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A THREE-TERM CONJUGATE GRADIENT ALGORITHM USING
SUBSPACE FOR LARGE-SCALE UNCONSTRAINED OPTIMIZATION∗

YUTING CHEN† AND YUETING YANG‡

Abstract. It is well known that conjugate gradient methods are suitable for large-scale nonlinear
optimization problems, due to their simple calculation and low storage. In this paper, we present a three-
term conjugate gradient method using subspace technique for large-scale unconstrained optimization,
in which the search direction is determined by minimizing the quadratic approximation of the objective
function in a subspace which is discussed in two cases. We show the search direction can both satisfy the
descent condition and Dai-Liao conjugacy condition. Under proper assumptions, global convergence
result of the proposed method is established. Numerical experiments show the proposed method is
efficient and robust.
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1. Introduction
Consider the following large-scale unconstrained optimization

min f(x) : x∈Rn, (1.1)

where f : Rn→R is continuously differentiable and bounded from below. Starting from
an initial point x0, the usual nonlinear conjugate gradient methods generate a sequence
{xk} as

xk+1 =xk +αkdk, k≥0, (1.2)

where the step-length αk is determined by some line search, and the search direction dk
is generated as

dk =

{
−g0, if k= 0,
−gk +βk−1dk−1, if k≥1,

(1.3)

where gk =∇f(xk) is the gradient of f(x) at xk and βk is a scalar called a conjugate
gradient parameter.

The line search in conjugate gradient methods is usually based on the Wolfe condi-
tions [24,25]

f(xk +αkdk)−f(xk)≤ραkg
T
k dk, (1.4)

gTk+1dk≥σgTk dk, (1.5)

where dk is a descent direction and the constants ρ, σ satisfy 0<ρ≤σ≤1. However, in
order to establish the convergence and enhance the stability, the strong Wolfe conditions
given by (1.4) and

|gTk+1dk|≤σ|gT

k dk| (1.6)
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are needed.
Different conjugate gradient methods correspond to different choices of βk. The

well-known conjugate gradient methods are Polak and Ribiére (PRP) method [20, 21],
Hestenes and Steifel (HS) method [14], Fletcher and Reeves (FR) method [11], Dai and
Yuan (DY) method [6], Liu and Storey (LS) method [18], and the conjugate descent
(CD) method [10], in which βk are specified by

βPRP
k =

gTk+1yk

‖gk‖2
, βHS

k =
gTk+1yk

dTk yk
, βFR

k =
‖gk+1‖2

‖gk‖2
,

βDY
k =

‖gk+1‖2

dTk yk
, βLS

k =
gTk+1yk

−dTk gk
, βCD

k =
‖gk+1‖2

−dTk gk
,

(1.7)

respectively, where yk =gk+1−gk and ‖·‖ stands for the Euclidean norm.
Recently, in order to obtain a local solution economically, many researchers paid

a great deal of attention to the three-term conjugate gradient methods for large-scale
unconstrained optimization problems, and gained valuable achievements [4,8,17,19,23].
To have nice numerical results and to have a search direction which satisfies the descent
condition and Dai-Liao conjugacy condition, Deng and Wan [8] proposed a three-term
conjugate gradient method (MTHREECG) whose search direction is close to the Newton
direction. However, the method does not need to compute or store any approximate
Hessian matrix of the objective function. Various numerical methods combining with
subspace technique are presented in succession [2, 3, 7, 12,13,15,16,22,26,27].

For example, Stoer and Yuan [22] introduced a line search method, in which the
search direction was computed by minimizing the approximate quadratic model in the
two-dimension subspace [−gk+1,sk], i.e.,

dk+1 =µk+1gk+1 +νk+1sk, (1.8)

where sk =xk+1−xk. If the objective function is quadratic and line search is exact, this
method reduces to the classical conjugate gradient method.

