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STABILITY FOR TWO-DIMENSIONAL PLANE COUETTE FLOW TO
THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS WITH

NAVIER BOUNDARY CONDITIONS∗

SHIJIN DING† AND ZHILIN LIN‡

Abstract. This paper concerns with the stability of the plane Couette flow resulting from the
motions of boundaries such that the top boundary Σ1 and the bottom one Σ0 move with constant
velocities (a,0) and (b,0), respectively. If one imposes Dirichlet boundary condition on the top boundary
and Navier boundary condition on the bottom boundary with Navier coefficient α, there always exists
a plane Couette flow which is exponentially stable for nonnegative α and any positive viscosity µ and
any a,b∈R, or, for α<0 but viscosity µ and the moving velocities of boundaries (a,0),(b,0) satisfy
some conditions stated in Theorem 1.1. However, if we impose Navier boundary conditions on both
boundaries with Navier coefficients α0 and α1, then it is proved that there also exists a plane Couette
flow (including constant flow or trivial steady states) which is exponentially stable provided that any
one of two conditions on α0,α1, a,b and µ in Theorem 1.2 holds. Therefore, the known results for the
stability of incompressible Couette flow to no-slip (Dirichlet) boundary value problems are extended to
the Navier boundary value problems.
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ary condition.

AMS subject classifications. 35Q30; 76E05; 76N10.

1. Introduction
In this paper, we consider the stability of plane Couette flow for viscous incompress-

ible fluid in a two dimensional slab domain, periodic in x direction, Ω =T×(0,1)(T=
[−π,π]) with the boundary Σ = Σ0∪Σ1, where Σi={y= i}, i= 0,1. The motion of
the incompressible fluid in Ω is governed by the following incompressible Navier-Stokes
equations {

∂tv−µ∆v+v ·∇v+∇q= 0,
∇·v= 0,

(1.1)

where v(t;x,y) = (v1(t;x,y),v2(t;x,y))∈R2 and q(t;x,y) are the velocity and pressure,
respectively. The constant µ>0 is the viscosity.

To set our problem, we need to impose the boundary conditions. In this paper, we
consider two cases, which are sated as follows.

Case I. In the first case, the no-slip (Dirichlet) condition is imposed on the top
boundary Σ1 and the Navier condition is imposed on the bottom boundary Σ0. Since
the Couette flow results from the motion of the boundary, we suppose that the top
boundary Σ1 moves with a constant velocity (a,0) and the bottom one Σ0 with velocity
(b,0), where a,b∈R are constants (see [5] for instance). That is, v ·n= 0 on Σ,

v= (a,0) on Σ1,
S(v) ·n ·τ+α(v−(b,0)) ·τ = 0 on Σ0,

(1.2)
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where S(v) =−qI2 +µ(∇v+∇T v), I2 is the 2×2 identity matrix, n is the unit outward
normal to the boundary and τ is the tangential vector, and α is the constant of slip
length. It should be pointed out that the term v−(b,0) in condition (1.2) represents
the slip velocity, see [5] for more details.

It is well known that the Couette flow is an important type of shear flow in hydro-
dynamic stability theory. In this case, it is direct to check that the Couette flow (vs,qs)
with

vs=

(
α(a−b)
µ+α

y+
µa+αb

µ+α
,0

)
, qs= constant

is a steady solution to the problem (1.1)-(1.2).
Let u=v−vs, p= q−qs. Then the Navier-Stokes equations around the Couette

flow read as {
∂tu−µ∆u+u ·∇vs+vs ·∇u+∇p=−u ·∇u in Ω,
∇·u= 0 in Ω,

(1.3)

the corresponding boundary conditions are given as follows:u= 0 on Σ1,
u2 = 0 on Σ0,
µ∂yu1−αu1 = 0 on Σ0.

(1.4)

Case II. In the second case, the Navier conditions are imposed on both boundaries,
which are formulated as follows v ·n= 0 on Σ,

S(v) ·n ·τ+α1(v−(a,0)) ·τ = 0 on Σ1,
S(v) ·n ·τ+α0(v−(b,0)) ·τ = 0 on Σ0,

(1.5)

in which (a,0),(b,0) are the velocities of the boundaries Σ0,Σ1, respectively. The terms
v−(a,0),v−(b,0) are slip velocities.

In this case, for any a,b∈R, the problem, (1.1) with (1.5), admits a plane Couette
flow (vs,qs) with

vs=

(
α0α1(a−b)

µ(α0 +α1)+α0α1
y+

µ(α1a+α0b)+α0α1b

µ(α0 +α1)+α0α1
,0

)
and

qs= constant.

Therefore, we obtain the following perturbed problem∂tu+Lu=P (−u ·∇u) in Ω,
u ·n= 0 on Σ,
S(u) ·n ·τ+αiu ·τ = 0 on Σi, i= 0,1,

(1.6)

where L is a linearized operator defined as

Lu=P (−µ∆u+u ·∇vs+vs ·∇u),

and P is the Helmholtz projection (see Section 2).
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Fig. 1.1. Couette flow in R×(0,1) (a,b>0).

The Couette flows with a,b>0 can be shown in Figure 1.1 (Note that a,b∈R). It
should be pointed out that in Cases I-II, vs is reduced to the constant flow vs= (a,0)
provided that a= b.

Our aim is to study the asymptotic stability for the nonlinear problem (1.3)-(1.4)
and (1.6).

Let us give a brief review about the stability theory and some related problems.
The stability of trivial or nontrivial steady states to the Equations (1.1) with no-slip
(Dirichlet) boundary conditions have been studied for a long time. For the stability of
trivial steady states such as Rayleigh-Taylor stability and instability, we refer to [14,17,
18,35]. However, the research for the stability of nontrivial steady states such as Couette
flows, Poiseuille flows or general shear flows is far from completion. The first result for
the stability of incompressible plane Couette flows with no-slip (Dirichlet) boundary
conditions was obtained by Romanov in a beautiful paper [34], which shows that the
plane Couette flow is stable for any fixed Reynolds number. Similar result was obtained
by Heck et al. [16] for periodic case. For the general shear flows including Poiseuille flow,
in the large Reynolds number regime, the spectral instability was obtained by Grenier,
Guo and Nguyen [13]. The nonlinear stability for the cylindrically symmetric Poiseuille
flow was obtained by Gong and Guo [12].

It is well known that the key point for stability and instability problems is the
spectral analysis. For the linearized operator around the trivial steady states, the spec-
tral analysis can be done by searching for growing normal mode solutions and using
variational method (see [14, 17, 18, 35]) since the linearized operators are self-adjoint.
However, the linearized operators around the shear flows are always non-self-adjoint and
nonlocal. The spectral analysis mainly depends on the analysis of the Orr-Sommerfeld
equations. For any steady shear flow vs=U(y)e1, by using the normal Fourier transform
ψ=φ(y)eik(x−ct),k∈R,c∈C, where ψ is the stream function such that u=∇⊥ψ, one
can get the Orr-Sommerfeld equation around the shear flow vs

(∂2y−k2)2φ= ikR
[
(U−c)(∂2y−k2)φ−U ′′φ

]
(1.7)

with suitable boundary conditions, where R is the Reynolds number. By the classical
spectral stability theory, the flow vs is linearly spectral stable for Im c<0 for any c∈C
and unstable for Im c0>0 for some c0∈C.

The study for the Orr-Sommerfeld equation was initiated by Orr in 1907, see [32,33]
for details. Up to now, there are a few results about Orr-Sommerfeld equations with
no-slip boundary conditions, see [8, 28, 29] for instance. For the spectrum analysis of
the Orr-Sommerfeld equation, Joseph [19, 20] gave the eigenvalue bounds for the Orr-



1236 STABILITY OF INCOMPRESSIBLE PLANE COUETTE FLOW

Sommerfeld equation, which established some sufficient conditions for stability. Some
other similar results can be found in [10,36].

For the stability problems in compressible Navier-Stokes equations with no-slip
boundary conditions, most results are also obtained via the spectral analysis of the lin-
earized perturbation operator. A sufficient condition for the stability of the compressible
Couette flow was obtained by Kagei [21]. With a similar idea, Kagei and Nishida [22]
proved that the Poiseuille flow is unstable if Reynolds number and Mach number satisfy
some conditions. Recently, Li and Zhang [25] improved the result of [21].

