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THERMODYNAMICALLY CONSISTENT HYDRODYNAMIC MODELS
OF MULTI-COMPONENT COMPRESSIBLE FLUID FLOWS∗

XUEPING ZHAO† , TIEZHENG QIAN‡ , AND QI WANG§

Abstract. We present a systematic derivation of thermodynamically consistent hydrodynamic
models for multi-component, compressible viscous fluid mixtures under isothermal conditions using the
generalized Onsager principle and the one-fluid multi-component formulation. By maintaining mo-
mentum conservation while enforcing mass conservation at different levels, we obtain two compressible
models. When the fluid components in the mixture are incompressible, we show that one compressible
model reduces to the quasi-incompressible model via a Lagrange multiplier approach. Several different
approaches to arriving at the quasi-incompressible model are discussed. Finally, we conduct a linear
stability analysis on all the binary fluid models derived in the paper to show the differences of the
models in near equilibrium dynamics.
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1. Introduction
Fluid mixtures are ubiquitous in nature as well as in industrial applications. In a

fluid mixture, when fluid components are compressible, the fluid mixture remains com-
pressible. While in some fluid mixtures, when each fluid component is incompressible,
the fluid mixture may not be incompressible especially when the densities are not equal.
This fluid mixture was named a quasi-incompressible fluid and its hydrodynamic model
has been derived under the assumption of the simple mixture and applied to various
multi-phase fluid flows [18, 19, 27, 32]. The fluid mixture may be truly incompressible
only when all the fluid components are incompressible and of the same specific densities.
For immiscible fluid mixtures, sharp interface models and phase field models can both
be used to describe fluid motions. While for miscible fluid mixtures, sharp interface
models are no longer applicable. So, the phase field model becomes a primary platform
to describe the fluid motion in the mixture. We use the name of phase field model in
this paper to refer to the model in which order parameters in the form of concentrations
(molar or mass density) or component fractions (volume or mass fraction) are used to
describe the internal component or structure of the material system. It encompasses
both immiscible and miscible fluid mixture models.

Phase field methods have been used successfully to formulate models for fluid
mixtures in many applications like in life sciences [38, 39, 42, 46, 49] (cell biology
[26, 33, 38, 48, 50, 51], biofilms [45–47], cell adhesion and motility [8, 30, 33, 34, 38], cell
membrane [2, 15, 41, 43], tumor growth [42]), materials science [3, 7, 9], fluid dynam-
ics [14, 31, 32, 40], image processing [6, 28], etc. The most widely studied phase field
model for binary fluid mixtures is the one for immiscible fluid mixtures of two in-
compressible fluids of identical densities [1, 29]. While modeling binary fluids of two
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immiscible fluids using phase field models, one commonly uses an order parameter,
known as the labeling or a phase variable (a volume fraction or a mass fraction), φ
to distinguish between distinct material phases. For instance φ= 1 indicates one fluid
phase while φ= 0 denotes the other fluid phase in the binary fluid mixture. For the
immiscible binary fluid, the interfacial region is tracked by 0<φ<1. For miscible fluid
mixtures or blends, order parameter in the phase field model is normally given in the
form of component fractions or concentrations, in which phases of the fluid mixture are
distinguished by the physically significant stable mixtures of the material system. For
instance, in blends of polymer A and B, two stable phases can co-exist in which neither
are pure polymer A or polymer B. A transport equation for the phase variable(s) along
with the conservation equations of momentum, the continuity equation together with
necessary constitutive equations constitute the governing system of equations for the
fluid mixture.

In a compressible fluid, the total density ρ is a variable and the mass conservation
is given by

∂ρ

∂t
+∇·(ρv) = 0, (1.1)

where v is the mass average velocity field. In a single component incompressible fluid,
the density ρ is a constant so that the mass conservation Equation (1.1) reduces to

∇·v = 0. (1.2)

In multi-component fluid models in forms of phase field models, continuity condition
(1.2) may not be valid in light of the consistency condition with the second law of
thermodynamics. In these models, the divergence-free condition has to be modified to
accommodate the potential fluid compressibility or quasi-incompressibility. A system-
atic derivation of the phase field model for such fluid mixtures of viscous fluids was
given by Lowengrub and Truskinovsky using the mass fraction as the phase variable for
binary fluid mixtures [32] and by Li and Wang using the volume fractions as the phase
variables for multi-component fluid mixtures [27]. The derivations were based on the
thermodynamic laws, especially, the second law of thermodynamics and the simple mix-
ture assumption [25] coupled with the additional constraints imposed by the transport
equation of the components consistent with the Onsager linear response theory.

It’s known that a hydrodynamic model of a single phase incompressible fluid can be
derived from the corresponding compressible model by imposing the incompressibility
constraint. The resulting model is called a constrained theory in continuum mechanics.
In nature and industrial applications, there are many material systems comprising of
multi-component compressible or incompressible components. For instance, in modeling
tissues, there is the issue of cell proliferation which makes the volume of the material
system and mass grow; in tertiary oil recovery, the mixture of CO2 and n-decane are two
important compressible fluid components in the gas-oil mixture. In fact, there are many
more material systems in real world applications in this category, where the material
components are compressible.

In this paper, we present a systematic derivation of thermodynamically consistent
compressible phase field models for multi-component fluid mixtures through a vari-
ational approach in light of the generalized Onsager principle [44]. The generalized
Onsager principle consists of the Onsager linear response theory and positive entropy
production rule [35,36]. Thermodynamical consistency indicates the models satisfy the
thermodynamical laws (including the first and second laws of thermodynamics). Histor-
ically, there have been several theoretical frameworks for one to derive thermodynamical
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and hydrodynamical models for time-dependent dynamics. The Onsager principle is the
one we adopt in this paper. The Onsager maximum entropy production principle based
on the Onsager-Matchlup action potential is another approach to deriving models for
purely dissipative systems [13, 35]. Equivalently, the second law of thermodynamics
formulated in the form of Clausius-Duhem relation is yet another classical approach
to deriving transient dynamical models [22]. The Hamilton least action principle is
a classical one for formulating models for Hamiltonian or conservative systems. The
Hamilton-Rayleigh principle is an incarnation of the Onsager maximum entropy princi-
ple [4, 12, 16, 17, 20, 21]. There are also more elaborate GENERIC and Poisson bracket
formalism for non-equilibrium theories [5,10,11,23]. These formulations share the com-
monality in that the non-equilibrium models have a unified mathematical structure
consisting of a reversible (hyperbolic) and irreversible (parabolic, dissipative) compo-
nent in the model governing the evolutionary process. Some of these equations represent
conservation laws for the material system such as mass, momentum and energy conser-
vation while others serve as constitutive equations pertinent to the material properties
of the material system. The different methods may differ however in how they handle
the boundary conditions as well as if one uses the dissipation functional or the mobility
(or the friction coefficient) to derive the constitutive equations.

There are two general approaches to describing multiphasic materials in general.
One uses multi-fluid formulation to describe the density and velocity for each phase
explicitly [4, 12, 16,17, 20,21]. Another one uses an average velocity, normally the mass
average velocity, together with chemical potentials to describe kinematics for each phase
[5, 10]. In the latter approach, the average velocity is a measurable hydrodynamic
quantity in fluids. For this reason, we choose this approach to formulate our phase field
model for multiphasic fluid flows. Since we consider isothermal fluid systems in this
paper, we will use the word “multi-phase” and “multi-component” fluid interchangeably.

We formulate the hydrodynamic phase field model for compressible fluid of N-fluid
components (N >1) using the one fluid multi-component formulation in this paper [5].
As it is alluded to earlier, hydrodynamic models that obey necessary conservation laws
do not necessarily satisfy the second law of thermodynamics, if the constitutive equations
are not derived in a thermodynamically consistent way. The second law or equivalently
the Onsager positive entropy production principle is thus an additional condition that
any well-posed model should satisfy. It does not yield an additional governing equation
for the model. Instead, it does impose an additional constraint on the model and
dictates how entropy is produced during the transient dynamical process as the system
approaches the steady state.

In this paper, we first derive two classes of hydrodynamic phase field models for
compressible fluid mixtures using the Onsager principle. After we obtain the “general”
compressible models for multi-component fluid mixtures, we hierarchically impose ad-
ditional “conservation” and/or “incompressibility” conditions to the material system to
arrive at constrained, quasi-incompressible theories to show the hierarchical relationship
between the compressible model and the constrained models for multi-component fluid
mixtures. Through this systematic approach, we demonstrate how one can derive the
constrained models via the generalized Onsager principle in a variational formulation
involving Lagrange multipliers, extending the method applied to single phase materi-
als to multi-component material mixtures in the context of one fluid multi-component
framework. In the more general compressible model, we enforce the global mass con-
servation so that the model can be used to describe material systems undergoing mass
conversion among different components. We then study near equilibrium dynamics of
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the general models and their various limits through a linear stability analysis. Note
that we derive the models for viscous fluid components in this paper. However, this
approach can be readily extended to complex fluids to account for viscoelastic effects
due to mesoscopic structures in the fluid systems [44].

The paper is organized as follows. In §2, we formulate two classes of hydrodynamic
phase field models for fluid mixtures of compressible fluid components and a quasi-
incompressible model for the fluid mixture of two incompressible fluids with different
mass conservation constraints. In §3, we generalize the derivation to compressible fluid
mixtures of N fluid components. The non-dimensionalization of the models is carried
out in §4. In §5, we discuss near-equilibrium dynamics of the models using a linear
stability analysis. We give concluding remarks in §6.

2. Hydrodynamic phase field models for binary fluid flows
We present a systematic derivation of thermodynamically consistent hydrodynamic

phase field models for binary compressible fluid flows with respect to various conditions
on mass conservation and incompressibility following the generalized Onsager principle
[44].

2.1. Compressible model with the global mass conservation law. We
first consider a mixture of two compressible viscous fluids with density and velocity
pairs (ρ1,v1) and (ρ2,v2), respectively. We define the total mass of the fluid mixture
as ρ=ρ1 +ρ2 and the mass average velocity as v = 1

ρ (ρ1v1 +ρ2v2). We allow the mass
of fluid components to change via conversion, generation, or annihilation at specified
rates. In this general framework, the mass balance equation for each fluid component
is given respectively by

∂ρi
∂t

+∇·(ρivi) = ri, i= 1,2, (2.1)

where ri is the mass conversion/generation/annihilation rate for the ith component.
The corresponding momentum conservation equations are given by

∂(ρivi)

∂t
+∇·(ρivivi) =∇·σi+Fi,e+rivi, i= 1,2, (2.2)

where (ρivivi)αβ =ρivi,αvi,β ,α,β= 1,2,3, σi is the viscous stress of the ith fluid compo-

nent, (∇·σi)α=
∂σi,αβ
∂β ,α= 1,2,3, Fi,e the extra force density of the ith fluid component

including the friction force between different fluid components and some elastic forces,
and rivi the rate of momentum change due to mass conversion/generation/annihilation
in the ith fluid component.

