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SEEMINGLY STABLE CHEMICAL KINETICS CAN BE STABLE,
MARGINALLY STABLE, OR UNSTABLE∗

ANDREA AGAZZI† AND JONATHAN C. MATTINGLY‡

Abstract. We present three examples of chemical reaction networks whose ordinary differential
equation scaling limits are almost identical and in all cases stable. Nevertheless, the Markov jump
processes associated to these reaction networks display the full range of behaviors: one is stable (positive
recurrent), one is unstable (transient) and one is marginally stable (null recurrent). We study these
differences and characterize the invariant measures by Lyapunov function techniques. In particular, we
design a natural set of such functions which scale homogeneously to infinity, taking advantage of the
same scaling behavior of the reaction rates.
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1. Introduction
The recent progress in experimental biology and bioinformatics has sparked renewed

interest in the theoretical description of cellular biochemical processes. A common ap-
proach in this sense is to model the dynamics of chemical reactions through mass action
kinetics. The most popular formulation of this model is deterministic and describes
the dynamics of the network through a set of ordinary differential equations. These
systems of equations approximate the interactions of the individual molecules involved
in the reaction network [7, 16]. An alternative mass action kinetics framework takes
into account the discrete nature of chemical systems by representing their state as the
number of molecules of each species that are present in the reactor. In this formulation,
transitions occur when molecules combine as inputs of a reaction and transform into its
outputs, resulting in a jump in the state of the system. The dynamics of these discrete
systems can be modeled stochastically as jump Markov processes [7, Sec. 11, Exam-
ple C] whose jumping rates are specified, under the mass action kinetics assumption, by
the structure of the chemical network being modeled. It is well known that, for large
number of molecules, the dynamics of stochastic mass action kinetics converge to their
deterministic counterpart [2, 16]. However, when the number of molecules is finite the
dynamics of the two families of models can be qualitatively different. This is the object
of study of this paper.

The study of dynamical properties of mass action systems was greatly advanced with
the work of Horn and Jackson [15] and Feinberg [8]. Asymptotic studies in the stochas-
tic setting appear in the probability literature with the work of Kurtz [7, 16]. More
recently, results have appeared on the existence and characterization of the invariant
measure [4, 6] of some classes of Chemical Reaction Networks, abbreviated henceforth
as crns. Furthermore, in [5], criteria for recurrence of stochastic mass action models
based on the geometry of the underlying crn have been developed, working toward
the proof of the recurrence conjecture [5]. In this paper we study a specific family of
examples displaying radically different recurrence properties in the discrete framework
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despite their stable and almost identical behaviour when modeled deterministically. The
different asymptotic behavior stems from the different behavior in the neighborhood of
the horizontal axis which the deterministic dynamics, obtained through a scaling proce-
dure, ignores. This behavior is similar to the existence of a boundary-layer in singular
perturbation theory. We note that a similar example has independently been presented
in the recently submitted paper [3]. We then study the invariant measure of the pre-
sented networks and their convergence to it. In doing so we develop a method for the
construction of Foster-Lyapunov functions (henceforth referred to as simply Lyapunov
functions) that, to the best of the knowledge of the authors, has never been applied
for the study of the stability of this class of systems. This method is based on dy-
namic principles and capable of producing Lyapunov functions which address delicate
boundary cases between stability and instability.

1.1. The model. We consider a set of d species S :={s1,. ..,sd} whose inter-
actions are described by a set of m reactions R :={r1,. ..,rm}. Each chemical reaction
r∈R describes how molecules of different species in the reactor combine as inputs of r to
form its outputs. Then, letting N0 denote the set of nonnegative integers, we represent
any r∈R as

r :=

(
d∑
i=1

(crin)i⇀
d∑
i=1

(crout)i

)
,

where crin,c
r
out∈Nd0 count the multiplicity of each species as input and output of the

reaction r and are respectively referred to as the input and output complex of r. We
also denote by C :={cr# : r∈R,#∈{in,out}} the set of complexes. Finally, we uniquely
identify a crn with the corresponding triplet (S,C,R) .

