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INVISCID LIMIT TO THE SHOCK WAVES FOR THE FRACTAL
BURGERS EQUATION∗
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Abstract. We show the vanishing viscosity limit to entropy shocks for the fractal Burgers equation
in one space dimension. More precisely, we quantify the rate of convergence of the inviscid limit in
L2 for large initial perturbations around the entropy shock on any bounded time interval. This is the
first result on the inviscid limit to entropy shock for the fractal Burgers equation with the quantified
convergence, for large initial perturbations.
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1. Introduction

We consider the Burgers equation with the fractional Laplacian in one space dimen-
sion:

∂tu+∂x

(
u2

2

)
= ∆α/2

x u, t>0, x∈R, (1.1)

where α denotes the fractional power of the Laplacian in one dimension, and the frac-
tional Laplacian can be written as a singular integral operator:

∆α/2
x u(x) = cαP.V.

∫
R

u(y)−u(x)

|y−x|1+α
dy. (1.2)

The Equation (1.1) is sometimes called the fractal Burgers equation. It has been ex-
tensively used as a toy model for the study of the fractal (anomalous) diffusion for a
variety of physical phenomena where shock creation is an important ingredient. This
includes the growth of molecular interfaces, traffic jams and the mass distribution for
the large scale structure of the universe (see for example, Biler et al. [3] for a discussion
of this model).

For 0<α≤1, the well-posedness theory of (1.1) has been established in Alibaud [1]
and in Kiselev-Nazarov-Shterenberg [19] for a different class of initial data and with
further analysis about finite time blowup for α<1 and analyticity for α≥1 (see Chan-
Czubak [4] for α= 1). In the case of 1<α<2, which is the focus of our work, prior to [19]
was the work of Droniou-Gallouet-Vovelle [10], where the authors used a semi-group
approach to obtain existence, uniqueness, smoothness and boundedness of solutions to
(1.1) as well as their derivatives. Concerning time-asymptotic stability to rarefaction
waves, we refer to Alibaud-Imbert-Karch [2] and Karch-Miao-Xu [18].
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In this article, we study the vanishing viscosity limit (ε→0) of the scaled equation{
∂tuε+∂x

(
u2
ε

2

)
=ε∆

α/2
x uε, t>0, x∈R,

uε(x,0) =u0(x),
(1.3)

in the case of 1<α<2.
Note that for a solution u to the Equation (1.1), uε(x,t) :=u(x/εβ ,t/εβ) solves the

scaled Equation (1.3), where

β=
1

α−1
, α∈ (1,2).

We aim to quantify the vanishing viscosity limit (ε→0) of (1.3) with a general initial
datum towards entropy shock waves of the (inviscid) Burgers equation:

∂tu+∂x

(
u2

2

)
= 0. (1.4)

We are particularly interested in the case where the initial datum carries too much
entropy for the structure of the layer to be preserved in the inviscid limit.

It is well known that for any constants u− and u+ with u−>u+, the Equation (1.4)
admits the entropy shock wave S0(x−σt) connecting the two end states u± as follows
(for example, see [21]):

S0(x−σt) =

{
u− if x<σt
u+ if x>σt,

(1.5)

where the velocity σ is determined by the Rankine-Hugoniot condition:

σ=
A(u−)−A(u+)

u−−u+
, where A(u) :=

u2

2
.

Note that the condition u−>u+ ensures that the shock wave (1.5) is an entropy solution
to (1.4).

On the other hand, we refer to Chmaj [5] for the existence of shock layer to the
fractal Burgers Equation (1.1) in the case of 1<α<2. That is, the following was proved:
for any u−>u+, there exists a travelling wave S1(x−σt) as a smooth solution to{

−σS′1 +
(
S2
1

2

)′
= ∆

α/2
ξ S1,

limξ→±∞S1(ξ) =u±.
(1.6)

However, the rate of convergence of the shock layer to the two end states u± is not
known.

We now present our main result.

Theorem 1.1. Assume 1<α<2 in the Equation (1.3). For any constants u− and
u+ with u−>u+, let u0 be the initial datum such that

u0∈L∞(R), u0−S0∈L2(R) and

(
d

dx
u0

)
+

∈L2(R),

where
(
d
dxu0

)
+

denotes the positive part of d
dxu0.

