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ON THE SMOOTH SOLUTIONS OF
LANDAU-LIFSHITZ-BLOCH EQUATIONS OF ANTIFERROMAGNETS∗

YU-FENG WANG† , BO-LING GUO‡ , AND MING ZENG§

Abstract. In this paper, we investigate the smooth solutions for the antiferromagnets Landau-
Lifshitz-Bloch (LLB) equation with periodic initial value, which can describe the dynamics of micro-
magnets under high temperature. The existence and uniqueness of smooth solutions for LLB equation
in R2 and R3 are proved.
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1. Introduction

Most crystals have magnetically ordered structures. This means that in the absence
of an external magnetic field, the mean magnetic moment of at least one of atoms in
each unit cell of the crystal is non-zero.

As is well known, the Landau-Lifshitz equation describes the magnetization dy-
namics of ferromagnets at low temperature. It is famous and many important results
has been obtained [1]. The Landau-Lifshitz-Gilbert (LLG) equation is described as
follows [2, 3]

Lt=L×∆L−λL×(L×∆L), (1.1)

where L(x,t) = (L1(x,t),L2(x,t),L3(x,t)) is magnetization functional vector. λ>0 is
a Gerbert constant. “×” denotes the vector outer product. In order to describe the
dynamics of magnetization vector L in a ferromagnetic body for a wide range of temper-
atures, Garanin [4–6] derived the Landau-Lifshitz-Bloch (LLB) equation from statistical
mechanis with the mean field approximation. At high temperatures (θ≥θc, θc being the
Curie value), LLB equation is satisfactory. In Ref. [7], Berti also pointed that from the
paramagnetic to the ferromagnetic state is modeled as a second order phase transition.

The LLB equation is given as follows

Lt=−γL×Heff +
a1

|L|2
(L ·Heff )L− a2

|L|2
L×(L×Heff ), (1.2)

where γ, a1 and a2 are constants, Heff is the effective field. We can also rewrite
Equation (1.2) as follows

Lt=−γL×Heff +
γa‖

|L|2
(L ·Heff )L− γa⊥

|L|2
L×(L×Heff ),

with γa‖=a1, γa⊥=a2. Here a‖ and a⊥ are dimensionless damping parameters whose
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dependence on the temperature is assumed as follows [8]

a‖(θ) =
2θ

3θc
λ, a⊥(θ) =

λ
(

1− θ

3θc

)
, if θ<θc,

a‖(θ), if θ≥θc,

where λ>0 is a constant. In Ref. [9], the author points that if a1 =a2, Equation (1.2)
can be reduced as

∂u

∂t
=κ1∆u+γu×∆u−κ2(1+µ|u|2)u,

here all the coefficients κ1, κ2, γ, µ are positive, u∈ Cα([0,T ],L
3
2 ), sup

t∈[0,T ]

‖ u(·,t)‖H1<

∞.

Results in several aspects have been obtained for the above magnetic equations,
due to their wide applications. For the LLG equation, the proofs of the existence of
the global weak solutions have been given [10–12]. Furthermore, some works about the
weak solutions for its stochastic version also have been done [13–15]. The existence of
weak solutions and regularity properties for LLB equation have been discussed by Le [9].
The global existence of martingale weak solutions for the stochastic LLB equation have
been analyzed [16]. Ref. [17] investigated the global weak solutions to a spatio-temporal
fractional LLB equation. Jia [18] brought in LLB equation on m-dimensional closed
Riemannian manifold and proved that a unique local solution is admitted.

In antiferromagnets [19, 20], the mean atomic magnetic moments compensate each
other within each unit cell (in zero external magnetic field). In other words, antiferro-
magnet consists of a set of sublattices (called magnetic sublattices), each of which has a
non-zero mean magnetic moment provided the temperature of antiferromagnet is higher
than a critical temperature θ≥θc.