We rewrite the mass conservation equations using the average velocity as follows

∂ρi
∂t

+∇·(ρiv) = ji, i= 1,2, (2.3)

where ji=∇·(ρi(v−vi))+ri is the excessive production rate of the ith fluid component.
If we add mass balance Equations (2.3) and linear momentum Equations (2.2) of

all the components, respectively, we obtain the total mass balance equation and total
linear momentum balance equation as follows

∂ρ

∂t
+∇·(ρv) =

2∑
i=1

ji=

2∑
i=1

ri,
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∂(ρv)

∂t
+∇·(ρvv) =∇·σs+Fe, (2.4)

where Fe=
∑i=2
i=1(Fi,e+rivi) and σs=

∑i=2
i=1(σi−ρi(vi−v)(vi−v)) is the stress tensor.

The angular momentum balance implies the symmetry of σs. All ji, i=1, 2, σs and Fe
will be determined later through constitutive relations.

We assume the free energy of the system is given by

F =

∫
V

f(ρ1,ρ2,∇ρ1,∇ρ2)dx, (2.5)

where f is the free energy density function and V is the domain which the fluid mixture
occupies. The total energy of the system is given by

Etotal=

∫
V

[
1

2
ρ||v||2 +f ]dx. (2.6)

We next calculate the total energy dissipation rate as follows.

dEtotal
dt

=

∫
V

[−σs :D+(Fe+ρ1∇µ1 +ρ2∇µ2−
1

2
(j1 +j2)v) ·v+µ1(j1)+µ2(j2)]dx

+

∫
∂V

[(σs− 1

2
‖v‖2−µ1ρ1−µ2ρ2) ·v+

∂f

∂(∇ρ1)

∂ρ1

∂t
+

∂f

∂(∇ρ2)

∂ρ2

∂t
] ·ndS. (2.7)

where µ1 = ∂f
∂ρ1
−∇· ∂f

∂∇ρ1 , µ2 = ∂f
∂ρ2
−∇· ∂f

∂∇ρ2 are the chemical potentials with respect

to ρ1 and ρ2, respectively, D= 1
2 (∇v+∇vT ) is the rate of strain tensor. It contains the

energy rate of change in time in the bulk, which is known as the energy dissipation rate
and the rate of change due to boundary fluxes. We focus on the bulk energy dissipation
rate firstly.

We define the elastic force as

Fe=−ρ1∇µ1−ρ2∇µ2 +
1

2
(j1 +j2)v. (2.8)

This indicates that the elastic force density Fe does not contribute to the energy dissi-
pation. Using the Onsager principle, we propose

σs= 2ηD+νtr(D)I, (2.9)(
j1
j2

)
=−M

(
µ1

µ2

)
, (2.10)

where η,ν are mass-average shear and volumetric viscosities, respectively, and M is an
operator. The bulk energy dissipation rate reduces to

dEtotal
dt

=−
∫
V

[2ηD :D+νtr(D)2 +(µ1,µ2) ·M·(µ1,µ2)]dx. (2.11)

It is non-positive definite providedM is non-negative definite and η,ν are non-negative.
The constitutive relation gives a general compressible model for binary fluid flows.

The energy dissipation rate related to the boundary conditions is equally important.
It defines how the material system interacts with the surrounding environment. For
example, the following boundary conditions make the term vanish:

v = 0, n · ∂f

∂∇ρ1
=n · ∂f

∂∇ρ2
= 0 or ρ1 =ρ1(x),ρ2 =ρ2(x). (2.12)
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Another set of boundary conditions makes it dissipative:

v = 0,
∂ρ1

∂t
=−λ1n ·

∂f

∂∇ρ1
,

∂ρ2

∂t
=−λ2n ·

∂f

∂∇ρ2
, (2.13)

where λ1,2>0. We can consider more general boundary conditions using the Onsager
principle at the boundary, which we will not pursue in this study.

In practice, the interesting scenarios are the following two:

(1)
∫
V

∑2
i=1ri= 0; so,

∫
V

∑2
i=1 ji= 0.

(2) ri= 0,i= 1,2; so,
∑2
i=1 ji= 0.

The first condition yields the compressible model of global mass conservation law while
the second one gives the compressible model of local mass conservation law. For the
first case, a special choice of the mobility operator is the following

j1 =∇·M11∇µ1 +∇·M12∇µ2,

j2 =∇·M21∇µ1 +∇·M22∇µ2, (2.14)

where Mij ,i,j= 1,2 are mobility coefficients. If we set the boundary conditions as in
(2.12), the surface terms vanish in the energy dissipation functional so that the energy
dissipation rate reduces to

dEtotal
dt

=−
∫
V

[2ηD :D+νtr(D)2 +(∇µ1,∇µ2) ·M ·(∇µ1,∇µ2)]dx, (2.15)

where M= (Mij). It is non-positive definite provided η,ν≥0 and M is non-negative
definite.

We summarize the governing system of equations in the hydrodynamic model for
binary compressible fluids with a global mass conservation law as follows:

∂ρ1
∂t +∇·(ρ1v) = j1 =∇·M11 ·∇µ1 +∇·M12 ·∇µ2,

[2mm]∂ρ2∂t +∇·(ρ2v) = j2 =∇·M21 ·∇µ1 +∇·M22 ·∇µ2,

[2mm]∂(ρv)
∂t +∇·(ρvv)− 1

2 (j1 +j2)v = 2∇·(ηD)+∇(ν∇·v)−ρ1∇µ1−ρ2∇µ2.

(2.16)

We denote the shear viscosities of the fluid component 1 and 2 as η1,η2, and the volu-
metric viscosities of the two components as ν1,ν2, respectively. There are several options
of defining average viscosity coefficients in the binary model.

(1) Viscosity coefficients are interpolated using mass fractions and given by

η=
ρ1

ρ
η1 +

ρ2

ρ
η2, ν=

ρ1

ρ
ν1 +

ρ2

ρ
ν2. (2.17)

(2) Viscosity coefficients are interpolated through volume fractions φ and (1−φ) in
quasi-incompressible models (presented later) and given by

η=φη1 +(1−φ)η2, ν=φν1 +(1−φ)ν2, (2.18)

where φ is the volume fraction of fluid 1.



XUEPING ZHAO, TIEZHENG QIAN, AND QI WANG 1447

(3) By the Krieger-Dougherty law, the shear viscosity η exhibits a strong non-linear
dependence on the local solute concentration and is given by

η(x) =η0(1−x)−ν , (2.19)

in which x is the solute concentration (ρ1 or ρ2 in this model), η0 is the viscosity
of the pure solvent. For example in mixtures of CO2 and n-decane, the solvent
is n-decane and solute is CO2. The volumetric viscosity is obtained analogously.

As a customary approximation, we assume the free energy density function f is
composed of the conformational entropy, and the bulk energy h as follows

f(ρ1,ρ2,∇ρ1,∇ρ2) =h(ρ1,ρ2,T )+
1

2
(κρ1ρ1(∇ρ1)2 +2κρ1ρ2(∇ρ1,∇ρ2)+κρ2ρ2(∇ρ2)2).

(2.20)

where T is the absolute temperature, h(ρ1,ρ2,T ) is the homogeneous bulk free energy
density function, κρ1ρ1 ,κρ1ρ2 and κρ2ρ2 are parameters parameterizing the conforma-
tional entropy, which are all functions of T . For example, for the partially miscible
binary fluid mixture of n-decane and CO2, where n-decane is denoted as fluid 1 and
CO2 as fluid 2, the Peng-Robinson bulk free energy density is defined by the following

h(ρ1,ρ2,T ) =
rmρ1 +ρ2

m2
ϕ(T )− rmρ1 +ρ2

m2
RTln(

m2

rmρ1 +ρ2
−b)

− rmρ1 +ρ2

m2

a

2
√

2b
ln[

m2 +(rmρ1 +ρ2)b(1+
√

2)

m2 +(rmρ1 +ρ2)b(1−
√

2)
]

+
rmρ1 +ρ2

m2
RT [

rmρ1

rmρ1 +ρ2
ln

rmρ1

rmρ1 +ρ2
+

ρ2

rmρ1 +ρ2
ln

ρ2

rmρ1 +ρ2
]. (2.21)

where R is the ideal gas constant, ϕ(T ) =−RT (1− log(λ3)) is a temperature-dependent
function, λ is the thermal wavelength of a massive particle, mi is the molar mass of
component i for i= 1,2, respectively, rm=m2/m1 is the ratio of the molar mass of
carbon dioxide m2 to the molar mass of n-decane m1, b(ρ1,ρ2) is a volume parameter
and a(ρ1,ρ2,T ) is an interaction parameter. This free energy was proposed to extend
that of the Van der Waals’ to describe the deviation away from the ideal gas model.

Another example of the bulk free energy density for polymeric liquids is given by
the Flory-Huggins-type mixing energy density

h(ρ1,ρ2,T ) =
kBT

m
[
ρ1

N1
ln
ρ1

ρ
+
ρ2

N2
ln
ρ2

ρ
+χ

ρ1ρ2

ρ
], (2.22)

where m is the mass of an average molecule in the mixture and N1,2 are two polymer-
ization indices.

Notice that ji,i= 1,2 in (2.16) are obtained from the constitutive equation and if∑2
i=1 ji 6= 0, this model does not necessarily conserve mass locally. However,

∫
V

(ρ1 +
ρ2)dx is a constant. So, the mass of the system is conserved globally. This model
describes a binary viscous compressible fluid system in which mass is conserved globally
but not locally. In this model, the exact physical meaning of the velocity is lost due to the
lack of local mass conservation. It is no longer a mass average velocity! Therefore, what
does the momentum equation stand for becomes less clear physically. The applicability
of this model needs to be scrutinized further. A more general model can be built from
(2.9) by specifying a more general mobility operator M. However, we will not pursue
it in this study.

Next, we impose the local mass conservation constraint to arrive at the model that
conserves mass locally.
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2.2. Compressible model with local mass conservation law. If j1 +j2 = 0,
the total mass of the system is conserved locally, i.e.,

∂ρ

∂t
+∇·(ρv) = 0, (2.23)

which imposes a constraint on the mass fluxes:

2∑
i=1

2∑
j=1

∇·Mij ·∇µj = 0. (2.24)

We obtain the governing system of equations for the compressible fluid mixture as
follows 

∂ρ
∂t +∇·(ρv) = 0,

∂ρi
∂t +∇·(ρiv) =∇·Mi1 ·∇µ1 +∇·Mi2 ·∇µ2, i= 1,2,

∂(ρv)
∂t +∇·(ρvv) = 2∇·(ηD)+∇(ν∇·v)−

∑2
i=1ρi∇µi.

