+n

(
∂S

∂n
∂tn+

∂S

∂p
∂tp+

∂S

∂q
∂tq

)]
∇(p+q) ·∂tudx

∣∣∣∣
≤C‖(∂tn,∂tp,∂tq)‖L3‖∇(p+q)‖L6‖∂tu‖L2(1+‖n‖L∞)

≤‖∂tu‖2L2(1+‖n‖2L∞)+C
(
‖(∂tn,∂tp,∂tq)‖3L3 +‖(∇p,∇q)‖6L6

)
≤C[e+y(T )]ε‖∂tu‖2L2 +C

(
‖(∂tn,∂tp,∂tq)‖3L3 +‖(∇p,∇q)‖6L6

)
, (3.49)

where (3.40) is applied. Lastly, for I4, we can show that

|I4|=
∣∣∣∣∫

Ω

∂t(p+q)∂tu ·∇(nS)dx

∣∣∣∣
≤C‖∂t(p+q)‖L3‖∂tu‖L2(‖n‖L∞‖(∂xS,∇n,∇p,∇q)‖L6 +‖∇n‖L6)

≤‖∂tu‖2L2

(
‖n‖2L∞+1

)
+C

(
‖(∂tp,∂tq)‖3L3 +‖(∇n,∇p,∇q)‖6L6 +1

)
≤C[e+y(T )]ε‖∂tu‖2L2 +C

(
‖(∂tp,∂tq)‖3L3 +‖(∇n,∇p,∇q)‖6L6 +1

)
. (3.50)

By substituting (3.47)–(3.50) into (3.46), we obtain

1

2

d

dt
‖∂tu‖2L2 +

1

2
‖∇∂tu‖2L2

≤ C[e+y(T )]2ε‖∂tu‖2L2 +C
(
‖(∂tn,∂tp,∂tq)‖3L3 +‖(∇n,∇p,∇q)‖6L6 +1

)
. (3.51)

By integrating (3.51) over (t0,T ), and using (3.29), (3.43), (3.44), (3.45), (3.37), (3.38)
and (3.41), we can show that

‖∂tu‖2L2 +

∫ T

t0

‖∇∂tu‖2L2dτ ≤C[e+y(T )]6ε. (3.52)
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Step 8. Testing (3.4) by −∆p and using (3.11), (2.2), (3.17), and (3.22), we can
show that

1

2

d

dt
‖∇p‖2L2 +‖∆p‖2L2 =

∫
Ω

(u ·∇p+np)∆pdx

≤ (‖u‖L4‖∇p‖L4 +‖n‖L2‖p‖L∞)‖∆p‖L2

≤ C(‖u‖
1
2

L2‖u‖
1
2

BMO‖p‖
1
2

L∞‖∆p‖
1
2

L2 +1)‖∆p‖L2

≤ 1

2
‖∆p‖2L2 +C‖u‖2BMO+C, (3.53)

which implies, by (3.9),

‖p‖L∞(0,T ;H1) +‖p‖L2(0,T ;H2)≤C. (3.54)

In a similar fashion, we can show that

‖q‖L∞(0,T ;H1) +‖q‖L2(0,T ;H2)≤C. (3.55)

By using similar arguments in (3.30), we can show that

‖u‖H2 ≤C‖∂tu‖L2 +C‖∇u‖3L2 +C‖n‖L2 +C‖n‖L∞‖∇p‖L2 +C‖n‖L∞‖∇q‖L2

≤C[e+y(T )]3ε, ∀t∈ [t0,T ],

where (3.52), (3.27), (3.17), (3.40), (3.54) and (3.55) are applied. By using the definition
of y(t), we infer that

‖u(t)‖H2 ≤C
(
e+ sup

[t0,T ]

‖u(t)‖W 1,γ

)3ε

, ∀t∈ [t0,T ], 3<γ≤6.

According to the Sobolev embedding: H2 ↪→W 1,γ (3<γ≤6), we see from above that

sup
[t0,T ]

‖u(t)‖H2 ≤C
(
e+C sup

[t0,T ]

‖u(t)‖H2

)3ε

.