To the best of our knowledge, the existence and uniqueness of smooth solutions for
the LLB equation with periodic initial value have not been analyzed yet. Motivated
by the above, in this paper, we intend to establish the existence of smooth solutions of
the following periodic initial value problem for the magnetizations m and n of the two
magnetic sublattices for the antiferromagnets LLB equation

mt= ∆m+2k1m×∆m+k11m×∆n−k0(1+µ0|m|2)m, (x,t)∈ Ω×R+, (1.3a)

nt= ∆n+2k2n×∆n+k22n×∆m−k0(1+µ1|n|2)n, (x,t)∈ Ω×R+, (1.3b)

m(x,0) =m0(x), n(x,0) =n0(x), x∈ Ω, (1.3c)

m(x+2Dei,t) =m(x,t), n(x+2Dei,t) =n(x,t), (x,t)∈R2×R+, (1.3d)

where x+2Dei= (x1,·· · ,xi−1,xi+2D,xi+1,·· · ,x2), D>0, Ω⊂Rd (d≥2) is a d-
dimensional cube with width 2D, m0(x+2Dei) =m0(x), n0(x+2Dei) =n0(x), i= 1,2.
k0, k1, k2, k11, k22, µ0 and µ1 are positive constants, which satisfy the constraints
k11
2k1

= k22
2k2

=a and |a|<1.

This paper is organized as follows. In Section 2, we state the main results for
the above model, i.e., Theorems 2.1-2.6. In Section 3, we give the priori estimate for
Problem (1.3) with Ω⊂R2. The detailed proofs of Theorems 2.1, 2.4-2.6 will be listed
in Section 4. Section 5 will be our conclusions.
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2. Main resluts
The main results of this paper are:

Theorem 2.1 (local existence). Assume the periodic initial data m0(x),n0(x)∈
H2(Ω), Ω∈R2. Then there exists T =T (‖m0 ‖H2‖n0 ‖H2)>0 and a unique solu-
tion m(x,t), n(x,t) for Problem (1.3) in the time interval [0,T ] satisfying m(x,t)∈
C([0,T ];H2(Ω)), n(x,t)∈C([0,T ];H2(Ω)).

Theorem 2.2. Let dimension d= 2. Under the assumption of Lemma 3.3, for any
T >0, there exists a global unique solution for Problem (1.3) in the time [0,T ] satisfying
m(x,t)∈ C([0,T ];H2(Ω)), n(x,t)∈ C([0,T ];H2(Ω)).

Theorem 2.3. Let dimension d= 2, with the initial data ∇m0,∇n0∈Hm(m≥2).
Then for any T >0, there exists a unique solution for Problem (1.3), which satisfies

∂jt ∂
α
xm∈ L∞([0,T ];L2(R2)), ∂jt ∂

α
xn∈ L∞([0,T ];L2(R2)),

∂kt ∂
β
xm∈ L∞([0,T ];L2(R2)), ∂kt ∂

β
xn∈ L∞([0,T ];L2(R2)),

with 2j+ |α|≤m, 2k+ |β|≤m+1.

Theorem 2.4 (unique theorem). Let (m1,n1) and (m2,n2) be two smooth solutions
for Problem (1.3) with the same initial data m1(0) =m2(0)∈H∞(Ω), n1(0) =n2(0)∈
H∞(Ω), then m1≡m2, n1≡n2.

Theorem 2.5. Let dimension d≥3 and the initial data m0(x)∈Hm(Ω), n0(x)∈
Hm(Ω), Ω⊂Rd, m≥2. If the conditions of Theorem 2.3 and ‖m0(x)‖H2(Ω)�1, ‖
n0(x)‖H2(Ω)�1, then there exists a unique global smooth solution for Problem (1.3),
which satisfies

∂jt ∂
α
xm∈ L∞([0,T ];L2(Ω)), ∂jt ∂

α
xn∈ L∞([0,T ];L2(Ω)),

∂kt ∂
β
xm∈ L∞([0,T ];L2(Ω)), ∂kt ∂

β
xn∈ L∞([0,T ];L2(Ω)),

with 2j+ |α|≤m, 2k+ |β|≤m+1.

Theorem 2.6. Theorems 2.1-2.5 are held for the initial value Problem (1.3), where
(x,t)∈ Rd×R+ (d≥2).

3. A priori estimate for Problem (1.3) with Ω⊂R2

Lemma 3.1 (Grönwall’s inequality). Let I denote an interval of the real line of the
form [a,∞) or [a,b] or [a,b) with a<b. Let β and u be real-valued continuous functions
defined on I. If u is differentiable in the interior I◦ of I (the interval I without the end
points a and possibly b) and satisfies the differential inequality u′(t)≤β(t)u(t), t∈ I◦,
then u is bounded by the solution of the corresponding differential equation

u(t)≤ u(a)exp

(∫ t

a

β(s)ds

)
for all t∈ I◦.

The generalized Grönwall’s inequality reads as:

If f ′≤ C(f · g)+C, then f ≤ C exp
(∫ t

0
gdt
)

+C.