For any T >0, there exists a constant C(T )>0 such that the following holds:
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For any solution uε to (1.3), there exists a Lipschitz continuous shift t∈ [0,T ] 7→Xε(t)
with Xε(0) = 0 such that for all t≤T ,

‖uε(·+Xε(t),t)−S0(·−σt)‖L2(R)≤‖u0−S0‖L2(R) +C(T )ψ(ε). (1.7)

Here,

ψ(ε) := inf
δ≥4

√δεβ+
√
δεβ+

(
S1

(√
δ
)
−u+

)
+
(
u−−S1

(
−
√
δ
))

+

(
1

δ

)α−1+εβ/2,

where S1 denotes the viscous shock satisfying (1.6).

Remark 1.1. Note that the shift Xε depends both on ε and the initial value u0. The
shift cannot be reduced to the actual velocity of the shock, since at the limit ε goes to
zero, the contraction in L2 without extra shift is false (see Leger [20]). The shift Xε

will be constructed as a solution to the ODE (2.17). In the sentences following (2.17),
we will justify the existence and uniqueness of the Lipschitz continuous solution Xε. In
what follows, we drop the ε-dependence of the shift Xε for simplicity.

Remark 1.2. Since limξ→±∞S1(ξ) =u± and 1<α<2, note that (for example, by
choosing δ=ε−β/2)

ψ(ε)→0 as ε→0.

Therefore, Theorem 1.1 provides an explicit rate of convergence for the inviscid limit to
the shock.

If the shock layer S1 approaches the end states u± exponentially fast as in the case
of the classical Laplacian, i.e., α= 2 (for example, see [16]), then there exist constants
ε0 and C>0 such that

ψ(ε)≤Cε
1

2(2α−1) , ∀ε<ε0. (1.8)

Indeed, by choosing

δ=ε−
1

(α−1)(2α−1)

there exists ε0>0 such that for all 0<ε<ε0,

δεβ�
√
δεβ =ε

1
2α−1 ,∣∣∣S1

(√
±δ
)
−u±

∣∣∣≤Ce−c±√δ�(1

δ

)α−1
=ε

1
2α−1 .

(1.9)

Remark 1.3. From a special layer study, one can see that the optimal rate of con-
vergence is εβ/2. Indeed, if we consider the shock layer S1(x−σt) in (1.6), then
S1((x−σt)/εβ) is a shock layer of (1.3) as a travelling wave solution of (1.3) with
initial datum S1(x/εβ). In this case, the rate of convergence is of order εβ/2, since√∫

R

∣∣∣∣S1

(
x−σt
εβ

)
−S0(x−σt)

∣∣∣∣2dx=

√
εβ
∫
R
|S1 (x)−S0(x)|2dx=Cεβ/2. (1.10)

Therefore, if the shock layer S1 approaches the end states exponentially fast, the rate of

convergence ε
1

2(2α−1) in (1.8) is slightly worse than the optimal rate εβ/2 above, because

εβ/2 =ε
1

2(α−1) <ε
1

2(2α−1) .
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Note that such a layer study is the special case of small initial perturbations such as

‖u0−S0‖L2(R) =O(εβ/2).

In the case where u0 is the same initial data as the one of (1.4), i.e, no initial perturba-
tion, we refer to the result of Droniou [9] on the convergence of solution to (1.3) towards
entropy solution to (1.4).

However, those studies collapse in the case of large initial perturbation as

‖u0−S0‖L2(R)�εβ/2.

In this situation, there is too much entropy for the asymptotic limit of the layer structure
to be true. So, the physical layer may be destroyed. Therefore, Theorem 1.1 is the first
result on the inviscid limit to the entropy shock even for large initial perturbation,
although the rate of convergence is not optimal.

2. Proof of Theorem 1.1
We prove Theorem 1.1 for the case of a conservation law with a strictly convex flux:

given a strictly convex flux A, consider{
∂tuε+∂xA(uε) =ε∆

α/2
x uε, t>0, x∈R.

uε(x,0) =u0(x),
(2.1)

Although the existence issue of the shock layer of (2.1) is still open for general convex
fluxes, we provide the proof of Theorem 1.1 in the general setting.

We also mention that Droniou-Gallouet-Vovelle [10] proved the global existence and
uniqueness of smooth solutions to (2.1) with the L∞-bounded initial data in the case of
1<α<2, and

‖uε‖L∞(R)≤‖u0‖L∞(R),

which will be used in our proof.

2.1. Ideas and useful lemmas. Contrary to the proof of the result [6] for
the case of the (local) Laplacian operator, i.e., α= 2, the nonlocality of the fractional
Laplacian leads us to first study on the convergence of the solution uε towards the shock
layer (of width εβ) of (2.1). Once we prove it, the desired result (1.7) would be obtained
by using the obvious convergence from the shock layer to the inviscid shock as in (1.10).

