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LOW MACH NUMBER LIMIT OF STEADY EULER FLOWS IN
MULTI-DIMENSIONAL NOZZLES∗

MINGJIE LI† , TIAN-YI WANG‡ , AND WEI XIANG§

Abstract. In this paper, we consider the steady irrotational Euler flows in multidimensional
nozzles. The first rigorous proof on the existence and uniqueness of the incompressible flow is provided.
Then, we justify the corresponding low Mach number limit, which is the first result of the low Mach
number limit on the steady Euler flows. We establish several uniform estimates, which does not depend
on the Mach number, to validate the convergence of the compressible flow with the conservative extra
force to the corresponding incompressible flow, which is free from the conservative extra force effect,
as the Mach number goes to zero. The limit is on the Hölder space and is unique. Moreover, the
convergence rate is of order ε2, which is higher than the ones in the previous results on the low Mach
number limit for the unsteady flow.
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1. Introduction

Incompressible and compressible Euler equations are fundamental equations in fluid
dynamics, which describe the motion of two different objects, for example, water and
gas. As one of the important topics in the mathematical theory of fluid dynamics, the
incompressible limit is devoted to building a bridge to fill the gap between those two
different type of fluids by determining in which sense the compressible flows tend to the
incompressible ones as the compressibility parameter tends to zero.

A typical system to describe compressible flow is the steady homentropic Euler
equations. It reads {

div(ρu) = 0,

div(ρu⊗u)+∇p=ρF,
(1.1)

where x= (x1, ·· · ,xn)∈Rn, for n≥2, u= (u1, ·· · ,un)∈Rn is the fluid velocity, while ρ,
p, and F represent the density, pressure, and extra force respectively. The pressure is a
function of density with:

p :=
p̃(ρ)− p̃(1)

ε2
, (1.2)

where ε>0 is the compressibility parameter as introduced in [36]. For the homentropic
flow, we require

p̃′(ρ)>0, 2p̃′(ρ)+ρp̃′′(ρ)>0 for ρ>0. (1.3)
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We remark that condition (1.3) includes the isentropic flows that p̃=ργ with γ>1, and
the isothermal flows that p̃=ρ. The sound speed of the flow is

c :=
√
p′(ρ) =

√
p̃′(ρ)

ε
,

and the Mach number is defined as

M :=
|u|
c

=
ε|u|√
p̃′(ρ)

,

where

|u| :=
( n∑
i=1

u2
i

)1/2

is the flow speed. The flow is subsonic when M<1, sonic when M = 1, and supersonic
when M>1.

Generally speaking, there are two processes for deriving the incompressible fluid
models from the respective compressible ones: one is that the compressible parameter
ε goes to zero, which is called as the low Mach number limit; and the other one is that
the adiabatic exponent γ goes to infinity with the pressure defined as p=ργ , see [9,32].

The first theory of the low Mach number limit is due to Janzen and Rayleigh
(see [35, Sect. 47], [39]), in which they are concerned with the steady irrotational flow.
Their method of the expansion of solutions in power with respect to the Mach num-
ber was applied both as a computational tool and as a tool for the proof of existence
of solutions. Klainerman and Majda [28, 29] proved the convergence of compressible
flow to the incompressible flow by directly deriving estimates of solutions of the partial
differential equations in the scaled form (also see Ebin [17]). In particular, they es-
tablished the incompressible limit of smooth local solutions of the Euler equations (and
the Navier-Stokes equations) for compressible fluids with well-prepared initial data, i.e.,
some smallness assumption on the divergence of initial velocity. By using the fast decay
property of acoustic waves, Ukai [38] verified the low Mach number limit for the general
data. The exterior domain cases were considered in [25]. The major breakthrough on
the general initial data is due to Métivier and Schochet [33], in which they proved the
low Mach number limit of the full Euler equations in the whole space by an elegant
convergence lemma on acoustic waves. Later, Alazard [1] extended the result to the ex-
terior domain problem. For the one dimensional Euler equations, the low Mach number
limit has been proved under the B.V. space in [7]. For other related fluid models and
problems, see [5, 11,22,26,27,30,31,33,34,36] and the references therein.

One of the classical problems on the steady flows is the infinitely long nozzle prob-
lem. Let Ω⊂Rn be an infinitely long nozzle, which is homomorphism to the unit cylinder
C=B(0,1)×R in Rn. The compressible fluid fills in the region Ω. At the boundary
∂Ω, the flow satisfies the slip boundary condition:

u ·n= 0 on ∂Ω, (1.4)

where n is the unit outward normal to the region Ω. Due to (1.1)1 and (1.4), one can
obtain the fixed mass flux property: on the arbitrary cross section of the nozzle S0∫

S0

l ·ρuds=:m, (1.5)
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Fig. 1.1. Infinitely long nozzle

where l is the unit outer normal of the domain S0. m is called the mass flux. See Figure
1.1.

Formally, if |u| is bounded and
√
p̃′(ρ) does not vanish, ε is the leading term of Mach

number M . For this reason, the limit ε→0 is called the low Mach number limit [28,29].
So, for the low Mach number limit, one should start from the case with sufficiently small
Mach number, in which the flow is subsonic.

For the compressible flow, the mathematical theory on global subsonic flow in an
infinitely long nozzle of various cross-sections was formulated by Bers [4] in 1958. Then
the first rigorous proof for the irrotational flow was achieved by Xie and Xin [40] by
introducing the stream function. Later, they extended it to the 3D axis-asymmetric
case in [41]. The theorem for general infinitely long nozzle in Rn,n≥2 was completed in
Du-Xin-Yan [15], while the result was extended in [20] to the extra force case. Besides
the infinitely long nozzle problem, we also would like to mention the study of the other
classical problem: the airfoil problem. Shiffman [37], Bers [2, 3], and Finn-Gilbarg
[18] considered the two-dimensional irrotational subsonic flow. Finn and Gilbarg [19]
got the first result for three-dimensional subsonic flow past an obstacle under some
restrictions on the Mach number. Then Dong [13] and Dong-Ou [14] extended these
results to the case when Mach number M<1 for arbitrary dimensions, while the case
with conservative force effect was considered in [21]. The respective subsonic-sonic flow
was considered in [24]. For the rotational subsonic flows, one can refer to [6, 8–10, 12,
16,42].

The expected corresponding homogeneous incompressible Euler equations as ε→0
are written as: {

divu= 0,

div(u⊗u)+∇p=F,
(1.6)

where u= (u1, ·· · ,un) and p represents the velocity and pressure, respectively, while
density ρ≡1.

For the problem of the incompressible flow in an infinitely long nozzle, the flow also
satisfies the slip boundary condition (1.4). Furthermore, from (1.6)1, the fixed mass
flux property (1.5) holds with ρ≡1.

As far as we know, up to now there is no mathematical result on the multidimen-
sional incompressible flow in an infinitely long nozzle. Hence, we need to develop the
methods to obtain the first results on the multidimensional incompressible flow in an
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infinitely long nozzle. We remark, unlike the airfoil problem, the solutions of infinitely
long nozzle problem are not expected to decay to the given states in general, which
means the variational approach could not be applied directly. So we need to introduce
approximate problems for both the incompressible and compressible cases, and then to
show the localized uniform estimates such as the average lemma and the higher order
estimates which do not depend on the Mach number, which is a singular parameter in
the low Mach number limit. All the uniform estimates are new. Moreover, to avoid the
singularity arising from the sufficiently small Mach number, we need to introduce the
elliptic cut-off carefully, which is different from the ones in [15,20].

The rest of this paper is organized as follows. In Section 2, we formulate the
problems mathematically and state the main theorems. Next, we introduce approximate
problems and apply the variational approach to solve them in Section 3. In Section 4,
uniform estimates and then the existence of modified flows are proven. Section 5 proves
the uniqueness of modified flows, and completes the existence and uniqueness of the
incompressible flow (Theorem 2.1). Finally, in Section 6, we complete the proof of the
low Mach number limit (Theorem 2.2).

2. Formulation of the problem and main theorems
In this section we will formulate the problem concerned mathematically and intro-

duce the main theorems of this paper.
First, we will give the basic assumptions on the multidimensional nozzle domain Ω:

there exists an invertible C2,α map T : Ω̄→ C̄ :x→y which satisfies that
T (∂Ω) =∂C̄,

For any k∈R, T (Ω∩{xn=k}) =B(0,1)×{yn=k},
‖T‖C2,α +‖T−1‖C2,α ≤K<∞,

(2.1)

where K is a uniform constant, C̄=B(0,1)×(−∞,+∞) is the cylinder in Rn with
B(0,1) being the unit ball in Rn−1 centering at the origin, xn is the axial coordinate
and x′= (x1,·· · ,xn−1)∈Rn−1.

Remark 2.1. It is noticeable that there is no asymptotic restriction on T as xn→±∞,
which implies T could even be periodic with respect to xn.

For both the incompressible flow and the compressible flow, the boundary condition
(1.4) and mass flux condition (1.5) hold.

Now, for any given mass flux m, we can introduce the problem in the multidimen-
sional infinitely long nozzle mathematically for both the incompressible and compressible
cases.

Problem (m). Let n≥2. Find functions (ρ,u,p), which satisfies (1.1) or (1.6),
with slip boundary condition (1.4) and mass flux condition (1.5).

Then we will study Problem (m) for the incompressible and compressible cases
separately.

2.1. Problem (m) for the incompressible case. Let us consider the incom-
pressible case first. The steady irrotational incompressible Euler flow is governed by the
following equations: 

divū= 0,

div(ū⊗ ū)+∇p̄=F,

curlū= 0.

(2.2)
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Here, the conservative force F can be written as F =∇φ. By (2.2)3, we have the
Bernoulli law for the incompressible irrotational case that:

∇
(
|ū2|
2

+ p̄−φ
)

= 0, (2.3)

which equals to:

p̄=φ− |ū
2|

2
(2.4)

up to a constant.
Now we can introduce the following theorem for the incompressible case.