In addition, Andrei [2] suggested a three-term conjugate gradient method (TTS),
in which the search direction was determined by minimizing the approximate quadratic
model in the three-dimension subspace [−gk+1,sk,yk]. The search direction in this
method can satisfy not only the descent condition but also Dai-Liao conjugacy condi-
tion. Furthermore, Yang et al. [26] developed a subspace conjugate gradient method
(STT). The search direction in the method is generated by minimizing a quadratic ap-
proximation of the objective function in a subspace spanned by the current negative
gradient and the latest two search directions. That is, the search direction dk+1 is of
form dk+1 =−gk+1 +aksk +bksk−1, for which both the descent condition and Dai-Liao
conjugacy condition are guaranteed.

Inspired by the above, we present a new subspace three-term conjugate gradient
method based on the subspace [−gk+1,sk,yk] for solving large-scale unconstrained opti-
mization. The search direction of the proposed method is determined by minimizing the
quadratic approximation of the objective function in the subspace. For the choices of pa-
rameters, new estimations of parameters ensure the global convergence of the proposed
method under proper conditions.

This paper is organized as follows. In the next section, we describe the new method
and show that the search direction satisfies the descent condition and Dai-Liao conjugacy
condition. Section 3 establishes the global convergence result of the proposed method
under appropriate assumptions. The numerical results and comparisons with other
methods are reported in Section 4 and the conclusion is given in Section 5.
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2. The subspace three-term conjugate gradient algorithm
In this section, by minimizing the quadratic approximation of the objective function

in the subspace Ak, span{−gk+1,sk,yk}, we derive the search direction and propose a
new subspace three-term conjugate gradient method (STCG).

Denote

Φk+1(d) =gTk+1d+
1

2
dTBk+1d (2.1)

as the quadratic approximation of function f in the subspace Ak, where d∈Ak, Bk+1

is an approximation of the Hessian ∇2f(xk+1).
Let

dk+1 =−gk+1 +aksk +bkyk (2.2)

be the minimizer of Φk+1(d) in the subspace Ak. We describe the STCG algorithm as
follows, in which the acceleration scheme given in [1] is employed.

Algorithm 2.1 (STCG)
Step 0. Choose an initial point x0 ∈Rn, ε>0, and compute f0 =f(x0), g0 =∇f(x0).
Set d0 :=−g0 and k := 0.
Step 1. If ‖gk‖<ε, stop, else go to Step 2.
Step 2. Compute a step-length αk by the Wolfe line search (1.4) and (1.5).
Step 3. Compute xk+1 by the acceleration scheme,
3.1. Compute z=xk +αkdk, gz =∇f(z) and yz =gk−gz;
3.2. Compute āk =αkg

T
k dk and b̄k =−αky

T
k dk;

3.3. Acceleration scheme. If b̄k>0, then compute ξk =−āk/b̄k and update the vari-
ables as xk+1 =xk +ξkαkdk, otherwise update the variables as xk+1 =xk +αkdk.
Step 4. Compute fk+1 =f(xk+1), gk+1 =g(xk+1), sk =xk+1−xk and yk =gk+1−gk.
Step 5. Compute ak and bk by Subalgorithm 2.2.
Step 6. Compute the search direction dk+1 by (2.2). Set k :=k+1 and go to Step 1.

Remark 2.1. In Step 2, the Wolfe line search employs the quadratic and cubic
interpolation conditions in the program, which greatly reduces the number of inner
loops as shown in Section 4.

In the following, we discuss the computations of ak and bk. Obviously, (ak,bk) is
the solution of the following minimizing problem:

min
a,b∈R

Φk+1(−gk+1 +ask +byk). (2.3)

Considering that ∇2f(xk+1)sk ≈yk, we would like to suppose that Bk+1 is positive
definite, and choose Bk+1 such that the quasi-Newton equation Bk+1sk =yk. In what
follows, two cases should be considered.

Case I. dim(Ak) = 2, and −gk+1 and sk are linearly independent, then let bk = 0,
(2.3) can be rewritten as

min
a∈R

Φk+1(−gk+1 +ask), (2.4)

the solution of (2.4) can be expressed as

ak =
gTk+1Bk+1sk−gTk+1sk

sTkBk+1sk
. (2.5)
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If the exact line search is used, that is gTk+1sk = 0, then (2.5) reduces to

ak =
gTk+1yk

yTk sk
, (2.6)

which just implies HS conjugate gradient method.

