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DECAY ESTIMATE TO A COMPRESSIBLE EULER SYSTEM WITH
NON-LOCAL VELOCITY ALIGNMENT∗

LINING TONG† AND LI CHEN‡

Abstract. In this paper, the asymptotic behavior of the solutions for compressible Euler system
with a non-local interaction term is studied. Using velocity damping to restrain the singularity caused
by the anisotropic interaction between individuals, the exponential decay estimate of the solutions is
obtained.
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1. Introduction
This paper is concerned with the asymptotic behavior of the solutions to the fol-

lowing compressible Euler system with non-local velocity effect:

∂tρ+∇·(ρu) = 0, (x,t)∈TN ×(0,∞), (1.1)

∂t(ρu)+∇·(ρu⊗u)+∇P (ρ) =−1

τ
ρu−ρ

∫
TN

Γ(x,y)(u(x,t)−u(y,t))ρ(y,t)dy, (1.2)

subject to the initial conditions

ρ|t=0 =ρ0(x)≥0, u|t=0 =u0(x), x∈TN , (1.3)

where TN is the N-dimensional torus with N ≥1 and without loss of generality it is
assumed that |TN |= 1, ρ and u are the unknown density and velocity, respectively,
and P (ρ) =Aργ is the pressure, with A>0, γ≥1 being constants. For simplicity, it is
assumed that A= 1. The damping constant τ >0 is given and Γ(x,y) is a communication
weight matrix.

The system (1.1)-(1.2) is the macroscopic description of the microscopic multi-
particle model, which reflects the velocity alignment of individuals in complex systems.
When Γ(x,y) is a zero matrix, the model is reduced to the compressible Euler system
with damping. It has been proved in general that for symmetrizable hyperbolic system
without damping, smooth solutions exist locally in time for smooth initial data and
the formation of shock waves will breakdown the smoothness of the solutions in finite
time even in the scalar case [15]. However, if an additional velocity damping is added,
shock waves can be avoided for small perturbation of the diffusion waves [8,11]. In the
literature, the global existence and asymptotic behavior of solutions to initial-boundary
value problems for compressible Euler equations with damping are well studied for
example in [6, 12,13,17–19] and references therein.

For the Euler systems with non-local interaction term, if the communication weight
function Γ(x,y) in velocity alignment is of scalar type, i.e. Γ(x,y) =ψ(x,y)1, where 1 is
the identity matrix and ψ(x,y) has a positive lower bound, then the non-local term will
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1470 EULER ALIGNMENT SYSTEM

act as damping and can restrain the formation of the shock waves, readers are referred
to [3, 10, 14] and references therein for more details. In case that the communication
kernel is smooth, the convergence to equilibrium by using Wasserstein distance has been
shown rigorously for 1-D Euler system with damping in [2]. However, the interaction
between individuals is neither positive definite nor smooth in some systems, for example
it happens in the complex material flow model given in [9] and the pedestrian flow model
in [5]. In these cases, it is obvious that the non-local velocity involved interaction can in
general not prevent the formation of shocks, instead new singularity will appear. Thus
one has to require that the damping effect from velocity be strong enough to compete
with the non-local effect for obtaining the global existence of the solutions.

The main result of this paper is as follows:

Theorem 1.1. Assume that Γ∈L2(TN ×TN ), Γ(x,y) =Γ(y,x), and (ρ,u) be a solu-
tion to the system (1.1)−(1.3) satisfying (ρ,u)∈L∞(TN ×R+) and

1

τ
−2 sup

(x,t)∈TN×R+

∫
TN
|Γ(x,y)ρ(y,t)|dy≥µ>0. (1.4)

Then the following estimate holds,∫
TN

(
ρ|u|2 +(ρ−m0)2

)
dx≤C ·E0e

−Ct. (1.5)

where m0 =
∫
TN ρdx and E0 =

∫
TN

(
ρ0u

2
0 +(ρ0−m0)2

)
dx is the initial total energy, and

where C is a constant depending on µ,τ,‖Γ‖2L2(TN×TN ), ‖u‖L∞ , and ‖ρ‖L∞ .

Remark 1.1. The results are also valid for those Γ which are not symmetric, in this
case, instead of using condition (1.4), one can assume that

1

τ
− 3

2
sup

(x,t)∈TN×R+

∫
TN
|Γ(x,y)ρ(y,t)|dy− 1

2
sup

(y,t)∈TN×R+

∫
TN
|Γ(x,y)ρ(x,t)|dx≥µ>0.