Theorem 2.1. For any fixed m>0, there exists a unique solution (ρ̄≡1,ū, p̄) of
Problem (m) corresponding to Equations (2.2), with ū∈ (C1,α(Ω))n. Moreover, sup-
pose

φ∈L∞(Ω) and ∇φ∈Lqloc(Ω) for q>n. (2.5)

Then p̄∈Cα(Ω).
We remark that for the incompressible case, the velocity ū is solved by solving the

potential function ϕ̄, which does not depend on φ. It is different from the compressible
case.

2.2. Problem (m) for the compressible case and the low Mach number
limit. Now let us consider Problem (m) for the compressible case and the low
Mach number limit. The irrotational compressible Euler flow with low Mach number is
governed by the following equations

div(ρεuε) = 0,

div(ρεuε⊗uε)+∇pε=ρεF,

curluε= 0,

(2.6)

where the conservative force F =∇φ and pε=p(ε)(ρε) = p̃(ρε)−p̃(1)
ε2 . The Mach number

is defined as Mε= |uε|√
(p(ε))′(ρε)

= ε|uε|√
p̃′(ρε)

.

By (2.6)3, we have the following Bernoulli law that

∇

(
|uε|2

2
+

∫ ρε

1

(p(ε))′(s)

s
ds−φ

)
= 0. (2.7)

which is equivalent to

|uε|2

2
+

∫ ρε

1

(p(ε))′(s)

s
ds=φ, (2.8)

up to a constant. Here, without loss of generality, we assume 0≤φ≤φ?. Moreover, let
us introduce the rescaled enthalpy function h̃, which satisfies:

h̃′(ρ) =
p̃′(ρ)

ρ
.
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Then, (2.8) becomes

|uε|2

2
+h(ε)(ρε)−h(ε)(1) =φ, (2.9)

where h(ε)(ρ) =ε−2h̃(ρ). By (1.3), we can see that h̃(ρ) is a strictly increasing function
with respect to ρ, so is h(ε)(ρε).

Let

H̃(ρ) :=
p̃′(ρ)

2
+ h̃(ρ).

Then for each fixed ε, we can introduce the critical density ρεcr which satisfies that

1

ε2
H̃(ρεcr) =φ+

1

ε2
h̃(1). (2.10)

So

ρεcr(φ) = H̃−1
(
h̃(1)+ε2φ

)
(2.11)

and the critical speed is

qεcr(φ) =
1

ε

√
p̃′ ◦H̃−1

(
h̃(1)+ε2φ

)
. (2.12)

Obviously, the critical speed qεcr(φ) will go to the infinity as ε goes to zero.
It is easy to see that |uε|<qεcr(φ) holds if and only if the flow is subsonic, i.e.,

Mε(φ)<1. Similarly, for each 0<θ<1, there exists qεθ(φ) such that |uε|≤ qεθ(φ) holds
if and only if Mε(φ)≤θ. Moreover, qεθ(φ) is monotonically increasing with respect to
θ∈ (0,1). In addition, for ε>0, both εqεcr(φ) and εqεθ(φ) are uniformly bounded with
respect to ε. For the subsonic flow, density ρε can be represented as a function of |uε|2,
i.e.,

ρε=ρε(|uε|2,φ) = h̃−1

(
ε2
(
2φ−|uε|2

)
2

+ h̃(1)

)
. (2.13)

For any fixed 0<ε<1, when the flow is subsonic, it holds that

H̃−1 ◦ h̃(1)<H̃−1
(
h̃(1)+ε2φ

)
=ρεcr≤ρε(|uε|2,φ)≤ h̃−1

(
ε2φ+ h̃(1)

)
<h̃−1

(
φ?+ h̃(1)

)
.

Finally, the low Mach number limit is the limit process when ε→0. For the limit, we
expect the compressible Euler flow will converge to the corresponding incompressible
Euler flow. Actually, we have the following result which is the main theorem of the
paper on Problem (m) for the compressible case and the low Mach number limit.

Theorem 2.2. Suppose (2.5) holds. For any fixed m>0, there exists a constant
εc such that when 0<ε<εc there exists a unique solution (ρε,uε,pε)∈ (Cα(Ω))n+2 of
Problem (m) corresponding to Equations (2.6) with Mε<1. Mε varies on (0,1) as ε
varies on (0,εc). Furthermore, as ε→0, we have that

ρε= 1+O(ε2) uε= ū+O(ε2) ∇pε=∇p̄+O(ε2), Mε=O(ε) (2.14)
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where (1,ū, p̄) is the classical solution of Problem (m) corresponding to Equations
(2.2) obtained in Theorem 2.1.

Remark 2.2. It is noticeable that the condition (2.5) on ∇φ is local and without
requirement on the decay behaviour at infinity. In fact, for the infinitely long nozzle
problem, the far field behaviour of flow can be treated by a quasi-one-dimensional
problem, where the key point is the local average estimate.

Remark 2.3. It is easy to check the gravity:

φ=gxi

for i= 1,·· · ,n−1, satisfying the conditions (2.5) on φ. It can also be applied to the
electric field.

Remark 2.4. In Theorem 2.2, the regularity of (ρ,u,p) is restricted by the regularity
of φ. One can lift the regularity of u and ρ by imposing higher regularity conditions on
φ.

3. Approximate problems and variational approach
Unlike the airfoil problem in [14], the asymptotic behaviours of the flow at the inlet

and the outlet are different, in order to employ the variational approach, we also need
to construct a series of truncated problems in bounded domains to approximate the
Problem I1(m) and Problem C1 (m) which are introduced later. For L>0, let

ΩL=
{
x∈Ω

∣∣ |xn|<L}, S±L = Ω∩{xn=±L}. (3.1)

Let HL be a Hilbert space under H1-norm such that

HL=
{
ϕ∈H1(ΩL) : ϕ

∣∣
S−L

= 0
}
. (3.2)

In this section, we will introduce the approximate problems of Problem (m) to
the incompressible case and the compressible case, and then obtain the existence of the
solutions of the approximate problems by the variational approach.

3.1. Incompressible potential flow. Let us consider the incompressible case
first. By (2.2)3, we can introduce the velocity potential ϕ̄ for the incompressible case
such that

∇ϕ̄= ū. (3.3)

Then, Problem (m) for the incompressible case becomes:
Problem I1 (m). Let n≥2. Find function ϕ̄ such that

∆ϕ̄= 0, x∈Ω,
∂ϕ̄
∂n = 0, x∈∂Ω,∫
S0

∂ϕ̄
∂l ds=m,

(3.4)

where S0 is any arbitrary cross section of the nozzle, and n and l are the unit outer
normals of the nozzle wall ∂Ω and S0 respectively.

As said before, we will truncate the domain to introduce the approximated problems
of Problem I1 (m) in ΩL for L>0. More precisely, let us consider the following
truncated problem for the incompressible flow:
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Problem I2 (m, L): Find a function ϕ̄L such that,
∆ϕ̄L= 0, x∈ΩL,
∂ϕ̄L
∂n = 0, ∂Ω∩∂ΩL,
∂ϕ̄L
∂xn

= m
|S+
L |
, on S+

L

ϕ̄L= 0, on S−L .

(3.5)

Here |S+
L | denotes the area of the cross section S+

L . We remark that boundary
condition (3.5)3 on S+

L implies that the mass flux of the flow is m.
Now we can introduce the variational approach to solve Problem I2 (m, L).
Let functional J(ϕ) on HL be defined as

J(ϕ) =
1

2

∫
ΩL

|∇ϕ|2dx− m

|S+
L |

∫
S+
L

ϕdx′, (3.6)

where x′= (x1,x2,. ..,xn−1). Then in order to show the existence of solutions of Prob-
lem I2 (m, L), we will solve the following variational problem:

Problem I3 (m, L): Find a minimizer ϕ̄L∈HL such that

J(ϕ̄L) = min
ϕ∈HL

J(ϕ). (3.7)

For the minimizer of Problem I3 (m, L), we have the following remark.

Remark 3.1. The minimizer of Problem I3 (m, L) is a solution of Problem I2
(m, L).

Proof. (Proof of Remark 3.1.) We only need to show that Equation (3.5) is the
Euler-Lagrangian equation of the variation problem. For any t∈R+ and for any ϕ∈HL

and η∈HL, it is easy to know that ϕ+ tη∈HL, so

J(ϕ+ tη)−J(ϕ) =
1

2

∫
ΩL

(
|∇ϕ+ t∇η|2−|∇ϕ|2

)
dx− mt

|S+
L |

∫
S+
L

ηdx′. (3.8)

Hence

liminf
t→0+

1

t
(J(ϕ+ tη)−J(ϕ)) =

∫
ΩL

∇ϕ ·∇ηdx− m

|S+
L |

∫
S+
L

ηdx′.

If ϕ is the minimizer, then for any η∈HL, we have that

J(ϕ+ tη)−J(ϕ)≥0 and J(ϕ− tη)−J(ϕ)≥0.

Therefore, for any η∈HL,∫
ΩL

∇ϕ ·∇ηdx− m

|S+
L |

∫
S+
L

ηdx′= 0. (3.9)

It means that ϕ is the solution of Problem I2 (m, L).

Therefore, in order to show the existence of solutions of Problem I2 (m, L), we
only need to show the existence of a minimizer of Problem I3 (m, L).

For Problem I3 (m, L), we have the following theorem:
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Theorem 3.1. Problem I3 (m, L) admits a unique minimizer ϕ̄L∈HL. Moreover,
it holds that

1

|ΩL|

∫
ΩL

|∇ϕ̄L|2dx≤Cm2, (3.10)

where constant C does not depend on L.

Proof. We divide the proof into four steps.

Step 1. J(ϕ) is coercive in HL. For any ϕ∈HL, we know that ϕ|S−L = 0 by the

definition. So by the Hölder inequality,∣∣∣∣∣
∫
S+
L

ϕdx′

∣∣∣∣∣=
∣∣∣∣∣
∫
S+
L

∫ L

−L

∂ϕ

∂xn
dxndx

′

∣∣∣∣∣≤C|ΩL| 12 ‖∇ϕ‖L2 . (3.11)

By the Cauchy inequality,

J(ϕ) =
1

2

∫
ΩL

|∇ϕ|2dx− m

|S+
L |

∫
S+
L

ϕdx′

≥ 1

4
‖∇ϕ‖2L2−2C(m,|S+

L |,|ΩL|),

which implies J(ϕ) is coercive.