Case II. dim(Ak) = 3. It is obvious that ak and bk can be expressed as solutions of
the following linear algebraic system:{

a(yTk sk)+b(yTk yk) =gTk+1yk−gTk+1sk,
a(yTk yk)+b(yTk Bk+1yk) =gTk+1Bk+1yk−gTk+1yk.

(2.7)

By using the formula Bk+1sk =yk and Cauchy inequality, the coefficient determinant of
the system (2.7) satisfies

∆k =‖B
1
2

k+1sk‖
2‖B

1
2

k+1yk‖
2−(B

1
2

k+1sk)T(B
1
2

k+1yk)>0. (2.8)

From gTk+1sk = 0, ak and bk are computed by

ak =
1

∆k
[(yTk Bk+1yk)(gTk+1yk)−(yTk yk)(gTk+1Bk+1yk−gTk+1yk)],

bk =
1

∆k
[(yTk sk)(gTk+1Bk+1yk−gTk+1yk)−(yTk yk)(gTk+1yk)].

(2.9)

In (2.9), the quantities ηk≡yTk Bk+1yk and ωk≡gTk+1Bk+1yk should be evaluated.
Using the quasi-Newton equation Bk+1sk =yk, we have

ηk =
yTk Bk+1yks

T
kBk+1sk

(yTk Bk+1sk)2
· (y

T
k Bk+1sk)2

sTkBk+1sk

=
1

cos2〈B
1
2

k+1yk,B
1
2

k+1sk〉
· (y

T
k yk)2

yTk sk
, (2.10)

where cos2〈B
1
2

k+1yk,B
1
2

k+1sk〉 is unknown. By taking advantage of the mean value 1
2 of

cos2 ξ, it seems reasonable to replace cos2〈B
1
2

k+1yk,B
1
2

k+1sk〉 by 1/2. Therefore, ηk can
be computed as

ηk = 2
(yTk yk)2

yTk sk
. (2.11)

Then

∆k =ηk(yTk sk)−(yTk yk)2 = (yTk yk)2. (2.12)

In order to compute ωk, we use the BFGS update with the scalar matrix γ0I, in

which γ0 =
yT
k yk

sTk yk
, to obtain Bk+1, and then

ωk =gTk+1[γ0I+
yky

T
k

yTk sk
−γ0

sks
T
k

sTk sk
]yk

=γ0g
T
k+1yk +

yTk yk ·gTk+1yk

yTk sk
. (2.13)
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By substituting (2.11)-(2.13) into (2.9), we have

ak =
gTk+1yk

yTk sk
−(γ0−1)

gTk+1yk

yTk yk
,

bk = (γ0−1)
yTk sk ·gTk+1yk

(yTk yk)2
.

(2.14)

From the above discussion, we use the following subalgorithm to describe the com-
putations of the scalars ak and bk.

Subalgorithm 2.2 (The computations of ak and bk)
Step 1. Compute gTk sk, gTk+1yk, yTk yk, yTk sk and γ0, respectively.
Step 2. Compute ak and bk by (2.6) and (2.14), respectively. Namely,

If dim(Ak) = 2, and −gk+1 and sk are linearly independent,

ak =
gTk+1yk

yTk sk
, bk = 0, (2.15)

else, dim(Ak) = 3,

ak =
gTk+1yk

yTk sk
−(γ0−1)

gTk+1yk

yTk yk
,

bk = (γ0−1)
yTk skg

T
k+1yk

(yTk yk)2
.

(2.16)

Remark 2.2. In Subalgorithm 2.2, ak and bk are determined by (2.15) and (2.16)
corresponding to Case I and Case II, respectively. In virtue of the discussion of two
cases, it could be expected to improve the stability of numerical calculation.

In the following, we show that the search direction satisfies both the descent condi-
tion and the Dai-Liao conjugacy condition.