Remark 1.2. In case Γ(x,y) =Γ(x−y), the global existence of classical solution, as a
perturbation of a constant background solution, to the system (1.1)−(1.3) is established
when the domain is RN in [20], where an assumption on strong damping is required.
More precisesly, if 1

τ −2κ̄γ‖Γ‖L1 >0, where (ρc,uc) = (κ̄γ ,0) is the constant background
solution, then the stability of this constant solution is shown in [20]. However, no decay
estimate or asymptotic stability has been given.

When the domain is periodic, because of the conservation of mass, the only possible
constant density solution is the mean value m0. One can follow the same method as
in [20] and obtain the global bounded solution as has been mentioned in the assumption
in the above theorem, at the same time the assumption (1.4) holds because of the
stability and the special form of the integral kernel Γ(x,y) =Γ(x−y).

The periodic domain is chosen because of technical difficulties. On the one hand,
the complicated boundary condition can be avoided, on the other hand the boundedness
of the domain is needed in many of the estimates in the proof.

Remark 1.3. The idea in this paper mainly follows the study of the long-time behavior
to the solutions for the isentropic compressible Navier-Stokes equation in [7]. For the
case of γ>1, it is noticed that the time derivatives of the pressure term 1

γ−1
∫
TN ρ

γdx

in the energy and
∫
TN ρ

∫ ρ
m0

hγ−mγ0
h2 dhdx are the same. The equivalence of the term
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TN ρ

∫ ρ
m0

hγ−mγ0
h2 dhdx and the L2-norm of ρ−m0 is proved when ρ is upper bounded

in [7]. When γ= 1, the same result is obtained for the pressure term
∫
TN ρ lnρdx in

the energy [16]. Based on these facts, we will show that the relative free energy decays
with a positive density dissipation to zero exponentially in time, where, due to the
assumption of strong damping in the theorem, the anisotropic interaction force between
individuals in the system is controlled.

The remaining part of this paper, Section 2, is to give the proof of the main theorem.

2. The proof of Theorem 1.1
We first provide a list of useful lemmata which will be used for the proof of Theorem

1.1.

Lemma 2.1 (Lemma 3.1 in [7] the quantitative estimate for the pressure P (ρ) =ργ .).
(1) Let r0, r̄ >0, and γ>1 be arbitrary fixed constants,

f(r,r0) = r

∫ r

r0

hγ−rγ0
h2

dh, for r∈ [0, r̄].

Then there exist positive constants c1 and c2 depending on r0 and r̄, such that

c1(r−r0)2≤f(r,r0)≤ c2(r−r0)2. (2.1)

(2) It holds that

d

dt

1

γ−1

∫
TN
ργdx=

d

dt

∫
TN
f(ρ,m0)dx.

Lemma 2.2. Let (ρ,u) be a global classical solution to (1.1)−(1.2). Then it holds that

d

dt

∫
TN
ρdx= 0, (2.2)

d

dt

∫
TN
ργdx=−(γ−1)

∫
TN
ργ∇·udx, (2.3)

Proof. Using the divergence theorem, we can directly get (2.2), the conservation
of mass, from (1.1). By multiplying γργ−1 on both sides of (1.1), we have

(ργ)t=−γργ∇·u−∇ργ ·u=−(γ−1)ργ∇·u−∇·(ργu). (2.4)

Then (2.3) can be derived after integrating (2.4) over TN .

Remark 2.1. Equation (2.2) implies directly
∫
TN ρ(x,t)dx=

∫
TN ρ0(x)dx=m0, which

is a positive constant independent of time.
In the following we will use the operator B which was introduced in [1], defined in

the following, ∀f ∈L2(TN ) with
∫
TN fdx= 0, the unique solution of

∇·v=f, ∇×v= 0, and

∫
TN
vdx= 0, (2.5)

is defined to be the image of B(f). This operator has been used in [7] for the bounded
domain with no-slip boundary condition. The version for torus has been listed in [4]. A
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list of properties can be found for example in [4, 7]1

Proof. (Proof of Theorem 1.1.) Without loss of generality we prove it for the
case γ>1. As has been mentioned in Remark 1.3, the same result holds also for γ= 1.
The proof is split into 3 steps:

