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SUPPRESSION OF BLOW UP BY MIXING IN GENERALIZED
KELLER-SEGEL SYSTEM WITH FRACTIONAL DISSIPATION∗

BINBIN SHI† AND WEIKE WANG‡

Abstract. In this paper, we consider the Cauchy problem for a generalized parabolic-elliptic
Keller-Segel equation with a fractional dissipation and an additional mixing effect of advection by an
incompressible flow. Under a suitable mixing condition on the advection, we study well-posedness of
solution with large initial data. We establish the global L∞ estimate of the solution through nonlinear
maximum principle, and obtain the global existence of classical solution.
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1. Introduction
We consider the following generalized parabolic-elliptic Keller-Segel system on torus

Td with fractional dissipation and the additional mixing effect of advection by an in-
compressible flow{

∂tρ+u ·∇ρ+(−∆)
α
2 ρ+∇·(ρB(ρ)) = 0, t>0,x∈Td,

ρ(0,x) =ρ0(x).
(1.1)

Here ρ(t,x) is the unknown function of t and x, 0<α<2, Td is the periodic box with
dimension d≥2. The quantity ρ denotes the density of microorganisms, u is a given
divergence-free vector field which is an ambient flow. The nonlocal operator (−∆)

α
2 is

known as the Laplacian of the order α
2 , which is given by

(−∆)
α
2 φ(x) =F−1(|ξ|αφ̂(ξ))(x), x∈Rd, (1.2)

where

φ̂(ξ) =F(φ(x)) =

∫
Rd
φ(x)e−ix·ξdx,

and F and F−1 are Fourier transformation and its inverse transformation. The linear
vector operator B is called attractive kernel, which could be formally represented as

B(ρ) =∇((−∆)−
d+2−β

2 ρ) =∇K ∗ρ, (1.3)

where

∇K∼− x

|x|β
, β∈ [2,d+1), x∈Rd. (1.4)

In this paper, we consider the tours Td and β∈ [2,d], the definitions of (−∆)
α
2 and B

are different from those in (1.2) and (1.3). The fractional Laplacian operator needs
a kernel representation, the details can be found in Section 2. We pose the following
assumptions on the attractive kernel B (see [25,28])
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(1) when β=d, the B(ρ) is written as

B(ρ) =∇(−∆)−1(ρ−ρ), (1.5)

where ρ is the mean value of ρ0 over Td, with the following definition

ρ=
1

|Td|

∫
Td
ρ0(x)dx.

(2) When 2≤β<d, K is a periodic convolution kernel, which is smooth away from
the origin, and ∇K∼− x

|x|β near x= 0, and we denote

B(ρ) =∇K ∗ρ. (1.6)

Without advection, the Equation (1.1) is the generalized Keller-Segel system with
fractional dissipation

∂tρ+(−∆)
α
2 ρ+∇·(ρB(ρ)) = 0, ρ(0,x) =ρ0(x), x∈Ω, (1.7)

where Ω is Rd or Td, and the Equation (1.7) describes many physical processes involving
diffusion and interaction of particles (see [5, 8]). In one space dimension, the equation
admits global-in-time smooth solutions for large initial data, while the solutions may
blow up in finite time for large initial data. Specifically, when α= 2,β=d, the Equation
(1.7) is called classical attractive-type Keller-Segel system. In one space dimension,
the equation admits large data global-in-time smooth solution (see [24, 34] ). In high
dimensions, there are global-in-time smooth solutions when the initial data is small,
while the solutions may exhibit finite-time blowup for large data (see [6, 14, 28, 33,
35]). When 0<α<2,β=d, the Equation (1.7) is a classical Keller-Segel system with
fractional dissipation, which has been studied by many people. For d= 1 and 0<α≤1,
the solution of Equation (1.7) is global if ‖ρ0‖

L
1
α
≤C(α), and the solution of Equation

(1.7) is global if 1<α<2 (see [7]). While d≥2, the solution of Equation (1.7) would blow
up in finite time with large data (see [4, 25, 29, 30]). In the case of 0<α<2,β∈ [2,d+
1),d≥2, the Equation (1.7) is called a generalized Keller-Segel system with fractional
dissipation, the solution of Equation (1.7) always blows up in finite time when the initial
data is large (see [4, 25,30]).

Recently, the chemotactic models with other mechanisms have been extensively
studied, and some interesting results have been obtained. For example, Burczak, Be-
linchón (see [9]) and Tello, Winkler (see [36]) proved that a logistic source could prevent
the singularity of the solution. A more interesting problem is the chemotactic process
taking place in fluid, the agent involved in chemotaxis is also advected by the ambient
flow. The problem of chemotaxis in fluid flow has been studied (see [17,18,31,32]). For
the possible effects resulting from the interaction of chemotaxis and fluid transport pro-
cess, many people get interested in the suppression of blow up in the chemotactic model
by fluid effect. Kiselev, Xu (see [28]) and Hopf, Rodrigo (see [25]) obtained the global
solution of the Equation (1.1) by the mixing effect of fluid. Bedrossian and He (see [2])
showed that the shear flow was dissipation enhancing for the Keller-Segel system. In
this paper, we continue to study the mixing effect of fluid to chemotactic model.

Mixing was studied by Constantin, Kiselev, Ryzhik, and Zlatoš (see [11]) as the
fluid effect. In order to describe the mixing effect, Constantin et al. considered the
following heat equation with advection

φAt (t,x)+Au ·∇φA(t,x)−∆φA(t,x) = 0, φA(0,x) =φ0(x), (1.8)
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and they defined the relaxation enhancing flow. Namely, for every τ >0,δ >0, there
exists a positive constant A0 =A(τ,δ), such that for any A≥A0 and any φ0(x)∈L2

‖φA(τ,·)‖L2 ≤ δ‖φ0‖L2 ,

then incompressible flow u is called relaxation enhancing flow. Here φA(t,x) is the so-
lution of (1.8), φ is the average of φ0 and φ= 0. The authors provided a necessary and
sufficient condition for the relaxation enhancing flow. Notice that if there is no dissipa-
tion term in (1.8), the L2 norm is conserved, namely ‖φA‖L2 =‖φ0‖L2 . The result in [11]
means that combination of mixing and dissipation produces a significantly stronger dis-
sipative effect than dissipation alone. Specifically, for a fixed time τ , ‖φA(τ,·)‖Ḣ1 is
large enough in some sense when A is large enough. So the mixing term is enhancing
for the dissipation, it can be useful in the model describing a physical situation which
involves fast unitary dynamics with dissipation (see [27, 28]). We will briefly introduce
relaxation enhancing flow and weakly mixing (see, Definition 2.1) in Section 2.3, the
reader can refer to [11] for more details.

For the Equation (1.1), mixing effect is included in chemotactic model, and our
main concern is whether mixing can suppress the blowup phenomenon in finite time.
When α= 2,β=d,d= 2,3, Kiselev and Xu (see [28]) established the L2 estimate of the
solution in the case of weakly mixing, and obtained the global smooth solution by
L2-criterion. Namely, the blowup solution of Keller-Segel system was prevented. For
0<α<2,β∈ [2,d+1),d≥2, Hopf and Rodrigo proved that there exists L2 estimate of
the solution by relaxation enhancing flow, and also got the global smooth solution if
α>max{β− d

2 ,1} (see [25], Theorem 4.5). In particular, for classical Keller-Segel system

with fractional dissipation, when α> d
2 ,d= 2,3, the solution of (1.1) was globally smooth.

For the smaller lower bounds on α and higher dimension d, we require the Lp(p>2)
estimate of the solution instead of the L2 estimate. Hopf and Rodrigo only considered
the case α= 2,β=d, with d≥4 (see [25], Theorem 4.6), they got the Lp (2<p<∞)
estimate of the solution by relaxation enhancing flow, and obtained the global smooth
solution by Lp-criterion.

At the same time, Hopf and Rodrigo thought that the Lp(p>2) estimate of the
solution for Equation (1.1) is hard to achieve in the case of 0<α<2,β∈ [2,d+1),d≥2.
So it is not obvious to extend the result to the generalized Keller-Segel system with
fractional dissipation of any strength α and in any dimension d≥2 by energy method.

In this paper, we consider the generalized Keller-Segel system with fractional dissi-
pation and weakly mixing in the case of any 0<α<2,β∈ [2,d],d≥2 and for convenience,
we consider Td= [− 1

2 ,
1
2 )d. In order to get Lp estimate of the solution to Equation (1.1),

we introduce a nonlinear maximum principle on Td (see Appendix). Due to mixing
effect, we obtain the Lp(p=∞) estimate of the solution through nonlinear maximum
principle, then we get the global classical solution by L∞-criterion. We believe that the
range of α and d are more general in our results, as compared to other results in [25,28].
Due to technical difficulties, we don’t consider the case of d<β<d+1.

Let us now state our main result.