It is interesting to compare Navier boundary conditions with the no-slip boundary
conditions in our problem. The no-slip (Dirichlet) boundary conditions mean that the
fluid does not slip along the boundary. However, this is not always realistic and leads
to a strong boundary layer in general. For example, hurricanes and tornadoes, do slip
along the ground, lose energy as they slip and do not penetrate the ground. Other
examples about the slip of the fluid on the boundary occur when moderate pressure is
involved such as in high altitude aerodynamics, or in immiscible two phase flows, the
moving contact line is not compatible with no-slip boundary condition. To describe these
phenomena, Navier [31] in 1823 introduced the so-called Navier boundary conditions.
The Navier boundary condition is formulated as

v ·n= 0, S(v) ·n ·τ+αv ·τ = 0 on ∂Ω,

in which α is a physical parameter standing for the friction coefficient between the fluid
and the solid, or the permeability and other effects of the boundaries and which is either
a constant or a L∞(∂Ω) function [24], even a smooth matrix [11].

The case α≥0 is the classical case which reflects the friction between the fluid
and the boundary and has got extensive attention by physicists and mathematicians in
studying the existence, uniqueness, regularity and vanishing viscosity to system (1.1),
see for instance [37, 38]. However, the case α<0 does exist in reality and in physics.
For example, for flat hybrid gas-liquid surfaces, the effective slip length α is always
negative [15]. Navier boundary condition with α<0 is also used for the simulations
of flows in the presence of rough boundaries such as in aerodynamics, or in the case
of permeable boundary in which the Navier boundary condition was called Beavers-
Joseph’s law [3, 5], or in weather forecasts and in hemodynamics [5, 6], or when the
boundary wall accelerates the fluid [4, 30].

In this paper, we assume that α,α0 and α1 are constants.
J.-L. Lions [26] and P.-L. Lions [27] considered the following boundary conditions,

which are called vorticity-free boundary conditions:

v ·n= 0, ω(v) = 0 on ∂Ω,

where ω(v) =∂xv1−∂yv2 is the vorticity of v. In other words, the vorticity-free boundary
condition is the special case of the Navier boundary condition when α

µ = 2κ, where κ is

the curvature of the boundary ∂Ω, see for instance [24,26]. Therefore, for our problem,
Navier boundary conditions contain vorticity-free boundary condition provided that
α= 0 or α0 =α1 = 0.

In view of the results of Romanov [34] and Heck [16], it is very natural to consider
the stability problem with Navier boundary conditions. In our results, for the Navier
boundary problem, we can find some sufficient conditions for the stability of Couette
flow. The sufficient conditions depend on the viscosity µ, the moving velocities of
boundaries (a,0),(b,0) and the Navier coefficients α or α0, α1.



S. DING AND Z. LIN 1237

Similar results for the stability and instability of trivial steady states (0,qs)(qs=
constant) with Navier boundary conditions were obtained by the first author, Li and
Xin [7], which provided a critical viscosity determined by the Navier coefficients to
distinguish the stability from the instability. In addition, in [7], the Navier boundary
condition with α≥0 is called dissipative and the Navier boundary condition with α<0
is called absorptive.

Our aim is to analyze the stability of the incompressible Couette flow with Navier
boundary conditions. One key step is to determine the sign of the image part of spectrum
for the Orr-Sommerfeld equation. The key point is to estimate the upper bound of Im c.
Therefore, we need to establish estimates for Orr-Sommerfeld equation. Compared with
the cases in Joesph [19,20] and Romanov [34], we have to deal with the boundary terms
resulted from the Navier boundary conditions. To overcome the difficulties, we will
modify the idea of Joseph [19,20] and obtain the desired estimates.

For Case I, if α≥0, our main results imply that the Couette flow is asymptotically
nonlinear stable under small perturbations for any viscosity µ>0 and any moving ve-
locities of the boundaries (a,0) and (b,0)(∀a,b∈R). That is, the results of Romanov [34]
still hold if α≥0. However, if α<0, our main results yield that the Couette flow is
asymptotically nonlinear stable for small perturbations provided that α and µ satisfy

the conditions that µ>−3α and |α(a−b)|µ(µ+α) (1+ 3α
µ )−

1
2 <2

√
2, see Theorem 1.1. In addi-

tion, this result implies that the Couette flow is stable for all positive viscosities with
vorticity-free boundary conditions, see Remark 1.1.

For Case II, we can give a sufficient condition for stability, see Theorem 1.2. If
α0,α1≥0, we show that the steady flow is asymptotically nonlinear stable under small
perturbations for any viscosity µ>0 and a,b∈R. Therefore the results of Romanov [34]
still hold if α0≥0 and α1≥0. Otherwise, the Couette flow is asymptotically nonlinear
stable under small perturbations provided that α0,α1,µ and a,b satisfy some conditions,
see Theorem 1.2.

In the Case II, it should be noted that Couette flow is reduced to the trivial
steady state (vs,qs) = (0,constant) provided that a= b= 0 or α0 =α1 = 0, and the case
of a= b= 0 was studied by the first author, Li and Xin [7] recently. If a= b= 0, for
the trivial steady state (vs,qs) = (0,constant), if α0≥0 and α1≥0, then the Theorem
1.2 implies that the steady state is stable for any viscosity µ>0, which is the same
as in [7]. Otherwise, the steady state (vs,qs) = (0,constant) is stable provided that the
condition (iii) of Theorem 1.2 holds (the condition (iv) holds surely since a= b= 0). In
addition, the first author, Li and Xin [7] gave a critical viscosity µc and they proved
that the steady state (vs,qs) = (0,constant) is stable provided that µ>µc. Here we can
not obtain such a critical viscosity to distinguish the stability from instability.

To state our results, let us introduce some notions and function spaces. The domain
symbol Ω will be omitted for simplicity. Let

D :=

{
u(x,y) =

∑
k∈J

ûk(y)eikx :J ⊂Z is some finite subset, ûk(y)∈C∞([0,1])

}

and

Dσ :={u∈D :∇·u= 0} ,

where

ûk(y) =
1

2π

∫
T
u(x,y)e−ikxdx, k∈Z.
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For the boundary conditions (1.4), we define

D∗ :={u∈D :u satisfies the boundary conditions (1.4)}

and

D∗,σ :={u∈Dσ :u satisfies the boundary conditions (1.4)}.

Define the norms

‖u‖pLp =

∫ 1

0

∫
T
|u(x,y)|pdxdy

and

‖u‖pWm,p =
∑
|l|≤m

‖Dlu‖pLp .

With the above definitions, we can define the Sobolev spaces as the closures of
D ,D0,σ or D∗ with the following norms:

Wm,p=D
‖·‖Wm,p

, Lp=W 0,p, Lpσ =Dσ
‖·‖Lp

, Wm,p
∗ =D∗

‖·‖Wm,p

, Wm,p
∗,σ =D∗,σ

‖·‖Wm,p

,

and we denote

Hm=Wm,2, Hm
∗ =Wm,2

∗ , Hm
∗,σ =Wm,2

∗,σ

for simplicity.
For the operator L, denote the spectrum of −L by σ(−L) and the resolvent set of

−L by ρ(−L). In addition, for any θ>0, define the sector of angle θ as

Σ(θ) :={z∈C\{0} : |arg z|<θ} .

For the problem (1.3)-(1.4), our main result reads as follows.

Theorem 1.1. The Couette flow vs=
(
α(a−b)
µ+α y+ µa+αb

µ+α ,0
)

is linearly stable provided

that any one of the following (i), (ii) holds:

(i) α≥0,a,b∈R and µ>0;

(ii) µ>−3α>0(i.e.,α<0) and |α(a−b)|µ(µ+α) ·(1+ 3α
µ )−

1
2 <2

√
2.

In addition, there exists ε>0 small enough such that if the initial data u0∈H1
∗,σ

and ‖u0‖H1 ≤ε, then the problem (1.3)-(1.4) is nonlinearly stable, i.e., there exists a
unique global solution (u,p)∈ (H1

∗,σ∩H2)×H1 satisfying (1.3)–(1.4), and the following
decay holds

‖u(t)‖H1 ≤C1e
−βt‖u0‖H1 , (1.8)

where the positive constants C1,β depend only on µ,α,a,b.