Step 2. The existence of the minimizer ϕ̄L∈HL. Let {ϕ̄L,n}⊂HL be a minimizer
sequence such that, as n→∞

J(ϕ̄L,n)→α= inf
ϕ∈HL

J(ϕ)>−∞.

Since J(ϕ) is coercive in HL,∫
ΩL

|∇ϕ̄L,n|2dx≤4J(ϕ̄L,n)+8C(m,|S+
L |,|ΩL|)

≤4J(0)+8C(m,|S+
L |,|ΩL|) = 8C(m,|S+

L |,|ΩL|).

Therefore, there exists a subsequence, still denoted by {ϕ̄L,n}, which converges weakly
to a function ϕ̄L∈HL. And, by the lower semi-continuity, it holds that

‖∇ϕ̄L‖2L2 ≤ liminf
n→∞

∫
ΩL

|∇ϕ̄L,n|2dx≤8C(m,|S+
L |, |ΩL|). (3.12)

On the other hand, similar to the proof of (3.11), we have∫
S+
L

(ϕ̄L,n− ϕ̄L)2dx′≤C(ΩL)

(∫
ΩL

|ϕ̄L,n− ϕ̄L|2dx
) 1

2
(∫

ΩL

|∇ϕ̄L,n−∇ϕ̄L|2dx
) 1

2

.

(3.13)
Then, by the L2(ΩL) strong convergence of the sequence of {ϕ̄L,n}, we have that∫

S+
L

|ϕ̄L,n− ϕ̄L|dx′→0, as n→∞. (3.14)

Therefore, it follows from (3.12) and (3.14) that J(ϕ̄L)≤ liminfn→∞J(ϕ̄L,n) =α, which
means

J(ϕ̄L) = min
ϕ∈HL

J(ϕ) =α. (3.15)
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Step 3. The uniqueness of the minimizer. If there are two minimizers ϕ1∈HL and
ϕ2∈HL, then we know that

J(ϕ1) =J(ϕ2)≤J(
ϕ1 +ϕ2

2
).

So

0≥J(ϕ1)+J(ϕ2)−2J(
ϕ1 +ϕ2

2
)

=
1

2

∫
ΩL

(|∇ϕ1|2 + |∇ϕ2|2−2|∇(
ϕ1 +ϕ2

2
)|2)dx

≥1

4

∫
ΩL

|∇(ϕ1−ϕ2)|2dx.

By the fact that ϕ1 =ϕ2 = 0 on S−L , we know that ϕ1 =ϕ2. Therefore, the minimizer is
unique.

Step 4. We will show (3.10) in this step. By direct computation and (3.11),∫
ΩL

|∇ϕ̄L|2dx=J(ϕ̄L)+
m

|S+
L |

∫
S+
L

ϕ̄Ldx
′≤J(0)+

m

|S+
L |

∫
S+
L

ϕ̄Ldx
′

≤C m

|S+
L |
|ΩL|

1
2 ‖∇ϕ̄L‖L2 .

That is

1

|ΩL|

∫
ΩL

|∇ϕ̄L|2dx≤C
m2

|S+
L |2
≤C m2

S2
min

, (3.16)

where Smin is defined to be the minimum of |S+
L |.

For the regularity of the solution of Problem I2 (m, L), by the standard elliptic
estimate (cf. see [23]), we have the following lemma:

Lemma 3.1. Assume (2.1) holds, then there are constants 0<α<1 and C depending
on ΩL such that for any solution ϕ̄L∈HL of Problem I2 (m, L), we have ϕ̄L∈
H2(ΩL/2),

sup
x∈ΩL/2

|∇ϕ̄L|≤C
(
||∇ϕ̄L||2L2(ΩL)

)
,

and

sup
x1,x2∈ΩL/2

|∇ϕ̄L(x1)−∇ϕ̄L(x2)|
|x1−x2|α

≤C
(
||∇ϕ̄L||2L2(ΩL)

)
.

We omit the proof since it is standard.

3.2. Compressible potential flow. Now let us consider the compressible case.
By (2.6)3, we can introduce the velocity potential ϕ(ε) for the compressible case such
that

∇ϕ(ε) =uε. (3.17)

Then Problem (m) for the compressible case becomes
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Problem C1 (m). Let n≥2. Find function ϕ(ε) such that
div
(
ρε(|∇ϕ(ε)|2,φ)∇ϕ(ε)

)
= 0, x∈Ω,

∂ϕ(ε)

∂n = 0, x∈∂Ω,∫
S0
ρε
(
|∇ϕ(ε)|2,φ

)
∂ϕ(ε)

∂l ds=m.

(3.18)

By the straightforward computation, (3.18)1 can be rewritten as

n∑
ij=1

aεij∂ijϕ
(ε) +

n∑
i=1

bεi∂iϕ
(ε) = 0, (3.19)

where

aεij =ρε
(
δij−

ε2∂iϕ
(ε)∂jϕ

(ε)

p̃′(ρε)

)
, (3.20)

and

bεi =
ε2ρε∂iφ

p̃′(ρε)
. (3.21)

For 0<ε<1 and Mε<θ<1, we have that

0<λ1|ξ|2≤
n∑

ij=1

aεijξiξj≤λ2|ξ|2, (3.22)

where constants λ1 and λ2 do not depend on ε.
Since Equation (3.19) is nonlinear, and is strictly elliptic if and only if Mε(φ)<1.

We do not know whether Equation (3.19) is elliptic or not before solving it. Therefore
we need to introduce the subsonic cut-off to truncate the coefficients of Equation (3.19).
For 0<ε0<1 and 0<θ<1, we introduce q̊ε0θ (φ) = inf0<ε<ε0 q

ε
θ(φ), and cut-off function

on the phase plane

q̂(q2,φ) =


q2−2φ if |q|≤ q̊ε0θ (φ),

monotone smooth function if q̊ε0θ (φ)≤|q|≤ q̊ε0θ+1
2

(φ),

supx∈Ω

((
q̊ε0θ+1

2

)2

(φ)−2φ

)
(x) if |q|≥ q̊ε0θ+1

2

(φ).

Let ρ̂(ε) satisfy

q̂(|u|2,φ)

2
+h(ε)(ρ̂(ε))−h(ε)(1) = 0, (3.23)

which is equivalent to

ρ̂ε= ρ̂ε(|u|2,φ) = h̃−1

(
h̃(1)− ε

2q̂(|u|2,φ)

2

)
. (3.24)

We denote ρ̂εΛ(Λ,φ) := ∂
∂Λ ρ̂

ε(Λ,φ), and ρ̂εφ(Λ,φ) := ∂
∂φ ρ̂

ε(Λ,φ).

Then, Problem C1 (m) is reformulated into Problem C2 (m) as follows.
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Problem C2 (m): Let n≥2. Find function ϕ(ε) to satisfy
div
(
ρ̂ε(|∇ϕ(ε)|2,φ)∇ϕ(ε)

)
= 0, x∈Ω,

∂ϕ(ε)

∂n = 0, x∈∂Ω,∫
S0
ρ̂ε
(
|∇ϕ(ε)|2

)
∂ϕ(ε)

∂l ds=m.

(3.25)

By the straightforward calculation, we know that (3.25)1 can be rewritten as

n∑
i,j=1

âij(∇ϕ(ε),φ)∂ijϕ
(ε) +

n∑
i=1

b̂i(∇ϕ(ε),φ)∂iϕ
(ε) = 0,

where

âij

(
∇ϕ(ε),φ

)
= ρ̂ε

(
|∇ϕ(ε)|2,φ

)(
δij−

q̂Λ(|∇ϕ(ε)|2,φ)∂iϕ
(ε)∂jϕ

(ε)

(cε)2

)
= ρ̂ε

(
|∇ϕ(ε)|2,φ

)(
δij−

ε2q̂Λ(|∇ϕ(ε)|2,φ)∂iϕ
(ε)∂jϕ

(ε)

p̃′(ρ̂ε)

)
, (3.26)

and

b̂i

(
∇ϕ(ε),φ

)
=
ε2ρ̂εq̂φ(|∇ϕ(ε)|2,φ)∂iφ

p̃′(ρ̂ε)
. (3.27)

Obviously,

λ̂1|ξ|2≤
n∑

i,j=1

âij

(
∇ϕ(ε),φ

)
ξiξj≤ λ̂2|ξ|2, |b̂i(∇ϕ(ε),φ)|≤C|∂iφ|, (3.28)

where constants C, λ̂1, and λ̂2 depend only on the subsonic truncation parameters θ
and ε0, and do not depend on the solution ϕ(ε).

Next, as in the previous subsection for the incompressible case, we approximate
Problem Ĉ1 (m) for any L sufficiently large, by considering the following approximate
problem:

Problem C3 (m, L): For any sufficiently large L>0, find a function ϕ
(ε)
L such

that, 

div
(
ρ̂ε(|∇ϕ(ε)

L |2,φ)∇ϕ(ε)
L

)
= 0, x∈ΩL,

∂ϕ
(ε)
L

∂n = 0, ∂Ω∩∂ΩL,

ρ̂ε(|∇ϕ(ε)
L |2,φ)

∂ϕ
(ε)
L

∂xn
= m
|S+
L |
, on S+

L

ϕ
(ε)
L = 0, on S−L .

(3.29)

Similarly to the incompressible case, we will solve Problem C3 (m, L) by a
variational approach. Here, we follow the idea used in [14] to introduce a variational
formulation. Denote

G(ε)(Λ,φ) =
1

2

∫ Λ

0

ρ̂(ε)(λ,φ)dλ.



