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LOCAL WELL-POSEDNESS FOR
THE QUANTUM ZAKHAROV SYSTEM*

YUNG-FU FANG' AND KUAN-HSIANG WANGH#

Abstract. We consider the quantum Zakharov system in spatial dimensions greater than 1. The
local well-posedness is obtained for initial data of the electric field and of the ion density lying in
some Sobolev spaces with certain regularities. For higher dimensions, the results cover the subcritical
region. We get major part of the subcritical region for lower dimensions. For the quantum Zakharov
system with initial data possessing the critical regularities, the local well-posedness is also proved for
spatial dimensions greater than 7. As the quantum parameter approaches zero, we prove the local
well-posedness for Zakharov system which improves the known result.
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1. Introduction
In this paper, we consider the quantum Zakharov system which reads as

iB+AE—e?A’E=nE, zcR%
ny —An+e2A’n=A|E|% (1.1)
E(0) = Ey, n(0) =ng, nt(0) =nq,

where F is the slowly varying envelope of the rapidly oscillating electric field and n is
the deviation of the ion density from its mean value. FE is complex valued and n is
real valued, see [20]. Equation (1.1) describes the propagation of Langmuir waves in an
ionized plasma with quantum effect. The readers are referred to [20] for a more physical
background. The system (1.1) has the conservation of mass

/|E(t)\2dx:/|E(O)|2da: (1.2)

and the conservation of the Hamiltonian
1 1 1 1
SIVEIR+ 58P+ 5 (Il s+l ) +5 [ nlPPde. (13)

In the absence of quantum effect, i.e. ¢ =0, we have the classical Zakharov system,

iE,+AE=nE, xzecR%
E(O) :E07 n(o) ="no, nt(o) =ny,

which also possesses the conservation of mass and the conservation of the Hamiltonian,
see [31]. The Zakharov system (1.4) has been extensively studied for the local well-
posedness (LWP) and global well-posedness (GWP) [1-4,8,11,25,27], for ill-posedness
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[21], for blow-up [12,13], for scattering results [14,16,29], and for adiabatic limit of the
solution [26, 28].

The works on (1.1) are less than those on (1.4). We list some known results for
(1.1). For dimension one, the system is studied for the LWP and GWP, see [7,10],
and [22]. For dimensions d=1,2,3, the GWP, the stability of solution, and the classical
limit is proved for (1.1), see [19]. In 2019, Fang-Nakanishi showed LWP, GWP, and
scattering for (1.1) with L? data for 1 <d <8, see [9].

For the sake of simplicity, we transform (1.1) into the first-order equations in time
t and denote

(eD):=v/1-e2A, D:=v-A, N:=n+i(D{ED)) 0, n=ReN), (1.5)
where Re(N) is the real part of V. Thus the quantum Zakharov system (1.1) becomes
iE,— (D{(eD))*?E=Re(N)E, (t,x)eRxR%

iN; —D{(eD)N =D(eD) | E|?; (1.6)
E(0)=Ey, N(0)=Np, zeR%

where Nj :=ng+i(D{eD)) *n;. The corresponding Hamiltonian becomes

1 1 1
§||'D<€'D>E||%2+1||<8D>NH%2+§/ Re(N)|E|*dz = constant. (1.7)
Rd

Ignoring the terms AE and D{eD)N, and replacing D{(eD)~! by I in system (1.6)
gives the corresponding system which is invariant under the dilation

E(t,x) — Ex(t,z) =N E(\'t,\x), N(t,2) = Ni(t,x) = NN\t \x), (1.8)
see [11]. Since
B, g = X5 Bl g and [NA(0, ) e = A NG e
the system (1.6) is critical for
(k.0)=((d—8)/2,(d—8)/2). (1.9)

Throughout the paper, we set e =1, unless it is specified. We denote the region
Rgz.a by

{(k,0): max{—¢,£—2k, -2k} <d/2,and —5/2<l—k <4} ford=2,3,; (1.10)
{(k,0): max{—£,0—2k,|k|—20—2}<4—d/2,k>—1,and —5/2<l—k <4} ford>4.
(1.11)

Our main results are as follows.

THEOREM 1.1 (LWP for QZ). Let d>2. If (k,¢) € Rgz,4, then the quantum Zakharov
system (1.6) is locally well-posed for initial data (Eg,No)€ H*(R?) x HY(RY). The so-
lution (E,N) € C([0,T]; H*(R%)) x C([0,T]; H*(R%)).

Notice that (k, £) = (%52 +0,%52) lies on the boundary of the region Rgz,q for the
LWP stated in Theorem 1.1, but not included.

THEOREM 1.2 (LWP for the critical case).  Let d>8. If (k,{)= (%2 +0,%2) with

0<o0<1, then the quantum Zakharov system (1.6) is locally well-posed for initial data
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(Eo,No) € HTH(RY) x H*Z" (RY).  The solution (E,N)€C([0,T);H*"+(R)) x
C([0,T);H*=" (RY)).

We are also interested in the LWP of (1.4) and we improve the result in [11] for
d>2.

THEOREM 1.3 (LWP for Z). Let d>2. If (k,0) satisfies

(—1<k<(i+1 for all d,
0>dj2-2, 2k—(0+1)>d/2—-2 for d>4, (1.12)
>0, 2k—(¢+1)>0 for d=2,3,

then the system (1.6) with € =0 is locally well-posed for initial data (Eo,No) € HF (R?) x
HY(RY). The solution (E,N)€C([0,T]; H*(R%)) x C([0,T]; H(R?)).

The outline of the paper is as follows. In Section 1, we introduced the QZ system
and the main results. In Section 2, we define some notations and discuss some basic
estimates. In Sections 3-5, we discuss the multilinear estimates which is the key ingre-
dient. In Section 6, we prove the Theorem 1.1. In Section 7, we prove Theorem 1.2.
Finally, in Section 8, we show Theorem 1.3.

2. Notations and basic estimates

We denote the Fourier transform and its inverse transform of u(¢,z) over the space
variable by Fu(t,£) and F~1u(t,£), the Fourier transform and its inverse transform of
u(t,z) over time and space variables by @(7,£) and uV(7,£). Consider the 4th order
Schrodinger equation,

iE; — (D(D))’E=F. (2.1)
We can obtain the solution formula
E(t,x)=U(t)Eo(z)+Ux*g F(t,x), (2.2)

where U(t) = (P(P)? i5 the 4th order Schrodinger propagator and the Duhamel op-
erator is

t
U*RF(t,x):z—z’/ U(t—s)F(s,x)ds. (2.3)
0
Analogously for the 4th order wave equation,
iNy —D(D)N =G, (2.4)
we can obtain the solution formula
N(t,x) =W () No(z) + W xg G(t,z), (2.5)

where W (¢) := eP{P) ig the 4th order wave propagator and the Duhamel operator is

t
WxrG(t,x) ::—i/ W(t—s)G(s,x)ds. (2.6)
0
For s €R, we denote by H*(RY) and H*(R%) the usual inhomogeneous and homo-
geneous Sobolev spaces equipped with the norms, respectively,

[ull g+ == (D) ull 2 = |(1+]€[*)* Full 2 and HUIIHs¢=HDSUIIL2=H|€\8F““L2(' )
2.7



1386 LOCAL WELL-POSEDNESS FOR QUANTUM ZAKHAROV SYSTEM

Let us define some Bourgain spaces Xf’a and Y? | s,a € R, with the norms

o, = ([ [ @2 +o@per.oraras)’ (28)

and

1

Iollys = ([ ([ € tr+00) o e)iar) ae)” (29)

It is known that X¢,CC([0,T];H*) for a> 3, see [11]. X2, and Y are called 4th
order Schrédinger spaces if ¢(€):=1£|%(¢)2, and denoted by XS and Y%, while X‘iJ

S,

and Y¢ are called reduced wave spaces if ¢(&):=1¢|(¢), and denoted by XV and YW

S,

We denote by I the arbitary time interval and LYL" = L{(I,L"(R?)). Especially, we
denote LILT = LI(R, L1 (R)) and LY, = LIL1.

Let 1 be a cut-off function such that (t) is 1 for [t| <1, 0 for |¢t|>2, and Y7 (¢) =
¥(%). Also let xg(7) be the indicator function on the set S, that is 1if €5, 0if 7¢S.