The main object of study of this paper is the behavior of the process Xt∈Nd0,
counting in each of its components the number of molecules in the corresponding species
at time t. The effect of a reaction r∈R on the state of the network is encoded by the
respective reaction vector cr := crout−crin as follows: when reaction r occurs the state
of the network jumps as Xt→Xt+cr. The probabilistic dynamics of Xt is modeled as
a jump Markov process. The generator of this process is given under the mass action
kinetics assumption by

Lf(x) =
∑
r∈R

Λr(x)(f (x+cr)−f(x)) =
∑
r∈R

Λr(x)∆rf(x), (1.1)

for a function f : Nd0→R, and reaction rates {Λr(Nt)}r defined by

Λr(Nt) =κr

d∏
i=1

(
(Nt)i
(crin)i

)
(crin)i!, (1.2)

for reaction rate constants κr ∈R>0 and where
(
a
b

)
is the binomial coefficient, set to 0

if b 6∈ [0,a]. Accordingly, we define the Markov transition kernel Pt associated to the
process Xt. The left-action of Pt as a linear operator on the space of signed measures
on Rd+ and right-action of Pt on the space of bounded measurable functions will be
denoted by

(µPt)(A) =

∫
Nd

0

Pt(x,A)µ(dx) and (Ptf)(x) =

∫
Nd

0

f(y)Pt(x,dy),
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for any measure µ, set A and bounded measurable function f .
The generator (1.1) and the rates (1.2) can be rescaled in a natural way [16] to

describe the dynamics of the concentration vector v−1Xt∈ (v−1N0)
d in a reactor of

volume v>0. Denoting throughout by R+ the set of nonnegative real numbers, it
is well known that in the limit v→∞ the sample paths of Xv

t with initial condition
limv→∞Xv

0 =x0∈Rd
+ converge through a functional law of large numbers to the deter-

ministic trajectories x(t)∈Rd
+ of the system of ordinary differential equations

dx

dt
=

∑
r∈R

λr(x)c
r, with λr(x) :=κr

d∏
i=1

x
(crin)i
i where x=(x1, . . . ,xd), (1.3)

and initial condition x(0)=x0, provided that a solution to (1.3) exists for the time
interval of interest [7, § 11, Thm. 2.1]. Equations (1.3) are referred to as deterministic
mass action kinetics equations and the regime v→∞ as the fluid limit [16].

1.2. The examples and main results. In this paper we consider the following
crns:

crn0 : ∅⇀A+B, B⇀∅, 5A+2B⇀3B⇀2B, (1.4)

crn1 : ∅⇀A+B, A+B⇀A, 5A+2B⇀3B⇀2B, (1.5)

crn2 : ∅⇀A+B, 2A+B⇀2A, 5A+2B⇀3B⇀2B. (1.6)

For each network, we number the reactions from left to right, obtaining R=
{r1,r2,r3,r4}. The networks are displayed in Figure 1.1.

5A+2B

A+B

3B

A

B

A+B

2B

B 2A+B

A 2A

Fig. 1.1: The complex graph of the networks in (1.4)–(1.6). The common reactions in the networks
are displayed as solid arrows, while the reactions that are different in the three examples are dashed.
The existence of the reaction ∅⇀A+B makes the networks asiphonic, and the fact that all the arrows
starting on the faces of the reaction polytope (the grey triangle) point inwards makes the network
Strongly Endotactic.

Behavior in the fluid limit regime. Under the law of mass action, as the number
of molecules in (1.4)–(1.6) goes to infinity the dynamics of their appropriately rescaled
density obeys the system of ordinary differential Equations (1.3), i.e., ,

d

dt

(
x1

x2

)
=F#

(
x1

x2

)
:=

(
1
1

)
+x5

1x
2
2

(
−5
1

)
+(x3

2+x#
1 x2)

(
0
−1

)
, (1.7)

where # corresponds to the number of the crn under consideration (e.g. #=0 for
crn0) and without loss of generality we have assumed that κr=1 for all r∈R. The
latter assumption will continue to hold throughout the paper.
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Fig. 1.2: Stream lines of the vector fields in (1.7) for the networks crn0 (a), crn1 (b) and crn2
(c). The vector fields are very similar, with the only noticeable differences close to the horizontal (x1)
axis in the three figures. Asymptotically, these differences vanish in the sense of (1.8).