M. LI, T.-Y. WANG, AND W. XIANG 1203

In order to compare the solutions of Problem I2 (m, L) and Problem C3 (m,
L), we introduce

I(ε) (ϕ,ϕ̄L) =ε−4

∫
Ω

[
G(ε)

(
|∇ϕ|2,φ

)
−G(ε)

(
|∇ϕ̄L|2,φ

)
−∇ϕ̄L ·(∇ϕ−∇ϕ̄L)

]
dx. (3.30)

Define

ϕ̃=
ϕ− ϕ̄L
ε2

and ϕ̃
(ε)
L =

ϕ
(ε)
L − ϕ̄L
ε2

. (3.31)

Obviously, both ϕ
(ε)
L and ϕ̃

(ε)
L belong to HL. Then in order to apply the variational ap-

proach to find solutions of Problem C3 (m, L), let us consider the following problem:

Problem C4 (m, L): Find a minimizer ϕ̃
(ε)
L ∈HL such that

I(ε)
(
ϕ̄L+ε2ϕ̃

(ε)
L ,ϕ̄L

)
= min
ϕ̃∈HL

I(ε)(ϕ̄L+ε2ϕ̃,ϕ̄L). (3.32)

For Problem C4 (m, L), we have the following theorem:

Theorem 3.2. Problem C4 (m, L) admits a unique minimizer ϕ̃
(ε)
L ∈HL. More-

over, the minimizer ϕ̃
(ε)
L satisfies that

1

|ΩL|

∫
ΩL

|∇ϕ̃(ε)
L |

2dx≤Cm2, (3.33)

where constant C does not depend on L.

Proof. The proof is divided into four steps.

Step 1. I(ε)(ϕ̄L+ε2ϕ̃,ϕ̄L) = I(ε)(ϕ,ϕ̄L) is coercive with respect to ϕ̃ on HL, i.e.,
we will show that

I(ε)(ϕ,ϕ̄L)≥ C1

2

∫
ΩL

|∇ϕ̃|2dx−C2

∫
ΩL

|∇ϕ̄L|2dx. (3.34)

Let

I(ε)(ϕ,ϕ̄L) = I
(ε)
1 (ϕ,ϕ̄L)+I

(ε)
2 (ϕ,ϕ̄L), (3.35)

where

I
(ε)
1 (ϕ,ϕ̄L)

=:ε−4

∫
ΩL

[
G(ε)

(
|∇ϕ|2,φ

)
−G(ε)

(
|∇ϕ̄L|2,φ

)
−2G

(ε)
Λ

(
|∇ϕ̄L|2,φ

)
∇ϕ̄L ·(∇ϕ−∇ϕ̄L)

]
dx,

and

I
(ε)
2 (ϕ,ϕ̄L) =:ε−4

∫
ΩL

[(
2G

(ε)
Λ

(
|∇ϕ̄L|2,φ

)
−1
)
∇ϕ̄L ·(∇ϕ−∇ϕ̄L)

]
dx.

First, we will show that I
(ε)
1 (ϕ,ϕ̄L) is coercive with respect to ϕ̃ in HL.

Let p= (p1, ·· · ,pn), and let F (ε)(p) =G(ε)
(
|p|2,φ

)
. By straightforward computation,

we can get that

G(ε)
(
|∇ϕ|2,φ

)
−G(ε)

(
|∇ϕ̄|2,φ

)
−2G

(ε)
Λ

(
|∇ϕ̄|2,φ

)
∇ϕ̄ ·(∇ϕ−∇ϕ̄)
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=F (ε)(∇ϕ)−F (ε) (∇ϕ̄)−∇F (ε) (∇ϕ̄) ·(∇ϕ−∇ϕ̄)

=

n∑
i,j=1

∫ 1

0

(1− t)∂pipjF (ε) (t∇ϕ+(1− t)∇ϕ̄)dt∂i(ϕ− ϕ̄)∂j(ϕ− ϕ̄).

It is easy to check that ∂2
ppF

(ε) is uniformly positive due to the subsonic cut-off. In fact,
we have (

∂2
ppF

(ε)(p)
)
i,j

= âij . (3.36)

From property (3.28), we get the uniform positivity of ∂2
ppF . As a consequence, we have

C1

∫
ΩL

|∇ϕ̃|2dx≤ I(ε)
1 (ϕ,ϕ̄L)≤ C̃1

∫
ΩL

|∇ϕ̃|2dx. (3.37)

Now, let us consider I
(ε)
2 (ϕ,ϕ̄L). Note that∣∣∣ε−2
(

2G
(ε)
Λ

(
|∇ϕ̄L|2,φ

)
−1
)∣∣∣

=
∣∣∣ε−2

(
ρ̂(ε)

(
|∇ϕ̄L|2,φ

)
−1
)∣∣∣

=

∣∣∣∣ε−2

(
h̃−1

(
−ε2q̂(|∇ϕ̄L|2,φ)

2
+ h̃(1)

)
−1

)∣∣∣∣
=

∣∣∣∣ε−2

(
h̃−1

(
−ε2q̂(|∇ϕ̄L|2,φ)

2
+ h̃(1)

)
− h̃−1

(
h̃(1)

))∣∣∣∣
=

∣∣∣∣−q̂(|∇ϕ̄L|2,φ)

2

∫ 1

0

(
h̃−1

)′(
−tε

2q̂(|∇ϕ̄L|2,φ)

2
+ h̃(1)

)
dt

∣∣∣∣
≤C, (3.38)

where constant C is independent of ε. Then

|I(ε)
2 (ϕ,ϕ̄L)|=

∣∣∣∣ε−4

∫
ΩL

[(
2G

(ε)
Λ

(
|∇ϕ̄L|2,φ

)
−1
)
∇ϕ̄L ·(∇ϕ−∇ϕ̄L)

]
dx

∣∣∣∣ ,
≤Cε−2

∫
ΩL

|∇ϕ̄L||∇(ϕ− ϕ̄L)|dx

≤C
∫

ΩL

|∇ϕ̄L|2dx+
C1

2
ε−4

∫
Ω

|∇(ϕ− ϕ̄L)|2dx

=C

∫
ΩL

|∇ϕ̄L|2dx+
C1

2

∫
ΩL

|∇ϕ̃|2dx. (3.39)

By (3.37) and (3.39), we get (3.34). It also implies that I(ε)(ϕ,ϕ̄L) is bounded from
below, i.e., there exists a constant C>0 such that, for all ϕ̃∈HL,

I(ε)(ϕ,ϕ̄L)≥−C. (3.40)

Step 2. Note that ΩL is a bounded domain, so I(ε)(ϕ,ϕ̄L) = I(ε)(ϕ̄L+ε2ϕ̃,ϕ̄L) is
finite for any ϕ̃∈HL. Moreover, by (3.37) and (3.39), we can also show that

I(ε)(ϕ,ϕ̄L)≤ C1 +2C̃1

2

∫
ΩL

|∇ϕ̃|2dx+C3

∫
ΩL

|∇ϕ̄L|2dx. (3.41)
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Step 3. We will prove that I(ε)(ϕ,ϕ̄L) is uniformly convex in space HL.

Note that I
(ε)
2 (ϕ,ϕ̄L) is linear with respect to ϕ. Then for any ϕ1, ϕ2∈HL, we have

that

I(ε) (ϕ1,ϕ̄L)+I(ε) (ϕ2,ϕ̄L)−2I(ε)

(
ϕ1 +ϕ2

2
,ϕ̄L

)
= I

(ε)
1 (ϕ1,ϕ̄L)+I

(ε)
1 (ϕ2,ϕ̄L)−2I

(ε)
1

(
ϕ1 +ϕ2

2
,ϕ̄L

)
=

∫
ΩL

F (∇ϕ1)+F (∇ϕ2)−2F

(
∇ϕ1 +∇ϕ2

2

)
dx

≥ C1

2
ε−4‖∇ϕ1−∇ϕ2‖2L2

=
C1

2
‖∇ϕ̃1−∇ϕ̃2‖2L2 . (3.42)

It is the uniform convexity of I(ε).

Step 4. We are now ready to show the unique existence of the minimizer ϕ̃(ε)∈HL

of Problem C4 (m, L), which satisfies (3.33).

Firstly, we will show the continuity of I(ε)(ϕ̄L+ε2ϕ̃,ϕ̄L) with respect to ϕ̃ in HL.
Let ϕ̃1 and ϕ̃2 in HL, correspond to ϕ1 and ϕ2 via (3.31) respectively. We have

I(ε)(ϕ1,ϕ̄L)−I(ε)(ϕ2,ϕ̄L)

=ε−4

∫
ΩL

[
1

2

∫ |∇ϕ1|2

|∇ϕ2|2
ρ̂ε(Λ,φ)dΛ−∇ϕ̄L ·∇(ϕ1−ϕ2)

]
dx

=ε−4

∫
ΩL

[
1

2

∫ |∇ϕ1|2

|∇ϕ2|2
ρ̂ε(Λ,φ)dΛ− ρ̂ε(|∇ϕ̄L|2)∇ϕ̄L ·∇(ϕ1−ϕ2)

]
dx

+ε−2

∫
ΩL

[
ε−2

(
ρ̂ε(|∇ϕ̄L|2,φ)−1

)
∇ϕ̄L ·∇(ϕ1−ϕ2)

]
dx.

Similar to the argument as done in Step 1 to obtain (3.37) and (3.39), and by the Hölder
inequality, we have:∣∣∣I(ε)(ϕ1,ϕ̄L)−I(ε)(ϕ2,ϕ̄L)

∣∣∣
≤ C̃1

2

∫
ΩL

|∇(ϕ̃1− ϕ̃2)|2dx+Cε−2

∫
ΩL

|∇ϕ̄L||∇(ϕ1−ϕ2)|dx

≤C||∇ϕ̃1−∇ϕ̃2||2L2 +C||∇ϕ̃1−∇ϕ̃2||L2 .

Then we have proved the continuity of the functional I(ε)(ϕ̄L+ε2ϕ̃,ϕ̄L) with respect
to ϕ̃ in HL. Based on it, we can show the existence of the minimizer ϕ̃(ε) by the standard
compactness argument via selecting a subsequence from the subsequence of ϕ̃(i), where
I(ε)(ϕ̄L+ε2ϕ̃(i),ϕ̄L) converges to the minimal value of the functional I(ε)(ϕ̄L+ε2ϕ̃,ϕ̄L)
in HL.