Remark 1.1. Theorem 1.1 implies that the results of Romanov [34] still hold for the
Navier boundary condition if α≥0. In particular, let α= 0, then the Couette flow is
reduced to a constant flow and the Navier boundary conditions become vorticity-free
boundary conditions. In this case, of course, the results of Romanov [34] also hold for
the vorticity-free boundary conditions.
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For the problem (1.6), we have the following result.

Theorem 1.2. The Couette flow vs=
(

α0α1(a−b)
µ(α0+α1)+α0α1

y+ µ(α1a+α0b)+α0α1b
µ(α0+α1)+α0α1

,0
)

is lin-

early stable provided that any one of the following (iii), (iv) holds:

(iii) α0≥0,α1≥0,a,b∈R and µ>0;

(iv) otherwise, µ>max

{
(1+CP )max

l=0,1
{|αl|}−CP (α0+α1),2max

l=0,1
{|αl|}−(α0+α1)

}
and

∣∣∣∣ α0α1(a−b)
µ(µ(α0 +α1)+α0α1)

∣∣∣∣ ·
1−

2max
l=0,1
|αl|−α0−α1

µ

− 1
2

<2
√

2,

where constant CP >0 is the best constant so that Poincaré inequality for f(y)∈H1(0,1)

with
∫ 1

0
f(y)dy= 0 holds, see Lemma 5.2.

In addition, there exists ε>0 small enough such that if ‖u0‖H1 ≤ε, u0∈H1
∗∗,σ,

then the Couette flow is nonlinearly stable, i.e., there exists a unique global solution
(u,p)∈ (H1

∗∗,σ∩H2)×H1 to (1.6), and the following decay estimate holds

‖u(t)‖H1 ≤C2e
−γt‖u0‖H1 , (1.9)

where the positive constants C2,γ depend only on µ,a,b,αl(l= 0,1),Ω and H1
∗∗,σ is de-

fined in Section 5.

Remark 1.2. Theorem 1.2 shows that the results of Romanov [34] also hold for
the Navier boundary value problems if α0≥0,α1≥0. Of course, this case includes the
trivial steady state and the constant flow (Note that vs is reduced to constant flow if
a= b).

In particular, if α0 =α1 = 0, then vs= (0,0) is a trivial steady state. In this case,
the results of Romanov [34] hold for the vorticity-free boundary conditions, which is
similar to Remark 1.1.

Both above theorems give some sufficient conditions for the stability of the Couette
flow in two cases. As mentioned before, the Couette flow results from the motion
of the boundary, therefore together with the viscosity and slip length, the velocity of
the motion should be considered as the factor for stability or instability. Precisely, the
relative velocity (a−b,0), the difference of motion velocities of two boundaries, will effect
the energy of fluids with viscosity and slip length. According to our results, if the Navier
boundary conditions are dissipative, that is α≥0 or α0,α1≥0, then any velocities of the
boundaries can not result in the instability, which means that the effect of slip lengths
will be treated as the main factor for the stablity. However, if the Navier boundary
conditions are absorptive, i.e., α<0 or at least one of αl(l= 0,1)<0, the stability of
fluid will mainly depend on the viscosity. In other words, the viscosity should not be
too small, or the modulus of relative velocity |a−b| should not be too large.

The rest of this paper is organized as follows. In Section 2, we will introduce some
elementary conclusions and inequalities which will be used in later analysis. Section 3
is devoted to the proof of linear stability in Theorem 1.1. The nonlinear stability in
Theorem 1.1 is shown in Section 4. In Section 5, we will prove the Theorem 1.2.
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2. Preliminaries
To define the Stokes operator and the perturbed operator L, we need some results

about the Helmholtz projection and the resolvent problem, which ensure that the per-
turbed operator is well-defined and generates an analytic semigroup. The results can
be obtained by applying the classical Fourier analysis, see [1, 2] for instance.

Lemma 2.1 ( [16]). For any vector field u∈L2, there exists a unique vector field
v∈L2

σ, such that

u=v+∇p (2.1)

for some scalar p∈H1. In addition, the following estimate holds

‖v‖L2 +‖∇p‖L2 ≤C ‖u‖L2 , (2.2)

where the constant C>0 depends only on Ω.

Remark 2.1. The Lemma 2.1 implies that the Helmholtz projection

P :u∈L2 7→v=Pu∈L2
σ

is a bounded linear operator.

By the Helmholtz projection, we define the Stokes operator −A in L2
σ by

Au=P (−µ∆u), u∈D(A) =H1
∗,σ∩H2.

Obviously, the operator −A is unbounded in L2
σ. And the following resolvent result for

−A is important.

Lemma 2.2. Suppose that θ∈ (0, π2 ) and λ∈Σ(π2 +θ). Then for any f ∈L2
σ, there

exists a unique u∈D(A) such that

(λ+A)u=f, (2.3)

and the following estimate holds

|λ|‖u‖L2 +µ‖u‖H2 ≤C ‖f‖L2 , (2.4)

where the constant C>0 depends only on θ,α.

Proof. Note that u2 satisfies the Dirichlet boundary conditions at y= 0,1, which
is the same as in [16], then the conclusions hold for u2 and we only need to claim that
the conclusions hold for u1.

Similar to the arguments in [16], thanks to the Helmholtz projection, we only need
to consider the following problem

(λ−∆)u1 =f1 in Ω,
α
µu1(x,0)−∂yu1(x,0) = 0,

u1(x,1) = 0.

(2.5)

Applying the Fourier series, one has
(ζ2−∂2y)û1 = f̂1, 0<y<1,
α
µ û1(0)−∂yû1(0) = 0,

û1(1) = 0,

(2.6)
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where ζ= ζ(k) is the unique ζ ∈Σ
(
π−θ
2

)
such that ζ2 =λ+k2 and it is easy to see that

ζ2∈Σ(π−θ)⊂C\(−∞,0] (see [16] for details).
It follows from the theory of ordinary differential equations that the solution of (2.6)

can be given by

û1(y) =

∫ 1

0

G(y,s)f̂1(s)ds, (2.7)

in which

G(y,s) =(
α
µ +ζ

)
e−ζ(2−s−y) +

(
α
µ −ζ

)
e−ζ(s+y)−

(
α
µ +ζ

)
e−ζ|s−y|−

(
α
µ −ζ

)
e−ζ(2−|s−y|)

2ζ
[(

α
µ +ζ

)
−
(
α
µ −ζ

)
e−2ζ

] (2.8)

is the Green function of (2.6).
It is easy to obtain that

−

(
α
µ +ζ

)
e−ζ|s−y|+

(
α
µ −ζ

)
e−ζ(2−|s−y|)

2ζ
[(

α
µ +ζ

)
−
(
α
µ −ζ

)
e−2ζ

]
=−

(
α
µ −ζ

)
e−ζ(2−s+y)

2ζ
[(

α
µ +ζ

)
−
(
α
µ −ζ

)
e−2ζ

]
−

(
α
µ −ζ

)
e−ζ(2+s−y)

2ζ
[(

α
µ +ζ

)
−
(
α
µ −ζ

)
e−2ζ

]− e−ζ|s−y|
2ζ

:=G3 +G4 +G5, (2.9)

then we have

G(y,s) =G1 +G2 +G3 +G4 +G5,

where

G1 =

(
α
µ +ζ

)
e−ζ(2−s−y)

2ζ
[(

α
µ +ζ

)
−
(
α
µ −ζ

)
e−2ζ

] , G2 =

(
α
µ −ζ

)
e−ζ(s+y)

2ζ
[(

α
µ +ζ

)
−
(
α
µ −ζ

)
e−2ζ

] .
Note that the above Green function (2.8) and each term Gi(i= 1,2,3,4,5) of the

Green function (2.8) have the forms which are similar to that of [16], therefore every
Gi(i= 1,2,3,4,5) can be estimated by similar arguments as in [16]. The remaining
estimates of this proof can be obtained by the theory of the Fourier multiplier, and we
omit it here and refer to [16] for details.