Theorem 1.1. Let 0<α<2,β∈ [2,d],d≥2, for any initial data ρ0≥0,ρ0∈H3(Td)∩
L∞(Td), there exists a smooth incompressible flow u, such that the unique solution
ρ(t,x) of Equation (1.1) is global in time, and we have

ρ(t,x)∈C(R+;H3(Td)).
Remark 1.1. The smooth incompressible flow u is weakly mixing (see Definition 2.1),
and the result is still open for the general relaxation enhancing flow (see [11,25]).
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Remark 1.2. The result can seen as an extension of Kiselev et al. (see [28]) and Hopf
et al. (see [25]). For the case of d<β<d+1, we need some new ideas.

Remark 1.3. If ρ0(x) is a constant, then the solution of Equation (1.1) obviously has
global existence, so we discuss only the case where ρ0(x) is not constant in this paper.

In the following, we briefly state our main ideas of the proof. Firstly, we establish
the L∞-criterion of solution to Equation (1.1). Namely, we can get the higher order
energy estimate of the solution if the L∞ norm of solution is uniformly bounded, thus
there is a global classical solution for the Equation (1.1). Next, we obtain the L∞

estimate of the solution to Equation (1.1). According to the L1 norm conservation of
the solution and nonlinear maximum principle, we can get the local L∞ estimate of
the solution, it follows that the local L2 estimate of the solution is small by mixing
effect. Combining with the local L2 and L∞ estimate of the solution, we deduce that
the local Lp (p> d

a ) estimate of the solution is controlled by its initial data. Using the
nonlinear maximum principle again, the local L∞ norm is estimated by the initial data.
Repeating the above process, we extend the local Lp and L∞ estimate of the solution
to all time. Thus, we get the uniform L∞ estimate. In the details of the proof, we will
discuss β=d and β∈ [2,d) respectively, due to the different properties of B(ρ). When
β=d, the attractive kernel is written as B(ρ) =∇((−∆)−1(ρ−ρ)). While 2≤β<d, the
attractive kernel can be expressed by B(ρ) =∇K ∗ρ. So, some different techniques are
required to deal with the two cases.

This paper is organized as follows. In Section 2, we introduce the properties of the
nonlocal operator and the functional space. We give the local well-posedness and basic
properties for the generalized Keller-Segel system with fractional dissipation and weakly
mixing. The mixing effect of the solution is also introduced in this section. In Section
3, we establish the L∞ estimate of the solution to Equation (1.1) when β=d with d≥2,
and we give the proof of Theorem 1.1 by L∞-criterion. In Section 4, we finish the
proof of Theorem 1.1 through a similar method in the case of β∈ [2,d),d>2. Because
of different properties of B(ρ), we introduce some different techniques to complete the
proof. In the Appendix, we prove a nonlinear maximum principle on the periodic box.

Throughout the paper, C stands for universal constants that may change from line
to line.

2. Preliminaries
In what follows, we provide some auxiliary results and notations.

2.1. Nonlocal operator. The fractional Laplacian is a nonlocal operator and
it has the following kernel representation on Td (see [9, 10])

(−∆)
α
2 f(x) =Cα,d

∑
k∈Zd

P.V.

∫
Td

f(x)−f(y)

|x−y+k|d+α
dy, (2.1)

where

Cα,d=
2αΓ(d+α

2 )

π
d
2 |Γ(−α2 )|

,

and

Γ(z) =

∫ ∞
0

tz−1e−tdt.
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Recall that we denote by

0≤λ1≤λ2≤···≤λn≤···

the eigenvalue of the operator −∆ on Td, then the eigenvalue of operator (−∆)
α
2 is as

follows (see [15])

0≤λ
α
2
1 ≤λ

α
2
2 ≤···≤λ

α
2
n ≤··· . (2.2)

The following results are two important lemmas, see [1, 13,26] for the details.

Lemma 2.1 (Positivity Lemma). Suppose 0≤α≤2,Ω =Rd,Td and f,(−∆)
α
2 f ∈Lp,

where p≥2. Then

2

p

∫
Ω

((−∆)
α
4 |f |

p
2 )2dx≤

∫
Ω

|f |p−2f(−∆)
α
2 fdx.

Lemma 2.2. Suppose 0<α<2,Ω =Rd,Td and f ∈S(Ω). Then∫
Ω

(−∆)
α
2 f(x)dx= 0.

2.2. Functional spaces and inequalities. We write Lp(Td) for the usual
Lebesgue space

Lp(Td) =

{
f measurable s.t.

∫
Td
|f(x)|pdx<∞

}
,

the norm for the Lp space is denoted as ‖·‖Lp , it means

‖f‖Lp =

(∫
Td
|f |pdx

) 1
p

,

with natural adjustment when p=∞. The homogeneous Sobolev norm ‖·‖Ḣs ,

‖f‖2
Ḣs

=‖(−∆)
s
2 f‖2L2 =

∑
k∈Zd\{0}

|k|2s|f̂(k)|2,

and the non-homogeneous Sobolev norm ‖·‖Hs ,

‖f‖2Hs =‖f‖2L2 +‖f‖2
Ḣs
.

For some standard inequalities, we can refer to [19,22]. The following inequality is
a Sobolev embedding for the fractional derivative (see [3]).

Lemma 2.3 (Homogeneous Sobolev embedding). Suppose 0< σ
d <

1
p <1 and define

q∈ (p,∞) via

σ

d
=

1

p
− 1

q
.

Then for all f ∈C∞(Td) with zero mean

‖f‖Lq ≤C‖(−∆)
σ
2 f‖Lp .
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2.3. Mixing effect. Given an incompressible vector field u which is Lipschitz in
spatial variables, if we defined the trajectories map by (see [11,28])

d

dt
Φt(x) =u(t,Φt(x)), Φ0(x) =x.

Then define a unitary operator U t acting on L2(Td) as follows

U tf(x) =f(Φ−1
t (x)), f ∈L2(Td),

for simplicity, we denote

U =U t, (2.3)

and

G=

{
f ∈L2(Td)

∣∣∫
Td
f(x)dx= 0,f 6= 0

}
.

Next, we give the definition of weakly mixing (see [28]).

Definition 2.1. The incompressible flow u is called weakly mixing, if u=u(t,x)
is smooth and the spectrum of the operator U is purely continuous on G, where U be
defined in (2.3) with u.

Remark 2.1. If u is weakly mixing, for any f ∈L2(Td) and f is not constant, we
can get f−f ∈G, then f−f is not an eigenfunction of U . So U has no nontrivial
eigenfunction on G, where f is mean value of f .

Remark 2.2. The incompressible flow u is called relaxation enhancing (see [11]) if
the operator U has no eigenfunctions in Ḣ1 other than a constant function. Obviously,
the weakly mixing is relaxation enhancing flow.

Let us denote ω(t,x) is the unique solution of the equation

∂tω+u ·∇ω= 0, ω(0,x) =ρ0(x), (2.4)

there is the following lemma,

Lemma 2.4. Suppose that 0<α<2, u(t,x) is a smooth divergence-free vector field
for each t≥0. Let ω(t,x) be the solution of (2.4). Then for every t≥0, and for every
ρ0∈ Ḣ

α
2 , we have

‖ω(t, ·)‖
Ḣ
α
2
≤F (t)‖ρ0‖Ḣ α

2
,

where

F (t) = exp

(∫ t

0

D(s)ds

)
,

and

D(t)≤C‖(−∆)
2α+d+2

4 u(t, ·)‖L2 .

Proof. We can refer to [25,28].

Remark 2.3. For the examples of relaxation enhancing flow and weakly mixing, we
can refer to [11,20,21,25,28].
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2.4. Local well-posedness of (1.1). We provide a local existence of the
solution to (1.1) and some basic properties.

Theorem 2.1. Let 0<α≤2,β∈ [2,d+1),d≥2, ρ0∈H3(Td) be a non-negative initial
data, then there exist lifespan time T =T (ρ0,α)>0 and unique non-negative solution
ρ(t,x) of (1.1), such that

ρ(t,x)∈C([0,T ];H3(Td)),

and

‖ρ(t,·)‖L1 =‖ρ0‖L1 .

Furthermore, under the restriction α>1, the solution is smooth.

Proof. The proof of Theorem 2.1 is standard and it is similar to the one in [1,29].

3. Proof of Theorem 1.1 (β=d,d≥2)
In this section, we consider the classical Keller-Segel system with fractional dissi-

pation and weakly mixing. We establish the L∞-criterion, and get the L∞ estimate of
the solution.

3.1. L∞-criterion. We show that to get the global classical solution of (1.1),
we only need to have certain control of spatial L∞ norm of the solution.

Proposition 3.1. Suppose that 0<α<2,β=d,d≥2, for any initial data ρ0≥0,ρ0∈
H3(Td)∩L∞(Td). Then the following criterion holds: either the local solution to (1.1)
extends to a global classical solution or there exists T ∗∈ (0,∞), such that

lim
t→T∗

‖ρ(t,·)‖L∞ =∞.