Step 1. (The energy inequality.) We first derive the following energy inequality:

d

dt

(1

2

∫
TN
ρ|u|2dx+

1

γ−1

∫
TN
ργdx

)
+µ

∫
TN
ρ|u|2dx≤0, (2.6)

where µ>0 is defined in (1.4).
We start from computing the time derivative of

∫
TN ρ|u|

2dx.

d

dt

1

2

∫
TN
ρ|u|2dx=

1

2

∫
TN
ρt|u|2dx+

∫
TN
ρut ·udx

=−1

2

∫
TN
∇·(ρu)|u|2dx+

∫
TN
ρut ·udx

=−
∫
TN
∇ργ ·udx− 1

τ

∫
TN
ρu ·udx

−
∫
TN

∫
TN

Γ(x,y)(u(x,t)−u(y,t)) ·u(x,t)ρ(y,t)ρ(x,t)dydx.

Thus we have

1

2

d

dt

(∫
TN
ρ|u|2(t)dx+

1

γ−1

∫
TN
ργ(t)dx

)
+

1

τ

∫
TN
ρ|u|2dx

=−
∫
TN

∫
TN

Γ(x,y)(u(x,t)−u(y,t)) ·u(x,t)ρ(y,t)ρ(x,t)dydx

≤2 sup
(x,t)∈TN×R+

∫
TN
|Γ(x,y)ρ(y,t)|dy

∫
TN
ρ|u|2dx,

where we have used (2.3). Then we obtain the energy inequality (2.6).

Step 2. (A proper dissipation of ‖ρ−m0‖L2 .) Using the linear operator B
introduced before, we define the following functionals:

Vδ =

∫
TN

(1

2
ρ|u|2 +ρ

∫ ρ

m0

hγ−mγ
0

h2
dh−δρu ·B[ρ−m0]

)
dx,

and

Wδ =µ

∫
TN
ρ|u|2dx+δ

∫
TN

(ργ−mγ
0)∇·B[ρ−m0]dx

+δ

∫
TN
ρu⊗u :∇B[ρ−m0]dx− δ

τ

∫
TN
ρu ·B[ρ−m0]dx

1 Since the field v is curl-free, the operator B is equivalent to ∇∆−1 where ∆−1 is the inverse
Laplacian operator with periodic boundary condition. The unique solvability of Laplacian equation
with periodic boundary condition is understood in the sense that two solutions are the same if there
is only a constant difference between them. Then the following estimates hold due to the regularity
estimate of elliptic equations. (i) ‖B[f ]‖H1(TN )≤C‖f‖L2(TN ). (ii) If a function f ∈L2(TN ) can be

written in the form f =∇·g with g∈ [H1(TN )]N , then ‖B[f ]‖L2(TN )≤C‖g‖L2(TN ).
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−δ
∫
TN

∫
TN

Γ(x,y)(u(x,t)−u(y,t)) ·B[ρ(x,t)−m0]ρ(y,t)ρ(x,t)dxdy

+δ

∫
TN
ρu ·B[ρt]dx=

6∑
i=1

Ji,

where 0<δ<1. The notation means A :B=
∑N
i,j=1aijbij for two N×N square ma-

trixes.
It is easy to check with the help of (2.6) that

d

dt
Vδ+Wδ≤0. (2.7)

Using the properties of the operator B, we have∣∣∣−∫
TN
δρu ·B[ρ−m0]dx

∣∣∣≤ δ‖ρ‖ 1
2

L∞‖
√
ρu‖L2‖B[ρ−m0]‖L2

≤ δ
2

∫
TN
ρ|u|2dx+

‖ρ‖L∞δ

2

∫
TN
|ρ−m0|2dx. (2.8)

with the help of Hölder’s and Young’s inequalities.
Then it follows from (2.8), Lemma 2.1 and for sufficiently small δ that there exists

a constant C0>0 which depends on δ and ‖ρ‖L∞ , such that

1

C0

(∫
TN
ρ|u|2dx+

∫
TN
|ρ−m0|2dx

)
≤Vδ≤C0

(∫
TN
ρ|u|2dx+

∫
TN
|ρ−m0|2dx

)
. (2.9)

We investigate further for the terms in Wδ. Notice that J1 has a positive coefficient
because of (1.4), and applying the properties of operator B, the positivity of J2 is
obtained in the following:

J2 = δ

∫
TN

(ργ−mγ
0)∇·B[ρ−m0]dx= δ

∫
TN

(ργ−mγ
0)(ρ−m0)dx≥Cδ

∫
TN

(ρ−m0)2dx,

where the standard inequality (rγ−rγ0 )(r−r0)≥C(r0,γ)|r−r0|2 for r0>0,∀r≥0 has
been used. A short explanation of this inequality is the following. In case r≥ r0

2 , it can
be obtained directly by mean value theorem, while for 0≤ r< r0

2 , it follows from the
estimate

rγ−rγ0
r−r0

=
rγ0 −rγ

r0−r
≥
rγ0 −( r02 )γ

r0
.