For the uniqueness, if ϕ1 and ϕ2 are two minimizers such that

I(ε)(ϕ1,ϕ̄L) = I(ε)(ϕ2,ϕ̄L)≤ I(ε)(
ϕ1 +ϕ2

2
,ϕ̄L).
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Then by (3.42), we know that

0≥ I(ε) (ϕ1,ϕ̄L)+I(ε) (ϕ2,ϕ̄L)−2I(ε)

(
ϕ1 +ϕ2

2
,ϕ̄L

)
≥ C1

2
ε−4‖∇ϕ1−∇ϕ2‖2L2 . (3.43)

Therefore,

∇ϕ1−∇ϕ2 = 0. (3.44)

Note that ϕ̃1, ϕ̃2∈HL. So ϕ̃1 = ϕ̃2. It means that the minimizer is unique in HL.
Finally, replacing ϕ by ϕ̄L, we know that I(ε)(ϕ,ϕ̄L)≤ I(ε)(ϕ̄L,ϕ̄L). So (3.34) leads

to ∫
ΩL

|∇ϕ̃|2dx≤C
∫

ΩL

|∇ϕ̄L|2dx, (3.45)

which leads to (3.33) from (3.10).

Next, we will show that the minimizer of Problem C4 (m, L) is actually a solution
of Problem C3 (m, L).

Proposition 3.1. The minimizer of Problem C4 (m, L) satisfies Equations
(3.29).

Proof. For any t∈R+ and for any η∈HL, we have that ϕ
(ε)
L + tη∈HL. Then,

0≤liminf
t→0+

1

t
(I(ε)(ϕ

(ε)
L + tη,ϕ̄L)−I(ε)(ϕ,ϕ̄L))

= liminf
t→0+

1

t
ε−4

∫
ΩL

[
G(ε)

(
|∇(ϕ

(ε)
L + tη)|2,φ

)
−G(ε)

(
|∇ϕ̄L|2,φ

)
−∇ϕ̄L ·

(
∇(ϕ

(ε)
L + tη)−∇ϕ̄L

)]
dx

= ε−4

∫
Ω

[
2G

(ε)
Λ

(
|∇ϕ(ε)

L |
2,φ
)
∇ϕ(ε)

L ·∇η−∇ϕ̄L ·∇η
]
dx. (3.46)

Note that η is arbitrary, so∫
ΩL

ρ̂(ε)(|∇ϕ(ε)
L |

2,φ)∇ϕ(ε)
L ·∇ηdx=

∫
Ω

[
2G

(ε)
Λ

(
|∇ϕ(ε)

L |
2,φ
)
∇ϕ(ε)

L ·∇η
]
dx

=

∫
ΩL

∇ϕ̄L ·∇ηdx

=
m

|S+
L |

∫
S+
L

ηdx′.

Then (3.29) follows by integration by parts.

Finally, for the regularity of solution of Problem C3 (m, L), by the standard
elliptic estimate (cf. see [23]), we actually have the following lemma.

Lemma 3.2. Assume (2.1) holds, then there exist constants 0<α<1 and C depending
on ΩL such that for any solution ϕL of Problem C3 (m, L), we have the same
estimates as the ones in Lemma 3.1 by replacing ϕ̄L by ϕL.

4. Existence of solutions of Problem I1 (m) and Problem C2 (m)
In order to pass the limit L→∞ to obtain solutions of Problem I1 (m) and

Problem C2 (m) from solutions of Problem I1 (m, L) or Problem C1 (m, L)
respectively, we need to derive the uniform estimate of solutions of Problem I1 (m,
L) or Problem C2 (m, L) with respect L. It is the local average estimate.
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For the local average estimate, we need to introduce the local set: For x0 =
(x′0,x0,n)∈Ω, let

Ω(a,b) :={x= (x′,xn)∈Ω | a<xn<b},

and define

P(a,b)(ϕ) =
1

|Ω(a,b)|

∫
Ω(a,b)

ϕ(x)dx. (4.1)

First, from the properties of the nozzle (2.1), we have the following lemma and
proposition of the Poincaré inequality.

Lemma 4.1 (Uniform Poincaré Inequality). For any a∈R, 1≤p<∞, one has∥∥ϕ(x)−P(a,a+1)(ϕ)
∥∥
Lp(Ω(a,a+1))

≤C‖∇ϕ(x)‖Lp(Ω(a,a+1)), (4.2)

where C is a positive constant depending only on p, Ω, independent of a.

This lemma is Theorem 3 in [15], so we omit the proof.
Moreover, in Ω, it follows from Lemma 4.1 that we also have the following Poincaré-

type inequality.

Proposition 4.1. For a<b, one can obtain:

|P[a−1,a](ϕ)−P[b,b+1](ϕ)|≤C
∫

Ω(a−1,b+1)

|∇ϕ|dx, (4.3)

where constant C only depends on Ω and does not depend on a and b.

Based on the inequalities, we will introduce the local average lemma case by case.

4.1. The local average lemma for the incompressible case. Now, let us
introduce the local average lemma for the incompressible case firstly.

Lemma 4.2. There is a uniform l depending only on Ω, such that for any b−a>l
and Ω(a−1,b+1)⊂ΩL

2
, the solution ϕ̄L of Equations (3.5) satisfies

1

|Ω(a,b)|

∫
Ω(a,b)

|∇ϕ̄L|2dx≤Cm2, (4.4)

where C does not depend on L.

Proof. For any −L2 <a−1<a<b<b+1< L
2 , let η be a smooth function such that

η∈C∞(ΩL), 0≤η≤1, |∇η|≤1, η|Ω(a,b)
= 1, and η|Ω−Ω(a−1,b+1)

= 0. Then, define the test

function as η2φ̂∈H1(ΩL), where

φ̂(x) =


ϕ̄L(x)−P[a−1,a](ϕ̄L), xn≤a,
ϕ̄L(x)−P[a−1,a](ϕ̄L)−(P[b,b+1](ϕ̄L)−P[a−1,a](ϕ̄L))xn−ab−a , a≤xn≤ b,
ϕ̄L(x)−P[b,b+1](ϕ̄L), xn≥ b.

Obviously, η2φ̂∈HL. From Equations (3.5) and by integration by parts, we have∫
ΩL

∇ϕ̄L ·∇(η2φ̂)dx= 0.
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Note that ∇φ̂=∇ϕ̄L−
P[b,b+1](ϕ̄L)−P[a−1,a](ϕ̄L)

b−a χ(a,b)(x)~en, where ~en= (0, ·· · ,0,1), and
χ(a,b)(x) is the characteristic function of Ω(a,b). Therefore,∫

Ω(a−1,b+1)

η2|∇ϕ̄L|2dx−
∫

Ω(a,b)

η2 ∂ϕ̄L
∂xn

(
P[b,b+1](ϕ̄L)−P[a−1,a](ϕ̄L)

b−a

)
dx

=−2

∫
Ω(a−1,b+1)

η∇ϕ̄L ·∇ηφ̂dx. (4.5)

Note that for any a<xn<b, the conservation of mass flux (1.5) implies that∫
Sxn

∂ϕ̄L
∂xn

dx′=m.

Then, we have∫
Ω(a−1,b+1)

η2|∇ϕ̄L|2dx=−2

∫
Ω(a−1,b+1)

η∇ϕ̄L ·∇ηφ̂dx+(P[b,b+1](ϕ̄L)−P[a−1,a](ϕ̄L))m.

Consequently, by the fact that ∇η= 0 on Ω(a,b), we have∫
Ω(a,b)

|∇ϕ̄L|2dx≤
∫

Ω(a−1,b+1)

η2|∇ϕ̄L|2dx

≤2

∣∣∣∣∣
∫

Ω(a−1,a)∪Ω(b,b+1)

η∇ϕ̄L ·∇ηφ̂dx

∣∣∣∣∣+ ∣∣P[b,b+1](ϕ̄L)−P[a−1,a](ϕ̄L)
∣∣m

≤C

∣∣∣∣∣
∫

Ω(a−1,a)∪Ω(b,b+1)

|∇ϕ̄L||φ̂|dx

∣∣∣∣∣+ ∣∣P[b,b+1](ϕ̄L)−P[a−1,a](ϕ̄L)
∣∣m

≤C

(∫
Ω(a−1,a)

|∇ϕ̄L|2dx

) 1
2
(∫

Ω(a−1,a)

|ϕ̄L−P[a−1,a](ϕ̄L)|2dx

) 1
2

+C

(∫
Ω(b,b+1)

|∇ϕ̄L|2dx

) 1
2
(∫

Ω(b,b+1)

|ϕ̄L−P[b,b+1](ϕ̄L)|2dx

) 1
2

+
∣∣P[b,b+1](ϕ̄L)−P[a−1,a](ϕ̄L)

∣∣m. (4.6)

Then, by Lemma 4.1, Proposition 4.1 and (4.6), we know that∫
Ω(a,b)

|∇ϕ̄L|2dx≤C1

∫
Ω(a−1,b+1)−Ω(a,b)

|∇ϕ̄L|2dx+C2m

∫
Ω(a−1,b+1)

|∇ϕ̄L|dx (4.7)

where C1 and C2 are two uniform positive constants.
On the other hand, for any δ�1, we have

m

∫
Ω(a−1,b+1)

|∇ϕ̄L|dx≤ δ
∫

Ω(a−1,b+1)

|∇ϕ̄L|2dx+
1

4δ
|Ω(a−1,b+1)|m2. (4.8)

Here |Ω(a−1,b+1)| is the measure of Ω(a−1,b+1). Combining (4.7) and (4.8) together, we
have∫

Ω(a,b)

|∇ϕ̄L|2dx≤
(
C1 +C2δ

C1 +1

)∫
Ω(a−1,b+1)

|∇ϕ̄L|2dx+
C2

4δ(C1 +1)
|Ω(a−1,b+1)|m2.
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Introduce

A(a,b) =
1

b−a

∫
Ω(a,b)

|∇ϕ̄L|2dx.

Then it becomes

A(a,b)≤
(
C1 +C2δ

C1 +1

)
b−a+2

b−a
A(a−1,b+1) +

C2

4δ(C1 +1)

|Ω(a−1,b+1)|
b−a

m2. (4.9)

By choosing constant δ sufficiently small, one can find the uniform constant l such that,
when b−a>l, (

C1 +C2δ

C1 +1

)
b−a+2

b−a
<ϑ<1.

Hence, (4.9) becomes

A(a,b)≤ϑA(a−1,b+1) +C ′m2.