The crns defined above belong to the class of Asiphonic Strongly Endotactic net-
works, introduced in [1, 2]. This class of crns is defined exclusively on structural prop-
erties of the networks. These properties ensure on one hand that no subset of ∂Rd+ is
invariant under the flow of (1.7) (i.e., that such networks can recover from the extinction
of any of their species) and on the other hand that the dynamics (1.7) is asymptotically
stable as t→∞ [9]. Furthermore, deviations of the appropriately rescaled stochastic
systems (1.4)–(1.6) satisfy a large deviations principle in finite time [2]. Both these
results are obtained by showing that at large concentrations the reactions dominating
the sum (1.1) (the ones with input complexes on the vertices of the shaded polytope
in Figure 1.1) contribute to pushing the state of the system towards a compact set in
phase space. We note that for crn0, crn1 and crn2 these dominating reactions coincide.
Asymptotically, these networks display therefore the same behavior in the sense that
for every sequence {xn}∈N2 with limn→∞‖xn‖2 =∞ we have

lim
n→∞

max
i,j∈{0,1,2}

‖Fj(xn)−Fi(xn)‖2
‖Fj(xn)‖2

= 0 (1.8)

as can be seen from the flow lines in Figure 1.2.

Behavior at finite size. The probabilistic nature of the process Xt requires a
different definition of stability than the one given in the deterministic framework:

Definition 1.1. For a compact set K∈Nd0, we denote the return time of the process
Xt to K by τK := inf{t>0 : Xt∈K} and say that a the process Xt is positive recur-
rent if Ex [τK]<∞, null recurrent if Px [τK<∞] = 1 but Ex [τK] =∞, and transient if
Px [τK<∞]<1.

To infer the stability properties of Xt as defined in Definition 1.1 for the systems
(1.4)–(1.6), similarly to [12] we study whether the following Lyapunov stability condition
is satisfied:

Condition 1.1 (Stability). There exists a Lyapunov function V with rate ϕ, i.e., a
Borel measureable function V : Nd0→R+ such that for every c>0 the set V −1({x≤ c})
is compact and

LV ≤K1K−ϕ(V ), (1.9)

for some constant K>0, a compact set K and some monotone increasing function
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ϕ(x) : R+→R+ with ϕ(0) = 0. Throughout we refer to the couple (V,ϕ) as above as a
Lyapunov pair and to the sets V −1({x≤ c}) as the sublevel sets of V . In this sense, a
Lyapunov function is a Borel measurable function with compact sublevel sets satisfying
(1.9). The existence of such a function required in Condition 1.1 guarantees that the
process returns, on average, to a compact set in Nd0 by bounding from above its average
speed towards that set [10,18].

Provided that the stability of the process Xt has been established, we proceed to
study its invariant measure, i.e., a measure µ on Nd0 with µPt=µ. In particular, we are
interested in the density of such measure and in the convergence under the flow defined
by Pt of another measure ν to it. Similarly to [12] we obtain such result by combining
Condition 1.1 with the following mixing condition:

Condition 1.2 (Mixing). The level sets of V are “small” enough, i.e., for every
CM >0 and every (x,y)∈Nd0×Nd0 such that V (x)+V (y)≤CM , there exists α>0 and
T >0 such that

‖PT (x, ·)−PT (y, ·)‖TV≤2(1−α). (1.10)

Combined with Condition 1.1, this Doeblin-like condition ensures the existence of a
“small” attracting region of phase space where two processes with the same generator
mix fast enough before fluctuating out of such region.

We are now ready to describe how, despite their similar asymptotic behaviour in
the fluid limit regime, the three networks in (1.4)–(1.6) display significantly different
behaviors when modeled probabilistically. This is summarized in the following result:

Proposition 1.1. The stochastic process Xt for the network
(a) crn0 is positive recurrent and has a unique invariant probability measure

µ0. Furthermore the Lyapunov pair (V,ϕ) constructed in Section 3.2 satisfies∫
N2

0
ϕ(V (x))µ0(dx)<∞. Any two initial point measures converge exponentially fast

to one another, i.e., for any x,y∈Nd0 there exists %<1 and a positive constant C
such that for all t>0 one has

‖Pt(x, ·)−Pt(y, ·)‖TV≤C%t‖P0(x, ·)−P0(y, ·)‖TV.

Consequently, we have exponential convergence to the invariant measure, i.e., for
any x∈Nd0 there exists %′<1 and a positive constant C ′ such that for all t>0 one
has

‖Pt(x, ·)−µ0‖TV≤C ′%′t‖P0(x, ·)−µ0‖TV.

(b) crn1 is null recurrent and has a unique (up to scalar multiplication) σ-finite invari-
ant measure µ1. Furthermore the Lyapunov pair (V,ϕ) constructed in Section 3.2
satisfies

∫
N2

0
ϕ(V (x))µ1(dx)<∞.

(c) crn2 is transient.