Lemma 3.2 (Gagliardo-Nirenberg’s inequality). u: Rn→ R, fix 1≤ q,r≤∞ and a
natural number m. Suppose also that a real number α and a natural number j are
such that 1

p = j
n +( 1

r −
m
n )α+ 1−α

q and j
m ≤α≤1, then for every function u: Rn→ R
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that lies in Lq(Rn) with m-th derivative in Lr(Rn) also has j-th derivative in Lp(Rn).
Furthermore, there exists ‖Dju‖Lp≤ C ‖Dmu‖αLr‖u‖1−αLq .

Lemma 3.3. Let dimension d= 2,3 and initial data m0∈Hm(Ω), n0∈Hm(Ω) (m≥2).
For the smooth solution of Problem (1.3), we have

‖m(·,t)‖2L2 +2

∫ t

0

‖∇m(·,s)‖2L2 ds+2k0

∫
(1+µ0|m|2)m2ds=‖m0 ‖2L2 , (3.1a)

‖n(·,t)‖2L2 +2

∫ t

0

‖∇n(·,s)‖2L2 ds+2k0

∫
(1+µ1|n|2)n2ds=‖n0 ‖2L2 , (3.1b)

‖m(·,t)‖L∞(Ω)≤ C ‖m0 ‖H2(Ω), t≥0, (3.1c)

‖n(·,t)‖L∞(Ω)≤ C ‖n0 ‖H2(Ω), t≥0. (3.1d)

Proof. Taking the scalar product of 3-dimensional function m with (1.3a), n with
(1.3b), respectively; and then integrating the result over Ω for the space variable x, we
have

1

2

d

dt
‖m(·,t)‖2L2(Ω)=

∫
Ω

m ·mtdx=

∫
Ω

m ·∆mdx−k0

∫
(1+µ0|m|2)m2dx.

Integrating the above equation over [0,t] for the temporal variable, we have (3.1a)
and (3.1b).

Now taking the scalar product of |m|p−2m (p≥2) with (1.3a), and |n|p−2n (p≥2)
with (1.3b), then integrating the results over Ω for the space variable x, respectively,
we get

1

p

d

dt
‖m(·,t)‖pLp(Ω) =

∫
Ω

|m|p−2m ·mtdx

=

∫
Ω

|m|p−2m ·∆mdx−k
∫
|m|p−2(1+µ0|m|2)m2dx

≤−
∫

Ω

|m|p−2∇m ·∇mdx−(p−2)

∫
Ω

|m|p−4(m ·∇m)2dx

≤0.

This inequality implies that

‖m(·,t)‖Lp(Ω)≤‖m0 ‖H2(Ω), ∀ p≥2, t≥0,

where we have used the embedding theorem of Sobolev space. Noting that ‖m0(x)‖H2

is independent of p and letting p→∞, estimate (3.1c) is obtained.
Estimate (3.1d) holds too.

Lemma 3.4. Assuming that k11
2k1

= k22
2k2

=a, |a|<1 and the initial data m0(x)∈H2(Ω),

n0(x)∈H2(Ω), then for the periodic initial value problem (1.3), we have

sup
0≤t<T

(
‖∇m(·,t)‖L2(Ω) +‖∇n(·,t)‖L2(Ω)

)
+

∫ t

0

(
‖∆m(·,t)‖2L2(Ω) +‖∆n(·,t)‖2L2(Ω)

)
dx

≤K,

where the constant K is only dependent on ‖m0 ‖H2(Ω) and ‖n0 ‖H2(Ω).
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Proof. Multiplying Equation (1.3a) by ∆m, Equation (1.3b) by ∆n respectively,
we have∫

Ω

mt∆mdx=

∫
Ω

|∆m|2dx+k11

∫
Ω

(m×∆n) ·∆mdx−k0

∫
(1+µ0|m|2)m ·∆mdx,

(3.2a)∫
Ω

nt∆ndx=

∫
Ω

|∆n|2dx+k22

∫
Ω

(n×∆m) ·∆ndx−k0

∫
(1+µ1|n|2)n ·∆ndx. (3.2b)

Integrating above by parts, we get

− 1

2

d

dt

∫
Ω

|∇m|2dx=

∫
Ω

|∆m|2dx−k11

∫
Ω

(m×∆m) ·∆ndx−k0

∫
(1+µ0|m|2)m ·∆mdx,

(3.3a)