LEMMA 2.1 (Homogeneous estimates). Suppose T <1. We have the following:
(S1) U () Eollco,ry;mx) = [1Eoll -
(52) If0<by, then [rU(D)Eollxg, <T2~"|[vlgn:
(W 1) [W(Noll o,y mey = 1Nl e
(W2) If 0<b, then ||y W (N0l xpw, T2 [bl| o |No | 17

Eol g -

LEMMA 2.2 (Duhamel estimates). Suppose T'<1.
(S1) If 0<cy,b1, and by +c1 <1, then

—by— 1_ ™~V
lWrUsrFlixg, ST Flxg AT [ (xgr+igr©22r-1F) llys:

(52) ]f0§61<%, 0<by,b14+c1 <1, then HwTU*RF”XE <T1 b1— Cl||FHXS
(83) If F€Y,?, then |UxrFlcqommr) SIFys-
(W1)If0<c,b, and b+c<1 then

—c1

Cb—e 1_ PN
W xrGllxp ST NGllxp  +T2 7" (xgrriel127-13G) v

(W2) If0<c<$, 0<b, and b+c<1, then |[prW xr G| xw ST 707Gl xw .
(W3) If GeY,V, then IWxrGlleqo,r;me) S ||G||YW
We skip the proofs of Lemmas 2.1-2.2 and the readers are referred to [8, 11, 17]

and [18]. We recall the Strichartz estimates for the operators D(D) and (D(D))?. A
pair (q,r) is called Schrodinger admissible, for short S-admissible, if

2
2<qr<oc, (gndA2oe2), S+5=5 (2.10)

A pair (q,r) is called biharmonic admissible, for short B-admissible, if

4 d d

2SQ7TSOOa (q,rad)#(Q,OOa‘l)v 7"_7 5; (211)
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d_d
2 T

see [30]. We also denote the notation p(r):=

PROPOSITION 2.1 (Pausader [30]). Let E<C([0,T],H*(R%)) be a solution of (2.1).

For any B-admissible pairs (q1,71) and (g2,72), it satisfies
1Ellza  rm SIEollLz +[1F]]

7
0, T] LQZ 2 ?

(2.12)

where the constant depends only on qo and ro. Besides, for any S-admissible pairs
(q1,71) and (g2,72), we have

D)™ Ellpm  zo SIEollzz + (D)~ ‘*2F\|Lq2 L' (2.13)

where the constant depends only on gz and rs.

The proof is based on the work of Kenig-Ponce-Vega [24], or the works of Ben-Artzi-
Koch-Saut [6], Pausader [30], and Keel-Tao [23], together with some modifications. The
readers are also referred to [9] for the supplement. Now we can use the interpolation
between (2.12) and (2.13) to get the following.

COROLLARY 2.1.  Assume that 0<0<1,4<¢<oo ford=1,2<qg< 00 ford=2,4, and
2<q<oo for d=3,d>5. Then the following inequalities hold. For d=1,2,3,

2
(D) #°U () Eoll gy S Il Eoll 2. (2.14)

where 1 =2+ 4(1-0) and p(r) = g(1—9)+%9. For d>4,

e q
KDY’ U () Boll gy SN Eollrz. (2.15)

where %: %—i—g and p(r)= %(1—9)4—9.

Proof. We first consider 1<d<3. Let the pair (¢,7) be S-admissible. The
interpolation between (2.13) with (¢,7) and (2.12) with (3,00) gives (2.14).

We next consider d>4. Let the pairs (2,71) be S-admissible and (g2,72) be B-
admissible. The interpolation between (2.13) with (2,r1) and (2.12) with (g2,72) gives
(2.15). 0

Invoking the above corollary, we can obtain a variant version of Strichartz estimate
for (2.1).

LEMMA 2.3.  Under the assumptions of Corollary 2.1, assume that 8> % and0<a<p.
Then the following inequalities hold. For d=1,2,3,

QN

1) 7% (r+ 112 ™ @) VIl g g S Nl iz, (2.16)

where

3: (2(19”2) %% (1 Z) and  p(r)= <‘2l(19)+2~9> %. (2.17)

1) B ¢+ (€€ )V Il g2y S Nz, (2.18)
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where

=(5045) 545 (1-5) wa s=(G0-0+0)5 @

Proof. For 1<d<3, we first get the following estimate
|| fHquLrl ~ Hf”XS ) (220)

where q—l = (1 0)+% g and p(r1)=2%(1-0)+ %9. Using Fourier transform and its in-
verse, we can rewrite f FAU@)F(U(=t)f). Invoking (2.14), we first compute

D) g s 5 [ | =000, ar

<(/<T+‘fl 25)fo\ d5d7> =Ifllxg,- (2.21)

L2

where we use (2.14) and 3 > % Invoking the interpolation between (2.20) and ||f||L§L§ <
Ifllxg > we then obtain

where (2.17) holds.
For d >4, we analogously get the following estimate

KDY Fll o pn Sl (2.22)

where % = 1579 +g and p(ry) = %(1 —0)+6. Invoking the interpolation between (2.22)
and Hf||L2L2 <|Ifllxs s, we then obtain

D)5 Fllgry S I lxs, s

where (2.19) holds. Finally, we let f = (74 |¢[2(¢)2)~[d| and complete the proof. O

PROPOSITION 2.2 (Gustafson-Nakanishi-Tsai [15], Theorem 2.1, and [9]). Let N be a
solution of (2.4). If (¢;,r;) are S-admissible for i=1,2, we have, with v;:=(1—2/d)/q;,

D )—’71 D \2
=) W SIWollzz + | (+5;) €| (2.23)
H ( (D) L L (D) L L
where the implicit constant depends only on d, q1, and qs.
REMARK 2.1. For d>2, invoking (2.23) and Plancherel Theorem, we have
DN D \m D \m
WON 2= (55) WO (gr) 0] g, < Gy) ™40, 0
WOl = | (35) WO (5) 80 < (35) A6, < 12
(2.24)

We can also obtain a variant version of Strichartz estimate for (2.4).
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LEMMA 2.4. For d>2, let ﬁo>%, 0<a<pBy, 0<n<1 for d=2, and 0<n<1 for
d>3. Then

I 116N [a) Il Loy S llullzz (2.25)
where

and  p(r)=(1—1)— (2.26)

—=1-
q 7750 Bo

For the multilinear estimates, we state the following calculus lemma. Define [a]+ =
aifa>0,4dif a=0, 0 if a <0, where ¢ is an arbitrary small number.

LEMMA 2.5 ( [11] Lemma 4.2).  Let 0<a_<ay, ay+a_ >3, and a=2a_—[1—
2a4]4. Then the following estimate holds for all s€R

/ (y—s) 720+ (y+5) "2 dy <c(s) ™.
R

3. Multilinear estimates
For the local well-posedness of (1.6), we need to verify the following multilinear
estimates,

IReW)Ellxs <INy IElxg, - (3.1)
ID(D) (B By S Brllxg, IElxs, (3.2)
IReW)Ellys SIVIxg |1 Ell s, (3.3)
ID(D) (B Bo) e SIBr I, 1Bl xg, (3.4)

whose proof will be given in the next section. For estimate (3.1), it is sufficient to obtain
IWElxs  +INElxs  SIVIxpIElxs, - (3.5)
o, —c1 ,—c1 2 0,01
For (3.3), it is sufficient to estimate the following inequality.

IVEllys + IV Ellys < IV L 1ElLxg, - (3.6)

The proofs for NE and N'E are similar, thus we only discuss the case of N'E. By the
duality argument, (3.5) and (3.2) are equivalent to

(NVE, g)| SINlxp IENxs, llgllxs,
) 201 sC1
and

[(D(D) " (E1E2).9)| S B llxg, IE2llxs, llollxw,

—£,c

respectively. Thus we know that (3.5) holds if and only if S S|lullzz [Juillzz [luallze
and (3.2) holds if and only if W S lul[z2 [Juillzz uzllpz | for all w,ui,us €L,, where

|u( T§ | 1 (11,€1)] [ (72,62)| (€1)*
s= [V e e e

(€) " dp, (3.7)
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|u( Tf \Ul 71,&1)| [Ua(72,&2)] €] (€)°
W= / (o1)b (o) (&) (€1)k ()" it

5261—52, T=T1—T2, U:T+|§|<§>7 O’j:’I'j-i-|§j|2<§j>2,forj:].,27 (39)
and du=dmdfedr dé, we denote
As: =)&) THEO ™ and  Aw:=() (&) F (&) (3.10)

For (3.3) and (3.4), it is equivalent to prove

] / ([t m Gl € VB &) ldn ) EEde | S Wl 1Bl ol

| [(f @i ieien & EBa(rlar) e <1EilLxg, 122l ol

respectively. Analogously we need to obtain the estimates S < [ullzz llvillzz [luzllzz |

and W S [[ol[z2 [lurllzz  luzllzz ,, where

|u T f \ |U1 71,61)| |U2(72,£2)|
(o1)™ (o)

\u 76 | IU1 7'1>§1)| |2 (72,€2)] €]
D (o) (§)

dp = drydéadrydey, iy = (o1) 1 Fuy (&) in S, and |G| = ()2~ Fu(€)| in W. We split
the space of (72,£2,71,£1) into three parts. Let

Q1 :={2&[ <[]}, Qo:={2[&|< ([}, Q3:={1/2|&]<[&]<2[&]} (3.13)

On each of Q;, j=1,2,3, we can simplify the quantities Ag and Ay as follows:

Agdp, (3.11)

=L Ay dp, (3.12)

k=0, As~ (&), Ay ~ (€)%

k>0, onQi, Asg~(E)FH&)TF, Aw~ () THE) N

k>07 OHQQ, AS§<£>7£a AWN<§>E7k<€1>7k;

k>0, onQs, As~ ()7, Aw S(€) %, (3.14)
k<0, onfy, A55<§>_e7 AW5<§>K_2]€§

k<0, on€,, Ag~ <§>_k_é <€1>k7 Aw 5 <f>€_2k5

k<0, onQs, Ag~ ()", Aw ~ (€)(&) 7"