(2.25)

We note that among the first three equations in the system, only two are independent.
So, we could have used ρ, ρ1 as the fundamental variables in the derivation of the
thermodynamic model in lieu of ρ1 and ρ2 since ρ=ρ1 +ρ2. With these variables, we
reformulate the free energy density function

f(ρ1,ρ2,∇ρ1,∇ρ2) =f(ρ1,ρ−ρ1,∇ρ1,∇(ρ−ρ1)) = f̃(ρ1,ρ,∇ρ1,∇ρ)

= h̃(ρ1,ρ,T )+
1

2
(κ̃ρ1ρ1(∇ρ1)2 +2κ̃ρρ1(∇ρ,∇ρ1)+ κ̃ρρ(∇ρ)2), (2.26)

where κ̃ρ1ρ1 =κρ1ρ1 +κρ2ρ2−2κρ1ρ2 ,κ̃ρρ1 =κρ1ρ2−κρ2ρ2 , and κ̃ρρ=κρ2ρ2 , where
κρ1ρ1 ,κρ1ρ2 ,κρ2ρ2 are the coefficients of the gradient terms in free energy (2.20). The
corresponding chemical potentials are given by

µ̃1 =
δf̃

δρ1
=
δf

δρ1
+
δf

δρ2

∂ρ2

∂ρ1
=µ1−µ2, µ̃=

δf̃

δρ
=
δf

δρ2

∂ρ2

∂ρ
=µ2. (2.27)

From these, we have,

µ1 = µ̃1 + µ̃, µ2 = µ̃. (2.28)

System (2.25) reduces to
∂ρ
∂t +∇·(ρv) = 0,

∂ρ1
∂t +∇·(ρ1v) =∇· [M11 ·∇µ̃1 +(M11 +M12) ·∇µ̃],

∂(ρv)
∂t +∇·(ρvv) = 2∇·(ηD)+∇(ν∇·v)−ρ1∇µ̃1−ρ∇µ̃.

(2.29)

If we assign

M12 =M21 =−M11, M22 =M11, (2.30)

system (2.25) reduces further to a special model
∂ρ
∂t +∇·(ρv) = 0,

∂ρ1
∂t +∇·(ρ1v) =∇·M11 ·∇µ̃1,

∂(ρv)
∂t +∇·(ρvv) = 2∇·(ηD)+∇(ν∇·v)−ρ1∇µ̃1−ρ∇µ̃.

(2.31)
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This is a special model for compressible binary fluid mixtures among infinitely many
choices in the mobility matrix. Apparently, model (2.29) is more general.

The boundary conditions at a solid boundary are given by (2.12) except that the
last one is replaced by n · ∂f∂∇ρ = 0 equivalently when ρ is used as a fundamental variable.
The energy dissipation rate of the special model reduces to

dEtotal
dt

=−
∫
V

[2ηD :D+νtr(D)2 + µ̃1M11µ̃1]dx≤0, (2.32)

provided η,ν≥0 and M11>0. This is a compressible binary fluid model that respects
mass and momentum conservation. For the more general model (2.29), the energy
dissipation property is warranted so long as the mobility matrix M is non-negative
definite. So, this class of models is thermodynamically consistent.

We next show how this (special) model reduces to another class of compressible mod-
els when the two fluid components are incompressible, known as the quasi-incompressible
model [27,32]. For the more general compressible model with a local mass conservation
law, an analogous result can be obtained.

2.3. Quasi-incompressible model. When the fluid mixture consists of two
incompressible viscous fluid components, where the specific densities ρ̂1 and ρ̂2 are
constants, we denote the volume fraction of fluid component 1 as φ and the other by
1−φ. Then, the densities of the two fluids in the mixture are given as follows

ρ1 =φρ̂1, ρ2 = (1−φ)ρ̂2. (2.33)

The total density of the fluid mixture is given by

ρ=φρ̂1 +(1−φ)ρ̂2. (2.34)

If we use ρ1 as a fundamental physical variable, ρ is represented by ρ1 as follows,

ρ=ρ1 +(1− ρ1

ρ̂1
)ρ̂2 = ρ̂2 +(1− ρ̂2

ρ̂1
)ρ1. (2.35)

This means that the two variables ρ and ρ1 are related linearly in this fluid mixture
system. This mixture is known as the simple mixture [25]. We view this as a special case
of the fully compressible model subject to a constraint given by (2.35). To accommodate
the constraint, we augment the free energy density by π(ρ̂2 +(1− ρ̂2

ρ̂1
)ρ1−ρ), where π is

a Lagrange multiplier. We denote the modified free energy density function as f̂ ,

f̂ = f̃(ρ1,∇ρ1,ρ,∇ρ)+π[ρ̂2 +(1− ρ̂2

ρ̂1
)ρ1−ρ]. (2.36)

The corresponding chemical potentials and their relations to the chemical potentials
in the compressible model are given as follows

µ̂1 =
δf̂

δρ1
= µ̃1 +π(1− ρ̂2

ρ̂1
), µ̂=

δf̂

δρ
= µ̃−π, µ̃1 =

δf̃

δρ1
|ρ,

µ̃=
δf̃

δρ
|ρ1 , µφ=

δf̂

δρ1
|ρ
δρ1

δφ
+
δf̂

δρ
|ρ1
δρ

δφ
= ρ̂1µ̂1 +(ρ̂1− ρ̂2)µ̂. (2.37)
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From the mass conservation of the mixture system (2.31)-1, we have

(ρ̂1− ρ̂2)[
∂φ

∂t
+∇·(φv)]+ ρ̂2∇·v = 0. (2.38)

The transport equation of ρ1 is rewritten in terms of the volume fraction as follows

∂φ

∂t
+∇·(φv) =

1

ρ̂1
(∇·M11 ·∇)(µ̂1). (2.39)

The linear momentum conservation equation is rewritten into

ρ(
∂v

∂t
+v ·∇v) =∇·(2ηD)+∇(ν∇·v)−∇Π−φ∇µφ, (2.40)

where η, ν are volume-averaged viscosity coefficients and the hydrostatic pressure is
defined by

Π = ρ̂2(µ̃−π). (2.41)

With this definition, the transport Equation (2.39) for φ is written into

∂φ

∂t
+∇·(φv) =

1

ρ̂2
1

(∇·M11 ·∇)(µφ+Π(1− ρ̂1

ρ̂2
)). (2.42)

Combining mass conservation law (2.38) and transport Equation (2.42) for φ, we obtain

∇·v = (1− ρ̂1

ρ̂2
)

1

ρ̂2
1

(∇·M11 ·∇)(µφ+Π(1− ρ̂1

ρ̂2
)). (2.43)

We summarize the governing equations of the quasi-incompressible model as follows
∇·v = (1− ρ̂1

ρ̂2
) 1
ρ̂21

(∇·M11 ·∇)(µφ+Π(1− ρ̂1
ρ̂2

)),

∂φ
∂t +∇·(φv) = 1

ρ̂21
(∇·M11 ·∇)(µφ+Π(1− ρ̂1

ρ̂2
)),

ρ[∂v∂t +v ·∇v] =∇·(2ηD)+∇(ν∇·v)−∇Π−φ∇µφ.

(2.44)

The free energy density reduces to

f̃(ρ1,ρ,∇ρ1,∇ρ) = ĥ(φ)+
1

2
κ̂φφ‖∇φ‖2, (2.45)

where ĥ(φ) = h̃(ρ̂1φ,(ρ̂1− ρ̂2)φ+ ρ̂2,T ), κ̂φφ= κ̃ρ1ρ1 ρ̂1
2 +2κ̃ρ1ρρ̂1(ρ̂1− ρ̂2)+ κ̃ρρ(ρ̂1−

ρ̂2)2. This is the equation system for quasi-incompressible binary fluids obtained in [27].
The upshot of the derivation shows that we can obtain the constrained theory from the
unconstrained theory by augmenting the free energy with the algebraic constraint via a
Lagrange multiplier. When the boundary conditions annihilate the energy dissipation
through the boundary, the energy dissipation rate of the binary quasi-incompressible
fluid flow (2.44) is given by

dEtotal
dt

=−
∫
V

[2ηD :D+νtr(D)2 +∇µ̂1 ·M11 ·∇µ̂1]dx≤0, (2.46)
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provided η,ν≥0, M11>0, where µ̂1 = 1
ρ̂1

(µφ+Π(1− ρ̂1
ρ̂2

)). When, in addition ρ̂1 = ρ̂2 =ρ,
the system reduces to an incompressible model

∇·v = 0,

∂φ
∂t +∇·(φv) = 1

ρ2 (∇·M11 ·∇)µφ,

ρ[∂v∂t +v ·∇v] =∇·(2ηD)+∇(ν∇·v)−∇Π−φ∇µφ.

(2.47)

This is the incompressible model derived by Halperin et al. [24].
These derivations can be readily extended to account for multi-component fluid

systems.

3. Hydrodynamic phase field models for N-component multiphase com-
pressible fluid flows

When fluid mixtures are composed of N fluid components, we use ρi,i= 1,2, ·· · ,N
to denote the mass density of the ith component and assume the free energy of the fluid
mixture is given by

F =

∫
Ω

f(ρ1,∇ρ1, ·· · ,ρN ,∇ρN )dx, (3.1)

where f is the free energy density. The derivation of the hydrodynamic phase field
models follows the procedures alluded to in the previous section. We present the results
next.

3.1. Compressible model with the global mass conservation law. We
choose ρ1, ·· · ,ρN as the primitive variables. Following the procedure outlined in the
previous section, we obtain the governing system of equations for the N -component
multi-phase viscous fluid mixture as follows

∂ρi
∂t +∇·(ρiv) = ji=

∑N
j=1∇·Mij ·∇µj , i= 1,2, ·· · ,N,

∂(ρv)
∂t +∇·(ρvv)− 1

2 (
∑N
i=1 ji)v = 2∇·(ηD)+∇(ν∇·v)−

∑N
i=1ρi∇µi,

(3.2)

where Mij , i, j = 1, ..., N, are the mobility coefficients, and η=
∑N
i=1ηi

ρi
ρ ,ν=

∑N
i=1νi

ρi
ρ

are mass-average viscosities, respectively. The bulk energy dissipation rate is given by

dEtotal
dt

=−
∫
V

[2ηD :D+νtr(D)2

+(∇µ1,∇µ2,·· · ,∇µN ) ·M ·(∇µ1,∇µ2, ·· · ,∇µN )]dx≤0, (3.3)

provided η,ν≥0, M= (Mij)
N
ij=1 is a symmetric non-negative definite mobility coefficient

matrix. The boundary conditions are chosen to annihilate the surface energy dissipation
rate.