− 1

2

d

dt

∫
Ω

|∇n|2dx=

∫
Ω

|∆n|2dx−k22

∫
Ω

(n×∆n) ·∆mdx−k0

∫
(1+µ1|n|2)n ·∆ndx. (3.3b)

Multiplying Equation (1.3a) by ∆n, Equation (1.3b) by ∆m, and integrating by parts,
we have∫

Ω

mt∆ndx=

∫
Ω

∆m ·∆ndx+2k1

∫
Ω

(m×∆m) ·∆ndx−k0

∫
(1+µ0|m|2)m ·∆ndx,

(3.4a)∫
Ω

nt∆mdx=

∫
Ω

∆n ·∆mdx+2k2

∫
Ω

(n×∆n) ·∆mdx−k0

∫
(1+µ1|n|2)n ·∆mdx,

(3.4b)

then we obtain

k11

∫
Ω

(m×∆m) ·∆ndx

=a

[∫
Ω

mt ·∆ndx−
∫

Ω

∆m ·∆ndx+k0

∫
(1+µ0|m|2)m ·∆ndx

]
, (3.5a)

k22

∫
Ω

(n×∆n) ·∆mdx

=a

[∫
Ω

nt ·∆mdx−
∫

Ω

∆n ·∆mdx+k0

∫
(1+µ1|n|2)n ·∆mdx

]
. (3.5b)

Substituting Equation (3.5) into Equation (3.3), we have

−1

2

d

dt

∫
Ω

|∇m|2dx=

∫
Ω

|∆m|2dx+a

∫
Ω

∆m ·∆ndx−a
∫

Ω

mt ·∆ndx

+ak0

∫
(1+µ0|m|2)m ·∆mdx, (3.6a)

−1

2

d

dt

∫
Ω

|∇n|2dx=

∫
Ω

|∆n|2dx+a

∫
Ω

∆m ·∆ndx−a
∫

Ω

nt ·∆mdx

+ak0

∫
(1+µ1|n|2)n ·∆ndx. (3.6b)

Adding these two equations together, we get

1

2

d

dt

∫
Ω

(|∇m|2 + |∇n|2)dx+

∫
Ω

(|∆m|2 + |∆n|2)dx
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=−a d
dt

∫
(∇m ·∇n)dx−2a

∫
Ω

∆m ·∆ndx

−ak0

∫
(1+µ0|m|2)m ·∆mdx−ak0

∫
(1+µ1|n|2)n ·∆ndx, (3.7)

where∣∣∣∣−ak0

∫
(1+µ0|m|2)m ·∆mdx

∣∣∣∣≤ C1(1+‖m‖2L∞)

∫
|∇m|2dx≤ C1 ‖∇m‖2L2 , (3.8a)∣∣∣∣−ak0

∫
(1+µ1|n|2)n ·∆ndx

∣∣∣∣≤ C2(1+‖n‖2L∞)

∫
|∇n|2dx≤ C2 ‖∇n‖2L2 . (3.8b)

Thus, from Equations (3.7) and (3.8), we get

1

2

d

dt

(
‖∇m(·,t)‖2L2(Ω) +‖∇n(·,t)‖2L2(Ω)

)
+

1

2
(1−|a|)

∫
Ω

(|∇m|2 + |∇n|2)dx

+(1−|a|)
(
‖∆m(·,t)‖2L2 +‖∆n(·,t)‖2L2

)
≤ C3

(
‖∇m‖2L2(Ω) +‖∇n‖2L2(Ω)

)
,

by using Grönwall’s inequality and |a|<1, the lemma is proved.

Lemma 3.5. Let dimension d= 2 and assume k11≤5‖m0(x)‖H2(Ω), k22≤5‖
n0(x)‖H2(Ω). Then for the smooth solution of Problem (1.3), we get

sup
0≤t<T

‖∆m(·,t)‖L2(Ω) + sup
0≤t<T

‖∆n(·,t)‖L2(Ω)≤K,∫ t

0

(
‖∆∇m‖2L2(Ω) +‖∆∇n‖2L2(Ω)

)
dt≤K,

where the constant K is only dependent on ‖m0 ‖H2(Ω) and ‖n0 ‖H2(Ω).