Proof. We only need to derive a priori bounds on higher order derivatives in
terms of L∞ norm of the solution. Assume ρ(t,x) is the solution of Equation (1.1), and
‖ρ(t,·)‖L∞ is bound. Let us multiply both sides of (1.1) by (−∆)3ρ and integrate over
Td, to obtain

1

2

d

dt
‖ρ‖2

Ḣ3 +

∫
Td
u ·∇ρ(−∆)3ρdx

+

∫
Td

(−∆)
α
2 ρ(−∆)3ρdx+

∫
Td
∇·(ρB(ρ))(−∆)3ρdx= 0. (3.1)

We use step-by-step integration and the incompressibility of u to obtain∣∣∣∣∫
Td
u ·∇ρ(−∆)3ρdx

∣∣∣∣≤C‖u‖C3‖ρ‖2
Ḣ3 . (3.2)

And the third term of the left-hand side of (3.1) is equal to∫
Td

(−∆)
α
2 ρ(−∆)3ρdx=‖ρ‖2

Ḣ3+α
2
. (3.3)

For the fourth term of the left-hand side of (3.1), we split it into two pieces∫
Td
∇·(ρB(ρ))(−∆)3ρdx=

∫
Td
∇ρ ·(∇(−∆)−1(ρ−ρ))(−∆)3ρdx−

∫
Td
ρ(ρ−ρ)(−∆)3ρdx.

(3.4)
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Integrating by parts, the second term of the right-hand side of (3.4) is expressed as
follows ∫

Td
ρ(ρ−ρ)(−∆)3ρdx∼

3∑
l=0

∫
Td
DlρD3−l(ρ−ρ)D3ρdx,

where l= 0,1,2.3 and D denotes any partial derivative. By Hölder’s inequality, one has∑
l=0,3

∫
Td
DlρD3−l(ρ−ρ)D3ρdx≤ (2‖ρ‖L∞+ρ)‖ρ‖2

Ḣ3 ,

and

2∑
l=1

∫
Td
DlρD3−l(ρ−ρ)D3ρdx≤2‖Dρ‖L6‖D2ρ‖L3‖ρ‖Ḣ3 .

For any 1≤ q′0≤∞, we deduce by interpolation inequality that

‖ρ‖
Lq
′
0
≤‖ρ‖

1
q′0
L1‖ρ‖

1− 1
q′0

L∞ , (3.5)

combining with the Gagliardo-Nirenberg inequality, then there exist 1≤ q′1,q′2≤∞, such
that

‖Dρ‖L6 ≤C‖ρ‖1−θ1
Lq
′
1
‖ρ‖θ1

Ḣ3
, (3.6)

and

‖D2ρ‖L3 ≤C‖ρ‖1−θ2
Lq
′
2
‖ρ‖θ2

Ḣ3
, (3.7)

where

θ1 =
6−d(1− 6

q′1
)

18−d(3− 6
q′1

)
, θ2 =

12−d(2− 6
q′2

)

18−d(3− 6
q′2

)
.

Due to ‖ρ‖L1 conservation and the fact tha ‖ρ‖L∞ is bounded, according to (3.5), (3.6)
and (3.7), we obtain

‖Dρ‖L6‖D2ρ‖L3‖ρ‖Ḣ3 ≤C‖ρ‖1−θ1
Lq
′
1
‖ρ‖1−θ2

Lq
′
2
‖ρ‖1+θ1+θ2

Ḣ3
≤C‖ρ‖1+θ1+θ2

Ḣ3
.

Therefore, we have∫
Td
ρ(ρ−ρ)(−∆)3ρdx≤C(‖ρ‖L∞+ρ)‖ρ‖2

Ḣ3 +C‖ρ‖1+θ1+θ2
Ḣ3

. (3.8)

Integrating by parts the first term of the right-hand side of (3.4), we get terms that
can be estimated similarly to the second term of the right-hand side of (3.4). The only
exceptional terms that appear which have different structure (see [28]) are∫

Td
(∂i1∂i2∂i3∇ρ) ·(∇(−∆)−1ρ)∂i1∂i2∂i3ρdx,
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while these can be reduced to ∫
Td

(ρ−ρ)(∂i1∂i2∂i3ρ)2dx,

and according to the estimation as before, we get∫
Td
∇ρ ·(∇(−∆)−1ρ)(−∆)3ρdx≤C(‖ρ‖L∞+ρ)‖ρ‖2

Ḣ3 +C‖ρ‖1+θ1+θ2
Ḣ3

. (3.9)

Thus, we deduce by (3.8) and (3.9) that∫
Td
∇·(ρB(ρ))(−∆)3ρdx≤C(‖ρ‖L∞+ρ)‖ρ‖2

Ḣ3 +C‖ρ‖1+θ1+θ2
Ḣ3

. (3.10)

Combining (3.1), (3.2), (3.3) and (3.10), we have

d

dt
‖ρ‖2

Ḣ3 ≤−2‖ρ‖2
Ḣ3+α

2
+C(‖u‖C3 +‖ρ‖L∞+ρ)‖ρ‖2

Ḣ3 +C‖ρ‖1+θ1+θ2
Ḣ3

. (3.11)

By Gagliardo-Nirenberg inequality, for any 1≤ q′3≤∞, we obtain

‖ρ‖Ḣ3 ≤C‖ρ‖1−θ
Lq
′
3
‖ρ‖θ

Ḣ3+α
2
, (3.12)

where

θ=

2d
q′3

+6−d
2d
q′3

+6−d+α
.

We denote

γ=
2

θ
=

4d
q′3

+12−2d+2α

2d
q′3

+6−d
,

according to (3.5) and (3.12), we get

‖ρ‖γ
Ḣ3
≤C‖ρ‖(1−θ)γ

Lq
′
3
‖ρ‖2

Ḣ3+α
2
≤C4‖ρ‖2Ḣ3+α

2
,

thus, we have

−‖ρ‖2
Ḣ3+α

2
≤−C−1

4 ‖ρ‖
γ

Ḣ3
≤−C‖ρ‖γ

Ḣ3
. (3.13)

According to (3.11) and (3.13), one has

d

dt
‖ρ‖2

Ḣ3 ≤−C‖ρ‖γḢ3
+C(‖u‖C3 +‖ρ‖L∞+ρ)‖ρ‖2

Ḣ3 +C‖ρ‖1+θ1+θ2
Ḣ3

. (3.14)

As ‖u‖C3 , ‖ρ‖L∞ are bounded, and we choose q′3, such that

2<1+θ1 +θ2<γ,

then we know that ‖ρ‖Ḣ3 is bounded. Because ‖ρ‖L2 bound is obvious, by the definition
of ‖ρ‖H3 , we imply that ‖ρ(t,·)‖H3 is bounded. Namely, there exists a constant CH3 =
C(‖ρ‖L∞ ,‖ρ0‖H3), such that

‖ρ(t,·)‖H3 ≤CH3 .

This completes the proof of Proposition 3.1.

Remark 3.1. Particularly, if ‖ρ‖L∞ is bounded only in [0,T ], then ‖ρ(t,·)‖H3 is
bounded in [0,T ].
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3.2. L∞ estimate of ρ. We establish the L∞ estimate of the solution to
Equation (1.1). The important technique we use is the nonlinear maximum principle on
periodic box, the details can be found in the Appendix. A useful lemma is as follows:

Lemma 3.1. Let 0<α<2,β=d,d≥2, ρ(t,x) is the local solution of Equation (1.1)
with initial data ρ0(x)≥0. If ρ∈Lp(Td), 1≤p<∞, and we denote

ρ̃(t) =ρ(t,xt) = max
x∈Td

ρ(t,x).

Then we have

ρ̃(t)≤C(d,p)‖ρ‖Lp , (3.15)

or

d

dt
ρ̃≤ ρ̃2− ρ̃−C(α,d,p)

ρ̃1+ pα
d

‖ρ‖
pα
d

Lp

. (3.16)

Proof. For any fixed t≥0, using the vanishing of a derivative at the point of
maximum, we see that

∂tρ(t,xt) =
d

dt
ρ̃(t), (u ·∇ρ)(t,xt) =u ·∇ρ̃(t) = 0,

and

(∇·(ρB(ρ)))(t,xt) =−(ρ̃(t))2 + ρ̃(t),

if we denote

(−∆)
α
2 ρ(t,x)

∣∣
x=xt

= (−∆)
α
2 ρ̃(t),

we deduce that by (1.1) the evolution of ρ̃ follows

d

dt
ρ̃+(−∆)

α
2 ρ̃− ρ̃2 + ρ̃= 0. (3.17)

According to the nonlinear maximum principle (see Lemma ), if ρ̃ satisfies

ρ̃(t)≤C(d,p)‖ρ‖Lp ,

we finish the proof of (3.15). If not, ρ̃ must satisfy

(−∆)
α
2 ρ̃(t)≥C(α,d,p)

(ρ̃(t))1+ pα
d

‖ρ‖
pα
d

Lp

. (3.18)

Thus, we deduce by (3.17) and (3.18) that

d

dt
ρ̃= ρ̃2− ρ̃−(−∆)

α
2 ρ̃≤ ρ̃2− ρ̃−C(α,d,p)

ρ̃1+ pα
d

‖ρ‖
pα
d

Lp

,

so we have

d

dt
ρ̃≤ ρ̃2− ρ̃−C(α,d,p)

ρ̃1+ pα
d

‖ρ‖
pα
d

Lp

,
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we finish the proof of (3.16). This completes the proof of Lemma 3.1.