Without loss of generality, we only deal with the stationary shock wave S0, i.e.,
σ= 0. We first see from (1.6) that the (stationary) shock layer S1 of (1.1) is a solution
to {

(A(S1))′= ∆
α/2
x S1,

limx→±∞S1(x) =u±.
(2.2)

Then, Sε(x) :=S1(x/εβ) is the associated shock layer of (2.1) as a solution to{
(A(Sε))

′=ε∆
α/2
x Sε,

limx→±∞Sε(x) =u±.
(2.3)

In our analysis, we will use the monotonicity property of the shock layer, which is proved
in the following lemma.

Lemma 2.1. If S1(x) is a smooth shock layer of (2.2), then S′1(x)≤0 for all x.
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Proof. First, we take the derivative of both sides of (2.2) to get

A′′(S1)|S′1|2 +A′(S1)S′′1 = ∆α/2S′1. (2.4)

Multiplying both sides of (2.4) by (S′1)+ and using S′′1 1S′1>0 = ((S′1)+)′, we have

A′′(S1)((S′1)+)3 +A′(S1)

(
((S′1)+)2

2

)′
= (∆α/2S′1)(S′1)+.

We integrate both sides over R to get∫
A′′(S1)((S′1)+)3dx+

∫
A′(S1)

(
((S′1)+)2

2

)′
dx=

∫
(S′1)+∆α/2(S′1)dx.

Note that using (1.2) and anti-symmetry, and the fact that f =f+−f− where f+ and
f− denote respectively the positive and negative parts of a function f , we have∫

(S′1)+∆α/2(S′1)dx=−
∫
R2

(S′1)+(x)
S′1(x)−S′1(y)

|x−y|1+α
dxdy

=− 1

2

∫
R2

((S′1)+(x)−(S′1)+(y))(S′1(x)−S′1(y))

|x−y|1+α
dxdy

=− 1

2

∫
R2

((S′1)+(x)−(S′1)+(y))2

|x−y|1+α
dxdy

+
1

2

∫
R2

((S′1)+(x)−(S′1)+(y))((S′1)−(x)−(S′1)−(y))

|x−y|1+α
dxdy

=− 1

2

∫
R2

((S′1)+(x)−(S′1)+(y))2

|x−y|1+α
dxdy−

∫
R2

(S′1)+(x)(S′1)−(y)

|x−y|1+α
dxdy≤0. (2.5)

Moreover, since∫
A′′(S1)((S′1)+)3dx+

∫
A′(S1)

(
((S′1)+)2

2

)′
dx=

1

2

∫
A′′(S1)((S′1)+)3dx,

we have

1

2

∫
A′′(S1)((S′1)+)3dx≤0.

Therefore, using the strict convexity of the flux A, we have

(S′1)+(x) = 0, for a.e. x∈R,

which completes the proof.

The following lemma will be used in the proof of Proposition 2.1.

Lemma 2.2. If uε(x,t) is a solution of (2.1) with ‖(∂xu0)+‖L2(R)<∞, then

‖(∂xuε(·,t))+‖L2(R)≤‖(∂xu0)+‖L2(R).

Proof. Let v :=∂xuε and v+ :=v1v≥0. Following the proof of [6, Lemma 3.2], we
differentiate (2.1) with respect to x, multiply by (∂x(uε))+ and integrate in x to get∫

(∂tv)v+dx+

∫
∂x [A′(uε)v]v+dx=ε

∫
(∆α/2

x v)v+dx.
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Then, using the same estimates as in (2.5), we have∫
(∂tv)v+dx+

∫
∂x [A′(uε)v]v+dx=ε

∫
(∆α/2

x v)v+dx≤0.

Moreover, since ∫
(∂tv)v+dx=

∫
∂t(v+)v+dx=

1

2

d

dt

∫
(v+)2dx,

and ∫
∂x [A′(uε)v]v+dx=

∫
A′′(uε)|v|2v+dx+

∫
A′(x)(∂xv)v+dx

=

∫
A′′(uε)(v+)3dx+

∫
A′(x)∂x

( (v+)2

2

)
dx

=
1

2

∫
A′′(uε)(v+)3dx,

we find that

d

dt
‖(∂xuε(·,t))+‖2L2(R) =

d

dt

∫
(v+)2dx≤−

∫
A′′(uε)(v+)3dx≤0,

which completes the proof.

2.2. Evolution of the relative entropy. Let ϕ be a smooth nondecreasing
function such that

ϕ(x) =

{
0 if x≤0,
1 if x≥1.