Proof. Taking the Laplace operator ∆ to Equations (1.3a) and (1.3b), we get

∆mt= ∆2m+2k1∆(m×∆m)+k11∆(m×∆n)−k0∆(1+µ0|m|2)m, (3.9a)

∆nt= ∆2n+2k2∆(n×∆n)+k22∆(n×∆m)−k0∆(1+µ1|n|2)n. (3.9b)

Taking the scalar product Equation (3.9a) with ∆m, Equation (3.9b) with ∆n, respec-
tively, and integrating for the variable x over x∈Ω, we have

1

2

d

dt
‖∆m‖2L2(Ω) +‖∆∇m‖2L2(Ω)= 2k1

∫
∆(m×∆m) ·∆mdx

+k11

∫
∆(m×∆n) ·∆mdx−k0

∫
∆(1+µ0|m|2)m ·∆mdx, (3.10a)

1

2

d

dt
‖∆n‖2L2(Ω) +‖∆∇n‖2L2(Ω)= 2k2

∫
∆(n×∆n) ·∆ndx

+k22

∫
∆(n×∆m) ·∆ndx−k0

∫
∆(1+µ1|n|2)n ·∆ndx. (3.10b)

By Gagliardi-Nirenberg’s inequality, we have

‖∇u‖L4≤ C ‖∇u‖
1
4

H2‖∇u‖
3
4

L2 ,



YU-FENG WANG, BO-LING GUO, AND MING ZENG 843

‖∆u‖L4≤ C ‖∆u‖
1
2

H2‖∆u‖
1
2

L2 ,

(i) ∣∣∣∣2k1

∫
Ω

∆(m×∆m)∆mdx

∣∣∣∣≤2k1

∣∣∣∣∫
Ω

∇(m×∆m)∇3mdx

∣∣∣∣
≤2k1 ‖∇m‖L4‖∆m‖L4‖∇3m‖L2

≤ C ‖∆m‖
1
2

L2‖∆∇m‖
7
4

L2

≤ 1

5
‖∆∇m‖2L2 +C(1+‖∆m‖4L2),

(ii)∣∣∣∣k11

∫
Ω

∆(m×∆n) ·∆mdx

∣∣∣∣= ∣∣∣∣k11

∫
Ω

∇(m×∆n) ·∇3mdx

∣∣∣∣
≤ k11 ‖∇m‖L4‖∆n‖L4‖∇3m‖L2 +k11 ‖m‖L∞‖∇3n‖L2‖∇3m‖L2

≤ C ‖∇m‖
1
4

H2‖∇m‖
3
4

L2‖∆n‖
1
2

H2‖∆n‖
1
2

L2‖∇3m‖L2 +k11 ‖m0 ‖H2‖∇3n‖L2‖∇3m‖L2

≤ C ‖∇3m‖
5
4

L2‖∆3n‖
1
2

L2‖∆n‖
1
2

L2 +k11 ‖m0 ‖H2‖∇3n‖L2‖∇3m‖L2

≤ 1

5
‖∇3m‖2L2 +C(‖∇3n‖

4
3

L2‖∆n‖
4
3

L2)+k11 ‖m0 ‖H2‖∇3n‖L2‖∇3m‖L2

≤ 1

5
‖∇3m‖2L2 +C ‖∆n‖4L2 +

1

5
(‖∇3m‖2L2 +‖∇3n‖2L2),

if k11 ‖m0 ‖H2< 2
5 .

(iii) ∣∣∣∣k0

∫
∆(1+µ0|m|2)m ·∆mdx

∣∣∣∣≤ k0 ‖m‖2L∞ (‖∇m‖L2‖∇3m‖L2)

≤ 1

5
‖∇3m‖2L2 +C.

The estimate for the right side of Equation (3.10b) is similar to the above (i), (ii), (iii).
So we can get

1

2

d

dt
(‖∆m‖2L2(Ω) +‖∆n‖2L2(Ω))+

4

5
(‖∆∇m‖2L2 +‖∆∇n‖2L2)

≤ C(1+‖∆m‖4L2 +‖∆n‖4L2).

By using the generalized Grönwall’s inequality and∫ t

0

(‖∆m‖2L2 +‖∆n‖2L2)dt<K,

we have

‖∆m(·,t)‖2L2 +‖∆n(·,t)‖2L2≤K (3.12)

and ∫ t

0

(
‖∇∆m(·,t)‖2L2 +‖∇∆n(·,t)‖2L2

)
dt≤K,
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where the constant K is only dependent on ‖m0 ‖H2(Ω), ‖m0 ‖H2(Ω).

Similarly, we can prove that ‖∇3m‖L2 is bounded, which means ‖∇m‖L∞ is
bounded.