First, we need the local L2, Lp(p> d
α ) and L∞ estimates of the solution.

Lemma 3.2. Let 0<α<2,β=d,d≥2, ρ(t,x) is the local solution of Equation (1.1)
with initial data ρ0(x)≥0. Suppose that ‖ρ0‖L2 =B0, ‖ρ0‖Lp ≤Cp, ‖ρ0‖L∞ ≤C∞. Then
there exists a time τ1>0, for any 0≤ t≤ τ1, such that

‖ρ(t,·)−ρ‖L2 ≤2(B2
0−ρ2)

1
2 , ‖ρ(t,·)‖Lp ≤2Cp, ‖ρ(t, ·)‖L∞ ≤2C∞,

where ρ is the mean-value of ρ0 and p> d
α .

Proof. According to the proof of Lemma 3.1, one has

d

dt
ρ̃= ρ̃2− ρ̃−(−∆)

α
2 ρ̃,

due to ρ̃≥0,(−∆)
α
2 ρ̃≥0, we get

d

dt
ρ̃≤ ρ̃2. (3.19)

If we define

τ0 = min

{
1

2C∞
,T

}
,

where T is defined in Theorem 2.1. Because ‖ρ0‖L∞ ≤C∞, by solving the differential
inequality in (3.19), for any 0≤ t≤ τ0, we have

‖ρ(t,·)‖L∞ ≤2C∞. (3.20)

Let us multiply both sides of (1.1) by |ρ|p−2ρ and integrate over Td, to obtain that

1

p

d

dt
‖ρ‖pLp+

∫
Td
u ·∇ρ|ρ|p−2ρdx

+

∫
Td

(−∆)
α
2 ρ|ρ|p−2ρdx+

∫
Td
∇·(ρB(ρ))|ρ|p−2ρdx= 0, (3.21)

for any 0≤ t≤ τ0, we deduce by the standard energy estimate, (3.20) and (3.21) that

d

dt
‖ρ‖pLp ≤−2‖|ρ|

p
2 ‖2
Ḣ
α
2

+2(p−1)(C∞+ρ)‖ρ‖pLp . (3.22)

And let us multiply both sides of (1.1) by ρ−ρ and integrate over Td, to obtain that

1

2

d

dt
‖ρ−ρ‖2L2+

∫
Td
u ·∇ρ(ρ−ρ)dx

+

∫
Td

(−∆)
α
2 ρ(ρ−ρ)dx+

∫
Td
∇·(ρB(ρ))(ρ−ρ)dx= 0. (3.23)

and for any 0≤ t≤ τ0, we obtain

d

dt
‖ρ−ρ‖2L2 ≤−2‖ρ‖2

Ḣ
α
2

+2(C∞+ρ)‖ρ−ρ‖2L2 . (3.24)
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We denote

τ1 = min

{
τ0,

ln2

(C∞+ρ)

}
, (3.25)

due to ‖ρ0−ρ‖2L2 =B2
0−ρ2,‖ρ0‖Lp ≤Cp, by solving the differential inequality in (3.22)

and (3.24), for any 0≤ t≤ τ1, we get

‖ρ(t,·)‖Lp ≤2Cp,

and

‖ρ(t,·)−ρ‖L2 ≤2(B2
0−ρ2)

1
2 .

According to (3.20) and the definition of τ1, for any 0≤ t≤ τ1, we obtain

‖ρ(t,·)‖L∞ ≤2C∞.

This completes the proof of Lemma 3.2.

Remark 3.2. If there exists 0<τ ′≤ τ1, such that
∫ τ ′

0
‖ρ(t,·)‖2

Ḣ
α
2
dt is large enough,

then ‖ρ(τ ′,·)−ρ‖L2 is obviously small. If not, we need an approximation to ρ(t,x). We
also get the local L2 estimate of the solution only dependent on L∞ estimate of the
solution.

Next, we give an approximation lemma.

Lemma 3.3. Let 0<α<2,β=d,d≥2, suppose that the vector field u(t,x) is smooth
incompressible flow. Let ρ(t,x),ω(t,x) be the local solution of Equation (1.1) and (2.4)
respectively with ρ0∈H3(Td)∩L∞(Td),ρ0≥0. Then for every t∈ [0,T ], we have

d

dt
‖ρ−ω‖2L2 ≤−‖ρ‖2

Ḣ
α
2

+F 2(t)‖ρ0‖2Ḣ α
2

+‖ρ‖2L4‖ρ−ρ‖L2

+C(‖∇ρ‖L2 +‖ρ‖L∞)‖ρ−ρ‖L2‖ρ0‖L∞ ,

where F (t) be defined in Lemma 2.4, and F (t)∈L∞loc[0,∞).

Proof. By (1.1) and (2.4), we obtain the equation

∂t(ρ−ω)+u ·∇(ρ−ω)+(−∆)
α
2 ρ+∇·(ρB(ρ)) = 0. (3.26)

Let us multiply both sides of (3.26) by ρ−ω and integrate over Td, then

1

2

d

dt
‖ρ−ω‖2L2+

∫
Td
u ·∇(ρ−ω)(ρ−ω)dx

+

∫
Td

(−∆)
α
2 ρ(ρ−ω)dx+

∫
Td
∇·(ρB(ρ))(ρ−ω)dx= 0. (3.27)

For the second term of the left-hand side of (3.27), according to the incompressibility
of u, we easily get ∫

Td
u ·∇(ρ−ω)(ρ−ω)dx= 0. (3.28)

The third term of the left-hand side of (3.27) can be estimated as∫
Td

(−∆)
α
2 ρ(ρ−ω)dx=

∫
Td

(−∆)
α
2 ρρdx−

∫
Td

(−∆)
α
2 ρωdx,
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then we deduce by Lemma 2.1 and Hölder’s inequality that∫
Td

(−∆)
α
2 ρρ=‖ρ‖2

Ḣ
α
2
,

and ∫
Td

(−∆)
α
2 ρωdx=

∫
Td

(−∆)
α
4 ρ(−∆)

α
4 ω dx≤‖ρ‖

Ḣ
α
2
‖ω‖

Ḣ
α
2
,

so we get ∫
Td

(−∆)
α
2 ρ(ρ−ω)dx≥‖ρ‖2

Ḣ
α
2
−‖ρ‖

Ḣ
α
2
‖ω‖

Ḣ
α
2
. (3.29)

The fourth term of the left-hand side of (3.27) can be estimated as∫
Td
∇·(ρB(ρ))(ρ−ω)dx=

∫
Td
∇·(ρB(ρ))ρdx−

∫
Td
∇·(ρB(ρ))ωdx. (3.30)

For the first term of the right-hand side of (3.30), we get∫
Td
∇·(ρB(ρ))ρdx=−1

2

∫
Td
ρ2(ρ−ρ)dx≤ 1

2
‖ρ‖2L4‖ρ−ρ‖L2 , (3.31)

and for the second term of the right-hand side of (3.30), by Hölder’s inequality and
Poincaré’s inequality, we obtain that∫

Td
∇·(ρB(ρ))ωdx=

∫
Td
∇·(ρ∇(−∆)−1(ρ−ρ))ωdx

≤‖∇·(ρ∇(−∆)−1(ρ−ρ))‖L1‖ω‖L∞
≤C(‖∇ρ ·(∇(−∆)−1(ρ−ρ))‖L1 +‖ρ(ρ−ρ)‖L1)‖ω‖L∞
≤C(‖∇ρ‖L2‖ρ−ρ‖L2 +‖ρ‖L∞‖ρ−ρ‖L2)‖ω‖L∞
≤C(‖∇ρ‖L2 +‖ρ‖L∞)‖ρ−ρ‖L2‖ω‖L∞ . (3.32)

Therefore, we deduce by (3.30), (3.31) and (3.32) that∫
Td
∇·(ρB(ρ))(ρ−ω)dx≤ 1

2
‖ρ‖2L4‖ρ−ρ‖L2 +C(‖∇ρ‖L2 +‖ρ‖L∞)‖ρ−ρ‖L2‖ω‖L∞ .