(2.6)

To localize the layer, we consider a parametrized function ϕδ, δ>0, defined by

ϕδ(x) :=ϕ
(x
δ

)
.

The parameter δ will be determined as a function of ε at the end of the proof.
For fixed ε,δ>0 and X ∈C1([0,T ]), we will consider the evolution of

H(t) :=

∫
R
ϕ2
δ

(
|x|
εβ

)
|uε(x+X(t),t)−Sε(x)|2

2
dx. (2.7)

Although the above functional is based on the L2-norm, we take advantage of the relative
entropy method to get the convergence of H′(t) as in [6].

The relative entropy method was introduced in the studies by Dafermos [7] and
Diperna [8] of L2-stability and uniqueness of Lipschitz solutions to hyperbolic conserva-
tion laws endowed with a convex entropy. Recently, this method was extensively used
in studying the contraction and inviscid limit for large initial perturbations of viscous
(or inviscid) shock waves (see [6, 11–17,20,22–27]).

To use the relative entropy method, in particular we consider the quadratic entropy

η(u) :=
u2

2
, (2.8)
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where we note from the theory of conservation laws that any function is an entropy of
the scalar conservation law (2.1).

In the general theory, for a strictly convex entropy η, we define the associated
relative entropy function by

η(u|v) :=η(u)−η(v)−η′(v)(u−v). (2.9)

Likewise, we define the relative functional of the strictly convex flux A by

A(u|v) :=A(u)−A(v)−A′(v)(u−v). (2.10)

Let F (·,·) be the flux of the relative entropy defined by

F (u,v) :=G(u)−G(v)−η′(v)(A(u)−A(v)), (2.11)

where G is the entropy flux of η, i.e., G′=η′A′.
Since, for the quadratic entropy (2.8), the associated relative entropy is

η(u|v) =
|u−v|2

2
, (2.12)

the function H(t) in (2.7) can be rewritten as

H(t) :=

∫
R
ϕ2
δ

(
|x|
εβ

)
η(uε(x+X(t),t)|Sε(x))dx.

For simplification of our presentation, we use a change of variable as follows:

vε(x,t) :=uε(x+X(t),t). (2.13)

Then, it follows from (2.1) that vε satisfies

∂tvε−Ẋ(t)∂xvε+∂xA(vε) =ε∆α/2
x vε. (2.14)

We now present the following lemma.

Lemma 2.3. The function H(t) defined by (2.7) satisfies

H′(t) =

∫ ∞
−∞

ϕ2
δ

(
|x|
εβ

)
∂x

(
η(vε(x,t)|Sε(x))Ẋ(t)−F (vε(x,t),Sε(x))

)
dx

+

∫ ∞
−∞

ϕ2
δ

(
|x|
εβ

)
(vε(x,t)−Sε(x))S′ε(x)

(
Ẋ(t)− A(vε(x,t)|Sε(x))

vε(x,t)−Sε(x)

)
dx

+ε

∫ ∞
−∞

ϕ2
δ

(
|x|
εβ

)
(vε(x,t)−Sε(x))∆α/2(vε(x,t)−Sε(x))dx

=:H1 +H2 +P. (2.15)

Proof. First of all, since

H(t) =

∫
R
ϕ2
δ

(
|x|
εβ

)
η (vε(x,t)|Sε (x)) dx,

we have

H′(t) =

∫
R
ϕ2
δ

(
|x|
εβ

)
∂t

(
η (vε(x,t)|Sε (x))

)
dx.
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Note from the definition (2.9) that

∂tη(vε(x,t)|Sε(x)) = (η′(vε)−η′(Sε))∂tvε(x,t)−η′′(Sε)(vε−Sε)∂tSε(x)︸ ︷︷ ︸
=0

.

To get a nice quadratic structure from the above right-hand side, we use (2.2) and (2.14)
so that

∂tη(vε(x,t)|Sε(x)) = (η′(vε)−η′(Sε))
(
Ẋ(t)∂xvε−∂xA(vε)+ε∆α/2

x vε

)
−η′′(Sε)(vε−Sε)

(
−(A(Sε))

′+∆α/2
x Sε

)
= Ẋ(t)(η′(vε)−η′(Sε))∂xvε
−(η′(vε)−η′(Sε))∂xA(vε)+η′′(Sε)(vε−Sε)(A(Sε))

′

+ε
(

(η′(vε)−η′(Sε))∆α/2
x vε−η′′(Sε)(vε−Sε)∆α/2

x Sε

)
.