Lemma 2.1. Suppose that Bk+1 is positive definite. Then dk+1 generated by Algorithm
2.1 is a descent direction.

Proof. From (2.1) observe that Φk+1(0) = 0. Since Bk+1 is positive definite and
dk+1 is generated by Algorithm 2.1, it follows that Φk+1(dk+1)≤0. Therefore,

gTk+1dk+1≤−
1

2
dTk+1Bk+1dk+1<0, (2.17)

i.e., dk+1 is a descent direction.

Lemma 2.2. Let the search direction dk+1 be generated by Algorithm 2.1. Then dk+1

satisfies the Dai-Liao conjugacy condition yTk dk+1 =−gTk+1sk.

Proof. From (2.2) and the first equation in (2.7), it follows that dk+1 satisfies
yTk dk+1 =−gTk+1sk, which is exactly the Dai-Liao conjugacy condition.

In the next section, we give some suitable assumptions and establish the global
convergence of the STCG.
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3. Convergence analysis
In this section, we show the proposed method is globally convergent with the Wolfe

line search under appropriate assumptions. Without loss of generality, we use the fol-
lowing assumptions throughout the paper.

Assumption 3.1. The level set Ω ={x∈Rn : f(x)≤f(x0)} is bounded.

Assumption 3.2. The function f :Rn→R is continuously differentiable and its gradi-
ent is Lipschitz continuous in a neighborhood N of Ω, i.e., there exists a constant L>0
such that

‖g(x)−g(y)‖≤L‖x−y‖, ∀ x,y∈N. (3.1)

Assumption 3.3. For the function f on Ω, there exists a constant µ>0 such that

(∇f(x)−∇f(y))T(x−y)≥µ‖x−y‖2, ∀ x,y∈N. (3.2)

Under these assumptions on f , there exists a constant Γ>0 such that

‖g(x)‖≤Γ, ∀ x∈Ω. (3.3)

In order to establish the convergence of the STCG, firstly we need to derive a lower
bound on the step length αk.

Lemma 3.1. Let {dk} be generated by Algorithm 2.1. Suppose that Assumption 3.2
holds. Then the step-length αk with the Wolfe line search (1.4) and (1.5) satisfies

αk≥
(1−σ)|gTk dk|
L‖dk‖2

. (3.4)

The following lemma is called Zoutendijk condition, which is essentially suggested
by Zoutendijk and Wolfe.

Lemma 3.2 ( [28]). Consider any iteration of the form (1.2), where dk is a descent
direction and the step-length αk is determined by the Wolfe line search (1.4) and (1.5).
Suppose that Assumptions 3.1 and 3.2 hold. Then

∞∑
k=0

(gTk dk)2

‖dk‖2
<+∞. (3.5)

From Lemma 2.1, we can obtain that the sequence {dk} generated by Algorithm
2.1 satisfies (3.5). Next lemma shows that the sequence of gradient norms ‖gk‖ can be
bounded away from zero only if

∑
k≥01/‖dk‖<+∞ for any conjugate gradient method

with strong Wolfe line search.

Lemma 3.3. Consider any iteration of the form (1.2), where dk is a descent direction
and the step-length αk is determined by strong Wolfe line search (1.4) and (1.6). Suppose
that Assumptions 3.1 and 3.2 hold. If∑

k≥0

1

‖dk‖2
= +∞, (3.6)
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then

liminf
k→∞

‖gk‖= 0. (3.7)

In the following, we establish the global convergence theorem of Algorithm 2.1 with
the Wolfe line search.

Theorem 3.1. Let the sequence {xk} be generated by Algorithm 2.1, where the
step-length αk is determined by the Wolfe line search (1.4) and (1.5). Suppose that
Assumptions 3.1, 3.2 and 3.3 hold. Then (3.7) holds.