(3.33)
Combining (3.27), (3.28), (3.29) and (3.33), one has

1

2

d

dt
‖ρ−ω‖2L2 ≤−‖ρ‖2

Ḣ
α
2

+‖ρ‖
Ḣ
α
2
‖ω‖

Ḣ
α
2

+
1

2
‖ρ‖2L4‖ρ−ρ‖L2

+C(‖∇ρ‖L2 +‖ρ‖L∞)‖ρ−ρ‖L2‖ω‖L∞ . (3.34)

For the the second term of the right-hand side of (3.34), Young’s inequality yields that

‖ρ‖
Ḣ
α
2
‖ω‖

Ḣ
α
2
≤ 1

2
‖ρ‖2

Ḣ
α
2

+
1

2
‖ω‖2

Ḣ
α
2
, (3.35)

thus, we deduce by (3.34) and (3.35) that

1

2

d

dt
‖ρ−ω‖2L2 ≤−

1

2
‖ρ‖2

Ḣ
α
2

+
1

2
‖ω‖2

Ḣ
α
2

+
1

2
‖ρ‖2L4‖ρ−ρ‖L2

+C(‖∇ρ‖L2 +‖ρ‖L∞)‖ρ−ρ‖L2‖ω‖L∞ .
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By Lemma 2.4, we have

d

dt
‖ρ−ω‖2L2 ≤−‖ρ‖2

Ḣ
α
2

+F 2(t)‖ρ0‖2Ḣ α
2

+‖ρ‖2L4‖ρ−ρ‖L2

+C(‖∇ρ‖L2 +‖ρ‖L∞)‖ρ−ρ‖L2‖ρ0‖L∞ .

This completes the proof of Lemma 3.3.

Now, we establish global L∞ estimate of the solution to Equation (1.1) in the case
of weakly mixing.

Proposition 3.2 (Global L∞ estimate). Let 0<α<2,β=d,d≥2, suppose ρ(t,x)
is the solution of Equation (1.1) with initial data ρ0≥0,ρ0∈H3(Td)∩L∞(Td). Then
there exist weakly mixing u and a positive constant CL∞ , such that

‖ρ(t, ·)‖L∞ ≤CL∞ , t∈ [0,+∞].

Before starting the proof of Proposition 3.2, we need one auxiliary result (see [11,

15,28]). On Td, we denote by 0≤λ
α
2
1 ≤λ

α
2
2 ≤···≤λ

α
2
n ≤··· the eigenvalues of (−∆)

α
2 and

by e1,e2,·· · ,en,·· · the corresponding orthogonal eigenvectors. Let us denote by PN the
orthogonal projection on the subspace spanned by the first N eigenvectors e1,e2,·· · ,eN
and

S={φ∈L2
∣∣‖φ‖L2 = 1}.

The following lemma is an extension of the well-known RAGE theorem (see [11,16,28]).

Lemma 3.4. Let U be a unitary operator with purely continuous spectrum defined
on L2(Td). Let K⊂S be a compact set. Then for every N and σ>0, there exists
Tc=T (N,σ,K,U) such that for all T ≥Tc and every φ∈K, we have

1

T

∫ T

0

‖PNU tφ‖2L2dt≤σ.

Remark 3.3. We denote χ=χ(|x|≤R) as a cutoff function, if we have χ instead of
PN , then the RAGE theorem tells us that any state in continuous spectrum space will
“infinitely often leave” the ball of radius R. This is indeed what we expect physically.

Let us consider the equation{
∂tρ

A+Au ·∇ρA+(−∆)
α
2 ρA+∇·(ρAB(ρA)) = 0, t>0,x∈Td

ρA(0,x) =ρ0(x).
(3.36)

Here A is the coupling constant regulating strength of the fluid flow that we assume to
be large and Au is weakly mixing.

We are ready to give the proof of the Proposition 3.2.

Proof. (Proof of Proposition 3.2.) As ρ0∈H3(Td)∩L∞(Td), without loss
of generality, we assume that there exist positive constants B0,E,C∞ and C∞≥
2C(d,p)(E+ρ) such that

‖ρ0‖L2 =B0, ‖ρ0−ρ‖Lp ≤E, ‖ρ0‖L∞ ≤C∞, (3.37)
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where p> d
α , and C(d,p) be as defined in Lemma 5.1. We denote

B1 = min

(B2
0−ρ2)

1
2 ,

(
E

(2C∞+ρ)1− 2
p

) p
2

.
As λ

α
2
n are the eigenvalues of (−∆)

α
2 on Td, and

λ
α
2
n →∞, n→∞,

so we choose N , such that

λ
α
2

N ≥max

{
800

23
(C∞+ρ),

(
1− B2

1

B2
0−ρ2

)
1

τ1
+(C∞+ρ),

2

τ1
ln
B2

0−ρ2

B2
1

}
, (3.38)

where τ1 is defined in (3.25). Define the compact set K⊂S by

K={φ∈S
∣∣‖φ‖2

Ḣ
α
2
≤λ

α
2

N}. (3.39)

Let U t is the unitary operator associated with weakly mixing flow u in the Definition
2.1. Fix σ= 1

100 , then we get Tc=Tc(N,σ,K,U), which is the time provided by Lemma
3.4. We proceed to impose the first condition on A0 =A0(Tc,ρ0,τ1). For any A≥A0,
we define τ as follows

τ =
Tc
A
≤ τ1,

where τ1 be defined in (3.25). As ‖ρ0‖L2 =B0, then for the solution ρA(t,x) of Equation
(3.36), we deduce by Lemma 3.2 and (3.37) that

‖ρA(t,·)−ρ‖L2 ≤2(B2
0−ρ2)

1
2 , ‖ρA(t,·)‖L∞ ≤2C∞, 0≤ t≤ τ1. (3.40)

Next, we consider the equation

∂tω
A+Au ·∇ωA= 0, ωA(0,x) =ρ0(x),

according to the definition of U t, one has

ωA(t,x)−ρ=UAt(ρ0(x)−ρ).

Let (ρ0−ρ)/‖ρ0−ρ‖L2 ∈K, we obtain by the Lemma 3.4 and the definition of τ that

1

τ

∫ τ

0

‖PN (ωA−ρ)‖2L2dt=
1

τ

∫ τ

0

‖PNUAt(ρ0−ρ)‖2L2dt

=
‖ρ0−ρ‖2L2

τ

∫ τ

0

‖PNUAt
(ρ0−ρ)

‖ρ0−ρ‖L2

‖2L2dt

=
‖ρ0−ρ‖2L2

Aτ

∫ τ

0

‖PNUAt
(ρ0−ρ)

‖ρ0−ρ‖L2

‖2L2dAt

=
‖ρ0−ρ‖2L2

Tc

∫ Tc

0

‖PNUs
(ρ0−ρ)

‖ρ0−ρ‖L2

‖2L2dsv

≤σ‖ρ0−ρ‖2L2 ≤
1

100
(B2

0−ρ2). (3.41)



1428 GENERALIZED KELLER-SEGEL SYSTEM

Since (ρ0−ρ)/‖ρ0−ρ‖L2 ∈K, by the definition of K in (3.39), one has

‖ρ0‖2Ḣ α
2
≤λ

α
2

N‖ρ0−ρ‖2L2 ≤λ
α
2

N (B2
0−ρ2). (3.42)

For any fixed p∗∈ [1,∞), according to (3.5) and (3.40), there exists a positive constant
C=C(p∗), such that

‖ρA(t,·)‖Lp∗ ≤C, t∈ [0,τ1],

and we deduce by (3.14) and (3.40) that ‖ρA(t,·)‖H3 is bounded for any t∈ [0,τ1].
Namely, there is a positive constant C∗H3 =C(A), such that

‖ρA(t,·)‖H3 ≤C∗H3 , t∈ [0,τ1],

by Gagliardo-Nirenberg inequality, we obtain

‖∇ρA‖L2 ≤C‖ρA‖1−θ0
Lp∗
‖ρA‖θ0

Ḣ3
≤C4, t∈ [0,τ1], (3.43)

where

θ0 =

1
2−

1
d−

1
p∗

1
2−

3
d−

1
p∗

.

Combining (3.37), (3.40), (3.42), (3.43) and Lemma 3.3, for any 0<t≤ τ1, we get

d

dt
‖ρA−ωA‖2L2 ≤λ

α
2

NF (At)2(B2
0−ρ2)+C(B2

0−ρ2)
1
2 +C(C4 +2C∞)C∞(B2

0−ρ2)
1
2

≤λ
α
2

NF (At)2(B2
0−ρ2)+C(1+C4C∞+2C2

∞)(B2
0−ρ2)

1
2 . (3.44)

As F (t) is a locally bounded function, then there is a A1≥A0, when A≥A1, we have∫ τ

0

λ
α
2

NF (At)2(B2
0−ρ2)+C(1+C4C∞+2C2

∞)(B2
0−ρ2)

1
2 dt

≤
λ
α
2

N (B2
0−ρ2)

A

∫ Tc

0

F (t)2dt+C(1+C4C∞+2C2
∞)(B2

0−ρ2)
1
2 τ

≤B
2
0−ρ2

100
.