Remark 1.1. The bound
∫
N2

0
ϕ(V (x))µ#(dx)<∞ in parts (a) and (b) of the above

proposition allows to control asymptotically the invariant measure density. This result is
proven in Lemma 5.1. In the case of the crns at hand, we will show in Section 3.2 that
ϕ(V (x))∼‖x‖δ′0 for δ′0∈R. Therefore, we can establish the crude asymptotic bound
µ#(dx) =O(‖x‖−1−δ′0).

We establish the above result in two steps. The first is to construct a Lyapunov
function V satisfying Condition 1.1 when Xt is not transient, while the second is to
combine Condition 1.1 and Condition 1.2 to obtain the desired estimates on µ.
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The first step is executed by studying the dominant behaviour of the generator L for
large values of x. Indeed, as shown in [1] and originally, in a deterministic framework
by [9], the phase space can be divided radially (in a certain set of coordinates) into
dominance regions where L acquires asymptotically a particularly simple form. We
use this simplification to construct a Lyapunov function V satisfying (1.9) in each of
these regions separately. Finally, we handle the gluing of the locally defined candidate
Lyapunov function. This is done by showing that, under certain convexity conditions
on the glued Lyapunov function at the interface between two adjacent regions, (1.9) is
automatically satisfied at that interface.

The strategy adopted for the local construction of V to simplify the verification of
(1.9) in a given dominance region T ⊂R2

+ pivots on the monomial form of the asymp-
totic rates λr. Indeed, such rates scale homogeneously under any scaling transformation.
This is true in particular for transformations leaving subsets of T invariant. Hence, con-
structing V to also scale homogeneously under such transformations allows to exclude
most of the summands in LV by power counting, reducing the right-hand side in (1.9)
to a monomial in the scaling variable, whose evaluation is immediate. Taking also h to
scale homogeneously under the same transformation reduces the left-hand side of (1.9)
to the same form, significantly simplifying the verification of the desired inequality.

In the second step, the results of Proposition 1.1 are obtained through Condition 1.1
and Condition 1.2 by similar arguments to the ones developed in [12].

The paper is structured as follows: In Section 2 we study the behavior of the
process Xt for small values of (Xt)2. This is the region where the dynamics of the
three examples (1.4)-(1.6) are radically different from one another. This allows to prove
Proposition 1.1 (c). In Section 3 we turn to the piecewise construction of Lyapunov
functions for the study of the stability of the two remaining examples. In Section 3.1 we
study the behavior of L, which we use in Sections 3.2–3.3 to construct V satisfying (1.9)
as described above. Section 4 is devoted to the patching of local Lyapunov functions.
Finally, in Section 5 we prove the results about existence of and convergence to the
invariant measure.

2. Stability of CRNs

As explained in Section 1.2 and more precisely in [2], in the limit of large number
of molecules the dynamics of (1.4)–(1.6) is stable under the appropriate scaling. This
result relies on the approximation of the reaction rates (1.2) with monomials by the
Stirling formula. This approximation breaks down when at least one component of Xt

is O(1), i.e., Xt is close to the boundary of Rd+. In this regime the stability results
above are no longer valid in general and more careful analysis is needed to infer the
dynamical behavior of the networks at hand.

2.1. Boundary dynamics. In this section we consider the behavior of the
three crns when (Xt)2 =O(1). Recall that, by definition, some of the discrete rates
Λr(x) of the process Xt will vanish in a neighborhood of the boundary {x2 = 0}. More
precisely, defining throughout T01(n) :={(x1,x2)∈N2

0 : x2<n} we have that the set of
reactions {r2,r3,r4} will have vanishing rate in T01(1), while reactions in {r3,r4} will do
the same in T01(2). This intermittent behavior implies that within T01(2) the dynamics
of the process is far from deterministic (in contrast to what happens in the bulk) and is
instead dominated by stochastic effects. It is in this regime that the structural differences
between the networks become critical, resulting in radically different stability properties
of the process Xt as we see below. We now proceed to study this regime to prove part (c)
of Proposition 1.1, and to characterize the exit distribution from this noise-dominated
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region for crn0 and crn1.

crn2. Choosing without loss of generality the rate constants κ1 =κ2 = 1, the
reaction rates of the network for x= (x1,x2)∈T01(2) are

Λ1(x) = 1, Λ2(x) =1{x2≥1}x
2
1 +O(x1), Λ3(x) = 0, Λ4(x) = 0, (2.1)

where 1A denotes the indicator function over the set A. Throughout, we define the
Markov chain Xn associated to the process Xt stopped when exiting T01(2) as