By Lemma 8.23 in [23] and (3.10), we know that there exists α>0 such that

A(a,b)≤C
(

(
b−a
2L

)αA(−L,L) +m2

)
≤C

(
(
b−a
2L

)α+1

)
m2.

If L>l, where l is sufficiently large, then (4.4) holds where the constant C does not
depend on L.

Combining Lemma 3.1, above lemma leads to

Lemma 4.3. Assume (2.1) holds, then there are constants 0<α<1 and C indepen-
dent of L, for any b−a>l and Ω(a−1,b+1)⊂ΩL

2
, such that for any solution ϕ̄L∈HL of

Problem I2 (m, L),

sup
x∈Ω(a,b)

|∇ϕ̄L|≤Cm2,

and

sup
x,y∈Ω(a,b)

|∇ϕ̄L(x)−∇ϕ̄L(y)|
|x−y|α

≤Cm2.

4.2. The local average lemma for the compressible case. Next, let us
consider the average lemma for the compressible case.

Lemma 4.4. There is a uniform constant l depending only on Ω, such that for any

b−a>l and Ω(a−1,b+1)⊂ΩL
2

, the solution ϕ̃
(ε)
L of Equations (3.29) satisfies

1

|Ω(a,b)|

∫
Ω(a,b)

|∇ϕ̃(ε)
L |

2dx≤Cm2, (4.10)

where constant C does not depend on L.
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Proof. For any −L2 <a−1<a<b<b+1< L
2 , define smooth function η such that

η∈C∞(ΩL), 0≤η≤1, |∇η|≤1, η|Ω(a,b)
= 1 and η|Ω−Ω(a−1,b+1)

= 0. Then as done in the
proof of Lemma 4.2, we introduce

φ̂(x) =


ϕ̃

(ε)
L (x)−P[a−1,a](ϕ̃

(ε)
L ), xn≤a,

ϕ̃
(ε)
L (x)−P[a−1,a](ϕ̃

(ε)
L )−(P[b,b+1](ϕ̃

(ε)
L )−P[a−1,a](ϕ̃

(ε)
L ))xn−ab−a , a≤xn≤ b,

ϕ̃
(ε)
L (x)−P[b,b+1](ϕ̃

(ε)
L ), xn≥ b.

Then the test function η2φ̂ satisfies that η2φ̂∈H1(ΩL) and
(
η2φ̂
)
|xn=±L= 0. Therefore

η2φ̂∈HL and ∫
ΩL

(
ρ̂ε(|∇ϕ(ε)

L |
2,φ)∇ϕ(ε)

L −∇ϕ̄L
)
·∇(η2φ̂)dx= 0.

So ∫
Ω(a−1,b+1)

η2
(
ρ̂ε(|∇ϕ(ε)

L |
2,φ)∇ϕ(ε)

L −∇ϕ̄L
)
·∇φ̂dx

=−2

∫
Ω(a−1,b+1)

η
(
ρ̂ε(|∇ϕ(ε)

L |
2,φ)∇ϕ(ε)

L −∇ϕ̄L
)
·∇ηφ̂dx.

Note that ∇φ̂=∇ϕ̃(ε)
L −

P[b,b+1](ϕ̃
(ε)
L )−P[a−1,a](ϕ̃

(ε)
L )

b−a χa,b(x)~en. So,∫
Ω(a−1,b+1)

η2
(
ρ̂ε(|∇ϕ(ε)

L |
2,φ)∇ϕ(ε)

L −∇ϕ̄L
)
·∇ϕ̃(ε)

L dx

+

∫
Ω(a,b)

η2

(
ρ̂ε(|∇ϕ(ε)

L |
2,φ)

∂ϕ
(ε)
L

∂xn
− ∂ϕ̄L
∂xn

)
P[b,b+1](ϕ̃

(ε)
L )−P[a−1,a](ϕ̃

(ε)
L )

a−b
dx

=−2

∫
Ω(a−1,b+1)

η
(
ρ̂ε(|∇ϕ(ε)

L |
2,φ)∇ϕ(ε)

L −∇ϕ̄L
)
·∇ηφ̂dx. (4.11)

Since η= 1 on Ωa,b and
∫
Sxn

ρ̂ε(|∇ϕ(ε)
L |2,φ)

∂ϕ
(ε)
L

∂xn
dx′=m=

∫
Sxn

∂ϕ̄L
∂xn

dx′, the above iden-

tity becomes ∫
Ω(a−1,b+1)

η2

ε2

(
ρ̂ε(|∇ϕ(ε)

L |
2,φ)∇ϕ(ε)

L −∇ϕ̄L
)
·∇ϕ̃(ε)

L dx

=− 2

ε2

∫
Ω(a−1,b+1)

η
(
ρ̂ε(|∇ϕ(ε)

L |
2,φ)∇ϕ(ε)

L −∇ϕ̄L
)
·∇ηφ̂dx. (4.12)

For the left-hand side of the identity above,∫
Ω(a−1,b+1)

η2

ε2

(
ρ̂ε(|∇ϕ(ε)

L |
2,φ)∇ϕ(ε)

L −∇ϕ̄L

)
·∇ϕ̃(ε)

L dx

=

∫
Ω(a−1,b+1)

η2ρ̂ε(|∇ϕ(ε)
L |

2,φ)|∇ϕ̃(ε)
L |

2dx+

∫
Ω(a−1,b+1)

η2 ρ̂
ε(|∇ϕ(ε)

L |
2,φ)−1

ε2
∇ϕ̄L ·∇ϕ̃(ε)

L dx.

Because
ρ̂ε(|∇ϕ(ε)

L |
2,φ)−1

ε2 is bounded, for arbitrary ν >0,∣∣∣∣∣
∫

Ω(a−1,b+1)

η2 ρ̂
ε(|∇ϕ(ε)

L |2,φ)−1

ε2
∇ϕ̄L ·∇ϕ̃(ε)

L dx

∣∣∣∣∣
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≤ν
∫

Ω(a−1,b+1)

|∇ϕ̃(ε)
L |

2dx+
C

ν

∫
Ω(a−1,b+1)

|∇ϕ̄L|2dx.

For the right-hand side of the identity (4.12), note that ∇η= 0 on Ω[a−1,b+1]\Ω[a,b], so∣∣∣∣∣ε−2

∫
Ω(a−1,b+1)

η
(
ρ̂ε(|∇ϕ(ε)

L |
2,φ)∇ϕ(ε)

L −∇ϕ̄L

)
·∇ηφ̂dx

∣∣∣∣∣
=

∣∣∣∣∣
∫

Ω(a−1,b+1)

ηρ̂ε(|∇ϕ(ε)
L |

2,φ)∇ϕ̃(ε)
L ·∇ηφ̂dx+

∫
Ω(a−1,b+1)

η
ρ̂ε(|∇ϕ(ε)

L |
2,φ)−1

ε2
∇ϕ̄L ·∇ηφ̂dx

∣∣∣∣∣
≤C1

∣∣∣∣∣
∫

Ω[a−1,b+1]−Ω[a,b]

|∇ϕ̃(ε)
L ||φ̂|dx

∣∣∣∣∣+C2

∣∣∣∣∣
∫

Ω[a−1,b+1]−Ω[a,b]

|∇ϕ̄L||φ̂|dx

∣∣∣∣∣
≤C1

∫
Ω[a−1,b+1]−Ω[a,b]

|∇ϕ̃(ε)
L |

2dx+C2

∫
Ω[a−1,b+1]−Ω[a,b]

|∇ϕ̄L|2dx+C3

∫
Ω[a−1,b+1]−Ω[a,b]

|φ̂|2dx.

Notice that,∫
Ω[a−1,b+1]−Ω[a,b]

|φ̂|2dx

=

∫
Ω[a−1,a]

|φ̂|2dx+

∫
Ω[b,b+1]

|φ̂|2dx

=

∫
Ω[a−1,a]

|ϕ̃(ε)
L (x)−P[a−1,a](ϕ̃

(ε)
L )|2dx+

∫
Ω[b,b+1]

|ϕ̃(ε)
L (x)−P[b,b+1](ϕ̃

(ε)
L )|2dx

≤C4

∫
Ω[a−1,a]

|∇ϕ̃(ε)
L |

2dx+C4

∫
Ω[b,b+1]

|∇ϕ̃(ε)
L (x)|2dx

=C4

∫
Ω[a−1,b+1]−Ω[a,b]

|∇ϕ̃(ε)
L (x)|2dx. (4.13)

Then, taking ν= λ
2 , we have

λ

2

∫
Ω(a,b)

|∇ϕ̃(ε)
L |

2dx≤
∫

Ω(a−1,b+1)

η2ρ̂ε(|∇ϕ(ε)
L |

2)|∇ϕ̃(ε)
L |

2dx− λ
2

∫
Ω(a,b)

|∇ϕ̃(ε)
L |

2dx

≤C5

∫
Ω(a−1,b+1)−Ω(a,b)

|∇ϕ̃(ε)
L |

2dx+C6

∫
Ω(a−1,b+1)

|∇ϕ̄L|2dx

≤C5

∫
Ω(a−1,b+1)−Ω(a,b)

|∇ϕ̃(ε)
L |

2dx+C7(b−a+2)m2 (4.14)

where we have used (4.4) for the last inequality. From (4.14), we further have that∫
Ω(a,b)

|∇ϕ̃(ε)
L |

2dx≤ C5

C5 + λ
2

∫
Ω(a−1,b+1)

|∇ϕ̃(ε)
L |

2dx+
C7

C5 + λ
2

(b−a+2)m2. (4.15)

Set

Ba,b=
1

b−a

∫
Ω(a,b)

|∇ϕ̃(ε)
L |

2dx,

It follows from (4.15) that

Ba,b≤
b−a+2

b−a
C5

C5 + λ
2

Ba−1,b+1 +
C7

C5 + λ
2

b−a+2

b−a
m2.
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Now, we take l<b−a such that b−a+2
b−a

C5

C5+λ
2

<ϑ0<1. Then, for any −L2 <a−1<a<

b<b+1< L
2 , we have

Ba,b≤ϑ0Ba−1,b+1 +C8m
2,

where C8 is uniformly bounded. Hence, following the same argument as in the proof of
Lemma 4.2 to obtain (4.4), we have (4.10).

