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ON THE FINITE-SIZE LYAPUNOV EXPONENT FOR THE
SCHRÖDINGER OPERATOR WITH SKEW-SHIFT POTENTIAL∗

PAUL M. KIELSTRA† AND MARIUS LEMM‡

Abstract. It is known that a one-dimensional quantum particle is localized when subjected to
an arbitrarily weak random potential. It is conjectured that localization also occurs for an arbitrarily
weak potential generated from the nonlinear skew-shift dynamics: vn = 2 cos

((n
2

)
ω + ny + x

)
with ω

an irrational number and x, y ∈ [0, 1]. Recently, Han, Schlag, and the second author derived a finite-
size criterion in the case when ω is the golden mean, which allows the derivation of the positivity of
the infinite-volume Lyapunov exponent from three conditions imposed at a fixed, finite scale. Here we
numerically verify the two conditions among these that are amenable to computer calculations.
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1. Introduction
A one-dimensional quantum particle living on Z with energy E ∈ R is described by

the discrete Schrödinger equation

ψn+1 + ψn−1 + λvnψn = Eψn, (1.1)

where ψ = (ψn)n∈Z is a sequence in `2(Z;C). The real-valued potential sequence
v = (vn)n∈Z represents the environment that the particle is subjected to. (The “cou-
pling constant” λ > 0 is factored out for convenience.) As first famously realized by
Anderson in 1958 [2], the decoherence introduced by a random (meaning independent
and identically distributed) sequence of potentials can drastically affect the spectral and
dynamical properties of the quantum particle. Physically, one observes a sudden onset
of insulating behavior in the presence of a random environment (“Anderson localiza-
tion”). Mathematically, it is known that for arbitrarily small λ > 0, the one-dimensional
Schrödinger operator

(Hψ)n = ψn+1 + ψn−1 + λvnψn (1.2)

has pure point spectrum with exponentially decaying eigenfunctions [6,7,11,12,20,22].
A natural follow-up question is then: How random does the environment have to

be to localize the quantum particle? Alternative “quasi-random” environments are
generated by sampling a nice function along the orbit of an ergodic dynamical system.
This question is interesting from a general ergodic theory perspective, but it also has
practical implications, e.g., since computer simulations are mostly based on appropriate
pseudo-random number sequences. For example, one can consider vn = 2 cos(nα + θ)
generated from sampling cosine along an irrational circle rotation; this is the well-
known Harper (or Almost-Mathieu) model. It turns out that these linear underlying
dynamics can only produce localization for sufficiently strong potentials, in particular
it is necessarily required that λ > 1 [18]; see Theorem 9.2 in the review [19] for the
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precise conditions. One would thus like to consider dynamics which are slightly more
quasi-random than the shift.

A standing conjecture in this direction concerns the case when the potential is
generated from the nonlinear skew-shift dynamics T : T2 → T2, T (x, y) = (x+ y, y+ω)
with ω irrational (say Diophantine). More precisely, one evaluates the sampling function
2 cos(·) along the first coordinate of an orbit Tn(x, y) which produces the potential

vn = 2 cos

((
n

2

)
ω + ny + x

)
. (1.3)

The key difference between (1.3) compared to vn = 2 cos(nα+θ) is the appearance of the
nonlinear quadratic term n2ω. The conjecture states that the associated Schrödinger
operator H defined by (1.2) is Anderson localized for arbitrarily small λ > 0 everywhere
in the spectrum. Partial results in this vein are due to Bourgain [3], Krüger [23] and
Bourgain-Goldstein-Schlag [5]. Note that the conjecture says in particular that the
skew-shift dynamics is appreciably more random-like than the circle rotation where
vn = 2 cos(nα + θ). (Recall that the latter can only be localized for λ > 1.) The
observation that the skew-shift is more quasi-random than the shift has been made in
another context by Rudnick-Sarnak-Zaharescu [27] and others [16,25,26] (concerning the
spacing distribution) and also recently in [1] (concerning eigenvalues of large Hermitian
matrices).