Therefore, we integrate from 0 to t on both sides of (3.44), where 0≤ t≤ τ , we obtain

‖ρA(t,·)−ωA(t, ·)‖2L2 ≤
B2

0−ρ2

100
, (3.45)

so we deduce by ‖ωA(t,·)−ρ‖2L2 =‖ρ0−ρ‖2L2 =B2
0−ρ2 that

81

100
(B2

0−ρ2)≤‖ρA(t,·)−ρ‖2L2 ≤
121

100
(B2

0−ρ2), 0≤ t≤ τ. (3.46)

Furthermore, by the estimates (3.41) and (3.45), we get

1

τ

∫ τ

0

‖PN (ρA(t, ·)−ρ)‖2L2dt
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≤ 2

τ

∫ τ

0

‖PN (ωA(t,·)−ρ)‖2L2dt+
2

τ

∫ τ

0

‖PN (ρA(t,·)−ωA(t,·))‖2L2dt

≤B
2
0−ρ2

25
. (3.47)

For ‖ρA(t, ·)‖2
Ḣ
α
2

, we have

‖ρA(t,·)‖2
Ḣ
α
2

=‖ρA(t,·)−ρ‖2
Ḣ
α
2

≥‖(I−PN )(ρA(t, ·)−ρ)‖2
Ḣ
α
2

=‖(−∆)
α
4 (I−PN )(ρA(t,·)−ρ)‖2L2

≥λ
α
2

N‖(I−PN )(ρA(t, ·)−ρ)‖2L2 ,

and

‖(I−PN )(ρA(t,·)−ρ)‖2L2 ≥
1

2
‖(ρA(t,·)−ρ)‖2L2−‖PN (ρA(t,·)−ρ)‖2L2 .

Thus, we deduce by (3.46) and (3.47) that

1

τ

∫ τ

0

‖ρA(t,·)‖2
Ḣ
α
2
dt≥ 1

τ

∫ τ

0

λ
α
2

N‖(I−PN )(ρA(t,·)−ρ)‖2L2dt

≥
λ
α
2

N

2τ

∫ τ

0

‖(ρA(t,·)−ρ)‖2L2dt−
λ
α
2

N

τ

∫ τ

0

‖PN (ρA(t, ·)−ρ)‖2L2dt

≥ 81

200
λ
α
2

N (B2
0−ρ2)− 1

25
λ
α
2

N (B2
0−ρ2)

≥ 73

200
λ
α
2

N (B2
0−ρ2). (3.48)

According to (3.24), we obtain

d

dt
‖ρA−ρ‖2L2 ≤−2‖ρA‖2

Ḣ
α
2

+2(C∞+ρ)‖ρA−ρ‖2L2 , (3.49)

we integrate from 0 to τ on both sides of (3.49), to get

‖ρA(τ,·)−ρ‖2L2 ≤−2

∫ τ

0

‖ρA‖2
Ḣ
α
2
dt+

∫ τ

0

2(C∞+ρ)‖ρA−ρ‖2L2dt+‖ρ0−ρ‖2L2 .

Combining (3.37), (3.38), (3.40) and (3.48), we have

‖ρA(τ,·)−ρ‖2L2 ≤ (B2
0−ρ2)−2τ

(
1

τ

∫ τ

0

‖ρA‖2
Ḣ
α
2
dt

)
+

∫ τ

0

8(C∞+ρ)(B2
0−ρ2)dt

≤− 73

100
λ
α
2

N (B2
0−ρ2)τ+8(C∞+ρ)(B2

0−ρ2)τ+(B2
0−ρ2)

≤
(
− 73

100
λ
α
2

N +8(C∞+ρ)

)
(B2

0−ρ2)τ+(B2
0−ρ2)

≤ (1− 1

2
λ
α
2

Nτ)(B2
0−ρ2).

We define

k=

⌊
Aτ1
2Tc

⌋
,
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where b·c is downward rectification. Then there exists a A2>A1, when A≥A2, using
the same argument k times, we get

‖ρA(kτ, ·)−ρ‖L2 ≤ (1− 1

2
λ
α
2

Nτ)
k
2 (B2

0−ρ2)
1
2 ≤B1. (3.50)

We deduce by (3.20), (3.50) and interpolation inequality that

‖ρA(kτ, ·)−ρ‖Lp ≤‖ρA−ρ‖
2
p

L2‖ρA−ρ‖
1− 2

p

L∞ ≤E,

so we have

‖ρA(kτ, ·)‖Lp ≤E+ρ, (3.51)

and according to ‖ρ0−ρ‖Lp ≤E and Lemma 3.2, for any 0≤ t≤kτ , one has

‖ρA(t,·)‖Lp ≤2(E+ρ).

We denote

ρ̃(t) =ρA(t,xt) = max
x∈Td

ρA(t,x),

then by nonlinear maximum principle, if t∈ [0,kτ ] and ρ̃(t) satisfies (3.15), then we have

ρ̃(t)≤C(d,p)‖ρA(t,·)‖Lp ≤2C(d,p)(E+ρ)≤C∞. (3.52)

If not, then ρ̃(t)≥2C(d,p)(E+ρ), and ρ̃(t) satisfies (3.16), so we have

d

dt
ρ̃≤ ρ̃2− ρ̃−C3ρ̃

1+ pα
d , t∈ [0,kτ ], (3.53)

where C3 =C(α,d,p)/(2(E+ρ))
pα
d . We set

M0 = max{x|x2−x−C3x
1+ pα

d = 0},

and we denote

CL∞ = max{2C(d,p)(E+ρ),M0,‖ρ0‖L∞},

as α> d
p , then

1+
pα

d
>2.

Solving the differential inequality of (3.53), we deduce that

ρ̃(t)≤CL∞ , (3.54)

for any t∈ [0,kτ ], combining with (3.52) and (3.54), we have

‖ρA(t,·)‖L∞ ≤CL∞ .

For the solution ρ(t,x) of Equation (1.1), by the same argument as above, we deduce
that for any n∈Z+, one has

‖ρ(nkτ, ·)‖Lp ≤E+ρ,
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then by the similarity with (3.51) and (3.54), for any t≥0, we have

‖ρ(t,·)‖L∞ ≤CL∞ .

This completes the proof of Proposition 3.2.

Remark 3.4. Without loss of generality, we can assume C∞=CL∞ for the complete-
ness of proof.

Let us prove the Theorem 1.1 briefly.

Proof. (Proof of Theorem 1.1.) According to Proposition 3.2, for the solution
ρ of Equation (1.1), we have

‖ρ(t,·)‖L∞ ≤CL∞ 0≤ t<∞,

then ‖ρ‖H3 is uniformly bounded by the L∞-criterion. Namely, we deduce by ‖ρ‖L2

estimate of the solution and solving different inequality (3.14) that

‖ρ‖H3 ≤CH3 .

By using standard continuation argument, we have

ρ(t,x)∈C(R+;H3(Td)).

This completes the proof of Theorem 1.1.

Remark 3.5. In fact, for any k≥2, ρ0∈Hk(Td)∩L∞(Td), we can get

ρ(t,x)∈C(R+;Hk(Td)).

4. Proof of Theorem 1.1 (β∈ [2,d),d>2)
In this section, we consider the generalized Keller-Segel system with fractional diffu-

sion and weakly mixing in the case of β∈ [2,d),d>2. As the proof is similar to Theorem
1.1, so we only deal with the details that are different.

4.1. L∞-criterion. We get the global classical solution of Equation (1.1) if
L∞ estimate of the solution is a global bound.

Proposition 4.1. Suppose that 0<α<2,β∈ [2,d),d>2, for any initial data ρ0≥
0,ρ0∈H3(Td)∩L∞(Td). Then the following criterion holds: either the local solution to
(1.1) extends to a global classical solution or there exists T ∗∈ (0,∞), such that

lim
t→T∗

‖ρ(t,·)‖L∞ =∞.

Proof. For the fourth term of (3.1), we deduce that∫
Td
∇·(ρB(ρ))(−∆)3ρdx=

∫
Td
∇·(ρ∇K ∗ρ)(−∆)3ρdx

=

∫
Td
∇ρ ·∇K ∗ρ(−∆)3ρdx+

∫
Td
ρ∆K ∗ρ(−∆)3ρdx. (4.1)

Integrating by parts the first term of the right-hand side of (4.1), we obtain∫
Td
∇ρ ·∇K ∗ρ(−∆)3ρdx∼

3∑
l=0

∫
Td
Dl(∇ρ) ·D3−l(∇K ∗ρ)D3ρdx. (4.2)
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According to the definition of periodic convolution kernel K in Section 1, we know that
∇K ∈L1(Td),∆K ∈L1(Td), then there exists a constant C0>0, one has

‖∇K‖L1 ≤C0, ‖∆K‖L1 ≤C0.