Lemma 4.5. Assume (2.1) holds, then there are constants 0<α<1 and C independent

of L, for any b−a>l and Ω(a−1,b+1)⊂ΩL
2

, such that for any solution ϕ̃
(ε)
L ∈HL of

Problem C4 (m, L),

sup
x∈Ω(a,b)

|∇ϕ̃(ε)
L |≤Cm

2,

and

sup
x,y∈Ω(a,b)

|∇ϕ̃(ε)
L (x)−∇ϕ̃(ε)

L (y)|
|x−y|α

≤Cm2.

In order to prove Lemma 4.5, we need the following proposition.

Proposition 4.2. Let alij for i,j= 1,. ..,n be L∞ functions on B1, and λ be a positive
constant. Assume that

∀ ξ∈Rn, λ|ξ|2≤
n∑

i,j=1

alijξiξj≤λ−1|ξ|2, and f li ∈Lq, q >n.

Let w(x) be a function in H1. Let f li be functions in Lq with q>n. Suppose

n∑
i,j=1

∂i
[
alij(x)∂jw(x)

]
+

n∑
i=1

∂if
l
i = 0

holds in the sense of distribution. Then w(x) is Hölder continuous in B1/2 and there
exist two constants 0<α≤1, k, depending on λ such that

sup
x∈B1/2

|w(x)|≤k
(
||w||L2(B1) + ||f li ||Lq(B1)

)
,

sup
x,y∈B1/2

|w(x)−w(y)|
|x−y|α

≤k
(
||w||L2(B1) + ||f li ||Lq(B1)

)
.

The proof of this proposition can be found in [23] (see Theorem 8.24).

Based on Proposition 4.2, we can show the C1,α-regularity of∇ϕ̃(ε)
L , which is Lemma

4.5.

Proof. (Proof of Lemma 4.5.) Let Φ =∂kϕ̃
(ε)
L , ϕ̄′=∂kϕ̄L for k= 1,. ..,n. Then

by the straightforward calculation, Φ satisfies

n∑
i,j=1

∂i (âij∂jΦ)+
∑
i=1

∂i(b̂k∂iϕ
(ε))+ε−2

n∑
i,j=1

∂i (âij∂jϕ̄
′) = 0.
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Since ∆ϕ̄L= 0, ∆ϕ̄′= 0. We can change the equation above to:

n∑
i,j=1

∂i (âij∂jΦ) =−ε−2
n∑

i,j=1

∂i ((âij−δij)∂jϕ̄′)−
∑
i=1

∂i(b̂k∂iϕ
(ε)).

Here, we introduce

fij =ε−2(âij−δij)

=
ρ̂(ε)−1

ε2
δij−ε−2 q̂Λ(|∇ϕ(ε)|2,φ)∂iϕ

(ε)∂jϕ
(ε)

(cε)2
, (4.16)

then,

ε−2
n∑

i,j=1

∂i ((âij−δij)∂jϕ̄′) =

n∑
i=1

∂i(

n∑
j=1

fij∂jϕ̄
′). (4.17)

Now we are going to show the uniform L∞ estimate of fij . For the first term,

ρ̂ε−1

ε2
=
ρ̂ε
(
|∇ϕ(ε)|2,φ

)
−1

ε2

=
h̃−1

(
−ε2q̂(|∇ϕ(ε)|2,φ)

2 + h̃(1)
)
−1

ε2

=
h̃−1

(
−ε2q̂(|∇ϕ(ε)|2,φ)

2 + h̃(1)
)
− h̃−1(h(1))

ε2

=
−q̂(|∇ϕ(ε)|2,φ)

2

∫ 1

0

(
h̃−1

)′(
−tε

2q̂(|∇ϕ(ε)|2,φ)

2
+ h̃(1)

)
dt. (4.18)

For the second term,

ε−2 q̂Λ(|∇ϕ(ε)|2,φ)∂iϕ
(ε)∂jϕ

(ε)

(cε)2
=
q̂Λ(|∇ϕ(ε)|2,φ)∂iϕ

(ε)∂jϕ
(ε)

p̃′(ρε)
. (4.19)

Therefore, due to the cut-off, we have that the uniform L∞ estimate of fij .
Also, for i,k= 1,·· · ,n,

|b̂k∂iϕ(ε)|≤C|∂kφ|. (4.20)

By ∇φ∈Lq, we can show that b̂k∂iϕ
(ε) are bounded in Lq for q>n.

By employing Proposition 4.2, Lemma 4.4 leads to the interior estimate of φ, which
conclude the uniformly L∞ and Hölder continuous estimates.

Next for the boundary estimate near ∂Ω, one can apply Theorem 8.29 in [23] to
replace Proposition 4.2 to follow the arguments above to show the boundary estimates
near ∂ΩL. For more details, please also see Section 3.5 in [15].

4.3. Existence of solutions of Problem I1 (m) and Problem C2 (m).
Based on the local average lemmas obtained from the previous subsections, we can pass

the limit for (ϕ̄L,ϕ̃
(ε)
L ) as L→∞ to obtain the existence of solutions of Problem I1

(m) and Problem C2 (m).
For any fixed suitably large L, according to previous subsections, one can get H1

functions ϕ̄L(x) and ϕ̃
(ε)
L (x), which are the weak solutions to Problem I2 (m, L)
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and Problem C3 (m, L) respectively. Without loss of generality, ϕ̄L(0) = 0 and

ϕ̃
(ε)
L (0) = 0. Moreover, Lemma 4.3 and Lemma 4.5 showed that ϕ̄L∈C1,α(ΩL/2) and

ϕ̃
(ε)
L ∈C1,α(ΩL/2) with

‖ϕ̄L‖C0,α(ΩL/2)≤Cm
2, and ‖ϕ̃(ε)

L ‖C0,α(ΩL/2)≤Cm
2.

Also, for any η∈C∞0 (ΩL), we have∫
Ω

∇ϕ̄L ·∇ηdx= 0 and

∫
Ω

ρ̂ε(|∇ϕ(ε)
L |

2,φ)∇ϕ(ε)
L ·∇ηdx= 0,

where ϕ
(ε)
L = ϕ̄L+ε2ϕ̃

(ε)
L . For the mass flux condition,∫

S0

∂ϕ̄L
∂l

ds=m and

∫
S0

ρ̂ε
(
|∇ϕ(ε)

L |
2,φ
) ∂ϕ(ε)

L

∂l
ds=m,

where S0 is an arbitrary cross section of ΩL, l are the unit outer normals of S0.
By a standard diagonal argument, there exist functions ϕ̄∈C1,α(Ω) and ϕ̃(ε)∈

C1,α(Ω) with the subsequences ϕ̄Ln and ϕ̃
(ε)
Ln

such that for anyK, for some α′<α, ϕ̄Ln→
ϕ̄ and ϕ̃

(ε)
Ln
→ ϕ̃(ε) in C1,α′ (ΩK) as n→∞. Therefore, ϕ̄ is the solution of Problem

I1(m), and ϕ(ε) is the solution of Problem C2 (m) with ϕ(ε) = ϕ̄+ε2ϕ̃(ε).

5. Uniqueness of solutions in the infinitely long nozzle

5.1. Uniqueness of incompressible flow. In this subsection, we will show
the uniqueness of solutions to Problem I1 (m).

Lemma 5.1. Suppose that Ω satisfies the assumptions (2.1), and ϕ̄k,(k= 1,2) are
weak solutions to the following problem{

∆ϕ̄k = 0, x∈Ω,
∂ϕ̄k
∂n = 0, ∂Ω,

(5.1)

associated with the same incoming mass flux m. There exists a constant Č such that
‖∇ϕ̄k‖L∞ <Č. Then

∇ϕ̄1 =∇ϕ̄2, x∈Ω.

Proof. Set ϕ̌= ϕ̄1− ϕ̄2. Then ϕ̌ satisfies{
∆ϕ̌= 0, x∈Ω,
∂ϕ̌
∂n = 0, ∂Ω.

(5.2)

Let η(x) be a C∞0 function satisfying: η|Ω(−L,L)
= 1, η|Ω−Ω(−L−1,L+1)

= 0, and |∇η|≤
1. And

ψ̂(x) =


ϕ̌(x)− ϕ̌−L , x∈Ω(−L−1,−L),

ϕ̌(x)− ϕ̌−L −
ϕ̌+
L−ϕ̌

−
L

2L (xn+L), x∈Ω(−L,L),
ϕ̌(x)− ϕ̌+

L , x∈Ω(L,L+1),

where ϕ̌−L = 1
|Ω(−L−1,−L)|

∫
Ω(−L−1,−L)

ϕ̌(x)dx, and ϕ̌+
L = 1

|Ω(L,L+1)|
∫

Ω(L,L+1)
ϕ̌(x)dx.
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Multiplying both sides of the first equation in (5.2) by η2ψ̂, and integrating it over
ΩL, one obtains∫

Ω(−L−1,L+1)

η2|∇ϕ̌|2dx−
ϕ̌+
L− ϕ̌

−
L

2L

∫
Ω(−L,L)

η2 ∂ϕ̌

∂xn
dx

=−2

∫
Ω(−L−1,−L)

η(ϕ̌− ϕ̌−L )∇η∇ϕ̌dx−2

∫
Ω(L,L+1)

η(ϕ̌− ϕ̌+
L)∇η ·∇ϕ̌dx. (5.3)

The second term in (5.3) vanishes due to the cancellation of mass flux condition.
Similar to the calculation in Lemma 4.2, we have∫

Ω(−L,L)

|∇ϕ̌|2dx≤C3

∫
Ω(−L−1,−L)∪ Ω(L,L+1)

|∇ϕ̌|2dx, (5.4)

where C3 is independent of L. Then, we can have the iteration inequality:∫
Ω(−L,L)

|∇ϕ̌|2dx≤ ϑ̄
∫

Ω(−L−1,L+1)

|∇ϕ̌|2dx, (5.5)

where C3

C3+1 =: ϑ̄<1 is a uniform constant. By repeating the previous argument, one
can get: For n≥1∫

Ω(−L,L)

|∇ϕ̌|2dx≤ ϑ̄n
∫

Ω(−L−n,L+n)

|∇ϕ̌|2dx

≤ ϑ̄nC3

∫
Ω(−L−n−1,−L−n)∪ Ω(L+n,L+n+1)

|∇ϕ̌|2dx

≤2ϑ̄nČ|Smax|, (5.6)

where |Smax| denotes the maximum of the cross section of the nozzle, and we used
‖∇ϕ̄k‖L∞ <Č, for k= 1,2. Taking n→∞ in (5.6) yields

∇ϕ̌= 0 in ΩL.