It follows from Lemma 2.2 that the Stokes operator −A generates an analytic semi-
group {e−tA} in L2

σ and C\(−∞,0]⊂ρ(−A). In particular, the estimate (2.4) holds for
λ∈ (0,+∞), which implies that 0∈ρ(−A) by some standard arguments, and therefore
we can get the classical Stokes estimate∥∥(−A)−1f

∥∥
H2 ≤C ‖f‖L2 .
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Define

Bu=P (u ·∇vs+vs ·∇u) , u∈D(B) =H1
∗,σ

and

Lu= (A+B)u, u∈D(L) =D(A).

Recall that the Stokes operator −A generates a C0−semigroup {e−tA} in L2
σ, which

is analytic and bounded in Σ(θ) for θ∈ (0, π2 ). Then for any f ∈D(A), η>0, by the
interpolation inequality and Poincaré’s inequality, we get

‖−Bf‖L2 ≤C ‖u‖H1 ≤η‖u‖H2 +C(η)‖u‖L2 ,

which implies that the operator −B is (−A)-bounded and the (−A)-bound is 0. Then
the perturbation theory for operators (see [9,23] for details) yields that the operator −L
generates an analytic semigroup {e−tL} in L2

σ. Moreover, there exists η0>0 such that
for any f ∈L2

σ and each λ∈Σ(π−θ)∩{λ∈C : |λ|≥η0},θ∈ (0,π), the following estimate
holds ∥∥(λ+L)−1f

∥∥
H2 ≤C ‖f‖L2 .

Note that H1
∗,σ∩H2 ↪→↪→L2

σ, then the operator (λ+L)−1 is compact in L2
σ. Hence,

σ(−L) consists of the isolated eigenvalues of −L and has no accumulation points except
infinity.

The following lemma will be used in our analysis.

Lemma 2.3. For any f(y)∈H2(0,1) with f(0) = 0 and f(1) = 0, there holds∫ 1

0

|f(y)|2dy≤
∫ 1

0

|f ′(y)|2dy≤
∫ 1

0

|f ′′(y)|2dy. (2.10)

Proof. This lemma follows straightforward from integrating by parts, Poincaré’s
inequality and Young’s inequality.

Remark 2.2. In fact, similar to the proof of the Poincaré’s inequality, one can deduce
that the Poincaré’s inequality holds if u∈H1

∗ .

3. Proof of Theorem 1.1: Linear stability
In order to analyse the perturbation problem (1.3)-(1.4), we need to study the

Stokes operator and perturbed Stokes operator. In fact, we can consider the following
abstract Cauchy problem {

∂tu+Lu=f(u) in Ω,
u|t=0 =u0 in Ω,

(3.1)

where

Lu=P (−µ∆u+u ·∇vs+vs ·∇u)

is the linear part and f(u) =P (−u ·∇u) is the nonlinear term. The linear operator L
can be decomposed into the classical Stokes operator A and the perturbed part B.

In order to obtain the stability of the Couette flow, we have to show that the
spectrum of the operator −L lies on the left side of the complex plane. Then by the
standard theory of semigroups, the linear stability is obtained.
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Now we are in a position to state the key lemma for the linear stability.

Lemma 3.1. Under the assumptions of Theorem 1.1, there holds

m := sup{Re λ :λ∈σ(−L)}≤−C<0,

where the constant C>0 depends only on α,µ,a,b.

Proof. Since H1
∗,σ∩H2 ↪→↪→L2

σ, then the operator (λ+L)−1 is compact in L2
σ,

and therefore σ(−L) consists of the isolated eigenvalues of −L and has no accumulation
points except infinity.

For a fixed θ∈ (0, π2 ), there exists suitable r>0 such that

Σ
(π

2
+θ
)
∩{λ∈C : |λ|≥ r}⊂ρ(−L).

Note that σ(−L) has no accumulation points in {λ∈C : |λ|≤ r}, then we only need
to prove that

Re λ<0, ∀λ∈σ(−L).

Let λ∈σ(−L) be any eigenvalue of −L and u∈H1
∗,σ∩H2, u 6≡0 be the nontrivial

eigenvector of λ, i.e.,

(λ+L)u= 0.

The above equation can be rewritten as

P (λu−µ∆u+u ·∇vs+vs ·∇u) = 0.

Thanks to Lemma 2.1, there exists p∈H1 such that

λu−µ∆u+u ·∇vs+vs ·∇u=−∇p.

Standard arguments for the elliptic equations guarantee the regularity of u,p. Then
(u,p) solves the following problem

λu−µ∆u+u ·∇vs+vs ·∇u+∇p= 0 in Ω,
∇·u= 0 in Ω,
u= 0 on Σ1,
u2 = 0 on Σ0,
µ∂yu1−αu1 = 0 on Σ0.

(3.2)

The equations in (3.2) can be rewritten componentwise as
λu1−µ∆u1 +

(
α(a−b)
µ+α y+ µa+αb

µ+α

)
∂xu1 + α(a−b)

µ+α u2 +∂xp= 0 in Ω,

λu2−µ∆u2 +
(
α(a−b)
µ+α y+ µa+αb

µ+α

)
∂xu2 +∂yp= 0 in Ω,

∂xu1 +∂yu2 = 0 in Ω.

(3.3)

In terms of the Fourier series,

u(x,y) =
∑
k∈J

ûk(y)eikx, p(x,y) =
∑
k∈J

p̂k(y)eikx,
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where ûk, p̂k are smooth on [0,1] and J is some finite subset of Z, we have
λû1,k−µ(∂2y−k2)û1,k+ ik

(
α(a−b)
µ+α y+ µa+αb

µ+α

)
û1,k+ α(a−b)

µ+α û2,k+ ikp̂k = 0,

λû2,k−µ(∂2y−k2)û2,k+ ik
(
α(a−b)
µ+α y+ µa+αb

µ+α

)
û2,k+∂yp̂k = 0,

ikû1,k+∂yû2,k = 0,

(3.4)

for y∈ [0,1] and k∈Z. Since u is nontrivial in Ω, then there exists k∈Z such that ûk 6≡0.
Fixing this k and omitting the subscript k from now, one has

λû1−µ(∂2y−k2)û1 + ik
(
α(a−b)
µ+α y+ µa+αb

µ+α

)
û1 + α(a−b)

µ+α û2 + ikp̂= 0, 0<y<1,

λû2−µ(∂2y−k2)û2 + ik
(
α(a−b)
µ+α y+ µa+αb

µ+α

)
û2 +∂yp̂= 0, 0<y<1,

ikû1 +∂yû2 = 0, 0<y<1,

(3.5)

which satisfy the following boundary conditions{
û2(0) = û2(1) = û1(1) = 0,
µ∂yû1(0)−αû1(0) = 0.

(3.6)

Case 1 : k= 0.
If k= 0, then ∂yû2 = 0 due to (3.5), which implies that

û2(y)≡ constant, y∈ [0,1].

Then the boundary conditions yield

û2(y)≡0, y∈ [0,1],

which implies that

λû1−µ∂2y û1 = 0, 0<y<1. (3.7)

Multiplying (3.7) by û1, the complex conjugate of û1, and multiplying the conjugate
of equation (3.7) by û1, then integrating over (0,1) and using the boundary conditions,
one obtains

Re λ

∫ 1

0

|û1|2dy+µ

∫ 1

0

|∂yû1|2dy+α|û1(0)|2 = 0. (3.8)

If (i) of Theorem 1.1 holds, that is α≥0, then for any µ>0, we have

(Re λ+µ)

∫ 1

0

|û1|2dy≤0, (3.9)

where we have used the Poincaré’s inequality. Therefore

Re λ≤−µ<0. (3.10)

Now we assume that (ii) of Theorem 1.1 holds. Simple calculations yield that

α|û1(0)|2 =α

∫ 1

0

∂y
[
(y−1)|û1|2

]
dy
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=α

∫ 1

0

|û1|2dy+α

∫ 1

0

2(y−1)
[
Re û1Re ∂yû1 +Im û1Im ∂yû1

]
dy

≥α
∫ 1

0

|û1|2dy−|α|
∫ 1

0

2
∣∣Re û1Re ∂yû1 +Im û1Im ∂yû1

∣∣dy
≥ (α−|α|)