The estimates for J3−J6 in Wδ are dedicated to obtain the relation between Wδ

and
∫
TN ρ|u|

2dx+
∫
TN |ρ−m0|2dx. Using the properties of the operator B and Young’s

inequality, we obtain

|J3|=
∣∣∣δ∫

TN
ρu⊗u :∇B[ρ−m0]dx

∣∣∣≤ µ
8

∫
TN
ρ|u|2dx+Cδ2‖ρ‖L∞‖u‖2L∞

∫
TN
|ρ−m0|2dx,

|J4|= |−
δ

τ

∫
TN
ρu ·B[ρ−m0]dx|≤ µ

8

∫
TN
ρ|u|2dx+C

δ2

τ2
‖ρ‖L∞

∫
TN
|ρ−m0|2dx,
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and

|J5|=
∣∣∣−δ∫

TN

∫
TN

Γ(x,y)(u(x,t)−u(y,t)) ·B[ρ(x,t)−m0]ρ(y,t)ρ(x,t)dxdy
∣∣∣

≤ µ
8

∫
TN
ρ|u|2dx+Cδ2‖Γ‖2L2(TN×TN )‖ρ‖

3
L∞

∫
TN
|ρ−m0|2dx.

Finally, we estimate J6. Using the properties of operator B, we have

|J6|=
∣∣∣δ∫

TN
ρu ·B[ρt]dx

∣∣∣= ∣∣∣δ∫
TN
ρu ·B[∇·ρu]dx

∣∣∣≤ δ‖ρ‖L∞

∫
TN
ρ|u|2dx≤ µ

8

∫
TN
ρ|u|2dx.

where δ is chosen to be smaller than
µ

8
‖ρ‖L∞ .

Collecting all the estimates of Ji , we have

Wδ≥
µ

2

∫
TN
ρ|u|2dx+C1

∫
TN
|ρ−m0|2dx, (2.10)

where C1 =Cδ
(

1−δ‖ρ‖L∞(τ−2 +‖u‖2L∞ +‖Γ‖2L2(TN×TN )‖ρ‖
2
L∞)

)
. We can choose

δ= min{µ
8
‖ρ‖L∞ ,

1

2

(
‖ρ‖L∞(τ−2 +‖u‖2L∞ +‖Γ‖2L2(TN×TN )‖ρ‖

2
L∞)

)−1}
so that C1>0.

Step 3. (The decay estimate.) Combining (2.7), (2.9), and (2.10), we deduce
that there exists a constant C2>0 such that

d

dt
Vδ+C2Vδ≤0, (2.11)

where C2 is a constant depending on µ,τ,‖Γ‖2L2(TN×TN ), ‖u‖L∞ , and ‖ρ‖L∞ . Applying

Grönwall’s inequality and (2.9), we have(∫
TN
ρ|u|2dx+

∫
TN
|ρ−m0|2dx

)
≤C0Vδ(t)≤C0Vδ(0)e−C2t

≤C2
0

[∫
TN
ρ|u|2(0)dx+

∫
TN
|ρ−m0|2(0)dx

]
e−C2t≤C2

0E0e
−C2t. (2.12)

In summary, the proof of the Theorem 1.1 is completed.

REFERENCES

[1] M.E. Bogovskii, Solution of some vector analysis problems connected with operators div and grad,
Trudy Sem. S.L. Sobolev, 80:5–40, (in Russian) 1980. 2

[2] J.A. Carrillo, Y.P. Choi, and O. Tse, Convergence to equilibrium in Wasserstein distance for
damped Euler equations with interaction forces, Comm. Math. Phys., 365(1):329–361, 2019. 1

[3] Y.P. Choi, The global Cauchy problem for compressible Euler equations with a nonlocal dissipation,
Math. Model. Meth. Appl. Sci., 29(1):185–207, 2019. 1

[4] Y.P. Choi, Large-time behavior for the Vlasov/compressible Navier-Stokes equations, J.
Math.Phys., 57(7):071501, 2016. 2
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