Correspondingly we split the integral as follows:

Al @l @l Al @l
= Ag —A
5 /Q<a>b<al>w (ogypr A5 it and W / < on)or {oatr (€)W

' (3.15)
for j=1,2,3. Also we define S; and W} accordingly, for j=1,2,3,

- @l [ a6l |u1| @] €]
S. = Agd nd W = Aw du.
7 /g<o>b (o)t (agybr S 2 / o)t (o)t (&) M

J

(3.16)
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We decomposed the region 2; into three parts for j=1,2, as follows:

Q

Ul g 2 matlollo )
(3.17)

We also split the integral S; into three parts Sj,, Sj,, and S ,, with respect to the

regions €, Qj. 015 Qj oy for j=1,2. Thus Wj is split into three parts Wie, Wj o, and

Jso ':Qj’\aemax{wu,wﬂ}’ Q.o : Qj’\m|zmax{|o|,|ag|}’ .0z

W o, in the same fashion for j=1,2. So are the integrals S and W Since

max{(0),(01),(02)} 2 |on — o2 — 0| +1=|[&1*(€1)% — |2 (€2)* — [€](€) | +1 2 (€)*
(3.18)
on 1 U, thus we have the following inequality

max{ <§>4a <§1>4a <§2>4} S maX{ <U>7 <01>, <O—2>}7 (319)

which will be used frequently in the proof of multilinear estimates. The proofs of
Theorems 1.1 - 1.2 will be given in the later sections.

4. Multilinear estimates for the X-norm

We first pay attention to the integration region {23 since we shall not have any
inequality like (3.19) that is applicable. In fact, the multilinear estimates on Q3 gives the
limit condition for (k,£). We denote n(r,r’):=p(r) —p(r') if 2<r' <r<oo, > 4% —p(r’)
if r=o00.

LEMMA 4.1. Let a,a1,a2>0 and meR. For d=2,3, let m<f and one of the
following conditions is satisfied. (a) a,as>3%,a1>1; (b) a,a; >3 a2> i () ar,a0>
%,a> %. Then we have

/ [u(, )] [t (11,61)| [a2(72,62)|
Q3

(o) fom (o)

©mduSllulie llunlizp fusllpz . (4.1)

For d>4, let m<4—% and one of the following conditions is satisfied. (i) a,as >
a1>7—7+ ; (i) a a1> 2,a2>7—7—|— 5 (4i7) al,a2>%,a>g—%+%. Then we
have (4 1).

Proof.  Without loss of generality, we can assume that m >0 for 2<d<7. Set
m=aqa1 +asg, by the Holder inequality, we have
LHS of (4.1)
5/ [al (€)" [ ] (€2)*2[ua]
; ()" (o) (02)*
S~ @Dl popg 1€ (o) = @) ¥l par o (620" {o2) = [@2]) VIl poz 72, (4:2)

where

1 1 1
—+—+—=1 and p(r)+p(r1)+p(ra)==

. 4.3
a9 @1 G 2 (43)

Invoking Lemma 2.4, if (2.26) holds, we can obtain [|({(¢)~[a])"|[Lsrr Slullzz  pro-
vided that 5y,a, and 7 satisfy the assumption in Lemma 2.4.
For last two norms in (4.2), invoking Lemma 2.3, if

2 ()Y

qj B] ek ,D(Tj):(27j(170j))

3, Jrozj, =(,;0 Jﬁg (4.4)
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d 2 2
’71:’7221 for d=273;’)’j=§ for dZ‘thZ; for d=2,3;(1=(=1 for d>4,
Jj J
(4.5)
we can get

10630 (o)™ Nt )Y Ml s s Sllugllee,,  for j=1,2,

provided that ;,a;,0;, and g; satisfy the assumption in Lemma 2.3. Now we have

IR Sl (4.6)
m=a;+as= — —= .
PTG L <2 it d>s.
Combining (4.3), (2.26), and (4.4) gives
a a a
L=+ (1= (1=61)) z- + (1 =72(1—02)) == —m (4.7)
0 o3 65
and
d a ay a2
—=1-n)=—4+271(1—601)+272(1 —03)— +m. 4.8
= (L) + 20 (1= 00) 5+ 210(1-02) 5 (4.5)
Then we add up (4.7) with (4.8) and add up 2x(4.7) with (4.8) to obtain
d a ax a2
14-=—4+04711(1-61) =+ 1 4+72(1—062)) — 4.9
5~ 7 (T+71( 1))51 (L+72(1=62)) - (4.9)
and
S LR S - B (4.10)
2 R T '

From (4.8) and (4.10), we have the conditions m < 4 and m <4— ¢ respectively. There-
fore, we obtain the limit conditions mS% for d=2,3, and m < 4—% for d> 4.

From the equalities (4.9) and (4.10), we may get these conditions (a)—(c) and
(i) — (iii). For example, if a,as > %, we may choose n=1, and thus we get a; > (¢ -1+

)3 > < — 14+ ™ by (4.10). However, such a condition is not enough when the equality
(4.9) holds for d=3. More precisely, the lower bound is too small for d=3. Since
g— % +7< % when d=3, we assume that a; > i.

For d > 8, we have

LHS of (4.1) SI((€)™ (o)™ [a)" I Loy

(o)™ [an) ¥l o o | ({o2) = [@2]) ¥ [ oz 72
(4.11)
with (4.3). Since m <0, we apply Sobolev inequality and Lemma 2.4 to obtain

(&)™ (@)~ la) Lz y SNUE™ Vo)™l pazy S llullzz,, (4.12)

where n(r,r’) < —m, and (g,r’) satisfies (2.26) provided that 8y >1,0<a < f,, and 0<
n<1. Invoking Lemma 2.3, if (4.4) with 6; =65 =0 holds, we can get

1oy )Y s s Slluglles o G=1,2,
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provided that ;> 1, 0<a; <;, and 2<g; <oco. Combining all needed conditions, we
need to verify that the following system holds.

—ma 2 \a 2 \a
1777%+(1—5—1)5—1+(1757)F§,
—d_d4a "da d (4.13)

From the system (4.13), we have

d a ai as
—m> e +2—(14n)— 222 222 >0 4.14

2 L+ Bo B P2 (4.14)
which implies the conditions (i) — (474). Under the assumptions in Lemma 4.1, we can
choose the appropriate parameters to verify the Equations (4.9), (4.10), and (4.13). O

REMARK 4.1. For d>4, from the Equations (4.10) and (4.14), we have to choose all
parameters a,a;,as > % when m=4— %. That is, we have to choose by,b,c1 > % when the
integral Ss in (3.15) with = % —4 is derived from Lemma 4.1. However, the condition
b1 4¢3 > 1 so that the corresponding Duhamel estimate does not hold. In order to obtain
LWP on boundary, we apply the method used in [9]. However, we only obtain the result

on some parts of the boundary.

Next we deal with the multilinear estimates on 3 for the wave case with k<0.
Note when d >4, we obtain the conditions —¢,¢ —2k <4 —% by Lemma 4.1, so k>0 for
d>8. We split Q3 into two parts: (i) Q3U{|&2| <2[¢|} and (i4) Q3N {|&|>2[¢|}. For
the case (i), we have (£)°(&) 7% (&) 7% ~ (£)¢~2F and thus we may estimate it by Lemma
4.1. Hence, we only need to consider the case of (7).

LEMMA 4.2. Ford<d<7,let{—2k<4—% and -1<k<0. Ifby >3, >3-+ 2k

and ¢> %k, we have

/ |a(7,&)] [ (11,61)] [U2(72,2)|
Qsn{l2|>2¢}

(o) (o)t (o)t

@) duslullz lluillee llusllre -
(4.15)

Proof.  For £>0, we have (€)(&)72F < (&)*~2F. Moreover, the proof of this case
is the same as Lemma 4.1. Thus, we may obtain that (4.15) holds if £—2k <4—% b, >
1osd 1 62
26”873 i

For /<0, set a; +as=—2k. Thus, by the Holder inequality, we have

o o1 |73 a9 |73

LHS of (4.23) ~/ [0l (60 [ (€2)° i

Qenfleal>2lely ()¢ (o) (o)™

I @)™ fal) N par, 11 (€0 (o) ™ [ ]) Il gan s (€2 (r2) = ial) | o= 172
(4.16)

() dp

with (4.3). Since £ <0, we apply Sobolev inequality and Lemma 2.4 to obtain

(& (o)=Yl gy SN o) @) | pagy S lull 2, (4.17)

where n(r,r') < —¢ and (g,r’) satisfies (2.26) provided Sy > %,0 <c<pp, and 0<n<1.
Invoking Lemma 2.3, if (4.4) with $; =2 =b; holds, we can get

1€ (o)~ @DVl o pro Sllwgllz,, 5=1,2,
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provided 6; and g; satisfty the assumptions in Lemma 2.3. Combining all needed con-
ditions, we have that the following system holds.

1= 7’]50 (1 91) (1792)72]{3,
k=0, 46y, (4.18)
>4 —2k—2—(1+n)£ >0.