3.2. Compressible model with the local mass conservation law. If∑N
i=1 ji= 0, the total mass of the system is conserved locally, i.e.,

∂ρ

∂t
+∇·(ρv) = 0. (3.4)
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We obtain the governing system of equations as follows
∂ρ
∂t +∇·(ρv) = 0, or

∑N
i=1

∑N
j=1∇·Mij ·∇µj = 0,

∂ρi
∂t +∇·(ρiv) =

∑N
j=1∇·Mij ·∇µj , i= 1,2,·· · ,N,

∂(ρv)
∂t +∇·(ρvv) = 2∇·(ηD)+∇(ν∇·v)−

∑N
i=1ρi∇µi,

(3.5)

where η,ν are mass-averaged shear and volumetric viscosities, v is the mass average
velocity and M= (Mij)

N
i,j=1 is the symmetric mobility coefficient matrix. In this case,

the bulk energy dissipation rate is given by

dEtotal
dt

=−
∫
V

[2ηD :D+νtr(D)2

+(∇µ1,∇µ2,·· · ,∇µN ) ·M ·(∇µ1,∇µ2, ·· · ,∇µN )]dx≤0, (3.6)

provided η,ν≥0 and M is a symmetric non-negative definite mobility coefficient matrix
subject to the constraint

∑N
i=1

∑N
j=1∇·Mij ·∇µj = 0.

Analogously, we choose ρ1, ·· · ,ρN−1,ρ as the primitive variables, where ρ=
∑N
i=1ρi.

Then, we represent ρN =ρ−
∑N−1
i=1 ρi. The free energy density is written as

f(ρ1,∇ρ1, ·· · ,ρN ,∇ρN ) =f(ρ1,∇ρ1, ·· · ,ρ−
N−1∑
i=1

ρi,∇(ρ−
N−1∑
i=1

ρi))

= f̃(ρ1,∇ρ1, ·· · ,ρN−1,∇ρ), (3.7)

The corresponding chemical potentials are given by

µ̃i=
δf̃

δρi
=
δf

δρi
+

δf

δρN

δρN
δρi

=µi−µN , i= 1,·· · ,N−1,

µ̃=
δf̃

δρ
=

δf

δρN

δρN
δρ

=µN .

µi= µ̃i+ µ̃,µN = µ̃. (3.8)

The transport equations of the densities are given by

∂ρi
∂t

+∇·(ρiv) =

N−1∑
j=1

∇·Mij ·∇µ̃j+(

N∑
j=1

∇·Mij)µ̃, i= 1,2,·· · ,N−1. (3.9)

The mass conservation equation implies

N∑
i=1

N−1∑
j=1

∇·Mij ·∇µ̃j+(

N∑
i,j=1

∇·Mij ·∇)µ̃= 0. (3.10)

The mobility coefficients must satisfy the above constraint. If we assign

MiN =−
N−1∑
j=1

Mij =MNi, MNN =−
N−1∑
i=1

MiN =

N−1∑
i=1

N−1∑
j=1

Mij , (3.11)
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the constraint is satisfied and system (3.2) reduces to a special model
∂ρ
∂t +∇·(ρv) = 0,

∂ρi
∂t +∇·(ρiv) =

∑N−1
j=1 ∇·Mij ·∇µ̃j , i= 1,2, ·· · ,N−1,

∂(ρv)
∂t +∇·(ρvv) = 2∇·(ηD)+∇(ν∇·v)−

∑N−1
i=1 ρi∇µ̃i−ρ∇µ̃.

(3.12)

This is a special model for compressible fluid mixtures of N -components. The bulk
energy dissipation rate is given by

dEtotal
dt

=−
∫
V

[2ηD :D+νtr(D)2

+(∇µ̃1,∇µ̃2,·· · ,∇µ̃N−1) ·M ·(∇µ̃1,∇µ̃2, ·· · ,∇µ̃N−1)]dx≤0, (3.13)

provided η,ν≥0 and M= (Mij)
N−1
i,j=1 is a symmetric non-negative definite mobility co-

efficient matrix.

3.3. Quasi-incompressible model. When each of the fluid component is
incompressible in the viscous fluid mixture, we denote the volume fraction of the ith
component as φi and specific density as ρ̂i for i= 1, ·· · ,N , respectively. Then,

∑N
i=1φi=

1 and the total mass density in the mixture is given by

ρ=

N∑
i=1

φiρ̂i=

N−1∑
i=1

φiρ̂i+(1−
N−1∑
i=1

φi)ρ̂N =

N−1∑
i=1

ρi+(1−
N−1∑
i=1

ρi
ρ̂i

)ρ̂N . (3.14)

We assume the volume fraction of the Nth component is nonzero. Then, the free energy
density is a functional of the first N−1 volume fractions (φ1,·· · ,φN−1). If we augment

the free energy by π(
∑N−1
i=1 ρi+(1−

∑N−1
i=1

ρi
ρ̂i

)ρ̂N −ρ), where π is a Lagrange multiplier,
then, the modified free energy density function is given by

f̂ = f̃(ρ1,∇ρ1,...,ρN−1,∇ρN−1,ρ,∇ρ)+π[

N−1∑
i=1

ρi+(1−
N−1∑
i=1

ρi
ρ̂i

)ρ̂N −ρ]. (3.15)

Following the procedure alluded to in the previous section, we derive the following
governing system of equations of the quasi-incompressible fluid from the special com-
pressible model as follows
∇·v =

∑N−1
i=1

∑N−1
j=1 (1− ρ̂j

ρ̂N
) 1
ρ̂iρ̂j

(∇·Mij ·∇)(µφj +Π(1− ρ̂j
ρ̂N

)),

∂φi
∂t +∇·(φiv) =

∑N−1
j=1

1
ρ̂iρ̂j

(∇·Mij ·∇)(µφj +Π(1− ρ̂j
ρ̂N

)),i= 1,2,·· · ,N−1,

ρ[∂v∂t +v ·∇v] =∇·(2ηD)+∇(ν∇·v)−∇Π−
∑N−1
i=1 φi∇µφi ,

(3.16)

where

µ̃i=
δf̃

δρi
, µ̃=

δf̃

δρ
, (3.17)

µ̂i= µ̃i+π(1− ρ̂N
ρ̂i

), i= 1,·· · ,N−1, µ̂= µ̃−π, (3.18)

µφi =
δf̂

δφi
=
δf̂

δρi
|ρ
δρi
δφi

+
δf̂

δρ
|ρi

δρ

δφi
= ρ̂iµ̂i+(ρ̂i− ρ̂N )µ̂, (3.19)
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Π =−ρ̂Nπ+ ρ̂Nµ, (3.20)

and Π serves as the hydrostatic pressure.
The bulk energy dissipation rate is

dEtotal
dt

=−
∫
V

[2ηD :D+νtr(D)2

+(∇µ̂1,∇µ̂2,·· · ,∇µ̂N−1) ·M ·(∇µ̂1,∇µ̂2, ·· · ,∇µ̂N−1)]dx≤0, (3.21)

provided η,ν≥0, M= (M)N−1
i,j=1 is a symmetric non-negative definite matrix, where µ̂i=

1
ρ̂i

[µφj +Π(1− ρ̂j
ρ̂N

)]. A more general model can be derived from the general compressible
model by enforcing the incompressibility constraint. But, we will not present it here.

For a fluid mixture with ρ̂i=ρ, the system reduces to an incompressible model
∇·v = 0,

∂φi
∂t +∇·(φiv) =

∑N−1
j=1

1
ρ2 (∇·Mij ·∇)µφj , i= 1,2, ·· · ,N−1,

ρ[∂v∂t +v ·∇v] =∇·(2ηD)+∇(ν∇·v)−∇Π−
∑N−1
i=1 φi∇µφi .

(3.22)

3.4. Alternative derivation of the quasi-incompressible model. For
phase field models of N components where N ≥2, there exists a second way to derive
the quasi-incompressible phase field model. We begin with a fully compressible model
of N+1 components, each of which is of density ρi,i= 1, ·· · ,N and ρ. We assume the
free energy density depends on (ρ1, ·· · ,ρN ,ρ). The second approach to derive the quasi-

incompressible model is to augment the free energy by π(
∑N
i=1ρi−ρ)+B(

∑N
i=1

ρi
ρ̂i
−1),

where π and B are two Lagrange multipliers. We define the modified free energy density
function by

f̂ =f(ρ1,∇ρ1,·· · ,ρN ,∇ρN )+π(

N∑
i=1

ρi−ρ)+B(

N∑
i=1

ρi
ρ̂i
−1). (3.23)

The chemical potentials are given by

µ̂i=
δf̂

δρi
=
δf

δρi
+

1

ρ̂i
B+π=µi+

1

ρ̂i
B+π, i= 1, ·· · ,N,

µ̂=
δf̂

δρ
=−π. (3.24)

The governing system of equations with N+1 components subject to the two constraints
is given by

∂ρ
∂t +∇·(ρv) = 0,

∂ρi
∂t +∇·(ρiv) =

∑N
j=1∇·Mij ·∇µ̂j , i= 1,2, ·· · ,N,

∂(ρv)
∂t +∇·(ρvv) = 2∇·(ηD)+∇(ν∇·v)−

∑N
i=1ρi∇µ̂i−ρ∇µ̂,

(3.25)

where M is the symmetric mobility matrix, which satisfies
∑N
i,j=1∇·Mij ·∇µ̂j = 0.

This is a more general quasi-incompressible model.
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In fact, if we assign MNi=MiN =−
∑N−1
j=1 Mij and apply the constraints

∑N
i=1ρi=

ρ,
∑N
i=1φi= 1 and ρi=φiρ̂i, we obtain the chemical potential with respect to φi, i=1,2,

·· ·, N-1, in the quasi-incompressible limit,

µφi =
δf̂

δφi
=
δf̂

δρi

∂ρi
∂φi

+
δf̂

δρ

∂ρ

∂φi
+

δf̂

δρN

∂ρN
∂φi

= µ̂iρ̂i+ µ̂(ρ̂i− ρ̂N )− ρ̂N µ̂N ,i= 1,·· · ,N.