∫ 1

0

|û1|2dy−|α|
∫ 1

0

|∂yû1|2dy. (3.11)

Putting (3.11) into (3.8) shows that

(Re λ+α−|α|)
∫ 1

0

|û1|2dy+(µ−|α|)
∫ 1

0

|∂yû1|2dy≤0. (3.12)

Since û1(1) = 0 and µ−|α|> |α|−α≥0, it follows from Poincaré’s inequality and
Lemma 2.3 that

(Re λ+µ+α−2|α|)
∫ 1

0

|û1|2dy≤0, (3.13)

which yields

Re λ≤2|α|−α−µ=−(µ+3α)<0. (3.14)

Case 2 : k 6= 0.
Eliminating p̂ in (3.5), one has

µ(∂2y−k2)2û2 =

[
ik

(
α(a−b)
µ+α

y+
µa+αb

µ+α

)
+λ

]
(∂2y−k2)û2, 0<y<1, (3.15)

with the following boundary conditions{
û2(0) = û2(1) =∂yû2(1) = 0,
∂2y û2(0) = α

µ∂yû2(0).
(3.16)

Let ξ=kα(a−b). Multiplying (3.15) by û2, the complex conjugate of û2, then
integrating over (0,1) and using the boundary conditions (3.16), we find that

µ
(
H2

2 +2k2H2
1 +k4H2

0

)
=

iξ

µ+α

∫ 1

0

∂yû2 · û2dy− iξ

µ+α

(∫ 1

0

y|∂yû2|2dy+k2H2
0

)
+
ik(µa+αb)

µ+α

(
H2

1 +k2H2
0

)
−λ(ξ)

(
H2

1 +k2H2
0

)
, (3.17)

where

H2
2 =

∫ 1

0

|û2|2dy+
α

µ
|û2(0)|2, H2

j =

∫ 1

0

|∂jyû2|2dy, j= 0,1.

It follows from (3.17) that

Re λ(ξ) =

(
Re

{
iξ

µ+α

∫ 1

0

∂yû2 · û2dy

}
−µ
(
H2

2 +2k2H2
1 +k4H2

0

))
·
(
H2

1 +k2H2
0

)−1
.

Next, we consider the complex conjugate of the equation (3.15):

µ(∂2y−k2)2û2 =

[
i

(
−ξ
µ+α

y− µa+αb

µ+α

)
+λ

]
(∂2y−k2)û2, 0<y<1. (3.18)
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Multiplying (3.18) by û2, integrating over (0,1) and using the boundary conditions,
similar to (3.17), one can get

Re λ(−ξ)

=

(
Re

{
iξ

µ+α

∫ 1

0

∂yû2 · û2dy

}
−µ
(
H2

2 +2k2H2
1 +k4H2

0

))
·
(
H2

1 +k2H2
0

)−1
=Re λ(ξ). (3.19)

From these discussions, we can suppose that ξ=kα(a−b)≥0, that is, we can always
assume that k>0 for α(a−b)≥0 and k<0 if α(a−b)<0. Therefore, for simplicity, we
rewrite ξ as ξ=k|α(a−b)|≥0,k>0.

Setting

λ=−ik
(
|α(a−b)|
µ+α

c+
µa+αb

µ+α

)
, c∈C, R1 =

|α(a−b)|
µ(µ+α)

,

we obtain the Orr-Sommerfeld boundary value problem
(∂2y−k2)2φ= ikR1(y−c)(∂2y−k2)φ, 0<y<1,
φ(0) =φ(1) =φ′(1) = 0,
φ′′(0) = α

µφ
′(0),

(3.20)

where we have replaced û2 by φ and ∂y with ′ for simplicity. Note that Re λ=

k |α(a−b)|µ(µ+α) Im c, then it suffices to show that the eigenvalue c∈C of Orr-Sommerfeld

problem (3.20) satisfies Im c<0.
Multiplying (3.20)1 by φ, the complex conjugate of φ, then integrating over (0,1)

and using the boundary conditions, one obtains that

Im c=
Q−Q−(kR1)−1

(
I22 +2k2I21 +k4I20

)
I21 +k2I20

, (3.21)

where

I22 =

∫ 1

0

|φ′′|2dy+
α

µ
|φ′(0)|2, I2j =

∫ 1

0

|φ(j)|2dy, j= 0,1, Q=
i

2

∫ 1

0

φφ′dy.

By the Hölder’s inequality, it holds that

Im c≤
I0I1−(kR1)−1

(
I22 +2k2I21 +k4I20

)
I21 +k2I20

. (3.22)

If (i) of Theorem 1.1 holds, note that α≥0 and k>0, we have

Im c=
Q−Q−(kR1)−1

(
I22 +2k2I21 +k4I20

)
I21 +k2I20

≤
Q−Q−(kR1)−1

(∫ 1

0
|φ′′|2dy+2k2I21 +k4I20

)
I21 +k2I20

=: Im c̃. (3.23)

Then following the arguments of Romanov in [34], one can get

Im c̃<0,
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then

Im c<0 (3.24)

for any k>0, α≥0,a,b∈R and µ>0.
If (ii) of Theorem 1.1 holds, we need some further estimates as follows.
For Ij , j= 0,1,2, one has

I22 =

∫ 1

0

|φ′′|2dy+
α

µ
|φ′(0)|2

=

∫ 1

0

|φ′′|2dy+
α

µ

∫ 1

0

(
(y−1)|φ′|2

)′
dy

≥
∫ 1

0

|φ′′|2dy+
α

µ

∫ 1

0

|φ′|2dy− |α|
µ

∫ 1

0

|φ′|2dy− |α|
µ

∫ 1

0

|φ′′|2dy

= (1− |α|
µ

)

∫ 1

0

|φ′′|2dy+
α−|α|
µ

∫ 1

0

|φ′|2dy

≥ (1− 2|α|−α
µ

)

∫ 1

0

|φ′|2dy= (1− 2|α|−α
µ

)I21 (3.25)

for µ>2|α|−α, where Lemma 2.3 and Young’s inequality have been used.
Similar calculations and the Poincaré’s inequality yield that

I22 ≥ (1− 2|α|−α
µ

)I20 , (3.26)

and the classical Poincaré’s inequality yields

I21 ≥ I20 . (3.27)

Despite (3.25)–(3.27), it seems still difficult to find a useful exact value of the lower
bound for

(kR1)−1
(
I22 +2k2I21 +k4I20

)
I21 +k2I20

.

To overcome this difficulty, we come up with the following analysis.
Let δ0∈ (0,1) be given by 2δ30 = 1−δ0. Furthermore, for any fixed δ∈ (δ0,1], one has

I22 +2k2I21 +k4I20
I0I1

=
I22
I0I1

+
2k2

I0I1

(
δI21 +(1−δ)I21 +k2

I20
2

)
=

I22
I0I1

+
2k2

I0I1

[
δI21 +(1−δ)(I1−

k(1−δ)− 1
2

√
2

I0)2 +
√

2k(1−δ) 1
2 I0I1

]

≥ (1− 2|α|−α
µ

)+
2k2

I0I1
max

{√
2k(1−δ) 1

2 I0I1,δI
2
1

}
≥ (1− 2|α|−α

µ
)+max

{
2k2

I0I1
·
√

2k(1−δ) 1
2 I0I1,

2k2

I0I1
·δI21

}
≥max

{
(1− 2|α|−α

µ
)+2
√

2k3(1−δ) 1
2 ,(1− 2|α|−α

µ
)+2k2δ

}
.

(3.28)
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For k∈ (0,+∞), define

f(k) =
1

k
max

{
(1− 2|α|−α

µ
)+2
√

2k3(1−δ) 1
2 ,(1− 2|α|−α

µ
)+2k2δ

}
=

{
(1− 2|α|−α

µ ) 1
k +2

√
2(1−δ) 1

2 k2 , k≥
√
2
2 δ(1−δ)

− 1
2 ,

(1− 2|α|−α
µ ) 1

k +2δk , 0<k≤
√
2
2 δ(1−δ)

− 1
2 ,

(3.29)

and it is easy to see that f(k)∈C(0,+∞).