From the last inequality in (4.18), we get the condition ¢ > _Tk when —¢> g —2. Under
the assumptions, we can choose the appropriate parameters to verify the system (4.18).
a0

REMARK 4.2. For d=2,3, we may omit the term (£)¢ in (4.15) as £<0. Then we
obtain the corresponding estimate by the argument in the proof of Lemma 4.1, see
Lemma 4.6.

LEMMA 4.3. Let a,a1,a2>0 and meR. For d=2,3, let a,a1,a2>"} and one of
the following conditions is satisfied. (a) a,as > %,al > g; (b) a,a1 > %,ag > %; (¢c) a,as >
%,a> %. Then we have

©mduSllullzz iz Tusllpz for j=1,2,
(4.19)

/ [u(r, )| [un (71,61)] [u2(72,82)|
Q

; (o fopm (o)

where Q1, and Qg are gz’ven in (3.13).
For d>4, let m<4f £ and one of the following conditions is satisfied. (i) a,ag>
a1>777+ ; (i) a a1> 2,a2>777+ 5 (4i7) al,a2>%,a>%f%+%. Then we
have (4 19)

Proof. We only prove the case of €y, while the case of {25 is analogous. The case
of Q0 o, is symmetric to €, ., for all d, so we skip the proof. Without loss of generality,
we assume that m >0 for 2<d<7.

For d=2,3, on ; ,, invoking (3.18) and the condition a > 7, we obtain

[l Ju| fu —ar oy~
[ B T e s g N ) g 2 W) 10D e
’ (4.20)

where ¢=2, q1, g2, 7=2, 71, and 7o satisfy (4.3). Invoking Lemma 2.3, if (4.4) with
g1 = g = oo holds, we have

1) =1 )Y | s s Sllugllere,  G=1.2,

provided that §;>35, 0<a; <f;, and 0<6; <1. For the conditions (a) and (c), we
choose 1 = 4"1 , B2 fagﬁl =1, and 0 =0 which satisfy (4.3). For the condition (b), we
choose (31 —al,ﬁg = d 2 01 =0, and 0> =1 which satisfy (4.3).

On Qy ,,, invoking (3.18) and a; > ¢, for the conditions (a) and (c), we have

/ a(r,6)| |1 (11,61)| |2 (72,62)|
0o, () (o™ (02)

<[(e) | (=)

(&)™ du

Jurllzz, (4.21)

LiLr a2’
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where q= ﬁ#]z: %,,0(7"):0, and p(rg):%. Invoking Lemma 2.4 with Gy= %‘1 and

n=1 and Lemma 2.3 with f=as and =0, we obtain

RHS of (4.21) S llull gz _llurllzz Jluzllzs -

s | }V

[<al>ar%

For the condition (b), we first consider the case 0 <m <2. By the Holder inequality, we
Lg2 L;2

have
[ua| 1V
|: <O’2>a2 :|
(4.22)

/ | |1 ||z | <£>m<H[ |l }V
., () {01) 1 (o) =0 Tl (o)
with (4.3). Invoking Lemma 2.4 with Sy =a and n:g—1+25, if %:p(r)zl—n, we

1,09 L:ZL;
have

a1 7571
ALy

1)l llzgzy Slullze..

For the remaining two terms, we can set two quantities Ay =1— 3 +4§ and Ay =3 —2
so that 0 < A1, Ay <1. Invoking Lemma 2.3, if 6= % — %g, q= 00,

2 d(1-9) d(1-9)
qj:l—(l— 1 )Aj, and p(rj)= 5 A,

for j=1,2, we obtain

1o)== @) g gz Slluallzz, and ([(o2) ™ @2]) Il pze < luallzz -

1

It is easy to verify the condition (4.3). For m>2, since a> %7 a1 >4, and az > 3, we
have
[l fa|  Jua|
du < ||u u u
/(;1,01 <0->a <0-1>a1 <0-2>a2 <£> PN ” ||LfT|| 1||L$TH 2||L%,m7
where the argument is analogous to that of the part (a).
For 4<d<7. On €, , and 4 4,, by the Holder inequality, we always obtain
LHS of (4.19) S|I((o) = [@])" [l oy (o) = [@n )Vl por g Ml ({o2) =% @) V| o2 172
(4.23)
with (4.3), where G2 =a2 on Q1 ,UQ4 4,
m
_ 0 ai on Q 4,
Go= a=- onf, iy = m q 7 (4.24)
a on Q4 4, 1= O 3oy

To estimate the RHS of (4.23) is similar to the RHS of (4.2). Thus, we obtain that
the following system holds when we assume that (2.26) and (4.4) hold and satisfy the
condition (4.3).

d a 2\ a 2\ a
+1:a°+<1+~>al+<1+~) 2

2 BO q1 ﬁl q2 2 (425)
d+2—<1+2>&°+2‘~“+252 '

2 o) B B B

where ;> 1,0<a; <3;, and 2<¢; <oo (g; >2 for d=4,j=1,2) for j=0,1,2.
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The conditions (7) and (i7) are symmetric on the case {; , and the conditions (i%)
and (i4i) are similar on the case € 4,, so we consider only the first one respectively.

agf +%= 4 % =1 for the conditions (i), (iii) on @ , and algl +E=
%—&-(57 75 =1 for the conditions (i), (i7) on €1 ,4,. Then we may choose the appropriate
parameters so that (4.25) holds.

Finally, the proof of the case d>8 is the same as Lemma 4.1, so we complete the

m
4

We may take

proof. 0
LEMMA 4.4. Let a,a1,a5>0,meR and my;>0. For d>4, let mi>m+ g —4,
a,a1,a3 >, and one of the following conditions holds. (i) a,az > %,al > % - % + =
(i) ar1,a2 > %,a> g — 3+ 2= Then, we can derive

Cdu S lullp lllez luallzz |, (4.26)

/ [u(r,&)| [u1(r1,61)] [U2(72,€2)| "
o (0* (o= (o2)22  (&+(=1)7g)™

for j=1,2. Note &+ (—=1)76=8& if j=1 and &+ (-1)7E=¢&, if j=2

Proof.  We only prove the case for j =1, while the other case j=2 is analogous.
Without loss of generality, we assume that m>0. For (4.26) with j=1, we split the
integral into three parts depending on the dominants of {0, 01,02}. For each of the
dominanted regions, by the Holder inequality, we have

~

[l

LHS of (4.26) £ (73

s
) llzsezlIC ) Mz € Jz Vil (427)

(€2)™1 (02

(o1)™

with (4.3), where

m m m

- a—— on . a;—— on £y . as—— on

a= 4 ’U.’ a1 = 4 ’0—_17 ag = 4 ’0_27 (4.28)
a otherwise, ay otherwise, as otherwise.

Invoking Lemma 2.4, if (q,7) satisfies (2.26), we get ||({(o)~*al)" || Lor, Sllullpz
provided that 8y >3, 0<a< fy, and 0 <7 <1. Invoking Lemma 2.3, if (4.4) with 6; =0
holds for j =1, we can get [|({o1) = [t1|)" || o1 11 Sluall2 , provided that B1,a1,¢1 sat-
isfy the assumptions in Lemma 2.3. For the remaining norms, invoke Sobolev inequality
and Lemma 2.3, then we can derive

— —a ~ p— ! —a ~
1({€2) ™™ (o2) "2 [@2) ¥ Il o2 2 S N((E2) ™™ 4272 o) = @) V|, o Slluzlpz,
2L

provided that 2,d2,02,q2 satisfy the assumption in Lemma 2.3, (g2,73) satisfies (4.4)
and n(rg,ry) —my <02 3.

Combining all needed conditions, we have that the following system holds.

p(r2)=5—(1—n)g — 5*1<%7 (4.29)
)

m1+92§2p(r2)—(%(1—02 +92)£20
From the above system, we have
>d+2 (1+ )CL 2C~L1 2(12 9 (le
my>—+9— D9l 9T2 5 g 22
=3 VBB BT R
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which implies the conditions described in Lemma 4.4. ]

REMARK 4.3. For d=2,3, we may omit the term (£;+(—1)7¢)™! in (4.26), and then
treat the corresponding estimate by Lemma 4.3.

We have to choose both b; and c¢; bigger than % when we derive the multilinear
estimate on §; for the Schrodinger case with |k|—¢>2 by Lemma 4.4. However, the
condition b; +c¢; >1 such that the Duhamel estimate will not hold. Thus, we try to
relax the conditions of b; so that we may obtain a larger LWP region.