(3.26)

If we define

Π = ρ̂N (µ̂+ µ̂N ) = ρ̂NµN +B, (3.27)

(3.4) reduces to
∇·v =

∑N−1
i=1

∑N−1
j=1 (1− ρ̂j

ρ̂N
) 1
ρ̂iρ̂j

(∇·Mij ·∇)(µφj +Π(1− ρ̂j
ρ̂N

)),

∂φi
∂t +∇·(φiv) =

∑N−1
j=1

1
ρ̂iρ̂j

(∇·Mij ·∇)(µφj +Π(1− ρ̂j
ρ̂N

)),i= 1,2,·· · ,N−1,

ρ[∂v∂t +v ·∇v] =∇·(2ηD)+∇(ν∇·v)−∇Π−
∑N−1
i=1 φi∇µφi ,

(3.28)

which is exactly the quasi-incompressible model given in (3.3).

4. Non-dimensionalization
Next, we non-dimensionalize the binary model equations.

4.1. Compressible model with the global mass conservation law. In
model (2.16), selecting characteristic time scale t0, characteristic length scale l0, and
characteristic density scale ρ0, we nondimensionalize the variables and parameters as
follows

t̃=
t

t0
, x̃=

x

l0
, ρ̃1 =

ρ1

ρ0
, ρ̃2 =

ρ2

ρ0
, ṽ =

vt0
l0
, M̃ij =

Mij

t0ρ0
, i,j= 1,2, (4.1)

1

Res
= η̃=

t0
ρ0l20

η,
1

Rev
= ν̃=

t0
ρ0l20

ν, µ̃1 =
t20
l20
µ1, µ̃2 =

t20
l20
µ2, Ji=

jit0
ρ0

,i= 1,2,

where Res, Rev are the Reynolds number corresponding to the shear and volu-
metric stresses. The scaling of chemical potentials µ1, µ results from the non-
dimensionalization of the total energy. We summarize the governing equation with
non-dimensional variables and parameters as follows, dropping the ˜ for simplicity,

∂ρ1
∂t +∇·(ρ1v) =J1 =∇·M11 ·∇µ1 +∇·M12 ·∇µ2,

∂ρ2
∂t +∇·(ρ2v) =J2 =∇·M12 ·∇µ1 +∇·M22 ·∇µ2,

∂(ρv)
∂t +∇·(ρvv)− 1

2 (J1 +J2)v = 2∇·( 1
Res

D)+∇( 1
Rev
∇·v)−ρ1∇µ1−ρ2∇µ2.

(4.2)

4.2. Compressible model with the local mass conservation law. Anal-
ogously, in model (2.31), we nondimensionalize the variables and parameters as above
and in particular

M̃11 =
M11

t0ρ0
. (4.3)
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We summarize the governing equation with non-dimensional variables and parameters
as follows, dropping the ˜ for simplicity,

∂ρ
∂t +∇·(ρv) = 0,

∂ρ1
∂t +∇·(ρ1v) =∇·M11 ·∇µ̃1,

∂(ρv)
∂t +∇·(ρvv) = 2∇·( 1

Res
D)+∇( 1

Rev
∇·v)−ρ1∇µ̃1−ρ∇µ̃.

(4.4)

4.3. Quasi-incompressible model. In model (2.44), in addition to the above,
we nondimensionalize two new ones as follows:

µ̃φ=
t20
ρ0l20

µφ, Π̃ = Π
t20
ρ0l20

. (4.5)

Dropping the ˜ on the non-dimensionalized variables and parameters, the governing
equation system of the quasi-incompressible fluid flows is written as follows,

∇·v = (1− ρ̂1
ρ̂2

) 1
ρ̂21

(∇·M11 ·∇)(µφ+Π(1− ρ̂1
ρ̂2

)),

∂φ
∂t +∇·(φv) = 1

ρ̂21
(∇·M11 ·∇)(µφ+Π(1− ρ̂1

ρ̂2
)),

ρ[∂v∂t +v ·∇v] = 2∇·( 1
Res

D)+∇( 1
Rev
∇·v)−∇Π−φ∇µφ.

(4.6)

5. Near equilibrium dynamics
We investigate near equilibrium dynamics of the models derived previously by con-

ducting a linear stability analysis of the models from each class about a constant equil-
brium state. Through analyzing dispersion relations of the selected models, we identify
the intrinsic relation among compressible, quasi-incompressible and incompressible mod-
els, focusing on the consequence of the hierarchical model reduction. We show the result
on models of binary fluid mixtures in this study.

5.1. Linear stability analysis of the compressible model with the global
mass conservation law. This compressible model admits constant solution:

v =0, ρ1 =ρ0
1, ρ2 =ρ0

2, (5.1)

where ρ0
1,ρ

0
2 are constants. We perturb the solution with the normal mode as follows:

v = εeαt+ik·xvc, ρ1 =ρ0
1 +εeαt+ik·xρ1

c, ρ2 =ρ0
2 +εeαt+ik·xρ2

c. (5.2)

where ε is a small parameter, representing the magnitude of the perturbation, and
vc,ρc1,ρ

c
2 are constants, α is the growth rate, k is the wave number of the perturbation.

Without loss of generality, we limit our study to one-dimensional perturbations in k in
2D space. Substituting these perturbations into the equations in (4.1) and truncating
the equations at order O(ε), we obtain the linearized equations. The dispersion equation
of the linearized equation system is given by the algebraic equation of α:

(
1

Res
k2 +αρ0){α3ρ0 +α2k2[

1

Re
+ρ0M11(hρ1ρ1 +κρ1ρ1k

2)+ρ0M22(hρ2ρ2 +κρ2ρ2k
2)]

+α2k2[2ρ0M12(hρ1ρ2 +κρ1ρ2k
2)]+α[pT ·C ·p+pT ·K ·pk2]k2

+α
1

Re
[M11(hρ1ρ1 +κρ1ρ1k

2)+M22(hρ2ρ2 +κρ2ρ2k
2)+2M12(hρ1ρ2 +κρ1ρ2k

2)]k4
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+αρ0|M|[(hρ1ρ1 +κρ1ρ1k
2)(hρ2ρ2 +κρ2ρ2k

2)−(hρ1ρ2 +κρ1ρ2k
2)2]k4

+k4(
1

Re
|M|k2 +M22(ρ0

1)2 +M11(ρ0
2)2−2M12ρ

0
1ρ

0
2).

[(hρ1ρ1 +κρ1ρ1k
2)(hρ2ρ2 +κρ2ρ2k

2)−(hρ1ρ2 +κρ1ρ2k
2)2]}= 0. (5.3)

where p= (ρ0
1,ρ

0
2)T and 1

Re = 2 1
Res

+ 1
Rev

. |M| is the determinant of the mobility coeffi-
cient matrix M= (Mi,j) , K is the coefficient matrix of the conformational entropy

K=

(
κρ1ρ1 κρ1ρ2
κρ1ρ2 κρ2ρ2

)
, (5.4)

C is the Hessian of the bulk free energy h(ρ1,ρ2,T ) in (2.20) with respect to ρ1 and ρ2,

C=

(
hρ1ρ1 hρ1ρ2
hρ1ρ2 hρ2ρ2

)
, (5.5)

hρiρj represents the second-order derivative of the bulk free energy density h(ρ1,ρ2,T )
with respect to ρi and ρj , i, j = 1, 2.

One root of Equation (5.3) is given by

α0 =− 1

ρ0Res
k2. (5.6)

This is the viscous mode associated to the viscous stress. The other three roots are
governed by a cubic polynomial equation and their closed forms are essentially impen-
etrable. Instead, we present them using asymptotic formulae in long and short wave
range and numerical calculations in the intermediate wave range, respectively.

The asymptotic expressions of the three growth rates at |k|�1 are given by

α1 =x1k
2 +y1k

4 +O(k5), α2,3 =x2,3k+y2,3k
2 +O(k3), (5.7)

where

x1 =− g1|C|
pT ·C ·p

, x2,3 =±

√
−pT ·C ·p

ρ0
,

y1 =− 1

pT ·C ·p
[ 1

Re
|M||C|+dg1

]
− 1

pT ·C ·p
[
ρ0x3

1 +x2
1(

1

Re
+ρ0M :C)

+x1(ρ0|M||C|+ 1

Re
M :C+pT ·K ·p)

]
, (5.8)

y2,3 =− 1

2ρ0Re
− 1

2pT ·C ·p
[M11(ρ0

1hρ1ρ1 +ρ0
2hρ1ρ2)2 +M22(ρ0

1hρ1ρ2 +ρ0
2hρ2ρ2)2].

where d=hρ1ρ1κρ2ρ2 +hρ2ρ2κρ1ρ1−2hρ1ρ2κρ1ρ2 and g1 =M22(ρ0
1)2 +M11(ρ0

2)2−
2M12ρ

0
1ρ

0
2≥0, since M≥0.

When |k|�1, the three growth rates are given by

α1,2 =x1,2k
4 +y1,2k

2 +O(k), α3 =x3k
2 +y3 +O(

1

k
), (5.9)

where

x1,2 =−M :K

2
± 1

2ρ0

√
(M :Kρ0)2−4[

1

Re
M :K+ρ0|M||K|], x3 =− 1

ρ0Re
,
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y1,2 =
− 1
Re |M||K|−x

2
1,2( 1

Re +ρ0M :C)−x1,2( 1
ReM :K+ρ0|M|d)

3x2
1,2ρ

0 +2x1,2ρ0(M :K)+ρ0|M||K|
, (5.10)

y3 =− 1

ρ0|M||K|
[
x2

3(ρ0M :K)+x3(ρ0|M|d+
1

Re
M :K)+ |M| 1

Re
d+g1|K|

]
.

The thermodynamic mode α1 is related to the mobility matrix and Hessian matrix
of the bulk free energy exclusively. The other two eigenvalues α2,3 are coupled with
hydrodynamics.

Obviously, α0 is negative so the viscous mode is stable. From the asymptotic
expansions of α at |k|�1, we observe that all three eigenvalues α1,2,3 are negative
(5.9) since K>0,M≥0 and viscosity coefficients are positive. This indicates that the
model does not have any short-wave instability near its steady states, which is physically
meaningful.

When |k|�1, we notice that the leading term in α1 is determined by the combi-
nation of mobility coefficient matrix M and Hessian matrix C of the bulk free energy.
We assume that M≥0 and it has at least one positive eigenvalue, so g1>0. We discuss
the dependence of the leading order term of α1 on C.

α0 α1 α2 α3

C > 0 negative negative negative negative
C < 0 negative positive positive negative

pT ·C ·p has the If pT ·C ·p>0: negative;
C is negative same sign with negative

indefinite |C|: negative; If pT ·C ·p<0: positive.
Otherwise, positive.