Since a straightforward computation together with the definitions (2.10) and (2.11)
yields the identity

−∂xF (vε,Sε)−η′′(Sε)S′εA(vε|Sε) =−(η′(vε)−η′(Sε))∂xA(vε)+η′′(Sε)(vε−Sε)(A(Sε))
′

(which also appears in the proof of [16, Lemma 2.1]), we have

∂tη(vε(x,t)|Sε(x)) = Ẋ(t)(η′(vε)−η′(Sε))∂xvε
−∂xF (vε,Sε)−η′′(Sε)S′εA(vε|Sε)

+ε
(

(η′(vε)−η′(Sε))∆α/2
x vε−η′′(Sε)(vε−Sε)∆α/2

x Sε

)
.

We now use the quadratic entropy (2.8) to obtain

∂tη(vε(x,t)|Sε(x)) = Ẋ(t)(vε−Sε)∂xvε−∂xF (vε,Sε)−S′εA(vε|Sε)
+ε(vε−Sε)∆α/2

x (vε−Sε) .

Therefore, using (2.12) and

(vε−Sε)∂xvε=∂x

(
|vε−Sε|2

2

)
+(vε−Sε)∂xSε,

we complete the proof.

Remark 2.1. Contrary to [6, Lemma 2.1], we have a new hyperbolic part H2 in (2.15),
because we are considering the viscous layer.

2.3. Estimate on the first hyperbolic part, H1. Here, we estimate the
first part H1 of H′(t) in (2.15) by following the strategy in [6, Section 3]. For this, we
consider the normalized relative entropy flux f(·,·), given by

f(u,v) :=
F (u,v)

η(u|v)
. (2.16)

With such an f, we have the following properties.
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Lemma 2.4. For any L>0, there exists a constant Λ>0 such that for any u,v with
|u|,|v|≤L,

0≤∂uf(u,v)≤Λ,

1

Λ
≤∂vf(u,v).

For the proof of the above lemma, we refer to [20].

We now define the shift X as a solution to the ODE{
Ẋ(t) =f(vε(0,t),Sε(0)),
X(0) = 0,

(2.17)

where, recall from (2.13), that vε(0,t) =uε(X(t),t). As mentioned before, since, for
any ε>0, the Equation (2.1) with L∞ initial datum admits a unique smooth solution,
the Cauchy-Lipschitz theorem together with Lemma 2.4 implies the existence and
uniqueness of the solution X to the ODE (2.17).

We now present a bound on H1 in (2.15). In what follows, C denotes a positive
constant which may change from line to line, but which is independent of ε.

Proposition 2.1. Let ϕ be a smooth nondecreasing function satisfying (2.6).
Under the same hypotheses as in Theorem 1.1, there exists a positive constant C=
C(‖u0‖L∞(R),u±) such that for any ε,δ>0,

H1 =

∫ ∞
−∞

ϕ2
δ

(
|x|
εβ

)
∂x

(
η(vε(x,t)|Sε(x))Ẋ(t)−F (vε(x,t),Sε(x))

)
dx≤C

√
δεβ .

Proof. First of all, we separate H1 into two parts:

H1(t) =

∫ 0

−∞

(
ϕδ

(
− x

εβ

))2
∂x

(
η(vε(x,t)|Sε(x))Ẋ(t)−F (vε(x,t)),Sε(x)

)
dx

+

∫ ∞
0

(
ϕδ

( x
εβ

))2
∂x

(
η(vε(x,t)|Sε(x))Ẋ(t)−F (vε(x,t)),Sε(x)

)
dx

=:HL
1 (t)+HR

1 (t).

For HL
1 , by an integration by parts together with (2.16), (2.12) and (2.17), we have

HL
1 (t)

=−
∫ 0

−∞
∂x

[(
ϕ
(
− x

δεβ

))2]
(
η(vε(x,t)|Sε(x))Ẋ(t)−η(vε(x,t)|Sε(x))f(vε(x,t),Sε(x))

)
dx

=−
∫ 0

−∞

[
− 2

δεβ
ϕ
(
− x

δεβ

)
ϕ′
(
− x

δεβ

)] |vε(x,t)−Sε(x)|2

2

(
Ẋ(t)−f(vε(x,t),Sε(x))

)
dx

=
1

δεβ

∫ 0

−δεβ
ϕ
(
− x

δεβ

)
ϕ′
(
− x

δεβ

)
|vε(x,t)−Sε(x)|2h(x,t)dx,

where

h(x,t) :=f(vε(0,t),Sε(0))−f(vε(x,t),Sε(x)).
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Notice that since ‖uε‖L∞(R)≤‖u0‖L∞(R) by the maximum principle, and |Sε|≤
max{|u−|,|u+|}, there is a constant C=C(‖u0‖L∞(R),u±) such that

‖vε−Sε‖L∞([0,T ]×R)≤C. (2.18)

To control h(x,t), we first separate it into two parts:

h(x,t) = (f(vε(0,t),Sε(0))−f(vε(x,t),Sε(0)))︸ ︷︷ ︸
=:h1

+(f(vε(x,t),Sε(0))−f(vε(x,t),Sε(x)))︸ ︷︷ ︸
=:h2

.