Proof. (Proof of Theorem 2.3.) To prove Theorem 2.3, applying the differential
operator Dm+1 to both the sides of Equations (1.3a) and (1.3b), and taking the scalar
product with Dm+1m and Dm+1n, then integrating with respect to x over Ω, we get

1

2

d

dt
‖Dm+1m‖2L2 +‖∇Dm+1m‖2L2= 2k1

∫
Ω

Dm+1(m×∆m) ·Dm+1mdx

+k11

∫
Ω

Dm+1(m×∆n) ·Dm+1mdx−k0

∫
Ω

Dm+1(1+µ0|m|2)m ·Dm+1mdx,

(3.13)

1

2

d

dt
‖Dm+1n‖2L2 +‖∇Dm+1n‖2L2= 2k1

∫
Ω

Dm+1(n×∆n) ·Dm+1ndx

+k22

∫
Ω

Dm+1(n×∆m) ·Dm+1ndx−k0

∫
Ω

Dm+1(1+µ1|n|2)n ·Dm+1ndx. (3.14)

By the assumption of induction, the last term on the right side of Equations (3.13) and
(3.14) can be controlled by ‖Dm+1m‖2L2 and ‖Dm+1n‖2L2 respectively. For the first
term on the right side of Equations (3.13) and (3.14), we have the following derivations,∫

Dm+1(m×∆m) ·Dm+1mdx=−
∫
Dm+1(m×∇m) · ∇Dm+1mdx,∫

Dm+1(n×∆n) ·Dm+1ndx=−
∫
Dm+1(n×∇n) · ∇Dm+1ndx,

and

Dm+1(m×∆m) =Dm+1m×∇m+m×Dm+1∇m+
m∑
h=1

Ch(Dhm×Dm+1−h∇m),

Dm+1(n×∆n) =Dm+1n×∇n+n×Dm+1∇n+

m∑
h=1

Ch(Dhn×Dm+1−h∇n),

thus,∣∣∣∣∫ Dm+1(m×∆m) ·Dm+1mdx

∣∣∣∣
≤
∣∣∣∣∫ Dm+1m×∇m ·∇Dm+1mdx

∣∣∣∣+
∣∣∣∣∣
∫ m∑

h=1

Ch(Dhm×Dm+1−h∇m) ·∇Dm+1mdx

∣∣∣∣∣
≤C ‖∇m‖L∞‖Dm+1m‖L2‖∇Dm+1m‖L2 ,∣∣∣∣∫ Dm+1(n×∆n) ·Dm+1ndx

∣∣∣∣
≤
∣∣∣∣∫ Dm+1n×∇n ·∇Dm+1ndx

∣∣∣∣+
∣∣∣∣∣
∫ m∑

h=1

Ch(Dhn×Dm+1−h∇n) ·∇Dm+1ndx

∣∣∣∣∣
≤C ‖∇n‖L∞‖Dm+1n‖L2‖∇Dm+1n‖L2 .
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For the second term on the right side of Equation (3.13), we are going to deal with the
highest-order term ∫

Ω

(m×Dm+1∆n) ·Dm+1mdx,

while the other terms can be handled with the same method.
In fact, the above term can be written as∫

Ω

(∇m×Dm∆n) ·Dm+1mdx+

∫
Ω

(m×Dm∆n) ·Dm+2mdx

which can be controlled by

‖∇m‖L∞‖Dm+2n‖L2‖Dm+1m‖L2 +‖m‖L∞‖Dm+2n‖L2‖Dm+2m‖L2 .

It has been proved that ‖∇m‖L∞ is bounded, furthermore, ‖m‖L∞ is sufficiently small.
Thus the second term on the right side of Equation (3.13) can be controlled by

C ‖Dm+1m‖2L2 +
1

4
‖∇Dm+1m‖2L2 +

1

4
‖∇Dm+1m‖2L2 .

Similarly, the second term on the right side of Equation (3.14) can be controlled by

C ‖Dm+1n‖2L2 +
1

4
‖∇Dm+1m‖2L2 +

1

4
‖∇Dm+1m‖2L2 .

Combing the above equations, we have

d

dt
‖Dm+1m‖2L2 +

d

dt
‖Dm+1n‖2L2 +‖∇Dm+1m‖2L2 +‖∇Dm+1n‖2L2

≤‖Dm+1m‖2L2 +‖Dm+1n‖2L2 ,

using Grönwall’s inequality, we conclude the theorem.