Table 5.1. Sign of the eigenvalues when |k|�1 in different regimes of C. Negative sign indicates
stability while positive sign indicates instability.

(1) When C>0, the leading term − g1|C|
pT ·C·pk

2<0, then α1<0. So, this mode is
stable.

(2) When C<0, the leading term − g1|C|
pT ·C·pk

2>0, then α1>0. This instability is
due to the spinodal decomposition in the coupled Cahn-Hilliard-type equations
of ρ1 and ρ2.

(3) When C is indefinite and pT ·C ·p has the same sign as |C| , the property of α1

is the same as the case where C>0; otherwise, the property of α1 is the same
as the case of C<0.

α2,3 represent the two coupled modes. Their signs depend on the model parameters.
Since the leading term is determined by the properties of the Hessian matrix C, we
discuss their dependence on C below.

(1) When C>0,
√

(− 1
ρ0 pT ·C ·p) is imaginary. In this situation, the leading order

growth rate in α2,3 is the quadratic term (− 1
Re

1
2ρ0 −

1
2pT ·C·p (M11(ρ0

1hρ1ρ1 +

ρ0
2hρ1ρ2)2 +M22(ρ0

1hρ1ρ2 +ρ0
2hρ2ρ2)2))k2≤0. So, the two modes are stable.

(2) When C<0, the leading term is given by ±
√

(− 1
ρ0 pT ·C ·p)k, indicating there
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exists an unstable mode. This verifies the fact that the steady state at a concave
free energy surface is unstable.

(3) When C is indefinite and pT ·C ·p>0, the property of α2,3 is the same as the
case where C>0. Similarly, the property of α2,3 is the same as the case of
C<0 when pT ·C ·p<0.

The stability property of the model with respect to C in the long-wave regime is sum-
marized in Table 5.1. For the intermediate wave regime, we compute the growth rate
numerically for specific free energy density functions.

5.2. Compressible model with the local mass conservation law. Notice
that the compressible model with the local mass conservation law also admits the same
constant solution (5.1). We repeat the same normal mode analysis analogous to the
previous model and obtain the dispersion equation as follows:

(αρ0 +
1

Res
k2){α3ρ0 +α2[ρ0k2M11(h̃ρ1ρ1 + κ̃ρ1ρ1k

2)+
1

Re
k2]+α[k2M11(h̃ρ1ρ1

+ κ̃ρ1ρ1k
2)

1

Re
k2 +pT ·C ·pk2 +pT ·K ·pk4]+k4M11(ρ0)2((h̃ρ1ρ1

+k2κ̃ρ1ρ1)(h̃ρρ+ κ̃ρρk
2)−(h̃ρρ1 +k2κ̃ρρ1)2)}= 0. (5.11)

Again, α0 =− 1
ρ0

1
Res

k2 is a root of this algebraic equation. We present the rest asymp-
totically.

When |k|�1, we have

α1 =−M11(ρ0)2|C|
pT ·C ·p

k2 +(−
x3

0ρ
0 +x2

0[ρ0M11h̃ρ1ρ1 + 1
Re ]+x0[pT ·K ·p+ h̃ρ1ρ1M11

1
Re ]

pT ·C ·p

−M11(ρ0)2[h̃ρ1ρ1 κ̃ρρ+ h̃ρρκ̃ρ1ρ1−2h̃ρρ1 κ̃ρρ1 ]

pT ·C ·p
)k4 +O(k5), (5.12)

α2,3 =±
√

(− 1

ρ0
pT ·C ·p)k−(

1

Re

1

2ρ0
+

M11

2pT ·C ·p
(ρ0

1h̃ρ1ρ1 +ρ0h̃ρρ1)2)k2 +O(k3),

where x0 =−M11(ρ0)2|C|
pT ·C·p . When |k|�1,

α1=−M11κ̃ρ1ρ1k
4−M11h̃ρ1ρ1k

2+O(k), (5.13)

α2,3=
− 1
Re
±
√

( 1
Re

)2−4κ̃−1
ρ1ρ1(ρ

0)3|K|
2ρ0

k2+
−M11(ρ

0)2[h̃ρ1ρ1 κ̃ρρ+ h̃ρρκ̃ρ1ρ1−2h̃ρρ1 κ̃ρρ1 ]

2x2,3ρ0M11κ̃ρ1ρ1 +M11κ̃ρ1ρ1
1
Re

−
x32,3ρ

0+x22,3[ρ
0M11h̃ρ1ρ1 +

1
Re

]+x2,3[M11h̃ρ1ρ1
1
Re

+pT ·K ·p]
2x2,3ρ0M11κ̃ρ1ρ1 +M11κ̃ρ1ρ1

1
Re

+O(
1

k
),

where x2,3 =
− 1
Re±
√

( 1
Re )2−4κ̃−1

ρ1ρ1
(ρ0)3|K|

2ρ0 ,(
h̃ρρ h̃ρρ1
h̃ρρ1 h̃ρ1ρ1

)
(5.14)

is the Hessian matrix of the bulk free energy density function h with respect to ρ and
ρ1 and evaluated at the constant steady state, and

K=

(
κ̃ρρ κ̃ρρ1
κ̃ρρ1 κ̃ρ1ρ1

)
(5.15)
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is the coefficient matrix of the quadratic conformational entropy term in the free energy
density function (2.26).

Like in the previous model, the first growth rate α0 is the viscous mode associated
to the viscous stress exclusively; the second growth rate α1 is a thermodynamic mode,
related to the transport equation of density ρ1 and dictated by the mobility matrix and
Hessian matrix of the bulk free energy. The other two growth rates α2,3 are coupled
modes.

Obviously, α0 is negative so the viscous mode is stable. For the other three modes,
we adopt the same strategy to analyze their stability, combining asymptotic analysis
in long and short waves with numerical computations in intermediate waves. From
asymptotic expansions (5.13) of α at |k|�1, we observe that all three eigenvalues
α1,2,3 are negative, given that K and the mobility coefficients are both positive definite.
This indicates that the model does not have any short-wave instability near its steady
states. The properties of the three modes in the long-wave regime are identical to the
cases discussed in the previous section for the more general compressible model and
summarized in Table 5.1.

For the intermediate wave regime, we have to compute the growth rate using a
specific free energy density function numerically. We use the Peng-Robinson bulk free
energy as an example [37], given by

h̃(ρ1,ρ,T ) =
rmρ1 +(ρ−ρ1)

m2
ϕ(T )− rmρ1 +(ρ−ρ1)

m2
RTln(

m2

rmρ1 +(ρ−ρ1)
−b)

− rmρ1 +(ρ−ρ1)

m2

a

2
√

2b
ln[

m2 +(rmρ1 +(ρ−ρ1))b(1+
√

2)

m2 +(rmρ1 +(ρ−ρ1))b(1−
√

2)
]

+
rmρ1 +(ρ−ρ1)

m2
RT [

rmρ1

rmρ1 +(ρ−ρ1)
ln

rmρ1

rmρ1 +(ρ−ρ1)

+
ρ2

rmρ1 +(ρ−ρ1)
ln

(ρ−ρ1)

rmρ1 +(ρ−ρ1)
]. (5.16)

where T = 377.6K, ρ1 is the mass density of n-decane and ρ2 the mass density of CO2,
ρ=ρ1 +ρ2 is the total mass density. This is obtained by replacing ρ1, ρ2 in the free
energy density given in (2.21) by ρ1,ρ2 =ρ−ρ1. This free energy density is either
positive definite or indefinite in its entire physical domain. The positive definite domain
and indefinite domain are shown in Figure 5.1 in (ρ1,ρ) space. Notice that in this
example, when C is indefinite, we always have |C|<0, it is impossible to have two
unstable modes α1 and α2 exist simultaneously according to Table 5.1. We then search
the parameter space to sample all the possible instabilities associated to the compressible
model with this free energy.

As an example, we choose the steady state given by (ρ0,ρ0
1,v0) = (400,2,0,0) to

show the positive growth in α1. To show positive growth in the coupled mode α2,
we choose (ρ0,ρ0

1,v0) = (1000,0.025,0,0). Figure 5.2 plots the three growth rates α1,2,3

with α1>0 at the first constant solution. The corresponding eigenvector to α1 of the
linearized system is (0,1,0,0), indicating the unstable variable in the linear regime is
ρ1. The three growth rates α1,2,3 with the coupled mode α2>0 at the second solution
are plotted in Figure 5.3. The corresponding eigenvector to α2 is (0,1,0,0) as well,
indicating the instability is still associated with ρ1. When C>0, the corresponding
constant solution is stable. We choose constant solution (ρ0,ρ0

1,v0) = (400,200,0,0) as
an example. The three growth rates α1,2,3 of negative real parts are shown in Figure 5.4.
The numerical results show that the asymptotic analysis is accurate in their respective
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wave number ranges of applicability.
From the linear analysis above, we conclude that linear dynamics of compressible

model (4.1) and (4.2) are qualitatively the same. Next, we investigate the near equilib-
rium dynamics of the quasi-incompressible model.

Fig. 5.1. Domain of concavity of the Peng-Robinson free energy.

(a) α1 when |k|�1 (b) α1 (c) α1 when |k|�1

(d) α2,3 when |k|�1 (e) α2,3 (f) α2,3 when |k|�1

Fig. 5.2. Numerical growth rates and the corresponding asymptotic ones as functions of the
wave number when α1>0 and all others are negative in compressible model (4.2) at constant state
(ρ0,ρ01,v) =(400,2,0,0) with the Peng-Robinson free energy. The vertical axis is the growth rate and
the horizontal one is the wave number. (a). α1 in the long wave range. (b). α1 in the intermediate
wave range. (c). α1 in the short wave range. (d). α2,3 in the short wave range. (e). α2,3 in
the intermediate wave range. (f). α2,3 in the short wave range. The parameter values used are:
M11 = 0.0001, Res= 1, Rev = 3, κ̃ρρ= 0.000106, κ̃ρ1ρ1 = 0.0001, κ̃ρρ1 = 0.