Proof. From (3.1) we have

‖yk‖≤L‖sk‖. (3.8)

From (3.2), we have

yTk sk≥µ‖sk‖2. (3.9)

From Cauchy inequality and (3.9), it is obvious that

‖yk‖≥µ‖sk‖. (3.10)

Using triangle inequality, Cauchy inequality, (3.8) and (3.9), we obtain

|γ0−1|≤ |y
T
k sk|+‖yk‖2

|yTk sk|
≤ L‖sk‖

2 +L2‖sk‖2

µ‖sk‖2
=
L+L2

µ
≡M0. (3.11)

In the following, two cases should be discussed.

Case I. dim(Ak) = 2, and −gk+1, sk are linearly independent, then ak and bk are
determined by (2.15).

Using (3.3), (3.8) and (3.9), we have

|ak|≤
|gTk+1yk|
|yTk sk|

≤ ΓL

µ

1

‖sk‖
≡M1

1

‖sk‖
. (3.12)

Therefore,

‖dk+1‖≤‖gk+1‖+ |ak|‖sk‖≤Γ+M1. (3.13)

Case II. dim(Ak) = 3, then ak and bk are determined by (2.16).
Using (3.3) and (3.8)-(3.11), we have

|ak|≤
|gTk+1yk|
|yTk sk|

+ |γ0−1|
|gTk+1yk|
‖yk‖2

≤ΓL‖sk‖
µ‖sk‖2

+M0
ΓL‖sk‖
µ2‖sk‖2

=
ΓL

µ
(1+

M0

µ
)

1

‖sk‖
≡M2

1

‖sk‖
. (3.14)

On the other hand,

|bk|≤|γ0−1|
|yTk sk||gTk+1yk|
‖yk‖4
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≤M0
L‖sk‖2Γ‖yk‖
µ2‖sk‖2‖yk‖2

=
M0ΓL

µ2

1

‖yk‖
≡M3

1

‖yk‖
. (3.15)

Therefore,

‖dk+1‖≤‖gk+1‖+ |ak|‖sk‖+ |bk|‖yk‖≤Γ+M2 +M3. (3.16)

From Lemma 3.3, it follows that (3.7) holds.

4. Numerical results
In this section, we report some numerical results. The 80 test problems are the

unconstrained problems from [5] with the dimensions varying from 2 to 100000. All
codes are written in Matlab R2010a and ran on PC with 2.20 GHz CPU processor and
2.00 GB RAM memory. The iteration is terminated by the following conditions

‖gk‖≤ε or |f(xk+1)−f(xk)|≤εmax{1.0, |f(xk)|}. (4.1)

We set the parameters ε= 10−6 in (4.1), and ρ= 0.35, σ= 0.5 in the Wolfe line
search, the other parameters are set as default. Table 4.1 lists the test problems and
their dimensions.

No. Prob dim

1. the Freudenstein and Roth function 2
2. Powell badly scaled function 2
3. Brown badly scaled function 2
4. the Beale function 2
5. the Helical valley function 3
6. the Gaussian function 3
7. the Biggs EXP 6 function 6
8. the trigonometric function 10
9. the V ariable dimension function 50,100,500,1000,5000,10000
10. the Chebyquad function 50,100,500,1000,5000,10000
11. the Boundary value function 50,100,500,1000,5000,10000
12. Integral equation function 50,100,500,1000,5000,10000
13. Broyden tridiagonal function 50,100,500,1000,5000,10000
14. Separable cubic function 50,100,500,1000,5000,10000
15. Nearly separable function 50,100,500,1000,5000,10000
16. Y ang tridiagonal function 50,100,500,1000,5000,10000
17. Allgower function 50,100,500,1000,5000,10000
18. Schittkowski function 302 50,100,500,1000,5000,10000
19. Extended Powell singular function 500,1000,5000,10000,50000,100000
20. the Penalty function I 500,1000,5000,10000,50000,100000

Table 4.1. The test problems and their dimensions

We compare the numerical performance of the proposed algorithm STCG with
the following three algorithms: the MTHREECG [8], the TTS [2] and the STT [26].
The numerical performance of the MTHREECG is superior to the recently developed
methods THREECG [3] and CG DESCENT [13], which have been acclaimed to be
powerful for solving unconstrained optimization problems. Compared with the classical
conjugate gradient methods such as PRP [20, 21], HS [14] and DY [6], the numerical
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performance of the TTS outperforms. A large number of numerical results show that
the STT is competitive among the existing conjugate gradient methods for solving
unconstrained optimization.