Xn :=X(τn) where τn= inf{t>τn−1 : X(t) 6=X(τn−1) or X(t) 6∈ T01(2)}.
(2.2)

(τn is finite with probability one since the jump rate is positive at any point in T01(2)).
The possible transitions and associated probabilities of Xn are:

• for Xn= (x1,0) we jump to Xn+1 = (x1 +1,1) with probability 1,

• for Xn= (x1,1) we jump up (↑) to Xn+1 = (x1 +1,2) with probability p↑(x1) =
1/(x21 +1), or down (↓) to Xn+1 = (x1,0) with probability p↓(x1) = 1−p↑(x1) =
x21/(x

2
1 +1),

• for Xn= (x1,2) the process is stopped, i.e., Xn+1 = (x1,2) with probability 1.

We are now ready to prove Proposition 1.1 (c).

Lemma 2.1. The Markov process Xt associated to the crn (1.6) is transient.

Proof. By irreducibility of Xt we can choose without loss of generality X0 = (k0,0)
for k0>0. For k∈N we denote by ↑k and ↓k the event of jumping up and down,
respectively, from site (k,1). Observe that for any n>k0>0 we have

P

[
n⋂

k=k0+1

↓k

]
≥1−P

[
n⋃

k=k0+1

↑k

]
= 1−

n∑
k=k0

p↓(k) = 1−
n∑

k=k0

1

k2 +1
. (2.3)

Since the above sum converges as n→∞, upon choosing k0 =k?0 large enough we have

P
[⋂n

k=k?0+1 ↓k
]
≥1/2 for any n>k?0 . Therefore defining τ ′(k?0 ,0)

as the first return time to

(k?0 ,0) and by ∆τx the jump time of the process at x∈Nd0, we can bound the probability
that τ ′(k?0 ,0)

≥ log(n) by

P(k?0 ,0)

[
τ ′(k?0 ,0)≥ log(n)

]
≥P(k?0 ,0)


n+k?0⋂
k=k?0+1

↓k

∩


n+k?0∑
k=k?0+1

∆τ(k,0) +∆τ(k,1)≥ log(n)




≥P(k?0 ,0)

 n+k?0∑
k=k?0+1

∆τ(k,0)≥ log(n)
∣∣∣ n+k?0⋂
k=k?0+1

↓k

P(k?0 ,0)

 n+k?0⋂
k=k?0+1

↓k


≥P

[
Y log(n)≤n

]
·P(k?0 ,0)

 n+k?0⋂
k=k?0+1

↓k

≥ 1

2
P
[
Y log(n)≤n

]

where Y λ is a Poisson random variable with rate λ. Noting that by choosing n large
enough we can bound P

[
Y log(n)≤n

]
≥1/2 using, for example, Stirling formula and

taking the limit n→∞ implies P(k?0 ,0)

[
τ ′(k?0 ,0)

=∞
]
≥1/4, concluding the proof.
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crn0 and crn1. We proceed to characterize the exit distribution of Xt from
T01(2) for crn0 and crn1. For these networks, the reaction rates are identical to those
in (2.1) except for Λ2(·), which reads,

crn0: Λ2(x) = 1, crn1: Λ2(x) =1{x2≥1}x1.

Consequently, the jumping probabilities of the associated Markov chain Xn remain
unchanged except when x2 = 1. Assuming without loss of generality that κr = 1 for all
r∈R, we have for Xn= (x1,1) that

crn0: p↑(x1) =
1

2
, p↓(x1) =

1

2
, crn1: p↑(x1) =

1

x1 +1
, p↓(x1) =

x1
x1 +1

.

(2.4)
Therefore, the exit distribution of Xt from T01(2) is the same as for Xn. Furthermore
for X0 = (k0,0) and b≥k0, we have

P(k0,0) [X∞= (b+1,2)] := lim
n→∞

P(k0,0) [Xn= (b+1,2)]

=P

[
↑b∩

b−1⋂
k=k0+1

↓k

]
=p↑(b)

b−1∏
k=k0+1

p↓(k). (2.5)

Combining (2.4) and (2.5) we obtain for crn0

P(k0,0) [X∞= (b+1,2)] = (1−a)ab−k0 ,

where we have defined a=P[↓] = 1/2 the probability of jumping down on level x2 = 1.
Similarly for crn1 we have

lim
n→∞

P(k0,0) [X∞= (b+1,2)] =
1

b+1

b−1∏
k=k0

k

k+1
=

k0
b(b+1)

. (2.6)

Remark 2.1. Using (2.6) and defining k0 := (x0)1 we bound from below the expected
hitting time τK of a compact set K⊆Rd+ by