LEMMA 4.5.  Let |k|—¢>2 and —(< % for d=2,3, —(<4—¢ for d>4.

a) For k>0, ifb,cl> cl>u>b > k= Z 1,b1>4—l—7, and b> E=t=1 e L then
8 2
[a(7,€)| [a1(m1,&0)] [da(2,62)| (€1)*°
/Q o e e du S sz ol el (430)
1
, (b) For k<0, if b,by > %, by > =k~ Ley>4—1-L andb>=tt=1
then
[a(7,)| [a1(m1,&)] [d2(m2,62)| (€1)"
/Q <O'>b <0-1>C1 <0-2>b1 <§2>k+g dlu‘g”u”L?T”ul”L?T”uQ”L?T (431)
2

Proof.  First we consider the case of d=2,3. For the part (a), on € ,,, we have

@l fa]  Ja| (&)*f
/91 oy () {o1)er (o2)r (E2)P e

n k—£€—4b;y m Vi m Vi
<o) Luane (™) (e5¢)

where ¢, q1, g2 =2, r, r1, and ry satisfy (4.3) and 0 <k —¢—4b; <1. Invoke Lemma 2.4
with So=0and n=k—¢—4by, if %:p( r)=1—(k—{—4by), then

b~
1) [ ey Slullrs -

Invoke Lemma 2.3, if (4.4) with 81 =¢1,61 =1, and ¢1 = ﬁ_%l holds for j=1, then we
obtain

LiLr Lipi 2L’

I =4 () = )Y g s S el -

One may check that %—i— qil =1 and we now have p(ry) = g —1. By the conditions k —¢>
2 and —¢< %, we have k>2— g > p(r2). Invoke Sobolev inequality, then we derive

10(€2) " a2]) VIl 272 < w2z, -

On €y 4, by the conditions b>% and b> E=£=1 e have

[ 7 ) @\
/Q (oVon)er (o Gk ~ Itlet. (&)

where ¢=2, ¢1, g2, 7=2, r1, and ro satisfy (4.3) and m; =0 for k—£=2, m;=k—
{—2—46 for 2<k—0<3, m;y=1-49 for k—¢>3. Invoke Lemma 2.3, if (4.4) with

(<§1>"“ \M)V

(o1)

. ey 7
q1 771 a2 y T2
L,* L, Li? Ly
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[31201,91:%—3 for k—¢=2,6;=1for k—¢>2, and ’qvlzmll holds for j=1, then we
obtain

1) ™ (o0~ ) s s Sl

For the remaining terms, we can choose the suitable parameters 85,62, and g2 so that
(g2,7%) satisfy (4.4). Then invoking Sobolev inequality and Lemma 2.3, we have

1({€2) " (o2) =" [@2]) ¥l o2 12 SI({€2) P22 o) = @)V Ly, Lot S Nzl -
t La

For the region {25 ., , it is similar to the proof in Lemma 4.4, so we omit the proof. The
argument for the case k<0 and (4.31) is analogous to that of k>0 and (4.30), thus we
omit the proof. Also the proof for the case d >4 is similar to that of the case d=2,3.
Again we skip the proof. ]

We now apply Lemmata 4.1-4.4 to obtain the multilinear estimates (3.1) and (3.2).
By the limited conditions in Lemmata 4.1-4.4, we divide the region of LWP in Theorem
1.1 into several subregions. For d=2,3, we set

Dy :={(k, ) : max{—¢, (— 2k, —2k} <d/2, max{|k| — ¢, (— k} <2},
Dy:={(k,0): >—d/2,2<k—0<5/2}, (4.32)
Dsi={(k,0): (—2k<d/2, —A<k—0<—2}, '
Dy:={(k,0): max{f,2k} > —3/2, k+{< -2}
Note Rgz2=D1UDsUD3 and Rgz3=D1UDyUD3UDy. For d>4, we set
Ds = {(k,€) : max{—(, (— 2k} <4—d/2, k> —1, max{|k| —(, 0 — k} <2},
Dg:={(k,0): k—20<6—d/2,2<k—{<5/2}, (4.33)
Dr={(k,0): (—2k<4—d/2, ~4<k—0<—2}. '
Dg:={(k,0):k>-1,2<—-k—{<{+6—d/2},

Note Rgz,q=DsUDgUD;UDg for d>4, which is given in (1.11). Also note that the
subregion Dg=1{ for d> 6.

LEMMA 4.6. For d=2,3, we have that the multilinear estimates (3.1) and (3.2) hold
provided

b1,b>1/2,c1 > (|k| =) /4,c> (€ —k)/4,c1,¢>d/8 for (k,0) € Dy,
byc1>1/2,¢1 > (k—£0)/4>by > (k—€—1)/4,b1 >d/8,c>1/4 for (k,0) € Do,
b1 >1/2,b1,¢>(0—k)/4,b,c1 >0 for (k,£) € D3,
b1,b>1/2,¢>3/8,by > (—k—¥{)/4>c1>3/8 for (k,0) € Dy.

Proof. By (3.15), we have S =51+ Sa+S3 and W =W, + W+ W5. For (k,f) € Dy,
we treat S by Lemma 4.3(a) with m=k—¥¢, Sy by Lemma 4.3(a) with m=—{, and
S3 by Lemma 4.1(a) with m=—¢. For W; — W3, we separate into two cases: k>0 and
k<0. For k>0, we treat Wy and Wy by Lemma 4.3(c) with m=¢—k, and W3 by
Lemma 4.1(c) with m=¢—2k. Thus, for k>0, we obtain the estimates (3.1) and (3.2)
provided —¢,£ —2k < %,bl,b> %,cl > k4£,cl,c> ,c> %.

For k <0, we treat Wy and W> by Lemma 4.3(c) with m=¢—2k. For W5, we have
Aw (&) 20 for £>0 and Ay <(£;)72F for £<0. We may obtain the corresponding
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inequality for W3 by the same argument in the proof of Lemma 4.1. Thus, for k<0, we
assume that —¢,¢ —2k, -2k < %,bl,b> %,cl > #,cl,c> g.

For Ds, we invoke Lemmata 4.5(a), 4.3(b) and 4.1(b) to treat Si,S2 and Ss, re-
spectively. Therefore, we have that the estimate (3.1) holds provided b,c¢; > %,cl > klz >
by > k‘ﬁ_l ,by > %. For Wy — W3, we have Ay <1. Thus, by ¢> %,b1 > %, and the Holder

inequality, we obtain

—(1 ~ —(4 ~ —(4 ~
W 110~ [l g 1) =S @)Vl o g | (o2~ S+ @)Y g

where ¢= ﬁ,ql zﬁ,p(r)z% and p(ri)=3. Then invoke Lemma 2.4 with o=

%+25,77:3—d to process the first norm and Lemma 2.3 with 5= d'g—g‘sﬁ: 1-— ;—Z,C]:oo
to process the last two norms, so we have W Slul[pz [luil[zz [[uzfzz -

For D3, we have the fact that £>2+k>4— g > %, and thus Ag § (5)4%”. There-
fore, by by > %71),01 >0, the Holder inequality and Sobolev inequality, we obtain

—(4 ~ (i ~
SSIUE ™ EPaN Iz re luallzrz 1 ((o2) = @D e 2 S lullcz, llunlne lluzll oz, -

Invoke Lemma 4.3(c) to process W; and Wy and Lemma 4.1(c) to process W5. Thus,
we obtain W Slluflzz fluillpz |luzllzz  provided by > 1 and by,c> £E
For (k,{)e D4, we apply Lemmata 4.3(a), 4.1(a) and 4.5(b) to treat Sp,S3

and Sy respectively. Thus, S<llullgz fluallpz |lusllzz, provided bi,b> 11>
=kt >0 > 3. Then apply Lemmata 4.3(c) and 4.1(c) to obtain Wi+ Wa+W3<
||“HL%T Juillzz | HUQHL?T provided —2k< 3, b;> 1, and ¢> 3. d

LEMMA 4.7.  For d>4, we have that the multilinear estimates (3.1) and (3.2) hold
provided

b1,b>1/2,¢1 > (|k|—0)/4,c1 >d/8—1/2—L/4,c> (L —k)/4,

c>d/8—1/2+ (0 —2k)/4,c>—k/2,¢,c1 >0 for (k,0) € Ds,
byc1>1/2,c1 > (k—£0)/4>by > (k—£—1)/4,b1 >d/8—1/2—£/4,c>0 for (k,l)€ De,
b1 >1/2,b1,c>(—k)/4,c>d/8—1/2+ (£ —2k)/4,b,c1 >0 for  (k,£) € Dy,
b1,b>1/2,b1 > (—k—40)/4>c1>d/8—1/2—0/4,c>—k/2 for (k,0) € Ds.

Proof.  For (k,l) € D5, we separate into two cases: k>0 and k<0. For k>0,
we treat S1 by Lemma 4.4(i) with m=k—{¢ and mq =%k, Sz by Lemma 4.3(i) with
m=—/, and S5 by Lemma 4.1(i) with m=—£. For W, — W5, we treat W7 and W, by
Lemma 4.4(ii) with m=¢—k and m; =k, and W3 by Lemma 4.1(iii) with m=/¢—2k.
Thus, we assume that —¢,¢—2k<4— %,b,bl > %,cl > %,cl > g — % — g,cz %,c> g —
%Jr%,cl,czo.