A crucial ingredient for localization on which we will focus is the positivity of the
Lyapunov exponent of the associated cocycle, which is defined as follows. From now on,
vn = vn(x, y) is given by (1.3) with ω irrational. The second-order difference equation
(1.1) can be solved by using transfer matrices. Namely, for n ≥ 1,(

ψn+1

ψn

)
=Mn(x, y;λ,E)

(
ψ1

ψ0

)
,

where Mn(x, y;λ,E) :=

1∏
j=n

Aj(x, y;λ,E),

and Aj(x, y;λ,E) :=

(
E − λvj −1

1 0

)
.

(1.4)

The Lyapunov exponent is defined as

L(λ,E) := lim
n→∞

1

n

∫
T2

log ‖Mn(x, y;λ,E)‖dxdy,

where the limit exists by subadditivity (Fekete’s lemma). Kingman’s subadditive ergodic
theorem [29] implies that

1

n
log ‖Mn(x, y;λ,E)‖ n→∞−→ L(λ,E)

for Lebesgue-almost every initial condition of the skew-shift (x, y) ∈ T2 as long as ω is
irrational. This leads us to the following relaxed version of the conjecture from above.

Conjecture 1.1. Let ω be irrational. For every λ > 0 and every E ∈ R,

L(λ,E) > 0.
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Some limited progress on Conjecture 1.1 was made in [3,5,14,15,23,24]. We collect
some remarks concerning this conjecture.

Remark 1.1.

(i) The lower bound on the Lyapunov exponent is nontrivial only when E lies in the
spectrum of the Schrödinger operator H defined by (1.2), since otherwise the
Lyapunov exponent is known to be positive by more general results [8, 21, 30].
A concurrent conjecture, to which we will return later, says that the skew-shift
model has no gaps in the spectrum.

(ii) In the case of i.i.d. random v = (vn)n∈Z it is known that the Lyapunov exponent
is positive by Furstenberg’s theorem [10].

(iii) Herman’s subharmonicity trick [17] implies L(λ,E) ≥ log λ and thus establishes
a lower bound on the Lyapunov exponent if and only if λ > 1. The interesting
regime for Conjecture 1.1 is therefore λ ∈ (0, 1].

2. A finite-size criterion
Our paper is a follow-up to an approach on Conjecture 1.1 which was recently

initiated in [14]. That paper was based on the methods developed in [5], specifically
large deviation estimates for Lyapunov exponents and an inductive multi-scale machine
based on the Avalanche Principle. In [14], these methods were rendered effective, i.e.,
explicit constants were obtained for every step of the argument. As a result, one obtains
finite-size criteria for the validity of Conjecture 1.1. Namely, deriving the conjecture

for a fixed choice of parameters λ,E and ω =
√
5−1
2 (the golden mean) is reduced to

verifying three numerical conditions on the Lyapunov exponent at a fixed initial scale,
called N0 below. If true, these conditions can be fed into the effective inductive machine
from [14] to obtain L(λ,E) > 0.

For definiteness, we focus on the following finite-size criterion obtained in [14] (see
Theorem 1.4 there). We define the Lyapunov exponent at scale n ≥ 1 by

Ln(λ,E) :=
1

n

∫
T2

log ‖Mn(x, y;λ,E)‖dxdy (2.1)

and its non-averaged analog by

un(x, y;λ,E) :=
1

n
log ‖Mn(x, y;λ,E)‖. (2.2)

We also define the bad set Bn, where un deviates by more than 10% from its average:

Bn(λ,E) :=

{
(x, y) ∈ T2 : |un(x, y;λ,E)− Ln(λ,E)| > Ln(λ,E)

10

}
. (2.3)

Theorem 2.1 ( [14]). Let ω =
√
5−1
2 and let λ ∈ [1/2, 1]. Let N0 = 30, 000. Assume

that for some energy E ∈ [−2− 2λ, 2 + 2λ] the following hold:

(i) LN0
(λ,E) ≥ 2× 10−3,

(ii)
LN0

(λ,E)−L2N0
(λ,E)