When l= 0,1, according to the definition of K in (1.6), we deduce by Young’s and
Hölder’s inequality that∫

Td
∇ρ ·D3(∇K ∗ρ)D3ρdx≤‖Dρ‖Lp1 ‖D3(∇K ∗ρ)‖Lq‖ρ‖Ḣ3

≤‖Dρ‖Lp1 ‖∆K ∗D2ρ‖Lq‖ρ‖Ḣ3

≤C‖Dρ‖Lp1‖D2ρ‖Lq‖ρ‖Ḣ3 ,

and ∫
Td
D(∇ρ) ·D2(∇K ∗ρ)D3ρdx≤‖D2ρ‖Lq‖D2(∇K ∗ρ)‖Lp1‖ρ‖Ḣ3

≤‖D2ρ‖Lq‖∆K ∗Dρ‖Lp1‖ρ‖Ḣ3

≤C‖Dρ‖Lp1‖D2ρ‖Lq‖ρ‖Ḣ3 ,

where

1

p1
+

1

q
=

1

2
.

By Gagliardo-Nirenberg inequality, for 1≤ q1,q2<∞, one has

‖Dρ‖Lp1 ‖D2ρ‖Lq‖ρ‖Ḣ3 ≤C‖ρ‖1−θ1Lq1 ‖ρ‖
1−θ2
Lq2 ‖ρ‖

1+θ1+θ2
Ḣ3

≤C‖ρ‖1+θ1+θ2
Ḣ3

,

where

θ1 =

1
p1
− 1
d−

1
q1

1
2−

3
d−

1
q1

, θ2 =

1
q −

2
d−

1
q2

1
2−

3
d−

1
q2

.

Then for l= 2, we get∫
Td
D2(∇ρ) ·D(∇K ∗ρ)D3ρdx≤‖∆K ∗ρ‖L∞‖ρ‖2Ḣ3 ≤C0‖ρ‖L∞‖ρ‖2Ḣ3 ,

and when l= 3, we obtain∫
Td
D3(∇ρ) ·(∇K ∗ρ)D3ρdx=−1

2

∫
Td

(D3ρ)2∆K ∗ρdx.

Therefore, we have∫
Td
∇ρ ·∇K ∗ρ(−∆)3ρdx≤C(‖ρ‖1+θ1+θ2

Ḣ3
+‖ρ‖L∞‖ρ‖2Ḣ3). (4.3)

For the second term of the right-hand side of (4.1), we get∫
Td
ρ∆K ∗ρ(−∆)3ρdx∼

3∑
l=0

∫
Td
DlρD3−l(∆K ∗ρ)D3ρdx. (4.4)
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when l= 1,2, similar to above, we obtain

2∑
l=1

∫
Td
DlρD3−l(∆K ∗ρ)D3ρdx≤C‖ρ‖1+θ1+θ2

Ḣ3
,

if l= 0, for 2<p2<∞, we deduce that∫
Td
ρD3(∆K ∗ρ)D3ρdx≤‖ρ‖L∞‖∆K ∗D3ρ‖L2‖ρ‖Ḣ3

≤C0‖ρ‖L∞‖ρ‖2Ḣ3

≤C‖ρ‖2
Ḣ3 ,

and when l= 3, we get∫
Td
D3ρ(∆K ∗ρ)D3ρdx≤‖∆K ∗ρ‖L∞‖ρ‖2Ḣ3 ≤C‖ρ‖2Ḣ3 ,

so we have ∫
Td
ρ∆K ∗ρ(−∆)3ρdx≤C(‖ρ‖1+θ1+θ2

Ḣ3
+‖ρ‖2

Ḣ3). (4.5)

Thus, we deduce by (4.3) and (4.5) that∫
Td
∇·(ρB(ρ))(−∆)3ρdx≤C(‖ρ‖1+θ1+θ2

Ḣ3
+‖ρ‖2

Ḣ3). (4.6)

Combining (3.1), (3.2), (3.3) and (4.6), we have

d

dt
‖ρ‖2

Ḣ3 ≤−2‖ρ‖2
Ḣ3+α

2
+C(‖u‖C3 +1)‖ρ‖2

Ḣ3 +C‖ρ‖1+θ1+θ2
Ḣ3

. (4.7)

According to (3.13) and for 1≤p0<∞, one has

−‖ρ‖2
Ḣ3+α

2
≤−C−1

4 ‖ρ‖
γ

Ḣ3
≤−C‖ρ‖γ

Ḣ3
. (4.8)

where

γ=

4d
p0

+12−2d+2α
2d
p0

+6−d
, 1≤p0<∞.

By (4.7) and (4.8), we have

d

dt
‖ρ‖2

Ḣ3 ≤−C‖ρ‖γḢ3
+C(‖u‖C3 +1)‖ρ‖2

Ḣ3 +C‖ρ‖1+θ1+θ2
Ḣ3

, (4.9)

we can choose p0, such that

γ >max{2,1+θ1 +θ2}.

By the differential inequality (4.9), the conclusion can easily be deduced. This completes
the proof of Proposition 4.1.
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4.2. L∞ estimate of ρ. We obtain the L∞ estimate of the solution by weakly
mixing. The same idea from Section 3 is employed.

Lemma 4.1. Let 0<α<2,β∈ [2,d),d>2, ρ(t,x) is the local solution of Equation (1.1)
with initial data ρ0(x)≥0. If ρ∈Lp(Td), 1≤p<∞, and we denote

ρ̃(t) =ρ(t,xt) = max
x∈Td

ρ(t,x).

Then we have

ρ̃(t)≤C(d,p)‖ρ‖Lp , (4.10)

or

d

dt
ρ̃≤C0ρ̃

2−C(α,d,p)
ρ̃1+ pα

d

‖ρ‖
pα
d

Lp

. (4.11)

Proof. Let us denote by xt the point such that

ρ̃(t) =ρ(t,xt) = max
x∈Td

ρ(t,x),

then for a fixed t≥0, for a derivative at the point of maximum, we see that

(∇·(ρB(ρ)))(t,xt) =∇ρ ·∇K ∗ρ(t,xt)+ρ∆K ∗ρ(t,xt). (4.12)

For the first term of the right-hand side in (4.12), one has

∇ρ ·∇K ∗ρ(t,xt) = 0, (4.13)

and for the second term of the right-hand side of (4.12), we deduce by Young’s inequality
that

ρ∆K ∗ρ(t,xt)≤‖ρ∆K ∗ρ‖L∞
≤‖ρ‖L∞‖∆K ∗ρ‖L∞
≤‖ρ‖2L∞‖∆K‖L1 = ρ̃2‖∆K‖L1 . (4.14)

Thus, combining (1.1), (4.12), (4.13) and (4.14), we imply that the evolution of ρ̃ follows

d

dt
ρ̃+(−∆)

α
2 ρ̃−C0ρ̃

2≤0. (4.15)

According to the nonlinear maximum principle, one has

ρ̃(t)≤C(d,p)‖ρ‖Lp ,

if not, we have

d

dt
ρ̃≤C0ρ̃

2−C(α,d,p)
ρ̃1+ pα

d

‖ρ‖
pα
d

Lp

. (4.16)

This completes the proof of Lemma 4.1.

We give the local L2, Lp(p> d
α ) and L∞ estimates of the solution.
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Lemma 4.2. Let 0<α<2,β∈ [2,d),d>2, ρ(t,x) is the local solution of Equation (1.1)
with initial data ρ0(x)≥0. Suppose that ‖ρ0‖L2 =B0, ‖ρ0‖Lp ≤Cp, ‖ρ0‖L∞ ≤C∞. Then
there exists a time τ1>0, for any 0≤ t≤ τ1, such that

‖ρ(t,·)−ρ‖L2 ≤2(B2
0−ρ2)

1
2 , ‖ρ(t,·)‖Lp ≤2Cp, ‖ρ(t, ·)‖L∞ ≤2C∞,

where ρ is the mean-value of ρ0 and p> d
α .