For k<0, we treat S; by Lemma 4.3(i) with m=—¢, S by Lemma 4.4(i) with
m=—k—{ and m; =—k, and S3 by Lemma 4.1(i) with m=—¢. For W; —Wj5, we
treat Wy and Ws by Lemma 4.3(iii) with m=£¢—2k. For W3, we separate into two
subregions: U; =Q3N{|&| <2|¢]} and Us =Q3N{|&2| >2[€|}. For Uy, we have Ay <
(€)!=2F and then the corresponding integral be treated by Lemma 4.1(iii) with m =
{—2k. For Us, we have Ay ~ (£)(¢1)72% and then the corresponding integral be
treated by Lemma 4.2. Thus, we assume that —€,£—2k§4—%,k>—1;b,b1 > %,cl >

—k—£ d_1_1¢ —k d__ 1, £-2k
T 1> g —5— > 5, c>g—5+=,c1,c20.
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For Dg, we apply Lemmata 4.5(i), 4.3(ii) and 4.1(ii) to treat S1,S2 and Sz respec-
tively. Thus, we get —(<4—% bc;>1 ;> 5t >p > Ed ps bl gy s d 1L

For Wy, we have Ay < <§2>*%. Thus, by by > %,020 and the Hoélder inequality, we
obtain

(18~ -4 (148~
Wi S lulll gz e (o) =5+ s )Vl oz 1(4€)2 () =5+ fa2) V| a2

where p(ri)=26 and p(re)=4%—25. Then invoke Lemma 2.3 with = ;I—j‘;ﬁ:o,(j:

HTQ‘; to process the second norm, and treat the last norm by the Sobolev inequality, and
thus we have W1 Sllullzz [luallpz |luallzz . The estimates of Wy and W3 are similar as
Wi, so we obtain WS |lullzz lluillrz lluzllzz, -

For D7, we have the fact that ¢ > % so Ag < <§2>_(%+5) on Q;UQs, < <§>_(%+5) on
Q3. For S7 and Ss, by by > %,b,cl >0, the Holder inequality and Sobolev inequality, we
obtain

[z |

S1+S5<||u U —_—
1+ 82 Sllullpzrz |l 1HL?L§H(<§2>%+5<O_2>%+5

) llzeree Sllullez Mualicz Nuzllzz -

The estimate of S is similar as Si, so we have S<|lullpz [luil[zz [[uzfz . For

Wy —Ws, invoke Lemma 4.4(ii) and 4.1(iii) respectively, and thus we obtain W <
||uHL3$ ||u1||L§m ||U2||L%l provided £ —2k <4 — g,bl >1.by,c> %,c> % —3- ZjTQk.
For (k,f) € Dg, the estimates for Sy,S3,W; — W3 are the same as the estimates in

Ds. Moreover, the estimate of Sy is dealt with Lemma 4.5(b), so we assume that

bl,b>%,b12_’1—£>cl>gflf£andc>_7k. 0

5. Multilinear estimates for Y-norm

We have to choose ¢; Z% when we derive the multilinear estimates on €2y for the
Schrodinger case with k—£¢>2. The situation for ¢ in the multilinear estimates for the
wave case with ¢ —k>2 is analogous. Thus, we need to verify the estimates (3.3) and

(3.4).

LEMMA 5.1.  Let 2<k—£<4 and —0<% for d=2,3, —(<4—2 for d>4. Ifb>1,
bZkT*f>b1> k*ﬁfl, and b1>% for d=2,3, b1>g—%—§ for d>4, then the estimate
(3.3) holds.

Proof.  We first consider the integral (3.11) on €. By b> 1, (3.18), and the
Cauchy-Schwarz inequality, we obtain

. ()] | For ()] [a(ra, )] (€)™
55/9 @ o (o (&

Slhulzg, ME ([ (0 1F0r(6+ €0)a(on [P le2)*) )

1
Sllullzz, M= [[or]l ez luzllzz (5.1)

Nl

where m=k—{—4(1—ay), dv=dosd&adodf, and

M= sup / (62 (2) =2 (1) 201 00201 sl (5.2)

U:fegl,al 1,01
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To estimate the above supremum, we apply Lemma 2.5, if a1 + b1 > %, then

T I o e R e R

0,6€01,6,

3

ssgp<s>2m“d*2’”+ <00, (5.3)

<sup(€)™™ /IE _ (el e

where «a(a1,b1)=2min{a1,b } —[1 —2max{ai,b1}]+ >0 and 2m—+[d—2k]; <0. One
may verify the conditions a;+b; > 1 and 2m+[d—2k], <0 under the assumptions in
Lemma 5.1.

For the subregion €2, ,, we may treat the corresponding integral §1,g as in the proof
of Lemma 4.4 with a1 < % since we assume that —¢ <4 — %. So in the subregion € ,,,

we may treat the corresponding integral ,;571702 with a1 < % by the proof of Lemma 4.5.
Therefore, we have

S10+ 510, Slullzz Ml lluallez Sllullez, llvillza[luallrs -

For S5 and §3, we have the same argument as §17g. Thus, by Lemmata 4.1 and 4.3
respectively, we can take a; < % so that the following inequality

Sy Sz lullez luzlz, Slhallzz onliza sl oz

still holds for j=2,3. We complete the proof. 0

LEMMA 5.2. Let 2</—k<4 and €—2k‘§% for d=2,3, €—2k<4—% for d>4. If
bi>3 0 >5E 42 fork<d, by >5E for k=2, and by >S5+ 2 for k>4, then the
estimate (3.4) holds.

Proof.  For Wg, invoke Lemma 4.1(c) with m=£0—2k, a= g, and a; =ag=0b; for

d=2,3, and Lemma 4.1(iii) with m=/¢—2k, az%—%—l—%—!—é, and a; =as =10, for
d>4, then we have

Wa Sllullzz huallzz luzlizz, Sliollzslhualze flusllzs -

Note that we can take a < % for d>4 since { —2k <4 — %.
For the integral Wl, by the Cauchy-Schwarz inequality, we have

O] [ ()] [l €)] (€
ng/m @ (o {oah (& W

S loleadr? ([ (= [€lie) +on— 6o (60 6 + 2)n(on — 6260 ) o

1
S lvllpe M2 |lus |2 (|uall L2

1
2

where dv=doydésdodé and

o (€29 ) 2
M= | R Tl P TSP e

25, d0'2 dfng’.
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To estimate the above supremum, we apply Lemma 2.5 twice to obtain

< 20—k [ 1 1
M~5Seus§<£> /<£2>2k/<0>2<J_|§|<§>_|§2‘2<§2>2+|§+£2|2<€+§2>2>2b1 dodés

Ssup(©)* / (&) (6 + &l (€ +62)° ~ [€1(6) ~ |l (2)*) e

Ssgp<£>2(27k)78,u+[d72k]+ <00, (5.4)

where p:=min{b;,1} and 2({—k)—8u+[d—2k]+ <0. One may check the condition
2(0— k) —8u+[d—2k]; <0 easily, so we skip this step.

For the integral W5, through the same argument, we can obtain

)] ()] s ()] (€)'
WQS/QZ <

d < VL2 ||U 2 [ 2 .
O'> <0-1>b1 <0-2>b1 <£1>k DN || ||LTH 1HLt)m|| 2||Lt,:c
6. Proof of the main Theorem

Following the solution formulae (2.2) and (2.5), we can construct the iteration map

AEN):= (<I>(E,./\/)7 \I/(E))7 (6.1)
where

(BN =1 (U (8) Bo + b (DU 1 (Re(N)E),

U(E) =91 ()W ()No+9r (t)W =g (D(D) ! E[?). (6.2)

We want to find a fixed point in a set B of an appropriate Banach space. We choose
B={(EN): |Ellxs, <M, |N]xy <M},

where My = 2||t)]| gor || Eol e +1 and Mo = 2][tb|| o || Nol| e + 1.

Proof. (Proof of Theorem 1.1 for d=2, 3.) For (k,f) € Dy, we can choose

clzmax{%—I—é,Ik[T_[}, c:max{g—&—é, %}, b1>%7 and b>% such that by +c¢; <1 and

b+c< 1. Invoking Lemmata 2.1(S2), 2.2(S2), and 4.6, we can derive
1R(E M) xg, SI¢lgnl1Bollm: +T " [Re(N) Bl xg
<M,y 2+ T = My M. (6.3)
Invoking Lemmata 2.1(W2), 2.2(W2), and 4.6, we can obtain
1 (E) | xp Sl pren [Noll e + T~ DD) B x5

0~

<My /24T~ M3 (6.4)

c1

Also with the aid of Lemmata 2.2(S2), 2.2(W2), and 4.6, we can estimate the differences

|1D(ELN) =@ (B2, No)llxs, ST (My+ My) (J|NL = Na | xy, + 1 B~ Bsllxg, )
(6.5)
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and
19 () — @ (B2) |l xp, ST "M By — Eal g, - (6.6)
Hence A is a contraction map on B if we choose T sufficiently small such that
T'he (M 4+ Mo) <1, TUVPCME /My <1, and T'UTOMy <1 (6.7)

For (k,€) € D, we can choose b= c; =max{2 +0, £}, c=1+6, and by = 2 + 6 such

that by +¢1 <1 and b+c< 1. Invoking Lemmata 2.1(S2), 2.2(S1), 4.6, and 5.1, we can
derive

—bi—c 1_
1PCEN)Ixg, S 19llze [ Eoll x + T HRe(N)Elixs  +T° " Re(N)E|y;s
< My /2+T 1= MyM,.