To estimate h1, using Lemma 2.2, we observe that for any x<0,

vε(0,t)−vε(x,t) =

∫ X(t)

x+X(t)

∂yuε(y,t)dy≤
∫ X(t)

x+X(t)

(∂yuε)+(y,t)dy≤‖(∂xu0)+‖L2(R)
√
|x|.

Then, since f is increasing with respect to the first variable by Lemma 2.4, we have

h1≤f
(
vε(x,t)+‖(∂xu0)+‖L2(R)

√
|x|,Sε(0)

)
−f(vε(x,t),Sε(0))

≤Λ
√
|x|‖(∂xu0)+‖L2(R).

Using Lemma 2.4 and Lemma 2.1, we have

h2≤
1

Λ
(Sε(0)−Sε(x))≤0 ∀x≤0.

Therefore, we have

HL
1 (t)≤ C

δεβ

∫ 0

−δεβ
ϕ
(
− x

δεβ

)
ϕ′
(
− x

δεβ

)√
|x|dx ≤C

√
δεβ
∫ 0

−1
ϕ(−x)ϕ′(−x)

√
|x|dx

≤C
√
δεβ ,

where the last inequality is obtained by the definition of ϕ as∫ 0

−1
ϕ(−x)ϕ′(−x)

√
|x|dx≤

∫ 0

−1
ϕ′(−x)dx=ϕ(1)−ϕ(0) = 1.

Likewise, using the same method as above, we have

HR
1 (t)≤C

√
δεβ .

Hence, we complete the proof.

2.4. Estimate on the second hyperbolic part, H2. Here we find a bound
for convergence of the second part H2 in (2.15). For this, we consider a specific choice
of the monotone function ϕ satisfying (2.6), defined by

ϕ(x) =


0 if x≤0,
2x2 if 0≤x≤1/2,
1−2(x−1)2 if 1/2≤x≤1,
1 if x≥1.

(2.19)
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Proposition 2.2. Let ϕ be the function defined by (2.19). Under the same hypotheses
as in Theorem 1.1, there exists a positive constant C such that for any δ≥4,

H2 =

∫ ∞
−∞

ϕ2
δ

(
|x|
εβ

)
(vε(x,t)−Sε(x))S′ε(x)

(
Ẋ(t)− A(vε(x,t)|Sε(x))

vε(x,t)−Sε(x)

)
dx

≤C

((
1

δ

)3/2

+
(
S1

(√
δ
)
−u+

)
+
(
u−−S1

(
−
√
δ
)))

,

Proof. Since vε and Sε are bounded as mentioned in (2.18), using the definition
(2.10) of A(·|·), and (2.17) with Lemma 2.4, we observe that there exists a positive
constant C=C(‖u0‖L∞(R),u±) such that for all x∈R and t≤T ,

A(vε|Sε) = (vε−Sε)2
∫ 1

0

∫ 1

0

A′′(Sε+st(vε−Sε))tdsdt≤‖A′′‖L∞(−C,C)|vε−Sε|2,

and

|Ẋ(t)|≤C.

Therefore, using (2.18), we have

H2≤C
∫ ∞
−∞

ϕ2
δ

(
|x|
εβ

)
|S′ε(x)|dx.

Note that, since S′ε(x) =ε−βS′1(xε−β),

H2≤C
∫ ∞
−∞

ϕ2
δ (|x|)|S′1(x)|dx.

We now separate the right-hand side into two parts:∫ ∞
−∞

ϕ2
δ (|x|)|S′1(x)|dx=

∫
|x|≤
√
δ

ϕ2
δ (|x|)|S′1(x)|dx+

∫
|x|≥
√
δ

ϕ2
δ (|x|)|S′1(x)|dx.