Then, it yields for x∈Ω, ∇ϕ̄1 =∇ϕ̄2.

Based on Lemma 5.1, we can conclude the proof of Theorem 2.1.

Proof. (Proof of Theorem 2.1.) It is easy to see that the existence and unique-
ness of a classical solution in Theorem 2.1 follows directly from Subsection 4.3 and
Lemma 5.1. Moreover, it follows from Lemma 4.3 that ū=∇ϕ̄∈ (Cα(Ω))n. It is notice-
able that φ∈W 1,q

loc for q>n, which leads φ is in the Hölder space for some α. By (2.4),
p̄∈Cα(Ω).

5.2. Uniqueness of compressible flow ϕ(ε).

Lemma 5.2. Suppose that Ω satisfies the assumptions (2.1), and ϕ
(ε)
k (k= 1,2) are

the solutions of Problem C2 (m), with ‖∇ϕ(ε)
k ‖L∞ <Ĉ. Then, for x∈Ω, ∇ϕ(ε)

1 (x) =

∇ϕ(ε)
2 (x).

Proof. Set ϕ̌(ε) =ϕ
(ε)
1 −ϕ

(ε)
2 . Then ϕ̌(ε) satisfies

∂i(Aij∂jϕ̌
(ε)) = 0, in Ω,

∂ϕ

∂n
= 0, on ∂Ω,

(5.7)
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where

Aij =

∫ 2

1

(
ρ̂ε(|∇ϕ(ε)

s |2,φ)δij+2ρ̂εΛ(|∇ϕ(ε)
s |2,φ)∂iϕ

(ε)
s ∂jϕ

(ε)
s

)
ds,

with ϕ
(ε)
s = (2−s)ϕ(ε)

1 +(s−1)ϕ
(ε)
2 . Moreover, there exists a positive constant λ, such

that for any vector ξ∈Rn,

λ|ξ|2<Aijξiξj<λ−1|ξ|2. (5.8)

Let η(x) =η(xn) be a C∞0 function satisfying

η(xn)≡1 for |xn|≤L; η(xn)≡0 for |xn|≥L+1, and |η′(xn)|≤1,

For L>0

φ̂(x) =


ϕ̌(ε)(x)− ϕ̌(ε)

L−, x∈Ω(−L−1,−L),

ϕ̌(ε)(x)− ϕ̌(ε)
L−−

ϕ̌
(ε)
L+−ϕ̌

(ε)
L−

2L (xn+L), x∈Ω(−L,L),

ϕ̌(ε)(x)− ϕ̌(ε)
L+, x∈Ω(L,L+1),

where

ϕ̌
(ε)
L−=

1

|Ω(−L−1,−L)|

∫
Ω(−L−1,−L)

ϕ̌(ε)(x)dx, ϕ̌
(ε)
L+ =

1

|Ω(L,L+1)|

∫
Ω(L,L+1)

ϕ̌(ε)(x)dx.

Note that ∇φ̂=∇ϕ̌(ε)− ϕ̌
(ε)
L+−ϕ̌

(ε)
L+

2L χ−L,L(xn)~en, ~en= (0, ·· · ,0,1). Here, χ−L,L(xn) is the
characteristic function of (−L,L).

Multiplying both sides of the first equation in (5.7) by η2φ̂, and integrating it over
Ω, one obtains∫

Ω(−L−1,L+1)

η2Aij∂iϕ̌
(ε)∂jϕ̌

(ε)dx−
ϕ̌

(ε)
L+− ϕ̌

(ε)
L−

2L

∫
Ω(−L,L)

η2Anj∂jϕ̌
(ε)dx

=−2

∫
Ω(−L−1,−L)

η(ϕ̌(ε)− ϕ̌(ε)
L−)Aij∂iη∂jϕ̌

(ε)dx

−2

∫
Ω(L,L+1)

η(ϕ̌(ε)− ϕ̌(ε)
L+)Aij∂iη∂jϕ̌

(ε)dx. (5.9)

The second integral on the left-hand side vanishes. Indeed,∫
Ω(−L,L)

η2Anj∂jϕ̌
(ε)dx

=

∫
Ω(−L,L)

η2(ρ̂ε(|∇ϕ(ε)
1 |2,φ)∇ϕ(ε)

1 − ρ̂ε(|∇ϕ
(ε)
2 |2,φ)∇ϕ(ε)

2 ) ·~endx

since the two solutions possess the same mass flux m. It follows from (5.9) and (5.8)
that

λ

∫
Ω(−L,L)

|∇ϕ̌(ε)|2dx
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≤4λ−1

∫
Ω(−L−1,−L)

|ϕ̌(ε)− ϕ̌(ε)
L−||∇ϕ̌

(ε)|dx+4λ−1

∫
Ω(L,L+1)

|ϕ̌(ε)− ϕ̌(ε)
L+||∇ϕ̌

(ε)|dx

≤C
∫

Ω(−L−1,−L)∪ Ω(L,L+1)

|∇ϕ̌(ε)|2dx. (5.10)

where C is independent of L. We have

λ

∫
Ω(−L,L)

|∇ϕ̌(ε)|2dx≤C
∫

Ω(−L−1,−L)∪ Ω(L,L+1)

|∇ϕ̌(ε)|2dx. (5.11)

and ∫
Ω(−L,L)

|∇ϕ̌(ε)|2dx≤ ϑ̄
∫

Ω(−L−1,−L)∪ Ω(L,L+1)

|∇ϕ̌(ε)|2dx, (5.12)

where C
C+λ =: ϑ̄<1. By repeating the previous argument, one can get: For n≥1∫

Ω(−L,L)

|∇ϕ̌(ε)|2dx≤ ϑ̄n
∫

Ω(−L−n,L+n)

|∇ϕ̌(ε)|2dx

≤ ϑ̄nC3

∫
Ω(−L−n−1,−L−n)∪ Ω(L+n,L+n+1)

|∇ϕ̌(ε)|2dx

≤2ϑ̄nĈ|Smax|, (5.13)

where we used ‖∇ϕ(ε)
k ‖L∞ <Ĉ, for k= 1,2. Taking n→∞ in (5.13) yields

∇ϕ̌(ε) = 0 in ΩL.

Then, it yields for x∈Ω, ∇ϕ(ε)
1 =∇ϕ(ε)

2 .

Remark 5.1. It is easy to see that when |∇ϕ(ε)|<q̊ε0θ (φ), ϕ(ε) is the same solution
as the one obtained in [15].

6. Proof of Theorem 2.2
In this section, we will conclude the proof of Theorem 2.2 by showing that the

solutions of Problem C2 (m) are solutions of Problem C1 (m), and then consider
the convergence rate of the low Mach number limit.

Proof. (Proof of Theorem 2.2.) Up to now, we have shown that for a given fixed
cut-off parameter θ and ε0, there exists a unique solution of Problem C2 (m), which
is denoted as ϕ(ε)(x;ε0,θ). It is noticeable that for a given θ∈ (0,1), if |∇ϕ(ε)(x;ε0,θ)|<
q̊ε0θ (φ), then ϕ(ε)(x;ε0,θ) is the unique solution of Problem C2 (m). Note that

|∇ϕ(ε)(x;ε0,θ)|= |ε2∇ϕ̃(ε)(x;ε0,θ)+∇ϕ̄(x)|≤max |∇ϕ̄|+C(ε0,θ)ε
2. (6.1)

Hence, there exists ε0,θ≤ε0 such that |∇ϕ(ε)(x;ε0,θ)|<q̊ε0θ (φ), for any 0<ε<ε0,θ. From
the definition and uniqueness of ϕ(ε), {ε0,θ} is a non-decreasing sequence with respect
to θ with upper bound ε0. Then, we introduce ε0,cr =lim0<θ<1ε0,θ such that for 0<ε<
ε0,cr, there exists a unique ϕ̃(x;ε0),

|∇ϕ(ε)(x;ε0)|= |ε2∇ϕ̃(ε)(x;ε0)+∇ϕ̄(x)|<q̊ε0cr (φ), (6.2)

which equals Mε(φ)<1. In this case, the cut-off can be removed such that the solution
is a solution of Problem C1 (m). After removing the subsonic cut-off, we want to
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optimise the critical εcr. For each 0<ε0<1, there exists an ε0,cr, with 0<ε0,cr≤ε0<1.
Then, the critical εc= sup0<ε0<1ε0,cr satisfies for any ε∈ (0,εc), 0<Mε(φ)<1, and

|∇ϕ̃(ε)| is uniformly bounded with respect to ε.
Finally, let us consider the convergence rate of the low Mach number limit. Note

that ϕ(ε) = ϕ̄+ε2ϕ̃(ε) in the Hölder space, so ∇ϕ(ε) =∇ϕ̄+∇ϕ̃(ε), which equals to

uε= ū+ε2ũ(ε). (6.3)

It is noticeable that φ∈W 1,q
loc for q>n, so φ is in some Hölder space. Therefore, for the

density, by (2.13) ρε∈Cα(Ω). Then pε∈Cα(Ω). By the straightforward computation
like in (4.18), we have

ρε= 1+O(ε2). (6.4)

Consequently, the definition of the Mach number leads to Mε=O(ε). Finally, for the
gradients of the pressure, we have

∇pε−∇p̄=−div(ρεuε⊗uε)+div(ū⊗ ū)

= div(ū⊗ ū−ρεuε⊗uε). (6.5)

From (6.3) and (6.4), we can conclude: in the weak sense,

∇pε=∇p̄+O(ε2). (6.6)

It completes the proof of Theorem 2.2.
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