Invoking Lemmata 2.1(W2), 2.2(W2), and 4.6, we can obtain (6.4). Also with the aid
of Lemmata 2.2(S1), 2.2(W2), 4.6, and 5.1, we can estimate the differences

1@ (B, NY) = @ (B2, Na)ll g,

ST (N =Ml [ Ballxg, + IV2llx 1 B2 = Eallxg, )
+T2 70 (|Re(NL) (Br —E)lys +Re(N1 = N2) Eally,s)

S 710 (M Ma) (N~ Mol + 1B~ Bal g, )

and (6.6) holds. Hence A is a contraction map on B if we choose T such that (6.7)
holds.

For (k,¢) € D3, we choose b=c; =0, c:eka, and by =max %+%,%+6} for k < g,
%+§ for k= g, ZTT’“ for k> g. Thus we have b; +¢; <1 and b+c< 1. Invoking Lem-
mata 2.1(52), 2.2(S2), and 4.6, we derive (6.3). Invoking Lemmata 2.1(W2), 2.2(W1),
4.6, and 5.2, we obtain

_bc _ 1_ _
1) | xp S Nl o | No e + T~ D(D) 1\E|2||X§’7C1+T2 ID(D)HEP |y
< My/24+TH b= M2

With the aid of Lemmata 2.2(S2), 2.2(W1), 4.6, and 5.2, we estimate the differences to
get (6.5) and

[W(Ey) — W (Es)| xp
< T1—b—c(||E1 _E2HXf,b1 HElHX;f,bl + ||E12||X,3b1 | Ex —E2||X,f,b1)+
T4 (|D(D) By (By — By +[D(D) (B - Eo) Ballye)
1-b ‘ Z
ST °Mi|| By = Es xg, -

Hence A is a contraction map on B if we choose T sufficiently small such that (6.7)

holds.

For (k,¢)€ Dy, we can choose b; =max{1 4, 754*’“}, c=c1= % 44, and b=1+6
such that b; +¢; <1 and b+c< 1. The remaining argument here is the same with that
of the case for D;.

Since X¢ CC([0,T];H?) for ¢> 3 and Lemma 2.2 (S3), (W3) for ¢ <3, then we
have (E,N)€C([0,T]; H*) x C([0,T]); H*). The continuity of the solution map can be
shown in the standard way by using the same estimates on difference. ]
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Proof. (Proof of Theorem 1.1 for d>4.) For (k,0) € D5, we can choose
cl—max{lkl_e 41 L466)<i c=max{E d-1+2k45 L4561 <], bi>
1, and b> 3. For (k,f)€Dg, we can choose b1 max{ =% = Ly, 7—%—£+6}, cL=
max{*7% 1 +(5} b=max{£:t 1 +6}, and c=%. map on B if we choose T sufficiently
small such that (6.7) holds. For (k, €)€D7, we can choose by = max{2 +6, 52k 4+ 4}
for k< g, max{3+6, 5= +6} for k=%, max{3+6, 5=} for k>4, c-max{T,g—
142k 2k+(5} ¢1 >0, and b=0. For (k ¢) € Dg, we can choose cl—%—%—£+(5< 1
blzmax{_ak 1+(5} c—7+5< <b.

Here we obtain by +c¢; <1 and b—l—c< 1 for all (k,f) € Rgz.q. Thus, we can derive that
A is a contraction map on B if we choose T sufficiently small such that (6.7) holds. 0O

7. Critical cases for quantum Zakharov system

In this section, we fill up some boundary of the region of LWP for (1.6) which is not
included in the statement of Theorem 1.1. The method for Theorem 1.1 fails, due to the
fact that the related estimates can no longer provide any power of T for the boundary
case. Two cases are particularly of interest. At the mass level, the system (1.6) in R®
is critical, see (1.9). At the energy level, (1.6) in R!? is critical in the energy space. It
worth mentioning that the corresponding homogenized system which can be regarded
as a high frequency limit of (1.6), does not have ground states for d=10. The readers
are also referred to [5] and [9] for more discussion.

Proof. (Proof of Theorem 1.2.) First we list some B-admissible pairs like

(2,24, (4,2%), (8,24), and (00,2); S-admissible pairs like (2, 24), (4,2%), and

(0,2), see (2.10) and (2.11). We denote some function spaces as follows.

S:=LFL*NLiBY ,, W:=LFL*NLiLTs
d—2"

S=IL2LT5NLALTS, W:=LPL*+LAL73,

where the time interval I=[0,7] and Bj ,(R?) is the usual Besov space. Analogous
with (6.1), we set the iteration map as follows.

A(E,N)= (D)7 0(E,N), (D) ¥(E)),

where (=942, 0<0<1, ®(E,N), and U(E) are defined in (6.2). We also denote
U(E)=V(E, E) and skip the index I in the later discussion. Invoking Sobolev inequality
and interpolation, we have

1/2 1/2
1Bl e, SUDVEN oo, and E], 0 SIEIYZLID)EP 4,
which implies that
IEIsSIElNs and [Vl SIN Loz SN lw- (7.1)

Now we want to derive the Duhamel estimate for (2.3). Invoking Strichartz estimate
(2.13) and Sobolev inequality, we obtain

(DY U (NE) s S (DY U w5 (NE) [ e 2 + D)3 U 55 (WE) |

<D= F(NE)||

2d
L2rd—2

LQ/L(%)’
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For (+0—1>0, we split the wave N'=N7 + N5 to proceed with the estimate

KDY TVE| |, aa +[IN(D)YFE|
o1 L2 d+2 L2Ld+ o1
SIPH Wl g BN, s + ML s (D)
D) A, (22 Al H<D><+” LE||
+||< > 4 d— 4+2¢ 2 2 L4LTd L4Ld

< (Il KNl 12+ (DY NS | (D) El3,

rag 2)
which holds for all decompositions, N'=N7 +MN>. Thus we have
D)0 v (Re(N)E) s SHDIN - s | (DI Bl
SIDY Nl (D) + Bl 5 (7.2)

For (+0 —1<0, we again split the wave N'=N7 + N3 to proceed with the estimate

(D)~ (Re(N)E )H L2 SIWVEN, 2
< (KDY N 2 + 1INl 20 )| DI Ell g,
which holds for all decompositions, N'=N; +MN5. Thus we have
(D) T U sk (Re(N)E)||s S [I(D) Nl (D) T E|| 5. (7.3)

Next we want to derive the Duhamel estimate for (2.6). Invoking Strichartz estimate
(2.23) and Sobolev inequality, we obtain

YW 5 (s B Yl < 1(D(DY) ™ (D)D) B | s

(D) e
SIDYEN, a2,z
S KDY H B3
Combining the above estimates, we get
(+o ¢ D 2
D)7 U (Re(N)E) 5+ | (D)W e 5 1B s

SIDI 51 (RN (D)W < (55 B v

<(DY* Bl s+ D) N ) (7.4)
For the homogeneous estimates, we can apply (7.1), (2.12) and (2.23) to obtain
(D) F7U (1) Eollg S IKP) U (1) Eolls S 1 Boll me+o
and
KDY W (BNl S IKD) W () Nollw < [ Noll e
Invoking the domination convergence theorem, we have

lim [(D)**7U () Eollg =
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As for the free solution of wave, the situation is more subtle. For any € >0, there is a
function g € H¢*2 such that Vo — gl ¢ <e. Invoking Sobolev inequality and Strichartz
estimate (2.23), we have

(D) W (t)gl]

which gives

1
Loty SIS @l | 2 gl ey <00

i (DS (D)gll,,, 0, 0.

Hence we can estimate

KDY W (Nl S N0 —gll e + KDY W ()gll | pa, -
Taking the limsup of the above estimate, we get

limsup |[[{D >CW(t)N0||W§€ for all &>0.
T—+0

Thus we can conclude that
i [(D)SW (1)o7 =0.
Finally we can proceed with the iteration argument. Given § >0, we can choose a
sufficiently small 7™ >0 such that
(D) T Ut) Eollg+ (D) W (#)Nolljy <6/2 for all T <T*. (7.6)
We choose ||(Eo,No) || re+ox e <M /2 for some M >0 and define

X ={((D)H E(DYN)eSxW: [|[((DYH E,(D)YN)||gxw < M}.
(7.7)

Xs={({D)*"E,(D)*N) € S x W : (7.6)holds and ||({D)$* E,(D)SN) | 5.7 <0}
(7.8)

Note X5 C)Z'(;. Since

IA((D)H B (DYN) g5 S (D) (B, N) |5+ (D) W (E) |l <6,
provided that %—&—C& <1. We can compute

IA(D)H B AD)N) g, S IKD)H7 (B, N) |5+ (D) ¥ (E) |l 9,
provided that C'§ <1/2. Then we can compute

IA(D) H B ADIN) [lsxw S [{D)H @ (B, N)||s + [{D) W (B)|lw S M,
provided that C6% < M /2. We can also compute the difference

IA((D) " E, (D) N) (< YT (D)N')||sxw
S ( H< Y H(E—E) |5+ (D) (N =N)l5)-
g “"EHSHI( >“"E’HS+II< Y Nlisw)

D)+ (B~ E')l|s + (D) (N = N")[lw),

provided that C'§ < % Therefore A is a contraction on Xjy. 0
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8. The improved result for Zakharov system

In the section, we only consider the improved region of local well-posedness for
Zakharov system. Let s, € R, we define the Bourgain spaces X0 , X S%’ and YVo with
the norms

loll x50 = K€ (T +1E2) DT E)llLz ,» Noll o =€) (r+[END(T )2, (8.1)

s,

and
lollywo := 1€€)* (7 +1€) ™ o(, )l 21 (8.2)

The homogeneous estimates are given in [11]. For the multilinear estimates, we state
the following lemma.