For k≥
√
2
2 δ(1−δ)

− 1
2 , we have

f ′(k) =

(
2

5
6 (1−δ) 1

6 k−(1− 2|α|−α
µ )

1
3

)
k2

×

(
2

5
3 (1−δ) 1

3 k2 +2
5
6 (1−δ) 1

6 k(1− 2|α|−α
µ )

1
3 +(1− 2|α|−α

µ )
2
3

)
k2

>0, (3.30)

Hence, on [
√
2
2 δ(1−δ)

− 1
2 ,+∞), it holds that

f(k)≥f(

√
2

2
δ(1−δ)− 1

2 )

=
√

2(1− 2|α|−α
µ

)δ−1(1−δ) 1
2 +
√

2δ2(1−δ)− 1
2

≥2
√

2δ(1− 2|α|−α
µ

)
1
2 . (3.31)

If 0<k≤
√
2
2 δ(1−δ)

− 1
2 , one can get from the average inequality that

f(k)≥2
√

2δ(1− 2|α|−α
µ

)
1
2 .

Putting these estimates together leads to

1

k
· I

2
2 +2k2I21 +k4I20

I0I1

≥1

k
max

{
(1− 2|α|−α

µ
)+2
√

2k3(1−δ) 1
2 ,(1− 2|α|−α

µ
)+2k2δ

}
≥2
√

2δ(1− 2|α|−α
µ

)
1
2 (3.32)

for k>0.
Taking the supremum on both sides of (3.32) on δ∈ (δ0,1] gives that

1

k
· I

2
2 +2k2I21 +k4I20

I0I1
≥2
√

2(1− 2|α|−α
µ

)
1
2 . (3.33)

Finally, combining (3.22), (3.28), (3.32) and (3.33), we obtain

Im c≤
I0I1−(kR1)−1

(
I22 +2k2I21 +k4I20

)
I21 +k2I20
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=
R−11 I0I1
I21 +k2I20

(
R1−

1

k
· I

2
2 +2k2I21 +k4I20

I0I1

)
≤ R

−1
1 I0I1

I21 +k2I20

(
|α(a−b)|
µ(µ+α)

−2
√

2(1− 2|α|−α
µ

)
1
2

)
<0 (3.34)

for µ>−3α and |α(a−b)|µ(µ+α) ·(1+ 3α
µ )−

1
2 <2

√
2, which completes the proof.

4. Proof of Theorem 1.1: Nonlinear stability
Now we consider the nonlinear problem (1.3)-(1.4). Recall that the nonlinear prob-

lem (1.3)-(1.4) can be rewritten as the abstract Cauchy problem{
∂tu+Lu=f(u) in Ω,
u|t=0 =u0 in Ω,

(4.1)

where

Lu=P (−µ∆u+u ·∇vs+vs ·∇u) , f(u) =P (−u ·∇u) .

To prove Theorem 1.1, we need some estimates for fractional powers of operators.
Define

A1 = I−P∆ with D(A1) =H1
∗,σ∩H2.

Since the operator A=−P∆ is the generator of an analytic semigroup, then one
can define the fractional power of A1. Obviously, the operator A1 is self-adjoint and it

is easy to see that the norm ‖A
1
2
1 u‖L2 is equivalent to ‖u‖H1 , that is,

‖A
1
2
1 u‖L2 ∼‖u‖H1 . (4.2)

The fractional powers of A1 can be estimated as the following lemma.

Lemma 4.1. There holds

‖u‖W 1,p ≤C ‖Aγ1u‖L2

for u∈D(Aγ1), where the constant C>0 depends only on γ,p, and 1− 1
p ≤γ<1,p≥2.

Proof. The proof of this lemma is straightforward from Gagiardo-Nirenberg’s
inequality, Hölder’s inequality and Sobolev’s inequality, which is similar to the proof of
Lemma 5 of [34]. See [34] for details.

By the arguments similar to Romanov [34], one can define A0 := (sI+L) with
D(A0) =D(A1), where s=s(µ,α)>0 is large enough. For γ∈ (0,1), define Aγ0 and
the operator Aγ0 has the equivalent norm

‖Aγ0u‖L2 ∼‖Aγ1u‖L2 . (4.3)

Therefore, the Lemma 4.1 holds for Aγ0 , that is

‖u‖W 1,p ≤C(γ,p)‖Aγ0u‖L2 , u∈D(Aγ0), 1− 1

p
≤γ<1,p≥2. (4.4)
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Moreover, the following estimate holds (see Romanov [34]):∥∥Aγ0e−Ltu∥∥L2 ≤C(µ,β,γ)t−γe−βt‖u‖L2 , γ≥0, t>0, ∀β∈ (0,−m), (4.5)

where m is defined as in Lemma 3.1.
Now we are ready to prove Theorem 1.1.
Proof. (Proof of Theorem 1.1.) By Duhamel’s principle, the solution of problem

(1.3)-(1.4) is given by

u(t) =e−tLu0−
∫ t

0

e−L(t−s)P (u ·∇u)(s)ds. (4.6)

Define the Picard’s sequence

un(t) =e−tLu0−
∫ t

0

e−L(t−s)P (un−1 ·∇un−1)(s)ds, n= 1,2, ·· · , (4.7)

where u0∈D(A
1
2
0 ).

We define the working space

X :=

{
u∈D(L) : sup

t>0
t
1
4 eβt‖A

3
4
0 u(t)‖L2 <∞

}
with the norm

‖u‖X = sup
t>0

t
1
4 eβt‖A

3
4
0 u(t)‖L2 .

It is easy to check that X is a Banach space. Next, we only need to show that

‖un‖X is uniformly bounded if ‖A
1
2
0 u0‖L2 ≤ε for some small enough ε>0.

It follows from the Sobolev’s inequality and (4.4) that

‖P (u ·∇w)‖L2 ≤C ‖u‖L4 ‖∇w‖L4

≤C ‖u‖
W 1, 8

3
‖w‖

W 1, 8
3

≤C‖A
3
4
0 u‖L2‖A

3
4
0 w‖L2 (4.8)

for any u,w∈D(A0). Then due to (4.5), one has

‖A
3
4
0 un(t)‖L2

≤‖A
3
4
0 e
−tLu0‖L2 +

∫ t

0

‖A
3
4
0 e
−L(t−s)P (un−1 ·∇un−1)(s)‖L2ds

≤‖A
3
4
0 e
−tLu0‖L2 +C

∫ t

0

(t−s)− 3
4 e−β(t−s)‖P (un−1 ·∇un−1)(s)‖L2ds

≤Ct− 1
4 e−βt‖A

1
2
0 u0‖L2 +C

∫ t

0

(t−s)− 3
4 ‖A

3
4
0 un−1‖2L2ds, (4.9)

which yields that

‖un‖X ≤C‖A
1
2
0 u0‖L2 +C ‖un−1‖2X . (4.10)
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Then if ‖A
1
2
0 u0‖L2 ≤C‖u0‖H1 ≤ε for some small ε>0, we have

‖un‖X ≤C‖A
1
2
0 u0‖L2 ≤C, (4.11)

which implies that ‖un‖X is uniformly bounded. Since the embedding D(A
3
4
0 ) ↪→D(A

1
2
0 )

is compact, hence there exists a subsequence that converges strongly to u, which is the
global solution of (1.6). In addition, it is easy to deduce that u∈H1 from the equivalent
norms (4.2) and (4.3).

Moreover, it follows from the above estimates and (4.6) that

‖Aγ0u(t)‖L2 ≤Ct
1
2−γe−βt‖A

1
2
0 u0‖L2 ,

1

2
≤γ<1. (4.12)

Furthermore,

‖A
1
2
0 u(t)‖L2 ≤Ce−βt‖A

1
2
0 u0‖L2 , (4.13)

which yields that

‖u(t)‖H1 ≤Ce−βt‖u0‖H1 . (4.14)

Therefore Theorem 1.1 follows.

5. Proof of Theorem 1.2
In this section, we will prove Theorem 1.2. Define

Hk
∗∗ :={u∈Hk :u satisfies the boundary conditions in (1.6)}

and

Hk
∗∗,σ :={u∈Hk

σ :u satisfies the boundary conditions in (1.6)}.