4. Proof of Theorems 2.1, 2.4-2.6

4.1. Proof of Theorem 2.1.
Proof. By using the Galerkin method, we can easily obtain Theorem 2.1. Assume

the approximate solutions for Problem (1.3) as

mN =
N∑
j=1

αjN (t)ωj(x), (4.1a)

nN =
N∑
j=1

βjN (t)ωj(x), j= 1,2,·· · ,N, (4.1b)

where ωj(x) is the base function, −∆ωj(x) =λjωj(x), x∈Ω. Equations (4.1) need to
satisfy(
(mNt−∆mN −2k1mN ×∆mN −k11mN ×∆nN +k0(1+µ0|mN |2)mN ),ωj(x)

)
= 0,

(4.2a)(
(nNt−∆nN −2k2nN ×∆nN −k22nN ×∆mN +k0(1+µ1|nN |2)nN ),ωj(x)

)
= 0, (4.2b)
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where ( , ) means the inner product in L2. Multiplying Equation (4.2a) by αjN (t),
Equation (4.2b) by βjN (t), and making the summation for j from 1 to N , we get(

(mNt−∆mN −2k1mN ×∆mN −k11mN ×∆nN +k0(1+µ0|mN |2)mN ),mN

)
= 0,

(4.3a)(
(nNt−∆nN −2k2nN ×∆nN −k22nN ×∆mN +k0(1+µ1|nN |2)nN ),nN

)
= 0. (4.3b)

Then, we have

1

2

d

dt
|mN |2+‖∇mN ‖2L2 +k0|mN |2 +k0µ0|mN |4 = 0, (4.4a)

1

2

d

dt
|nN |2+‖∇nN ‖2L2 +k0|nN |2 +k0µ1|nN |4 = 0. (4.4b)

Via the Grönwall’s inequality, we conclude

‖mN (t)‖2L2≤ C, (4.5a)

‖nN (t)‖2L2≤ C, (4.5b)

where C is independent of N . Let N→∞ and through the priori estimates, we can
easily get the existence of the approximate solutions. Thereby, the local existence of
the solutions for Problem (1.3) can be obtained.

4.2. Proof of Theorem 2.4.
Proof. The proof is standard. Setting w1 =m1−m2 and w2 =n1−n2, we will

prove w1 = 0 and w2 = 0. Since (m1,n1) and (m2,n2) satisfy Equations (1.3a) and
(1.3b),

m1,t= ∆m1 +2k1m1×∆m1 +k11m1×∆n1−k0(1+µ0|m1|2)m1, (4.6a)

m2,t= ∆m2 +2k1m2×∆m2 +k11m2×∆n2−k0(1+µ0|m2|2)m2, (4.6b)

n1,t= ∆n1 +2k2n1×∆n1 +k22n1×∆m1−k0(1+µ1|n1|2)n1, (4.6c)

n2,t= ∆n2 +2k2n2×∆n2 +k22n2×∆m2−k0(1+µ1|n2|2)n2, (4.6d)

the subtraction of the first two equations gives

w1,t= ∆w1 +2k1(m1×∆m1−m2×∆m2)

+k11(m1×∆n1−m2×∆n2)−k0w1−k0µ0(|m1|2m1−|m2|2m2), (4.7)

where

m1×∆m1−m2×∆m2 =m1×∆m1−m2×∆m1 +m2×∆m1−m2×∆m2

= (m1−m2)×∆m1 +m2×(∆m1−∆m2)

=w1×∆m1 +m2×∆w1,

|m1|2m1−|m2|2m2 = (|m1|2 + |m2|2 +m1 ·m2)w1,

m1×∆n1−m2×∆n2 =m1×∆n1−m2×∆n1 +m2×∆n1−m2×∆n2

= (m1−m2)×∆n1 +m2×(∆n1−∆n2)

=w1×∆n1 +m2×w2.
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Then Equation (4.7) becomes

w1,t= ∆w1 +2k1(w1×∆m1 +m2×∆w1)

+k11(w1×∆n1 +m2×∆w2)−k0w1−k0µ0(|m1|2 + |m2|2 +m1 ·m2)w1. (4.8)