LN0
(λ,E) ≤ 1

8 ,

(iii) max(|BN0
(λ,E)|, |B2N0

(λ,E)|) ≤ N−1650 .
Then:

L(λ,E) ≥ 1

2
LN0

(λ,E) ≥ 10−3.
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We see that Theorem 2.1 reduces the proof of Conjecture 1.1 for specific parameters
λ, ω,E to a numerical calculation at the initial scales N0 = 30, 000 and 2N0. We remark
that the methods in [14] are flexible and can be used to obtain variant finite-size criteria;
some further examples are stated in [14]. We work with Theorem 2.1 because the initial
scale N0 = 30, 000, while large, is amenable to numerical verification which is our goal
here.

Our main contribution is to conduct a detailed numerical study of conditions (i)-(iii).
The results are obtained by running MATLAB code on Harvard’s research computing
cluster Odyssey. We mention that numerics for the skew-shift are a delicate matter
because of the highly oscillatory matrix elements of Aj defined in (1.4), particularly the
quadratic n2ω term in (1.3) combined with the irrational nature of ω. These difficulties
were partially overcome in an earlier numerical study [9] which went up to the scale
N = 200.

The remainder of the paper is organized as follows. In Section 3.1, we conduct some
preliminary investigations into the spectrum of the Schrödinger operator by studying
its finite-size approximations and employing some standard mathematical bounds con-
trolling the error of these approximations. In Section 3.2, we verify conditions (i) and
(ii) of Theorem 2.1 numerically for specific parameter choices—see Table 3.1 below. In
Section 3.3, we investigate condition (iii) of Theorem 2.1. Given the large power 165,
condition (iii) cannot reasonably be verified numerically. Nonetheless, we include some
graphs that hopefully shed some light on this condition.

We recall Remark 1.2 in [14] about condition (iii): Condition (iii) is a large-deviation
estimate at the initial scales N0 and 2N0 and hence plays a different role from conditions
(i) and (ii). For instance, analogous large-deviation estimates are analytically known
to hold a priori, independently of the positivity of the Lyapunov exponent, for the
Harper model and others [4, 5, 13]. At any rate, an analytical proof of condition (iii)
is warranted, and the importance of this problem is elevated further in light of our
numerical verification of conditions (i) and (ii) in the present work.

From now on, we fix the parameters ω =
√
5−1
2 and λ = 1/2.

3. Numerical results

3.1. Preliminaries on the spectrum of H. As mentioned after Conjecture
1.1, the only energies E for which the positivity of the Lyapunov exponent L(λ,E) is
nontrivial are those lying in the spectrum of the infinite-volume Schrödinger operator
H(x, y) defined in (1.2) with vn = vn(x, y) given by (1.3). General facts from ergodic
theory and spectral theory imply that specH(x, y) is independent of (x, y) and contained
in [−2− 2λ, 2 + 2λ].

Apart from these general facts, however, not much is known about specH(x, y).
Hence, it is a priori unclear on which energies E we should focus our numerical inves-
tigation. Before we explain how we choose which energies to study (given our choice of

other parameters ω =
√
5−1
2 and λ = 1/2), we note that this issue is not as concerning

as it may seem at first sight, in light of another standing conjecture that the skew-shift
Schrödinger operator H given by (1.2) has no gaps in the spectrum. This concurrent
conjecture is also somewhat supported by numerics [9]: see (3.2) below for a numerical
upper bound on the spectral gap.

We choose to focus our investigations on the energies

E0 = 0, and E1 = −2.49512326. (3.1)
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Fig. 3.1. A histogram of the eigenvalues of HN0
(x, y; 1/2) across a 200 × 200 regular grid of

pairs (x, y) ∈ [0, 1]2. The most common energy when rounding to 8 digits is E1 = −2.49512326; this
corresponds to (but is more refined than) the tallest peak on the left in the histogram. A close second
is the energy 2.49511562 which corresponds to the reflected peak on the right.