One should note that the Lemma 2.2 still holds for the Navier boundary conditions
in (1.6). More precisely, we have the following lemma.

Lemma 5.1. Suppose that θ∈ (0, π2 ) and λ∈Σ(π2 +θ). Then for any f ∈L2
σ, there

exists a unique u∈H1
∗∗,σ∩H2 such that

(λ+A)u=f, (5.1)

and the following estimate holds

|λ|‖u‖L2 +µ‖u‖H2 ≤C ‖f‖L2 , (5.2)

where the constant C>0 depends only on θ,αl(l= 0,1).

Proof. The proof of this lemma is similar to that of Lemma 2.2, and we omit it
here.

Lemma 5.2. Suppose that u∈H1
∗∗,σ. Then there holds

‖û1‖L2(0,1)≤CP ‖∂yû1‖L2(0,1) , (5.3)

where CP >0 is the best constant so that the Poincaré inequality for f(y)∈H1(0,1) with∫ 1

0
f(y)dy= 0 holds, û1 is defined as before.
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Proof. Since ∇·u= 0, thus

ikû1 +∂yû2 = 0.

Note that u∈H1
∗∗,σ, then û2(0) = û2(1) = 0 and∫ 1

0

ikû1dy=−
∫ 1

0

∂yû2dy= 0,

therefore ∫ 1

0

û1dy= 0,

which implies that the classical Poincaré’s inequality holds for û1.

Next, we give an estimate for the σ(−L).

Lemma 5.3. Under the assumptions of Theorem 1.2, there holds

sup{Re λ :λ∈σ(−L)}≤−C̃ <0,

where the constant C̃ >0 depends only on µ,αl(l= 0,1),a,b,Ω,CP .

Proof. Consider the problem
λu−µ∆u+u ·∇vs+vs ·∇u+∇p= 0 in Ω,
∇·u= 0 in Ω,
u2 = 0 in Σ,
µ∂yu1 +α1u1 = 0 on Σ1,
µ∂yu1−α0u1 = 0 on Σ0.

(5.4)

Similar to Lemma 3.1, the Lemma 5.1 and the Fourier series give that
λû1−µ(∂2y−k2)û1

+ik
(

α0α1(a−b)
µ(α0+α1)+α0α1

y+ µ(α1a+α0b)+α0α1b
µ(α0+α1)+α0α1

)
û1 + α0α1(a−b)

µ(α0+α1)+α0α1
û2 + ikp̂= 0,

λû2−µ(∂2y−k2)û2 + ik
(

α0α1(a−b)
µ(α0+α1)+α0α1

y+ µ(α1a+α0b)+α0α1b
µ(α0+α1)+α0α1

)
û2 +∂yp̂= 0,

ikû1 +∂yû2 = 0,

(5.5)

with the following boundary conditions û2(0) = û2(1) = 0,
µ∂yû1(1)+α1û1(1) = 0,
µ∂yû1(0)−α0û1(0) = 0.

(5.6)

There are two cases to be considered.

Case 1 : k= 0.
If k= 0, then û2≡0 at [0,1]. Therefore

λû1−µ∂2y û1 = 0. (5.7)

Multiplying (5.7) by û1, integrating over (0,1) and using the boundary conditions (5.6),
one gets

Re λ

∫ 1

0

|û1|2dy+µ

∫ 1

0

|∂yû1|2dy+

1∑
l=0

αl|û1(l)|2 = 0. (5.8)
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If the condition (iii) of Theorem 1.2 holds, that is, αl≥0 (l= 0,1), then one has(
Re λ+

1

CP
µ

)∫ 1

0

|û1|2dy≤0, (5.9)

where we have used the Lemma 5.2. Therefore

Re λ≤− 1

CP
µ<0, (5.10)

in which CP >0 is the best Poincaré constant in Lemma 5.2.
Now we suppose that the condition (iv) of Theorem 1.2 holds. For the boundary

terms, it follows from some simple calculations that

1∑
l=0

αl|û1(l)|2

=

∫ 1

0

∂y
[
((α1 +α0)y−α0)|û1|2

]
dy

=(α0 +α1)

∫ 1

0

|û1|2dy

+

∫ 1

0

2[((α0 +α1)y−α0)]
[
Re û1Re ∂yû1 +Im û1Im ∂yû1

]
dy

≥(α1 +α0)

∫ 1

0

|û1|2dy−max
l=0,1
{|αl|}

∫ 1

0

2
∣∣Re û1Re ∂yû1 +Im û1Im ∂yû1

∣∣dy
≥(α1 +α0−max

l=0,1
{|αl|})

∫ 1

0

|û1|2dy−max
l=0,1
{|αl|}

∫ 1

0

|∂yû1|2dy. (5.11)

Putting the above estimates into (5.8) and using Lemma 5.2 yields that(
Re λ+(α0 +α1−max

l=0,1
{|αl|})+

1

CP
(µ−max

l=0,1
{|αl|})

)∫ 1

0

|û1|2dy≤0, (5.12)

which implies that

Re λ≤
(

1

CP
+1

)
max
l=0,1
{|αl|}−(α0 +α1)− 1

CP
µ :=− C̃ <0 (5.13)

for µ> (1+CP )max
l=0,1
{|αl|}−CP (α0 +α1), where CP >0 is the best Poincaré constant in

Lemma 5.2.

Case 2 : k 6= 0.
By eliminating p̂, one has

µ(∂2y−k2)2û2

=

[
ik

(
α0α1(a−b)

µ(α0 +α1)+α0α1
y+

µ(α1a+α0b)+α0α1b

µ(α0 +α1)+α0α1

)
+λ

]
(∂2y−k2)û2 (5.14)

for 0<y<1.
Similar to Lemma 3.1, setting

λ=−ik
(∣∣∣∣ α0α1(a−b)
µ(α0 +α1)+α0α1

∣∣∣∣c+
µ(α1a+α0b)+α0α1b

µ(α0 +α1)+α0α1

)
, c∈C
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and

R2 :=

∣∣∣∣ α0α1(a−b)
µ(µ(α0 +α1)+α0α1)

∣∣∣∣ ,
one can get 

(∂2y−k2)2φ= ikR2(y−c)(∂2y−k2)φ, 0<y<1,
φ(0) =φ(1) = 0,
φ′′(0) = α0

µ φ
′(0),

φ′′(1) =−α1

µ φ
′(1),

(5.15)

where we have replaced û2 by φ and ∂y with ′ for simplicity.
Multiplying (5.15)1 by φ, the complex conjugate of φ, then integrating over (0,1)

and using the boundary conditions, yields that

Im c=
Q−Q−(kR2)−1

(
I22 +2k2I21 +k4I20

)
I21 +k2I20

, (5.16)

where

I22 =

∫ 1

0

|φ′′|2dy+

1∑
l=0

αl
µ
|φ′(l)|2, I2j =

∫ 1

0

|φ(j)|2dy, j= 0,1, Q=
i

2

∫ 1

0

φφ′dy.