By choosing ε= 1
6 , we obtain

‖u‖L∞(t0,T ;H2)≤C. (3.56)

At this point, we see that when the value of ε is fixed, one can fix the value of t0<T ,
such that (3.26) is fulfilled, and therefore all the constants (depending on the energy of
the local solution at t= t0) appearing in the energy estimates following (3.26) are finite.
Consequently, it follows from the definition of y(t) and (3.56) that y(T )≤C, which in
turn implies that

‖∂tu‖L∞(t0,T ;L2) +‖∇∂tu‖L2(t0,T ;L2)≤C,

‖(∇n,∇p,∇q)‖L6(t0,T ;L6) +‖(∂tn,∂tp,∂tq)‖L3(t0,T ;L3) +‖(n,p,q)‖L3(t0,T ;W 2,3)≤C,

‖n‖L∞(t0,T ;L∞)≤C,

in view of (3.52), (3.37), (3.38), (3.41), (3.43), (3.44), (3.45) and (3.40). Since t0<T is
fixed, according to the local existence theory we can update the above estimates as

‖∂tu‖L∞(0,T ;L2) +‖∂tu‖L2(0,T ;H1)≤C,
‖(∇n,∇p,∇q)‖L6(0,T ;L6) +‖(∂tn,∂tp,∂tq)‖L3(0,T ;L3) +‖(n,p,q)‖L3(0,T ;W 2,3)≤C,
‖n‖L∞(0,T ;L∞)≤C.

(3.57)
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Moreover, by applying (3.57) and classical estimates of the Stokes’ system, we can
improve the estimate of the velocity field as

‖u‖L2(0,T ;H3)≤C. (3.58)

Step 9. Applying ∂t to (3.4), testing by ∂tp, using (3.2), (3.12), (3.57), and (3.58),
we have

1

2

d

dt
‖∂tp‖2L2 +‖∇∂tp‖2L2 +

∫
Ω

n(∂tp)
2dx

= −
∫

Ω

(∂tu ·∇p)∂tpdx−
∫

Ω

(∂tn)p(∂tp)dx

≤ ‖∂tu‖L3‖∇p‖L6‖∂tp‖L2 +‖p‖L∞‖∂tn‖L2‖∂tp‖L2

≤ C ‖∂tu‖H1‖∇p‖L6‖∂tp‖L2 +C ‖p‖H2‖∂tn‖L2‖∂tp‖L2

≤ ‖∂tp‖2L2

(
‖∂tu‖2H1 +‖p‖2H2

)
+C (‖∇p‖L6 +‖∂tn‖L2) . (3.59)

By applying the Grönwall inequality to (3.59) and using (3.57), we can show that

‖∂tp‖L∞(0,T ;L2) +‖∂tp‖L2(0,T ;H1)≤C. (3.60)

In a completely similar fashion, by applying ∂t to (3.5) and (3.3) and using the previous
estimates, we can show that

‖∂tq‖L∞(0,T ;L2) +‖∂tq‖L2(0,T ;H1)≤C,

‖∂tn‖L∞(0,T ;L2) +‖∂tn‖L2(0,T ;H1)≤C.

Then by further iterating the estimates by using classical theory of the heat equation,
we can show that

‖p‖L∞(0,T ;H2) +‖p‖L2(0,T ;H3)≤C,

‖q‖L∞(0,T ;H2) +‖q‖L2(0,T ;H3)≤C,

‖n‖L∞(0,T ;H2) +‖n‖L2(0,T ;H3)≤C.

Since the proof is standard, we omit the technical details to simplify the presentation.
This completes the proof of Theorem 1.2.

4. Conclusion and looking ahead
We have studied the qualitative behavior of large-amplitude solutions to an inte-

grated chemotaxis-fluid model, (1.6)–(1.10), under the initial and Dirichlet-Neumann-
type boundary conditions, (1.11)–(1.12). In particular, it is shown that for the model
with porous medium-like diffusion in the two-dimensional space, large-amplitude strong
solutions exist globally in time for naturally prepared initial data under appropriate
conditions on the generalized chemotactic sensitivity function, see Theorem 1.1. For
the model with linear diffusion in the three-dimensional space, it is shown that local
classical solutions can be extended beyond their lifespans provided that certain solution
components belong to some critical energy spaces involving the BMO and Lr norms
of the local solutions, see Theorem 1.2. These appear to be among the first analytical
results for the coupled chemotaxis-fluid model (1.6)–(1.10).

On the other hand, many questions concerning the qualitative behavior of the in-
tegrated model are widely open, whose resolution may require more in-depth analyses
than the ones presented in this paper. We leave the investigation to future works. These
questions include, but are not limited to:



JISHAN FAN, LULUNJING, GEN NAKAMURA, AND KUN ZHAO 835

• long-time behavior of large-amplitude solutions to the initial-boundary value
problems of (1.6)–(1.10) under the conditions of Theorem 1.1;

• global existence and long-time behavior of large-amplitude solutions to the
initial-boundary value problems of (1.6)–(1.10) under the conditions different
from those of Theorem 1.1, especially (1.13);

• extensibility criteria of large-amplitude solutions to the initial-boundary value
problems of (1.6)–(1.10) in different functional spaces from (1.18).

We hope that the research of these topics will offer future opportunities in this area.
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