For any δ≥4, since

|x|≤
√
δ ⇒ |x|

δ
≤ 1√

δ
≤ 1

2
,

we use (2.19) to get∫
|x|≤
√
δ

ϕ2
δ (|x|)|S′1(x)|dx≤‖S′1‖L∞(R)

∫
|x|≤
√
δ

ϕ2

(
|x|
δ

)
dx

=‖S′1‖L∞(R)
4

δ4

∫
|x|≤
√
δ

|x|4dx≤C
(

1

δ

)3/2

.

Using Lemma 2.1, we have∫
|x|≥
√
δ

ϕ2
δ (|x|)|S′1(x)|dx≤

∫
|x|≥
√
δ

|S′1(x)|dx=−
∫
|x|≥
√
δ

S′1(x)dx

=
(
S1

(√
δ
)
−u+

)
+
(
u−−S1

(
−
√
δ
))
.

Hence we complete the proof.
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2.5. Estimate on the parabolic part, P .
Proposition 2.3. Let ϕ be a smooth nondecreasing function satisfying (2.6). Under
the same hypotheses as in Theorem 1.1, there exists a positive constant C such that for
any δ>0,

P =ε

∫
R
ϕ2
δ

(
|x|
εβ

)
(vε(x,t)−Sε(x))∆α/2(vε(x,t)−Sε(x))dx≤C

(
1

δ

)α−1
.

Proof. For simplicity, here we set

wε(x,t) :=vε(x,t)−Sε(x).

First, using (1.2) and anti-symmetry, we have

P =ε

∫
R
ϕ2
δ

(
|x|
εβ

)
wε(x,t)∆

α/2wε(x,t)dx

=ε

∫∫
R×R

ϕ2
δ

(
|x|
εβ

)
wε(x,t)

wε(y,t)−wε(x,t)
|x−y|1+α

dydx

=−ε
2

∫∫
R×R

[
ϕ2
δ

(
|x|
εβ

)
wε(x,t)−ϕ2

δ

(
|y|
εβ

)
wε(y,t)

]wε(x,t)−wε(y,t)
|x−y|1+α

dydx,

which can be rewritten into

P =−ε
2

∫∫
R×R

[
ϕδ

(
|x|
εβ

)
wε(x,t)−ϕδ

(
|y|
εβ

)
wε(y,t)

]
ϕδ

(
|x|
εβ

)
wε(x,t)−wε(y,t)
|x−y|1+α

dydx

− ε
2

∫∫
R×R

[
ϕδ

(
|x|
εβ

)
−ϕδ

(
|y|
εβ

)]
ϕδ

(
|y|
εβ

)
wε(y,t)

wε(x,t)−wε(y,t)
|x−y|1+α

dydx

=:P1 +P2.

Since

P1 =−ε
2

∫∫ [
ϕδ

(
|x|
εβ

)
wε(x,t)−ϕδ

(
|y|
εβ

)
wε(y,t)

]2
1

|x−y|1+α
dydx

+
ε

2

∫∫ [
ϕδ

(
|x|
εβ

)
wε(x,t)−ϕδ

(
|y|
εβ

)
wε(y,t)

] [ϕδ( |x|εβ )−ϕδ( |y|εβ )]wε(y,t)
|x−y|1+α

dydx,

P2 =−ε
2

∫∫ [
ϕδ

(
|x|
εβ

)
wε(x,t)−ϕδ

(
|y|
εβ

)
wε(y,t)

] [ϕδ( |x|εβ )−ϕδ( |y|εβ )]wε(y,t)
|x−y|1+α

dydx

+
ε

2

∫∫ [
ϕδ

(
|x|
εβ

)
−ϕδ

(
|y|
εβ

)]2
wε(x,t)wε(y,t)

|x−y|1+α
dydx,

we have

P =−ε
2

∫∫
R×R

[
ϕδ

(
|x|
εβ

)
wε(x,t)−ϕδ

(
|y|
εβ

)
wε(y,t)

]2
1

|x−y|1+α
dydx

+
ε

2

∫∫
R×R

[
ϕδ

(
|x|
εβ

)
−ϕδ

(
|y|
εβ

)]2
wε(x,t)wε(y,t)

|x−y|1+α
dydx,
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which gives

P ≤ ε
2

∫∫
R×R

[
ϕδ

(
|x|
εβ

)
−ϕδ

(
|y|
εβ

)]2
wε(x,t)wε(y,t)

|x−y|1+α
dydx.

Using (2.18), we have

P ≤Cε
∫∫

R×R

[
ϕδ

(
|x|
εβ

)
−ϕδ

(
|y|
εβ

)]2
1

|x−y|1+α
dydx.