The energy E0 = 0 is a natural choice by symmetry considerations. Indeed, the spectrum
of H is symmetric under reflection at 0; note also the reflection symmetry in Figure 3.1
for the finite-size analog of this fact.

The energy E1 is chosen as follows. While specH is not directly accessible by
numerics, we can consider the finite-size approximation to H, the N ×N Hamiltonian
matrix HN (x, y;λ) defined by

HN (x, y;λ) =



λv1(x, y) 1 0 0 . . . 0
1 λv2(x, y) 1 0 . . . 0
0 1 λv3(x, y) 1 . . . 0

0 0 1 λv4(x, y)
. . . 0

...
...

...
. . .

. . . 1
0 . . . . . . 0 1 λvN (x, y)


Standard spectral estimates can be used to approximate specH by specHN , see for
instance Corollary 2 in [9]. In [9], these estimates are combined with the eigenvalue and
eigenvector results for H100 to derive the following upper bound on the largest spectral
gap in specH:

Γ < 5.708× 10−4. (3.2)

We set N = N0 = 30, 000 and diagonalize HN (x, y; 1/2) over a 200 × 200 regular
grid of pairs (x, y) ∈ [0, 1]2. The resulting empirical spectral measure is shown as a
histogram in Figure 3.1. We choose E1 as the location of the bin with the tallest peak
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E = E0 E = E1

LN0(1/2, E) 0.08071 0.46561
L2N0

(1/2, E) 0.08070 0.46559
LN0

(1/2,E)−L2N0
(1/2,E)

LN0
(1/2,E) < 2× 10−4 < 5× 10−5

Table 3.1. Finite-size Lyapunov exponents calculated by numerical integration over a regular
2001× 2001 grid of (x, y) ∈ [0, 1]2.

(using higher precision than the one used to produce the histogram). In other words,
E1 is close to an eigenvalue of HN0

for the maximal number of pairs (x, y) ∈ [0, 1]2 and
in this sense is the number of maximal likelihood on scale N0 to lie in specH. (We
remark that we determine E1 to 16-digit accuracy as E1 = −2.495123260049612 and
conduct all computations at this accuracy. The approximation (3.1) is chosen in the
main text for readability.)

Moreover, the spectral estimate from Corollary 2 in [9] can be used to show that
E1 lies inside the spectrum to that level of accuracy, namely,

dist(E1, specH) < 10−8. (3.3)

This estimate is relevant insofar as we want to check L(λ,E) for E ∈ specH and by
the above considerations E1 is our best guess for an element of specH from spectral
information at scale N0.

3.2. Numerical verification of conditions (i) and (ii). We recall that

ω =
√
5−1
2 , λ = 1/2, and N0 = 30, 000. Our main results are the numerical computations

of the finite-size Lyapunov exponents LN0
(1/2, E) and L2N0

(1/2, E) for E ∈ {E0, E1}
given in (3.1). We recall that these are defined as integrals over T2 in (2.1). We write
LN0

(1/2, E) and L2N0
(1/2, E) for the numerical approximations of these integrals which

are obtained by summation over a 2001 × 2001 grid of (x, y) ∈ [0, 1]2. The numerical
results are summarized in Table 3.1. We see that

min
E∈{E0,E1}

LN0
(λ,E) ≥ 8× 10−2 > 2× 10−3,

max
E∈{E0,E1}

LN0(λ,E)− L2N0(λ,E)

LN0
(λ,E)

≤ 2× 10−4 <
1

8
.

Hence, conditions (i) and (ii) of Theorem 2.1 hold numerically for E0 and E1 (in fact,
comfortably so).