We use the profiles by Dolan and Moré [9] to compare the performance of the above
four algorithms. In a performance profile plot, the top curve is the method that solved
the most problems in a time that is within a factor of the best time. The horizontal
axis gives the percentage (τ) of the test problems for which a method is the fastest
(efficiency), while the vertical side gives the percentage (ψ) of the test problems that
are successfully solved by each of the methods (robustness).
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Fig. 4.1. The number of iterations.
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Fig. 4.2. The CPU time.

Figures 4.1-4.4 plot the performance profiles for the number of iterations (k), the
CPU time (t), the number of function evaluations (nf) and the number of gradient
evaluations (ng), respectively, which clearly show that the curve “STCG” is the best.

If program runs fail, or the number of iterations can reach more than 500, it is
regarded as failed. And we denote the number of iterations, function evaluations, gra-
dient evaluations by 500, respectively, and denote the CPU time by 1000 seconds. In
this way, the numerical results indicate that the STCG is promising.

It is worth mentioning that the Wolfe line search in our algorithm adopts quadratic
and cubic interpolation conditions in the program which can reduce the number of
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Fig. 4.3. The number of function evaluations.
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Fig. 4.4. The number of gradient evaluations.

No. Prob dim Wolfe Armijo
k/nf/ng/t k/nf/ng/t

1. the Freudenstein and Roth function 2 10/24/13/0 15/150/17/0.0469
2. the Helical valley function 3 205/341/272/0.0938 492/4101/494/0.2500
3. the trigonometric function 10 9/46/28/0.0313 10/151/12/0.0313
4. the V ariable dimension function 50 3/15/5/0.0313 38/610/40/0.0625
5. the V ariable dimension function 100 3/24/6/0.0313 2/90/4/0.0313
6. the V ariable dimension function 500 3/32/5/0.0313 3/158/5/0.0469
7. the V ariable dimension function 1000 3/40/4/0.0313 3/174/5/0.0469
8. the V ariable dimension function 5000 3/44/6/0.0469 3/243/5/0.0938
9. the V ariable dimension function 10000 3/46/9/0.0625 3/264/5/0.1875
10. the Penalty function I 500 2/52/4/0.0313 2/54/4/0.0469
11. the Penalty function I 1000 2/11/4/0.0469 2/60/4/0.0469
12. the Penalty function I 5000 22/92/53/0.1875 29/419/33/0.1875
13. the Penalty function I 10000 23/176/102/0.0936 27/314/30/0.3906
14. the Penalty function I 50000 17/81/43/1.0156 35/706/38/1.8906
15. the Penalty function I 100000 13/66/32/1.3438 40/830/44/3.8281

Table 4.2. The numerical results

inner loops in a way. In the Armijo-type line search, the step-length αk is determined
by letting αk = max{σj, j= 0,1,2,. ..} satisfy the condition

f(xk +σjdk)≤f(xk)+ρσjgTk dk, (4.2)

where ρ, σ∈ (0,1) are constants. Here, we set ρ= 0.35, σ= 0.5 in (4.2) and other parame-
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ters are set as default. For the STCG, we randomly compare the numerical performance
of using the Wolfe line search with that of using the Armijo-type line search for 15 test
problems with different dimensions and other conditions being the same. The numerical
results in Table 4.2 provide evidences that the number of function evaluations (nf) and
the number of gradient functions (ng) are both less when the Wolfe line search is used.
Specifically, the advantage is greater when the dimension of the test problem is larger.

5. Conclusion

In this paper, a new subspace three-term conjugate gradient method has been pre-
sented. In this method, the search direction is determined by minimizing the affine
quadratic approximate of the objective function in a subspace which is discussed in two
cases. We prove the global convergence of the proposed method with the Wolfe line
search under proper conditions. For a set of 80 test problems, the performance profiles
show that the proposed method is robust and meaningful.
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