Since ∫∫
R×R

[
ϕδ

(
|x|
εβ

)
−ϕδ

(
|y|
εβ

)]2
1

|x−y|1+α
dydx

=

(
1

δεβ

)1+α∫∫
R×R

[
ϕ

(
|x|
δεβ

)
−ϕ

(
|y|
δεβ

)]2
1

|xδ−1ε−β−yδ−1ε−β |1+α
dydx

=

(
1

δ

)α−1(
1

ε

)β(α−1)∫∫
R×R

[ϕ(|x|)−ϕ(|y|)]2

|x−y|1+α
dydx,

using β= 1
α−1 , we have

P ≤C
(

1

δ

)α−1∫∫
R×R

[ϕ(|x|)−ϕ(|y|)]2

|x−y|1+α︸ ︷︷ ︸
=:J

dydx.

Now, it remains to show that J is integrable on R×R. To this end, we separate the
integral into several parts:∫∫

J =

∫∫
|x|≤1,|y|≤2

J+

∫∫
|x|≤1,|y|>2

J

+

∫∫
|x|>1,|y|>1

J+

∫∫
1≤|x|≤2,|y|≤1

J+

∫∫
|x|>2,|y|≤1

J

=: I1 +I2 +I3 +I4 +I5.

Using the smoothness of ϕ and the boundedness of {|x|≤1,|y|≤2}, we have

I1≤C
∫∫
|x|≤1,|y|≤2

1

|x−y|α−1
dydx,

which together with 1<α<2 implies I1<∞.

For I2, observe that |x−y|≥ |y|−|x|≥ |y|−1≥ |y|2 for any x,y with |x|≤1,|y|>2, and
|ϕ(y)−ϕ(x)|≤2‖ϕ‖∞≤2. Thus, we have

I2≤C
∫
|x|≤1

∫
|y|>2

1

|y|1+α
dydx<∞.

Since ϕ(|x|) =ϕ(|y|) = 1 for all |x|,|y|≥1 by (2.6), we have I3 = 0.
We use the same estimate as in I1 to have I4<∞.
Note that J5 =J2 by symmetry.
Hence we complete the proof.
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2.6. Conclusion. It follows from Lemma 2.3 and Propositions 2.1, 2.2, 2.3 that
for any δ≥4 and ε>0,

H′(t)≤C

(
√
δεβ+

(
1

δ

)3/2

+
(
S1

(√
δ
)
−u+

)
+
(
u−−S1

(
−
√
δ
))

+

(
1

δ

)α−1)

≤C

(
√
δεβ+

(
S1

(√
δ
)
−u+

)
+
(
u−−S1

(
−
√
δ
))

+

(
1

δ

)α−1)
︸ ︷︷ ︸

=:E(ε,δ)

.

This, together with (2.7), implies∫
{|x|≥δεβ}

|uε(x+X(t),t)−Sε(x)|2

2
dx≤H(t) =H(0)+

∫ t

0

H′(s)ds

≤H(0)+CTE(ε,δ).

Moreover, since (2.18) yields∫
{|x|≤δεβ}

|uε(x+X(t),t)−Sε(x)|2

2
dx≤ 1

2
‖vε−Sε‖2L∞([0,T ]×R)

∫
{|x|≤δεβ}

dx≤Cδεβ ,

we have∫
R

|uε(x+X(t),t)−Sε(x)|2

2
dx≤

∫
R

|u0(x)−Sε(x)|2

2
dx+CT

(
δεβ+E(ε,δ)

)
.

Therefore,

‖uε(·+X(t),t)−Sε‖L2(R)≤‖u0−Sε‖L2(R) +C(T )
√
δεβ+E(ε,δ).

Then, using

‖Sε−S0‖L2(R) =εβ/2‖S1−S0‖L2(R),

we have

‖uε(·+X(t),t)−S0‖L2(R)≤‖uε(·+X(t),t)−Sε‖L2(R) +‖Sε−S0‖L2(R)

≤‖u0−Sε‖L2(R) +C(T )
√
δεβ+E(ε,δ)+Cεβ/2

≤‖u0−S0‖L2(R) +‖Sε−S0‖L2(R) +C(T )

(√
δεβ+E(ε,δ)+εβ/2

)
≤‖u0−S0‖L2(R) +C(T )

(√
δεβ+E(ε,δ)+εβ/2

)
.

Therefore, for some constant C(T ),

‖uε(·+X(t),t)−S0‖L2(R)≤‖u0−S0‖L2(R) +C(T )ψ(ε),

where

ψ(ε) := inf
δ≥4

(√
δεβ+E(ε,δ)+εβ/2

)
.

This completes the proof.
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