We make some remarks concerning numerical integration errors. We would like to
emphasize that there is no viable deterministic, rigorous bound on the numerical in-
tegration error because the integrand log ‖MN0

(λ,E;x, y)‖ can have a large derivative
in x and especially y. Instead, we separately confirmed the numbers in Table 3.1 with
a Monte-Carlo integration using P = 20012 pseudorandom integration points. In that
case, the random numerical integration can be studied through the random approxima-
tion

QN (P ) =
1

P

P∑
i=1

uN (λ,E;xi, yi)
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where we assume that the P random variables (x1, y1), . . . , (xP , yP ) are independently
drawn from Lebesgue measure on [0, 1]2. In this case, we obtain the same numerical re-
sults as before, e.g., QN0

(1/2, E0) ≈ 0.08071 etc. Assuming the Monte-Carlo integration
is truly random, the integration error can be estimated as follows.

Lemma 3.1. Let N ≥ 1, E ∈ {E0, E1}, P = 20012 and 0 < ε < 1. With respect to
uniform probability measure, it holds that

P(|QN (P )− LN | > ε× 10−2) ≤ 2

300ε2
.

For example, if we take ε = 7 and use the numerical result QN0
(P ) ≥ 0.08× 10−2,

then we find that P(LN0
< 10−2) < 0.02%. The bound is informative roughly until ε

reaches 0.2 in which case it implies LN0
> 0.078 with probability > 83%. These bounds

and their analogs for L2N0 indicate the correctness of the numerical data in Table 3.1.

Proof. We aim to apply Chebyshev’s inequality. Notice that

E
(

1

N
log ‖MN (λ,E;x, y)‖

)
= LN .

Hence, by independence,

Var(QN (P )) = E((QN (P )− LN )2) =
Var( 1

N log ‖MN (λ,E;x, y)‖)
P

By using Var(X) ≤ E(X2) and submultiplicativity of the norm, ‖AB‖ ≤ ‖A‖‖B‖, we
have

Var

(
1

N
log ‖MN (λ,E;x, y)‖

)
≤ max

j
log

∥∥∥∥( E − λvj −1
1 0

)∥∥∥∥2 .
Since ∥∥∥∥( a −1

1 0

)∥∥∥∥ =

√
2 + a2 + |a|

√
4 + a2

√
2

,

and |λvj | ≤ 1, it follows that

Var

(
1

N
log ‖MN (λ,E;x, y)‖

)
≤ log

2 + (|E1|+ 1)2 + (|E1|+ 1)
√

4 + (|E1|+ 1)2

2

for both E ∈ {E0, E1}. Since |E1| + 1 ≤ 3.5, the right-hand side is bounded by 8/3.
This gives

Var(QN (P )) <
8

3P
<

2

3
× 10−6.

Lemma 3.1 now follows from applying Chebyshev’s inequality with deviation ε× 10−2.

3.3. Numerical investigation of condition (iii). As mentioned in the dis-
cussion after Theorem 2.1, condition (iii) is a large-deviation estimate at the initial scale
and plays a different role from conditions (i) and (ii). In this section, we present two
different kinds of graphs of the non-averaged Lyapunov exponent un(1/2, E;x, y) from
(2.2) along slices of T2 of constant x- and y-values for comparison purposes.
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Fig. 3.2. Example of normal slices of constant x- and y-values for N = N0 = 30, 000. The
energy is E0 = 0. The left graph shows the function y 7→ uN (1/2, 0; 1/2, y) and the right graph shows
x 7→ uN (1/2, 0;x, 1/2)

Fig. 3.3. Example of bad slices for N = 100. The energy E∗ = 0.03688972 is chosen as
an eigenvalue of the finite-size approximation HN (0.5, 0.5). The left graph shows the function y 7→
uN (1/2, E∗;x0, y) and the right graph shows x 7→ uN (1/2, E∗;x, y0) with x0 = y0 = 0.46927639

• Figure 3.2 shows uN (1/2, 0;x, y) along normal x- and y-slices. In this case,
there is no visible bad set BN (1/2, 0).

• Figure 3.3 shows uN (1/2, E∗;x, y) along slices of constant x- and y-values which
are designed to contain a point in the bad set BN (1/2, E∗) where the non-
averaged Lyapunov exponent dips close to zero. We find such “bad slices”
by taking the energy E∗ to be an eigenvalue of the corresponding finite-size
operator HN (0.5, 0.5) and looking for a pair of slices that intersect at a nearby
point along which the non-averaged Lyapunov exponent is minimal.