Proof. As ‖ρ0‖L∞ ≤C∞, we define

τ0 = min

{
1

2C0C∞
,T

}
,

then for any 0≤ t≤ τ0, we get

‖ρ(t,·)‖L∞ ≤2C∞, 0≤ t≤ τ0. (4.17)

When 0≤ t≤ τ0, the fourth term of the left-hand side of (3.21) can be estimated as∫
Td
∇(ρB(ρ))|ρ|p−2ρdx=

∫
Td
∇(ρ∇K ∗ρ)|ρ|p−2ρdx

=

∫
Td
∇ρ ·∇K ∗ρ|ρ|p−2ρdx+

∫
Td
|ρ|p∆K ∗ρdx

=−1

p

∫
Td
|ρ|p∆K ∗ρdx+

∫
Td
|ρ|p∆K ∗ρdx

≤ p−1

p
‖∆K ∗ρ‖L∞‖ρ‖pLp

≤ 2C0C∞(p−1)

p
‖ρ‖pLp . (4.18)

So we have

d

dt
‖ρ‖pLp ≤−2‖|ρ|

p
2 ‖2
Ḣ
α
2

+2C0C∞(p−1)‖ρ‖pLp . (4.19)

For any 0≤ t≤ τ0, the fourth term of the left-hand side of (3.23) can be estimated as∫
Td
∇(ρB(ρ))(ρ−ρ)dx=

∫
Td
∇(ρ∇K ∗ρ)(ρ−ρ)dx

=−1

2

∫
Td

(ρ−ρ)2∆K ∗ρdx+

∫
Td
ρ∆K ∗(ρ−ρ)(ρ−ρ)dx

≤ 1

2
‖∆K‖L1‖ρ‖L∞‖ρ−ρ‖2L2 +‖∆K‖L1‖ρ‖L∞‖ρ−ρ‖2L2

≤3C0C∞‖ρ−ρ‖2L2 . (4.20)

We deduce by (3.23) and (4.20) that

d

dt
‖ρ−ρ‖2L2 ≤−2‖ρ‖2

Ḣ
α
2

+6C0C∞‖ρ−ρ‖2L2 . (4.21)

We denote

τ1 = min

{
τ0,

p ln2

2C0C∞(p−1)
,

ln2

3C0C∞

}
, (4.22)
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for any 0<t≤ τ1, we deduce by (4.17) and (4.21) that

‖ρ(t,·)−ρ‖L2 ≤2(B2
0−ρ2)

1
2 , ‖ρ(t,·)‖Lp ≤2Cp.

According to (4.17) and the definition of τ1, for any 0≤ t≤ τ1, we have

‖ρ(t,·)‖L∞ ≤2C∞, 0≤ t≤ τ1.

This completes the proof of Lemma 4.2.

Next, we give an approximation lemma.

Lemma 4.3. Let 0<α<2,β∈ [2,d),d>2, suppose that the vector field u(t,x) is smooth
incompressible flow. Let ρ(t,x),ω(t,x) be the local solution of Equations (1.1) and (2.4)
respectively with ρ0∈H3(Td)∩L∞(Td),ρ0≥0. Then for every t∈ [0,T ], we have

d

dt
‖ρ−ω‖2L2 ≤−‖ρ‖2

Ḣ
α
2

+F (t)2‖ρ0‖2Ḣ α
2

+C0‖ρ‖L∞‖ρ‖2L2

+2C0(‖∇ρ‖L2‖ρ‖L2 +‖ρ‖2L2)‖ρ0‖L∞ ,

where F (t) be as defined in Lemma 2.4, and F (t)∈L∞loc[0,∞).

Proof. The fourth term of the left-hand side of (3.27) can be estimated as∫
Td
∇·(ρB(ρ))(ρ−ω)dx=

∫
Td
∇·(ρ∇K ∗ρ)(ρ−ω)dx

=

∫
Td
∇·(ρ∇K ∗ρ)ρdx−

∫
Td
∇·(ρ∇K ∗ρ)ωdx

=
1

2

∫
Td
ρ2∆K ∗ρdx−

∫
Td
∇·(ρ∇K ∗ρ)ωdx

≤ 1

2
‖∆K ∗ρ‖L∞‖ρ‖2L2 +‖∇·(ρ∇K ∗ρ)‖L1‖ω‖L∞

≤ 1

2
‖∆K‖L1‖ρ‖L∞‖ρ‖2L2 +(‖∇ρ‖L2‖∇K ∗ρ‖L2 +‖ρ‖L2‖∆K ∗ρ‖L2)‖ω‖L∞

≤ C0

2
‖ρ‖L∞‖ρ‖2L2 +C0(‖∇ρ‖L2‖ρ‖L2 +‖ρ‖2L2)‖ω‖L∞ , (4.23)

where ‖∇K‖L1 ,‖∆K‖L1 is bounded since β∈ [2,d). By Young’s inequality and (4.23),
one has∫

Td
∇·(ρB(ρ))(ρ−ω)dx≤ C0

2
‖ρ‖L∞‖ρ‖2L2 +C0(‖∇ρ‖L2‖ρ‖L2 +‖ρ‖2L2)‖ω‖L∞ .

(4.24)
Combining (3.27), (3.28), (3.29), (3.35), (4.24) and Lemma 2.4, we have

d

dt
‖ρ−ω‖2L2 ≤−‖ρ‖2

Ḣ
α
2

+F (t)2‖ρ0‖2Ḣ α
2

+C0‖ρ‖L∞‖ρ‖2L2

+2C0(‖∇ρ‖L2‖ρ‖L2 +‖ρ‖2L2)‖ρ0‖L∞ .

This completes the proof of Lemma 4.3.

Next, we establish the global L∞ estimate of the solution.

Proposition 4.2 (Global L∞ estimate). Let 0<α<2,β∈ [2,d),d>2, suppose ρ(t,x)
is the solution of Equation (1.1) with initial data ρ0≥0,ρ0∈H3(Td)∩L∞(Td). Then
there exist weakly mixing u and a positive constant CL∞ , such that

‖ρ(t, ·)‖L∞ ≤CL∞ , t∈ [0,+∞].
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Proof. According to the proof of Proposition 3.2.

Remark 4.1. According to Proposition 4.1 and 4.2, we can finish the proof of Theorem
1.1 when β∈ [2,d),d>2.
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Appendix. Nonlinear maximum principle. In this section, we recall nonlinear
maximum principle on Td, the main idea of its proof comes from [9,12,23].

Lemma 5.1. Let f ∈S(Td) and denote by x the point such that

f(x) = max
x∈Td

f(x),

and f(x)>0, then we have the following

(−∆)
α
2 f(x)≥C(α,d,p)

f(x)1+ pα
d

‖f‖
pα
d

Lp

,

or

f(x)≤C(d,p)‖f‖Lp .

Proof. We take R>0 a positive number and define

N1(R) =
{
λ∈B(0,R)

∣∣f(x)−f(x−λ)>
f(x)

2

}
.

and

M = min
y∈∂Td

|x−y|,

where ∂Td represents the boundary of the periodic box Td. Without loss of generality,
we assume that M ≥ 1

4 . If

R≤M, (5.1)

then, we have

B(0,R)⊂Td.

If we denote

N2(R) =B(0,R)−N1(R),

then

N2(R) =
{
λ∈B(0,R)

∣∣f(x)−f(x−λ)≤ f(x)

2

}
,
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and

‖f‖pLp ≥
∫
Td
|f(x−λ)|pdλ≥

∫
N2(R)

|f(x−λ)|pdλ≥
(
|f(x)|

2

)p
|N2(R)|,

thus, we obtain

|N2(R)|≤
(

2‖f‖Lp
f(x)

)p
. (5.2)

According to the definition of (2.1), we have

(−∆)
α
2 f(x)≥Cα,dP.V.

∫
Td

f(x)−f(x−λ)

|λ|d+α
dλ

≥Cα,dP.V.
∫
N1(R)

f(x)−f(x−λ)

|λ|d+α
dλ

≥Cα,d
f(x)

2

1

Rd+α
|N1(R)|.

We deduce by (5.2), the definition of N1(R) and N2(R) that

|N1(R)|= |B(0,R)|−|N2(R)|≥ωdRd−
(

2‖f‖Lp
f(x)

)p
,

where ωd is the volume per sphere, then we get

(−∆)
α
2 f(x)≥Cα,d

f(x)

2Rd+α

(
ωdR

d−
(

2‖f‖Lp
f(x)

)p)
. (5.3)

We take R such that

ωdR
d= 2

(
2‖f‖Lp
f(x)

)p
,

thus

R=

(
2

ωd

(
2‖f‖Lp
f(x)

)p) 1
d

=

(
2

ωd

) 1
d
(

2‖f‖Lp
f(x)

) p
d

. (5.4)

By (5.3) and (5.4), we have

(−∆)
α
2 f(x)≥Cα,d

f(x)

2Rd+α

(
ωdR

d−
(

2‖f‖Lp
f(x)

)p)
=Cα,d

f(x)

2Rd+α

(
2‖f‖Lp
f(x)

)p
=

Cα,d2
p

2
(

2
ωd

) d+α
d

2
p(d+α)

d

‖f‖pLpf(x)
p(d+α)

d f(x)

(‖f‖Lp)
p(d+α)

d f(x)p

=C(α,d,p)
f(x)1+ pα

d

‖f‖
pα
d

Lp

.

If R does not fulfill (5.1), then(
2

ωd

) 1
d
(

2‖f‖Lp
f(x)

) p
d

>M,
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so we conclude that

f(x)≤ 2

M
d
p (ωd2 )

1
p

‖f‖Lp ≤C(d,p)‖f‖Lp .

This completes the proof of Lemma 5.1.

Remark 5.1. For the case of Rd, we can refer to [23].
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