5.3. Quasi-incompressible model. The quasi-incompressible fluid flow model
equation admits constant solution:

v =0, φ=φ0, Π = Π0, (5.17)
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(a) α1 when |k|�1 (b) α1 (c) α1 when |k|�1

(d) α2 when |k|�1 (e) α2 (f) α2 when |k|�1

(g) α3 when |k|�1 (h) α3 (i) α3 when |k|�1

Fig. 5.3. Numerical growth rates and the corresponding asymptotic ones when α2>0 while the
others are negative compressible model (4.2) at constant state (ρ0,ρ01,v) =(1000,0.025,0,0) with the
Peng-Robinson free energy. The vertical axis is the growth rate and the horizontal one is the wave
number. (a). (d). (g). Growth rates in the short wave range. (b). (e). (h). Growth rates in the
intermediate wave range. (c). (f). (j). Growth rates in the short wave range. The parameter values
used are: M11 = 0.0001, Res= 1, Rev = 3, κ̃ρρ= 0.000106, κ̃ρ1ρ1 = 0.0001, κ̃ρρ1 = 0.

where φ0,Π0 are constants. We perturb the constant solution as follows:

v = εeαt+ik·xvc, φ=φ0 +εeαt+ik·xφc, Π = Π0 +εeαt+ik·xΠc, (5.18)

where ε is a small perturbation, and vc,φc,Πc are constants.

The dispersion equation of the linearized system is a factorable, third-order poly-
nomial in α

(
1

Res
k2 +αρ0)(α2(1− ρ̂1

ρ̂2
)2 1

ρ̂1
2M11k

2ρ0 +α[k2 +
1

Re
(1− ρ̂1

ρ̂2
)2 1

ρ̂1
2M11k

4]

+k4M11(ĥφφ+k2κ̂φφ)
1

ρ̂1
2 [1−(1− ρ̂1

ρ̂2
)φ0]2) = 0. (5.19)
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(a) α1 when |k|�1 (b) α1 (c) α1 when |k|�1

(d) α2,3 when |k|�1 (e) α2,3 (f) α2,3 when |k|�1

Fig. 5.4. Numerical growth rates and the corresponding asymptotic ones without any unstable
modes in compressible model (4.2) at constant state (ρ0,ρ01,v) =(400,200,0,0) with the Peng-Robinson
free energy. (a). and (d). Growth rates in the short wave range. (b). and (e). Growth rates in the
intermediate wave range. (c). and (f). Growth rates in the short wave range. The parameter values
used are: M11 = 0.0001, Res= 106, Rev = 3×106, κ̃ρρ= 0.000106, κ̃ρ1ρ1 = 0.0001, κ̃ρρ1 = 0.

i.e.

(
1

Res
k2 +αρ0)[(1− ρ̂1

ρ̂2
)2 1

ρ̂1
2M11k

2](α2ρ0 +α[[(1− ρ̂1

ρ̂2
)2 1

ρ̂1
2M11]−1 +

1

Re
k2]

+k2(ĥφφ+k2κ̂φφ)[φ0−
ρ̂2

ρ̂2− ρ̂1
]2) = 0. (5.20)

The growth rates are given explicitly by

α0 =− 1

Res

1

ρ0
k2,

α1 =
−2k2(ĥφφ+k2κ̂φφ)Q2

[( 1
Rek

2 +A)+
√

( 1
Rek

2 +A)2−4ρ0k2(ĥφφ+k2κ̂φφ)Q2]
, (5.21)

α2 =
−( 1

Rek
2 +A)−

√
( 1
Rek

2 +A)2−4ρ0k2(ĥφφ+k2κ̂φφ)Q2

2ρ0
,

where

Q=φ0− ρ̂2

ρ̂2− ρ̂1
,

1

Re
= 2

1

Res
+

1

Rev
>0, A= [(1− ρ̂1

ρ̂2
)2 1

(ρ̂1)2
M11]−1>0. (5.22)

The stable hydrodynamic mode is in α0 again. The thermodynamic modes are now
given by α1,2. Re(α1) can be positive only when ĥφφ<0, in which Re(α1)>0 when
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0≤k≤
√
− ĥφφκφφ

. This instability is due to the spinodal decomposition in the coupled

Cahn-Hilliard equation of φ. Given that the viscosity and mobility coefficients are all
positive, Re(α2)<0. So, the second coupled mode is a stable mode. In the long wave

range (|k|�1), α1≈−M11ĥφφ
ρ̂12ρ̂22 (ρ̂1 +(ρ̂1− ρ̂2)φ0)2k2.

When ρ̂1 = ρ̂2, the model reduces to an incompressible model with the following two
growth rates

α0 =− 1

Res

1

ρ0
k2,

α1 =− 1

ρ̂2
2M11ĥφφk

2− 1

ρ̂1
2 κ̂φφM11k

4. (5.23)

The thermodynamic mode decouples from the hydrodynamic mode completely in
the linear regime. The possible instability only lies in the spinodal mode of the Cahn-
Hilliard equation. In fact, A,Q→∞ in this limit. So, the growth rate associated with
α2 in the quasi-incompressible model is lost in the incompressible model.

5.4. Summary of linear stability results. In compressible phase field mod-
els, there are four modes in the 1D perturbation analysis: α0 is the hydrodynamic mode
dictated by the viscous stress, α1 is the thermodynamic mode dominated by the mo-
bility and the bulk free energy, the other two modes α2,3 are coupled, which couples
dynamics of phase behavior with hydrodynamics and may be unstable depending on
the composition of the fluid mixture. When the Hessian matrix of the bulk free energy

C>0,
√

(− 1
ρ0 pT ·C ·p) is imaginary. So ±

√
(− 1

ρ0 pT ·C ·p)k represents a wave that

does not contribute to the amplitude change in growth rates of the linearized system.
The scenario on stability of the steady state is tabulated in Table 5.1.

When the quasi-incompressible constraint is added, i.e. ρ1 = ρ̂1φ,ρ2 = ρ̂2(1−φ). The
positive definite matrix C reduces to a singular matrix

C=hφφ

( 1
ρ̂1ρ̂1

− 1
ρ̂1ρ̂2

− 1
ρ̂1ρ̂2

1
ρ̂2ρ̂2

)
(5.24)

Obviously, |C|= 0 and pT ·C ·p= (2φ−1)2 for ρ0
1 =φρ̂1, ρ0

2 = (1−φ)ρ̂2. The growth
rates reduce to two modes labeled as α1,2. They are not necessarily related to the
α1,2 in the compressible model. When the quasi-incompressible mode reduces to the
incompressible model further, the coupled hydrodynamic modes reduce to one mode in
α1.

The analysis shows that the more constraints we have on the composition of the
fluid mixture, the less coupled the equations are in linearized systems. In 3D models,
the total number of growth rates will increase as the number of equations increases. But,
the number of unstable modes will not change. In this paper, the perturbation analysis
is carried out in a 1D wave number direction in 2D space and it can be extended to the
multi-dimensional wave number space as well. We will omit the details for simplicity.

6. Conclusion
We have presented a systematic derivation of hydrodynamic phase field models for

multi-component fluid mixtures of compressible fluids as well as their reductions to
quasi-incompressible and incompressible fluids under isothermal conditions. The gov-
erning equations in the models are composed of the mass and momentum conservation
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law as well as the constitutive equations, which are derived using the generalized On-
sager principle to warrant an energy dissipation in time. By relaxing or enforcing local
mass conservation law while keeping the total mass conserved, we obtain two classes
of compressible models, one conserves the local mass while the other does not. Via a
Lagrange multiplier approach, we reduce the compressible model with the local mass
conservation law to a quasi-incompressible model when the constituent fluids are all
incompressible and the mixture is assumed simple. The quasi-incompressible model
further reduces to the incompressible model while the constituent fluid components are
of the same densities.

We then study linear stability of the hydrodynamic models. The properties of linear
stability are studied and differences of the models in the linear regime are identified:
there exist three types of growth/decay rates among the models. The first type is dom-
inated by the viscous property of the fluid, known as the viscous mode. The second
type is the thermodynamic mode, which is dominated by the mobility and Hessian of
the bulk free energy density. The third type is the coupled mode among the phase
variables and hydrodynamic variables. When more constraints are imposed to reduce
the models from compressible, to quasi-incompressible and then to incompressible mod-
els, the number of coupled modes reduces accordingly, indicating that these constraints
weaken the coupling of the equations in the model at least in the linear regime. This
study not only develops a general framework for the derivation of compressible models
and their reduction to quasi-incompressible and incompressible models, but also iden-
tifies differences between compressible and incompressible models in near equilibrium
dynamics.
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Appendix. Dispersion equations of the 2D hydrodynamic models. We list
the dispersion equations in determinant forms of all hydrodynamic models derived in
this study in two space dimensions in this appendix.

A.1. Dispersion equation of the compressible model with the global mass
conservation. The dispersion equation of the linearized equation system of the
compressible model with the global mass conservation is given by a 4×4 determinant
as follows

det


α+A11 A12 iρ0

1k 0
A21 α+A22 iρ0

2k 0
ik(ρ0

1D11 +ρ0
2D12) ik(ρ0

2D22 +ρ0
1D12) αρ0 + 1

Rek
2 0

0 0 0 αρ0 + 1
Res

k2

= 0, (A.1)

where A11 =k2(M11D11 +M12D12), A12 =k2(M11D12 +M12D22), A21 =k2(M12D11 +
M22D12), A22 =k2(M12D12 +M22D22) and D11 =hρ1ρ1 +k2κρ1ρ1 , D22 =hρ2ρ2 +
k2κρ2ρ2 , D12 =hρ1ρ2 +k2κρ1ρ2 , 1

Re = 2 1
Res

+ 1
Rev

. The growth/decay rate in the hydro-

dynamic mode associated to the viscous stress is given explicitly by α=− 1
Res

1
ρ0 k

2,
which decouples from the rest of the modes. This decoupling is inherited by all its
limiting models given below.

A.2. Dispersion equation of the compressible model with local mass con-
servation. The dispersion equation of the linearized equation system of this model
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is given by a 4×4 determinant as follows

det


α 0 iρ0k 0

(k2M11)D12 α+(k2M11)D22 iρ0
1k 0

ik(ρ0
1D12 +ρ0D11) ik(ρ0

1D22 +ρ0D12) αρ0 + 1
Rek

2 0
0 0 0 αρ0 + 1

Res
k2

= 0, (A.2)

where D11 = h̃ρρ+k2κ̃ρρ, D22 = h̃ρ1ρ1 +k2κ̃ρ1ρ1 , D12 = h̃ρρ1 +k2κ̃ρρ1 , and 1
Re = 2 1

Res
+

1
Rev

.