From both figures, we see that the x- and y-dependence of uN (1/2, E;x, y) are
starkly different. The fact that the y-dependence is more oscillatory is expected in view
of the expression ny + x in (1.4). The main difference between Figures 3.2 and 3.3, is
that in Figure 3.3 uN (1/2, E;x, y) almost reaches 0 at a few special points along both
slices. These special points contribute to the bad set BN defined in (2.3).

It turns out that the method we use to construct these “bad slices” by hand (de-
scribed in the second bullet point above) only works for relatively small N and this is
the reason why we take N = 100 in Figure 3.3. This fact can be considered good news
in view of condition (iii). Going a step further, we might assume that the only possible
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reason for the occurrence of a bad point (x, y) ∈ BN (λ,E) is that E is an eigenvalue of
the finite-size operator HN (x, y). With this assumption, we can estimate the size of the
bad set using the data gathered in Section 3.1. Indeed, it suffices to count what is the
maximum number of times that an energy E occurs as an eigenvalue of HN (x, y) for
(x, y) ranging over the 2001 × 2001 toroidal grid. The resulting count, when rounding
energies to 8 decimal digits, is 31. This suggests a rough estimate on |BN0

(1/2, 0)| of
31/(2001)2 < 8× 10−5, which is still quite far from what is required for condition (iii).

In light of these results, we believe that finding an analytical proof of condition (iii)
makes for an important open problem.

Supplemental material. The MATLAB code used to perform the computations
presented in this paper and the complete numerical output (to 16-digit accuracy) are
available through an online repository [28].
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the FAS Division of Science, Research Computing Group at Harvard University.
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[17] M.-R. Herman, Une méthode pour minorer les exposants de Lyapounov et quelques exemples
montrant le caractère local d’un théorème d’Arnol’d et de Moser sur le tore de dimension 2,
Comment. Math. Helv., 58(3):453–502, 1983 . 1307

https://arxiv.org/abs/1903.11514?context=math-ph
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
http://link.springer.com/article/10.1007%2FBF02868469
https://mathscinet.ams.org/mathscinet-getitem?mr=1815703
https://link.springer.com/article/10.1007/PL00005570
https://doi.org/10.1090/tran/7832
https://link.springer.com/article/10.1007%2FBF01210702
https://link.springer.com/article/10.1007%2FBF01646473
https://doi.org/10.4208/cicp.120513.290813a
https://doi.org/10.1090/S0002-9947-1963-0163345-0
https://mathscinet.ams.org/mathscinet-getitem?mr=470515
https://www.jstor.org/stable/3062114
https://doi.org/10.1017/etds.2019.19
https://arxiv.org/abs/1807.00233
https://www.researchgate.net/publication/24169258_Pair_Correlation_for_Fractional_Parts_of_alpha_n2
https://mathscinet.ams.org/mathscinet-getitem?mr=727713


1314 FINITE-SIZE LYAPUNOV EXPONENT FOR THE SKEW-SHIFT POTENTIAL

[18] S. Jitomirskaya, Metal-insulator transition for the almost Mathieu operator, Ann. Math.,
150(3):1159–1175, 1999. 1305

[19] S. Jitomirskaya and C. Marx, Dynamics and spectral theory of quasi-periodic Schrödinger-type
operators, Ergod. Theory Dyn. Syst., 37(8):2353–2393, 2016. 1305

[20] S. Jitomirskaya and X. Zhu, Large deviations of the Lyapunov exponent and localization for the
1D Anderson model, Comm. Math. Phys., 370:311–324, 2019. 1305

[21] R. Johnson, Exponential dichotomy, rotation number, and linear differential operators with
bounded coefficients, J. Diff. Eqs., 61:54–78, 1986. 1307

[22] H. Kunz and B. Souillard, Sur le spectre des opérateurs aux différences finies aléatoires, Comm.
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