It follows from Hölder’s inequality that

Im c≤
I0I1−(kR2)−1

(
I22 +2k2I21 +k4I20

)
I21 +k2I20

. (5.17)

If (iii) of Theorem 1.2 holds, note that αl≥0 (l= 0,1) and k>0, we have

Im c=
Q−Q−(kR2)−1

(
I22 +2k2I21 +k4I20

)
I21 +k2I20

≤
Q−Q−(kR2)−1

(∫ 1

0
|φ′′|2dy+2k2I21 +k4I20

)
I21 +k2I20

=: Im c̆. (5.18)

The arguments of Romanov in [34] give that

Im c̆<0,

therefore one has

Im c<0 (5.19)

for any k>0, αl≥0(l= 0,1),a,b∈R and µ>0.
Let us suppose that (iv) of Theorem 1.2 holds.
Now we estimate Ij ,j= 0,1,2. For I2 and I1, it holds that

I22 =

∫ 1

0

|φ′′|2dy+

1∑
l=0

αl
µ
|φ′(l)|2

=

∫ 1

0

|φ′′|2dy+
1

µ

∫ 1

0

(
((α0 +α1)y−α0)|φ′|2

)′
dy
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≥
∫ 1

0

|φ′′|2dy+
α0 +α1

µ

∫ 1

0

|φ′|2dy

−
max
l=0,1
|αl|

µ

∫ 1

0

|φ′|2dy−
max
l=0,1
|αl|

µ

∫ 1

0

|φ′′|2dy

=

1−
max
l=0,1
|αl|

µ

∫ 1

0

|φ′′|2dy+

α0 +α1−max
l=0,1
|αl|

µ

∫ 1

0

|φ′|2dy

≥

1−
2max
l=0,1
|αl|−α0−α1

µ

∫ 1

0

|φ′|2dy=

1−
2max
l=0,1
|αl|−α0−α1

µ

I21 . (5.20)

where Lemma 2.3 has been used again.
Similarly, by the Poincaré’s inequality, one obtains from Lemma 2.3 that

I21 ≥ I20 (5.21)

and then

I22 ≥

1−
2max
l=0,1
|αl|−α0−α1

µ

I20 . (5.22)

Moreover, for any fixed δ∈ (δ0,1], one has

I22 +2k2I21 +k4I20
I0I1

=
I22
I0I1

+
2k2

I0I1

(
δI21 +(1−δ)I21 +k2

I20
2

)
=

I22
I0I1

+
2k2

I0I1

[
δI21 +(1−δ)(I1−

k(1−δ)− 1
2

√
2

I0)2 +
√

2k(1−δ) 1
2 I0I1

]

≥

1−
2max
l=0,1
|αl|−α0−α1

µ

+
2k2

I0I1
max

{√
2k(1−δ) 1

2 I0I1,δI
2
1

}
≥h+max

{
2k2

I0I1
·
√

2k(1−δ) 1
2 I0I1,

2k2

I0I1
·δI21

}
≥max

{
h+2

√
2k3(1−δ) 1

2 ,h+2k2δ
}
. (5.23)

where δ0∈ (0,1) is given by 2δ30 = 1−δ0 and

h=

1−
2max
l=0,1
|αl|−α0−α1

µ

.
For k∈ (0,+∞), define

g(k) =
1

k
max

{
(1− 2|α|−α

µ
)+2
√

2k3(1−δ) 1
2 ,(1− 2|α|−α

µ
)+2k2δ

}
=

{
h
k +2

√
2(1−δ) 1

2 k2 , k≥
√
2
2 δ(1−δ)

− 1
2 ,

h
k +2δk , 0<k≤

√
2
2 δ(1−δ)

− 1
2 ,

(5.24)



1256 STABILITY OF INCOMPRESSIBLE PLANE COUETTE FLOW

and it is easy to see that g(k)∈C(0,+∞).
Similar arguments as in Lemma 3.1 give

1

k

I22 +2k2I21 +k4I20
I0I1

≥2
√

2

1−
2max
l=0,1
|αl|−α0−α1

µ

 1
2

. (5.25)

Furthermore, one has

Im c≤
I0I1−(kR2)−1

(
I22 +2k2I21 +k4I20

)
I21 +k2I20

=
R−12 I0I1
I21 +k2I20

(
R2−

1

k
· I

2
2 +2k2I21 +k4I20

I0I1

)

≤ R
−1
2 I0I1

I21 +k2I20

∣∣∣∣ α0α1(a−b)
µ(µ(α0 +α1)+α0α1)

∣∣∣∣−2
√

2

1−
2max
l=0,1
|αl|−α0−α1

µ

 1
2


:=− C̃ <0 (5.26)

if

µ>2max
l=0,1
{|αl|}−(α0 +α1)

and ∣∣∣∣ α0α1(a−b)
µ(µ(α0 +α1)+α0α1)

∣∣∣∣ ·
1−

2max
l=0,1
|αl|−α0−α1

µ

− 1
2

<2
√

2.

This completes the proof.

Lemma 5.3 implies the linear stability in Theorem 1.2. We now turn to proving the
nonlinear stability.

Proof of Theorem 1.2: Nonlinear Stability. With linear stability obtained by
Lemma 5.3 at hand, one can prove the nonlinear stability by using similar arguments
as in Section 4, and therefore the details are omitted here.
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[31] C. Navier, Mémoire sur les lois du mouvement des fluides, Mem. Acad. R. Sci. Inst. France,

6:389–416, 1823. 1
[32] W. Orr, The stability or instability of the steady motions of a perfect liquid and of a viscous liquid.

Part I: A perfect liquid, Proc. Ir. Acad. Sect. A, Math. Astron. Phys. Sci., 27:9–68, 1907. 1
[33] W. Orr, The stability or instability of the steady motions of a perfect liquid and of a viscous liquid.

Part II: A viscous liquid, Proc. Ir. Acad. Sect. A, Math. Astron. Phys. Sci., 27:69–138, 1907. 1
[34] V. Romanov, Stability of plane-parallel Couette flow, Funct. Anal. Appl., 7:137–146, 1973. 1, 1,

1.1, 1.2, 3, 4, 4, 5
[35] Y. Wang and I. Tice, The viscous surface-internal wave problem: Nonlinear Rayleigh-Taylor

instability, Comm. Part. Diff. Eqs., 37:1967–2028, 2012. 1
[36] C.S. Yih, Note on eigenvalue bounds for the Orr-Sommerfeld equation, J. Fluid Mech., 38:273–278,

https://doi.org/10.1017/S0022112067001375
https://iopscience.iop.org/article/10.1088/0022-3727/26/6/006
https://link.springer.com/article/10.1007/s00021-017-0337-2
https://doi.org/10.1137/1024079
https://link.springer.com/article/10.1007/s002330010042
https://link.springer.com/article/10.1007%2FBF01590652
https://link.springer.com/article/10.1007%2FBF01590652
https://doi.org/10.1016/j.jde.2012.06.008
https://doi.org/10.1360/N012015-00386
https://doi.org/10.1016/j.aim.2016.01.007
https://doi.org/10.1137/090777438
https://journals.aps.org/prfluids/abstract/10.1103/PhysRevFluids.1.054101
https://journals.aps.org/prfluids/abstract/10.1103/PhysRevFluids.1.054101
https://doi.org/10.1016/j.na.2009.02.034
https://link.springer.com/article/10.1007%2Fs11425-013-4587-z
https://doi.org/10.1016/j.aim.2014.07.030
https://doi.org/10.1017/S0022112068001552
https://doi.org/10.1017/S0022112068001552
https://doi.org/10.1017/S0022112069001959
https://doi.org/10.1017/S0022112069001959
https://link.springer.com/article/10.1007%2Fs00021-009-0019-9
https://link.springer.com/article/10.1007/s00021-014-0191-4
https://link.springer.com/book/10.1007/978-3-642-66282-9
https://epubs.siam.org/doi/10.1137/040612336
https://doi.org/10.1016/j.jde.2017.03.009
https://www.researchgate.net/publication/239044321_Mathematical_Topics_in_Fluid_Mechanics
https://www.pnas.org/content/30/10/316
https://www.pnas.org/content/30/10/316
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022112056210202
https://mathscinet.ams.org/mathscinet-getitem?mr=1317892
https://www.scienceopen.com/document?vid=3fed1fa9-4e59-45ec-8f34-7b405822c9f3
http://www.jstor.org/stable/20490590 
http://www.jstor.org/stable/20490591 
https://link.springer.com/article/10.1007%2FBF01078886
https://doi.org/10.1080/03605302.2012.699498
https://doi.org/10.1017/S0022112069000164


1258 STABILITY OF INCOMPRESSIBLE PLANE COUETTE FLOW

1969. 1
[37] Y. Xiao and Z. Xin, On the vanishing viscosity limit for the 3D Navier-Stokes equations with a

slip boundary condition, Comm. Pure Appl. Math., 60:1027–1055, 2007. 1
[38] Y. Xiao and Z. Xin, On the inviscid limit of the 3D Navier-Stokes equations with generalized

Navier-slip boundary conditions, Commun. Math. Stat., 1(3):259–279, 2013. 1

https://doi.org/10.1017/S0022112069000164
https://doi.org/10.1017/S0022112069000164
https://doi.org/10.1002/cpa.20187
https://link.springer.com/article/10.1007/s40304-013-0014-6