Taking the inner product with w1 on both sides of Equation (4.8), we have

1

2

d

dt

∫
|w1|2dx=−

∫
|∇w1|2dx+2k1

∫
(m2×∆w1) ·w1dx+k11

∫
(m2×∆w2) ·w1dx

−k0

∫
|w1|2dx−k0µ0

∫
(|m1|2 + |m2|2 +m1 ·m2)|w1|2dx,

where∣∣∣∣∫ (m2×∆w1) ·w1dx

∣∣∣∣= ∣∣∣∣∫ (∇m2×∇w1) ·w1dx

∣∣∣∣≤2‖∇m2 ‖2L∞‖w1 ‖2L2 +
1

2
‖∇w1 ‖2L2 ,∣∣∣∣∫ (m2×∆w2) ·w1dx

∣∣∣∣≤2‖∇m2 ‖2L∞‖w1 ‖2L2 +‖∇w2 ‖2L2 +2‖m2 ‖2L∞‖∇w1 ‖2L2 ,∣∣∣∣∫ (|m1|2 + |m2|2 +m1 ·m2)|w1|2dx
∣∣∣∣≤2

(
‖m2 ‖2L∞ +‖m1 ‖2L∞

)
‖w1 ‖2L2 .

Since (m1,n1) and (m2,n2) are smooth, the norm ‖∇m2 ‖2L∞ , ‖m1 ‖2L∞ and ‖m2 ‖2L∞

can be replaced by a constant C, thus it can be concluded that

d

dt

∫
|w1|2dx≤ C

∫
|w1|2dx.

By Grönwall’s inequality and the fact that w1(x,0)≡0, w1≡0 will be obtained.

w2≡0 holds too.

4.3. Proof of Theorem 2.5. We have the following lemma.

Lemma 4.1. Let dimension d= 3 with initial data m0∈Hm (m≥2), n0∈Hm (m≥2)
and ‖m0 ‖H2�1, ‖n0 ‖H2�1, then for the smooth solutions for Problem (1.3), one has
the following estimates.

‖∆m(·,t)‖2L2 +

∫ t

0

‖∆∇m(·,s)‖2L2 ds≤ C(T,‖m0 ‖H2), ∀ T >0, t∈ [0,T ],

‖mt(·,t)‖2L2 +

∫ t

0

‖∇mt(·,s)‖2L2 ds≤ C(T,‖m0 ‖H2), ∀ T >0, t∈ [0,T ],

‖∆∇m(·,t)‖2L2 +

∫ t

0

‖∆2m(·,s)‖2L2 ds≤ C(T,‖m0 ‖H3), ∀ T >0, t∈ [0,T ],

‖∇mt(·,t)‖2L2 +

∫ t

0

‖∆mt(·,s)‖2L2 ds≤ C(T,‖m0 ‖H3), ∀ T >0, t∈ [0,T ],

‖∆n(·,t)‖2L2 +

∫ t

0

‖∆∇n(·,s)‖2L2 ds≤ C(T,‖n0 ‖H2), ∀ T >0, t∈ [0,T ],

‖nt(·,t)‖2L2 +

∫ t

0

‖∇nt(·,s)‖2L2 ds≤ C(T,‖n0 ‖H2), ∀ T >0, t∈ [0,T ],

‖∆∇n(·,t)‖2L2 +

∫ t

0

‖∆2n(·,s)‖2L2 ds≤ C(T,‖n0 ‖H3), ∀ T >0, t∈ [0,T ],
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‖∇nt(·,t)‖2L2 +

∫ t

0

‖∆nt(·,s)‖2L2 ds≤ C(T,‖n0 ‖H3), ∀ T >0, t∈ [0,T ].

Proof. Only noticing that

‖∇m‖L6≤ C ‖m‖L∞‖∇3m‖
1
2

L2 ,

‖∆m‖L3≤ C ‖m‖L∞‖∇3m‖
1
2

L2 ,

we have ∣∣∣∣∫ ∇(m×∇m)∆mdx

∣∣∣∣≤ C ‖∇m‖L6‖∆m‖L3‖∇3m‖L2

≤ C ‖m‖2L∞‖∇3m‖2L2

≤ C ‖m0 ‖2H2‖∇3m‖2L2 .

Then, we can prove this lemma.

4.4. Proof of Theorem 2.6.
Proof. As the above estimates are independent of D, letting D→∞, the theorem

is proved.

5. Conclusions
In this paper, we have studied the antiferromagnets Landau-Lifshitz-Bloch equa-

tion, i.e., Problem (1.3), which is recommended as a model to describe the dynamics of
micromagnets under high temperature. The existence and uniqueness of smooth solu-
tions for Problem (1.3) with periodic initial value have been proved in R2 and R3. The
main results can be seen in Theorems 2.1-2.6.
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