LeEmMA 8.1 ( [11], Lemma 3.1). Ford>2, letﬂ>%, <a<fp, and 0<n<1. Define
q and r by %:1—77% and p(r):(l—n)%, Then

(T + 1)) I pery < llull e, (8.3)

The corresponding multilinear estimates are as follows.

INEllso +IWEllgso  SINI g llEll sy - (8.4)
ID(E B oo, SIB sy 1Bzl (8.5)
ID(ELES) o S 1Bl s, 12l s, (8.6)

The proofs for NE and N'E are similar, thus we only discuss the case of N'E. By the
duality argument, we need to obtain the estimates So+Wo < |lullzz [[uillzz [luallpz

and Wo < [[o]lzz llus 2 lluzl 2 , where

\UTf [ui|  |us] /|UT§ [ui|  |us]
Asdp, Wy:= §lAw du,
CARRCAD o (oot Gy 1AW

and

|[Fo(€)] Jui(m,&)] |2 (T2,82)
Wo: / ) (o

dﬂzd72d§2d7'1d£1,§:§1—5277':7'1—7'2,0':7-+|§|, and 0'7;=Ti+|§i|2, i:1,2.

LEMMA 8.2. Let0<{—k<1 and let 2k>(+1 for d=2,3 and 2k >(+ % —1 for d>4.
If by > %,b,cl >0, and b>%—§, then the estimate (8.4) holds.

Proof. For the subregion 2|&| <&, by k—£<0,c; >0 and the Holder inequality,
we have

||§|Awdu,

So SN(o) =" 1al)Y Il gz llurllpz NI ((€2) = (o) =" [@2]) ¥ | oz e (8.7)

where l—i—i— L Note that £>1 for d=2,3 and €>4—1 for d >4, thus we can choose

n € (0, 1] such that L > ¢ —1+n. Then invoking Sobolev inequality and Lemma 8.1 with
B=by,if o=+, we obtam

—t —by | —by |
1(¢€2) " or2) ™" [t2]) V| g2z oo SN ({o2) ™" [@2])¥ (| o2 py2 S lluzllLz s
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where p(r2) =1—n. Now we have ¢= % < o0. By Sobolev inequality, if b > 1_77’, we have

b~
1)~ 1aD Negre Slullez -

For any b> % - g, we can choose suitable 7 so that b> 1_?"

For the subregion 2|£2] > |€1], by ¢1 >0 and the Holder inequality, we have
So SIE) ™) ) llpopglluallze (o) =" a2 ) V]l o2 172 (8.8)

where %—’_q%:% and p(r)+p(r2) = 4. Invoke Lemma 8.1 with B=b,, if q%:p(rg):
1=y for 0<m <1, then [[((ora) " [@]) Il o2 Szl za - We now have &= and
p(r) =< —1+n,. By Sobolev inequality, if b= 1 20 and £> p(r) or £> ¢ for gy =1, then

14&)~Eo) =21 Iz S lullzz .

LEMMA 8.3. Let0<{—k<1 and let 2k>(+1 for d=2,3 and 2k >(+ % —1 for d>4.
If by,c> Z";H, then the estimate (8.5) holds.

O

Proof. We split the integration region into three subregions 21,22 and €25 which
are defined in (3.13). For Q3, we have

— —c|~ —by |~ —by |~
Wo SIE) ™™ (@)@ gy 1o ™" [aa )Yl s o 1((o2) ™" 2]l on g2

where m:2k;—€—|—1,%—i—ql1 =1 and p(r)+2p(r1) = %. Invoking Lemma 8.1 with 3=b,,
if q% =p(r1)=1—n for O<77§ 1, we obtain ||(<0‘j>_b1 @)Y Lo S H%HL?I for j=1,2.
Now g=n"" and p(r) = ¢ —2+277 Let n< 1 so that ¢>2 and r < co. Invoking Sobolev
inequality, if m > p(r) and c>1—1 then ||(< )" o) elal)Y | pary Sllullpz - Since 2k >
£+1 for d=2,3 and 2k>€+%—1 for d >4, we can choose 1 so that m > p(r).

The two remaining subregions 27 and s are symmetric and we consider only the

first one. For 21, we again split the integral into three parts depending on the dominants
of {o,01,02}. On Q1 ,, we have the inequality (£)? < (o). By 2¢>/¢—k+1, we have

ur| \Vv 2) K U]\ V
(o) Ll ™)

Qr., ()¢ (o) (o2)P (§1)F <€2>k Sl

LOLn L2’
where i—i—q%:l and p(r1)+p(r2)=4%. Invoke Lemma 8.1, i ql— (r Z):l_n fzr
0<n <1, then [[((o2) =" fin )Vl s S Jurll 2 - Now =% and plra) =147 <.

Invoke Sobolev inequality and Lemma 8.1, if k > p(ra) —n, then
1((&2) " o) " @)V 22 2 SN (o)™ @DV, ) Slluzlliz
t @

where p(rh)=n.
On Q4 ,,, we have (£)2<(oq) and 2by > —k+1, so

al |u a ¢ Sl v .
/le <U>|C <C|rl;1)1 <C|T2§b1 <§|1€k<f>2>k S H((O—>|c) (M)

(o)t

where + + L = = 5. Invoke Sobolev inequality and Lemma 8.1, if & > g—1+4n and = =
1—n for somme 0<n<1, then we get

—k —by | —by |
1((€2) " (o2) 7 [t2]) | L2 oo SN ({o2) ™" [@2]) ¥ | Loz 72 S llu2llrz s

lullzz

)
ar2 t,x 42 J oo
Lt LI Lt LI
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where p(r)=1—n. Now %:n. By Sobolev inequality, we have ||((o)~°[u])" | a2 <
[ullgzz2. Since k> % —1, we can choose 1 small enough such that k> % —1+n.
Finally we estimate the integral over {2 4,.

al ] J@e|  [€l€)”
/Ql oy ()¢ (01)0 (o2)"r (€1)F(E2)" an

<) el m)

where %—i—q% =1 and p(r1)+p(r2) = 4. Invoke Lemma 8.1, if q% =p(r1) =1—n for some
0<n<1, then |[({oy)~0|u )V ||L‘“L” < ||U1HL,2,@' Now %:77 and p(r2)2%71+7)< %.
By Sobolev inequality, if k>p(rz2), then we have ||((o)~¢[al)"||paz2 Sllullzz  and

1((&2) " a2]) Il 2.2, (8.9)

Lir2 L

|({€&2) F|uz])V lz2r72 Slluallzz - Since k>%—1, we can choose 7 small enough such
thatk>g—1+n. O

Next we apply the argument in Lemma 5.2 to obtain the estimate (8.6).

LEMMA 8.4. Let0</l—k<1 andlet 2k>{¢+1 ford:2,3 and2k>€+gfl ford>4.
Ifb12%+% for k< , by > =kl k+1 for k=42 5, and bleTJrl for k>g, then the
estimate (8.6) holds.

Proof. We split the region into three subregions 21,2 and 3 which are defined
n (3.13).

The proof of the case €23 is the same as Lemma 8.3, so we have, if a > % —n and
2k78712g72+2n for some O<n§%

Wo <o) Follus ualce oz

We can choose a=1 —n< 1, and then Wo < vz ||u1||L2 HUQHLZ .

The subregions Ql and Qg are symmetric and we con51der only "the first one. For Q,
the proof is similar as Lemma 5.2. Therefore, we have W1 < ||11HL2M2 [l Lz |Juzl Lz,
where

._ JEI2(6) 2 (g5) ~2
M= sup / (0)2(0 —[€]+ 02— [E2 P+ [€+ &%) P01 (05) 2

! do’zdfgdd.

To estimate the above supremum, we apply Lemma 2.5 twice to obtain

M,Ssup<£>2(€_k+1)_4“+[d_2k]+ < 00, (8.10)
§
where p:=min{by,1} and 2({—k+1) —4p+[d—2k]+ <0. O

Proof. (Proof of Theorem 1.3.) The proof is the same as the proof of Theorem
1.1, so we only show that these parameters we choose satisfy all needed lemmata and
conditions. Let by =24 4 4 for k< d EEEL 4§ for k=4, &EEL for k>4, Let
c1 :O,b:max{z — 5—#—6,0} and c= HT“ Clearly, (b1,c1,b,¢) satisfies Lemmata 8.2-
8.4. Following we check that by +¢; <1 and b+c< 1.

By 2k>/¢+1 for d=3 and 2k>£—|—7—1 for d >4, we have b; §%<1 for d=3 and
by < 44 +4—1 for d>4. Thus, b; <1 as k<4 Fork> , we have by <1 since £ —1<k.
This shovvs that by +c¢1 < 1.
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It is easy to obtain that k> % —1 for d>2, so % — g + HT“ < 1. This implies that

b+e<1. O
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