A.3. Dispersion equation of the quasi-incompressible model. The re-
sulting dispersion equation of the linearized system of this model is given by a 4×4
determinant as follows

det


0 −α(1− ρ̂1

ρ̂2
) ik− ikφ0(1− ρ̂1

ρ̂2
) 0

1
ρ̂12M11k

2(1− ρ̂1
ρ̂2

) α+ 1
ρ̂12M11k

2Dφ ikφ0 0

ik ikφ0Dφ αρ0 + 1
Rek

2 0
0 0 0 αρ0 + 1

Res
k2

= 0, (A.3)

where Dφ= ĥφφ+ κ̂φφk
2, ĥφφ= ∂2h

∂φ2 is the second-order derivative of the bulk free energy
density function h with respect to volume fraction φ at the constant solution, and κ̂φφ
is the coefficient of the conformational entropy. If we multiply (1− ρ̂1

ρ̂2
) by the second

row and add it to the first row of the dispersion relation matrix, we obtain

det


1
ρ̂12M11(1− ρ̂1

ρ̂2
)2k2 (1− ρ̂1

ρ̂2
) 1
ρ̂12M11k

2Dφ ik 0
1
ρ̂12M11(1− ρ̂1

ρ̂2
)k2 α+ 1

ρ̂12M11k
2Dφ ikφ0 0

ik ikφ0Dφ αρ0 + 1
Rek

2 0
0 0 0 αρ0 + 1

Res
k2

= 0, (A.4)

A.4. Dispersion equation of the incompressible model. The dispersion
equation of the linearized system of the incompressible model is given by

det


0 0 ik 0
0 α+ 1

ρ̂12M11k
2Dφ ikφ0 0

ik ikφ0Dφ αρ0 + 1
Rek

2 0
0 0 0 αρ0 + 1

Res
k2

= 0. (A.5)

This can be obtained from that in the quasi-incompressible model by equating ρ̂1 = ρ̂2

in (A.3).
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[23] M. Grmela and H.C. Öttinger, Dynamics and thermodynamics of complex fluids. I. Development
of a general formalism, Phys. Rev. E, 56:6620, 1997. 1

[24] P.C. Hohenberg and B.I. Halperin, Theory of dynamic critical phenomena, Rev. Modern Phys.,
49(3):435–479, 1977. 2.3

[25] D.D. Joseph and Y.Y. Renardy, Fundamentals of Two-Fluid Dynamics Part II: Lubricated Trans-
port, Drops and Miscible Liquids, Springer Science+Business Media, LLC, 1993. 1, 2.3

[26] M. Kapustina, D. Tsygankov, J. Zhao, T. Wessler, X. Yang, A. Chen, N. Roach, T.C. Elston, Q.
Wang, K. Jacobson, and M.G. Forest, Modeling the excess cell surface stored in a complex
morphology of bleb-like protrusions, PLOS Comput. Biol., 12(3):1–25, 2016. 1

[27] J. Li and Q. Wang, A class of conservative phase field models for multiphase fluid flows, J. Appl.
Mech., 81(2):021004, 2014. 1, 1, 2.2, 2.3

[28] Y. Li and J. Kim, Multiphase image segmentation using a phase-field model, Comput. Math.
Appl., 62:737–745, 2011. 1

[29] C. Liu and J. Shen, A phase field model for the mixture of two incompressible fluids and its
approximation by a Fourier-spectral method, Phys. D, 179:211–228, 2003. 1

[30] J. Lober, F. Ziebert, and I.S. Aranson, Modeling crawling cell movement on soft engineered
substrates, Soft Matter, 10:1365, 2014. 1

[31] J. Lowengrub, A. Ratz, and A. Voigt, Phase field modeling of the dynamics of multicomponent
vesicles spinodal decomposition coarsening budding and fission, Phys. Rev. E, 79:031926,
2009. 1

[32] J.S. Lowengrub and L. Truskinovsky, Quasi incompressible Cahn-Hilliard fluids and topological
transitions, Proc. R. Soc. A, 454:2617–2654, 1998. 1, 1, 2.2

[33] S. Najem and M. Grant, Phase-field model for collective cell migration, Phys. Rev. E, 93:052405,
2016. 1

https://www.researchgate.net/publication/238357566_Thermodynamics_of_Flowing_Systems_With_Internal_Microstructure
https://doi.org/10.1109/TIP.2006.887728
https://doi.org/10.1016/j.cma.2012.01.008
https://doi.org/10.1103/PhysRevE.95.012401
https://doi.org/10.1103/PhysRevB.50.15752
https://onlinelibrary.wiley.com/doi/book/10.1002/0471727903
https://doi.org/10.1103/PhysRevE.56.6633
https://doi.org/10.1016/j.ijsolstr.2009.04.008
https://iopscience.iop.org/article/10.1088/0953-8984/23/28/284118
https://iopscience.iop.org/article/10.1088/0953-8984/23/28/284118
https://iopscience.iop.org/article/10.1088/0951-7715/18/3/016
https://doi.org/10.1016/j.physd.2010.11.016
https://doi.org/10.1016/S0020-7225(98)00131-1
https://link.springer.com/article/10.1023%2FA%3A1004354528016
https://doi.org/10.1137/17M1135451
https://doi.org/10.1137/17M1111759
https://www.researchgate.net/publication/1778282_Variational_Theory_of_Mixtures_in_Continuum_Mechanics
https://link.springer.com/article/10.1023%2FA%3A1004370127958
https://doi.org/10.1098/rspa.1991.0012
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.56.6620
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.49.435
https://link.springer.com/book/10.1007%2F978-1-4613-9293-4
https://www.onacademic.com/detail/journal_1000040491687410_35df.html
https://doi.org/10.1115/1.4024404
https://doi.org/10.1016/j.camwa.2011.05.054
https://doi.org/10.1016/S0167-2789(03)00030-7
https://pubs.rsc.org/en/content/articlelanding/2014/SM/C3SM51597D#!divAbstract
https://doi.org/10.1103/PhysRevE.79.031926
https://doi.org/10.1103/PhysRevE.79.031926
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=2A19803DE4A2A92275BD6C5D70F22D91?doi=10.1.1.232.8527&rep=rep1&type=pdf
https://doi.org/10.1103/PhysRevE.93.052405
https://doi.org/10.1103/PhysRevE.93.052405


1468 HYDRODYNAMIC MODELS OF COMPRESSIBLE FLUID FLOWS

[34] M. Nonomura, Study on multicellular systems using a phase field model, PLoS One, 7(4):0033501,
2012. 1

[35] L. Onsager, Reciprocal relations in irreversible processes I, Phys. Rev., 37:405–426, 1931. 1
[36] L. Onsager, Reciprocal relations in irreversible processes II, Phys. Rev., 38:2265–2279, 1931. 1
[37] D.-Y. Peng and D.B. Robinson, A new two-constant equation of state, Ind. Eng. Chem. Fun-

damen., 15(1):59–64, 1976. 5.2
[38] D. Shao, H. Levine, and W. Pappel, Coupling actin flow, adhesion, and morphology in a compu-

tational cell motility model, Proc. Natl. Acad. Sci. USA, 109(18):6851–6856, 2012. 1
[39] D. Shao, W. Pappel, and H. Levine, Computational model for cell morphodynamics, Phys. Rev.

Lett., 105:108104, 2010. 1
[40] S. Torabi, J. Lowengrub, A. Voigt, and S. Wise, A new phase-field model for strongly anisotropic

systems, Proc. R. Soc. A, 265:1337–1359, 2009. 1
[41] X. Wang and Q. Du, Modeling and simulations of multi-component lipid membranes and open

membranes via diffuse interface approaches, J. Math. Bio., 56:347–371, 2008. 1
[42] S. Wise, J. Lowengrub, H. Frieboes, and B. Cristini, Three dimensional multispecies nonlinear

tumor growth. I. Model and numerical method, J. Theor. Biol., 253(3):524–543, 2008. 1
[43] T. Witkowski, R. Backofen, and A. Voigt, The influence of membrane bound proteins on phase

separation and coarsening in cell membranes, Phys. Chem. Chem. Phys., 14(42):14403–14712,
2012. 1

[44] X. Yang, J. Li, G. Forest, and Q. Wang, Hydrodynamic theories for flows of active liquid crystals
and the generalized Onsager principle, Entropy, 18(6):202, 2016. 1, 2

[45] J. Zhao, P. Seeluangsawat, and Q. Wang, Modeling antimicrobial tolerance and treatment of
heterogeneous biofilms, Math. Biosci., 282:1–15, 2016. 1

[46] J. Zhao, Y. Shen, M. Happasalo, Z.J. Wang, and Q. Wang, A 3D numerical study of antimicrobial
persistence in heterogeneous multi-species biofilms, J. Theor. Biol., 392:83–98, 2016. 1

[47] J. Zhao and Q. Wang, Three-dimensional numerical simulations of biofilm dynamics with quorum
sensing in a flow cell, Bull. Math. Biol., 79(4):884–919, 2017. 1

[48] J. Zhao and Q. Wang, Modeling cytokinesis of eukaryotic cells driven by the actomyosin contrac-
tile ring, Int. J. Numer. Meth. Biomed. Eng., 32(12):e02774, 2016. 1

[49] F. Ziebert and I.S. Aranson, Effects of adhesion dynamics and substrate compliance on the shape
and motility of crawling cells, PLOS One, 8(5):e64511, 2013. 1

[50] F. Ziebert, S. Swaminathan, and I.S. Aranson, Model for self-polarization and motility of kerato-
cyte fragments, J. R. Soc. Interface, 9:1084–1092, 2011. 1

[51] D. Zwicker, R. Seyboldt, C. Weber, A. Hyman, and F. Julicher, Growth and division of active
droplets provides a model for protocells, Nature Phys., 13:408–413, 2017. 1

https://doi.org/10.1371/journal.pone.0033501
https://doi.org/10.1371/journal.pone.0033501
http://link.aps.org/doi/10.1103/PhysRev.37.405
http://link.aps.org/doi/10.1103/PhysRev.38.2265
https://pubs.acs.org/doi/abs/10.1021/i160057a011
https://doi.org/10.1073/pnas.1203252109
https://doi.org/10.1103/PhysRevLett.105.108104
https://doi.org/10.1098/rspa.2008.0385
https://link.springer.com/article/10.1007/s00285-007-0118-2
https://www.ingentaconnect.com/content/el/00225193/2008/00000253/00000003/art00014
https://pubs.rsc.org/en/content/articlelanding/2012/CP/c2cp41274h#!divAbstract
https://pubs.rsc.org/en/content/articlelanding/2012/CP/c2cp41274h#!divAbstract
https://doi.org/10.3390/e18060202
https://www.sciencedirect.com/science/article/pii/S0025556416301626
https://doi.org/10.1016/j.jtbi.2015.11.010
https://link.springer.com/article/10.1007%2Fs11538-017-0259-4
https://doi.org/10.1002/cnm.2774
https://doi.org/10.1371/journal.pone.0064511
https://doi.org/10.1098/rsif.2011.0433
https://www.nature.com/articles/nphys3984