Ex0
[τK]≥Ex0

[inf{τ : (Xτ )2>1}]≥
∞∑

k=k0

Px0
[X∞= (k+1,2)]

k∑
j=k0

E
[
∆τ(j,0)

]
≥x0

∫ ∞
k0+1

k−x0
k(k+1)

dk,

where we used that the jumping time ∆τx at (j,0) has constant expectation. Hence, for
crn1 we have E[τK] =∞. In light of this, in order to prove null recurrence it remains
to show that Px [τK<∞] = 1. By [18, Theorem 12.3.3] this is the case if there exists
a Lyapunov function satisfying (1.9). We construct such a function in the upcoming
section.

3. Local Lyapunov functions
In this section we study the stability of crn0 and crn1 by introducing a family

of Lyapunov functions V that verifies Condition 1.1. We outline below the intuition
behind the construction of V and will carry out such construction in full detail in the
subsequent sections.
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To establish (1.9) we notice that, by boundedness of the function V and of the rates
(1.2) on compact sets, it is sufficient to have

LV (x)≤−ϕ◦V (x) ∀x∈Nd0 \K, (3.1)

for a compact set K large enough. In other words we are interested in the asymptotic
behavior of the left-hand side of (3.1). To explore it we introduce the following family
of scaling transformations.

Definition 3.1 (Scaling transformations). For any vector w= (w1,w2)∈S1 and
scaling parameter l∈R+ we define the family of transformations S w

l by

S w
l (x) := (lw1x1,l

w2x2) for x= (x1,x2)∈Nd0. (3.2)

Furthermore, we say that a function φ : R2
+→R scales homogeneously under S w

l if

φ◦S w
l (·) = lδφ( ·) for some δ∈R. In this case we write φ

w∼ lδ.

For any w∈S1 we then obtain (3.1) in a region T that is invariant under (3.2) by
showing that for l large enough∑

r∈R
Λr(S

w
l (x))∆rV (S w

l (x))≤−ϕ◦V (S w
l (x)). (3.3)

for all x∈Rd+ with ‖x‖1≤1 and S w
l (x)∈Nd0, where we define throughout the difference

operator ∆rf(x) :=f (x+cr)−f(x).
Let throughout S1

+ be the open positive orthant of S1. Fixing w∈S1
+ recall that

the rates (1.2) scale, to leading order, like the ones in (1.3):

Λr(S
w
l (x)) =κr

d∏
i=1

(
lwixi
(crin)i

)
(crin)i! =κrl

〈w,crin〉
d∏
i=1

x
(crin)i
i +O(l〈w,c

r
in〉)

=λr(S
w
l (x))+O(l〈w,c

r
in〉), (3.4)

and that all the rates λr scale homogeneously under S w
l . Under the key assumption

that the same holds for V , i.e., provided that there exists a function V ∈C1(R2
+) and

δ : S1→R+ such that

V (S w
l (x)) = lδ(w)V (x), (3.5)

we show that for all r∈R we can write

∆rV (S w
l (x)) = lvr(w)∆rV (x)+O(lvr(w)), (3.6)

for an operator ∆r : C1(Rd+)→C0(Rd+) and a function vr : S1→R. This allows to obtain
the desired result by a scaling argument: writing the left-hand side of (3.3) to leading
order in each of its summands as

LV (S w
l (x)) =

∑
r∈R

(
l〈w,c

r
in〉+vr(w)λr(x)∆rV (x)+O(l〈w,c

r
in〉)
)

= lδ
′(w)h(x)+O(lδ

′(w)), (3.7)

where

δ′(w) := max{δ′r(w) : r∈R} for δ′r(w) := 〈w,cinr 〉+vr(w) (3.8)
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and

h(x) :=TiV (x), for Tif(x) :=
∑
r∈Rw

λr(x)∆rf(x), (3.9)

and Rw :={r∈R : δ′r(w)≥ δ′r′(w)∀r′∈R}, we immediately obtain (3.1) by combining
(3.5) with (3.7) and by defining

ϕ(x) :=Chx
δ′(w)/δ(w) for Ch∈ (0,1). (3.10)

Remark 3.1. Assumption (3.5) emerges naturally from the structure of the problem
at hand, as encoded by the generator (1.1). Indeed, by the scaling of the rates (1.2)
as monomials for all w∈S1, this assumption allows to consider the left-hand side of
(3.1) as a polynomial in S w

l . Consequently, for any w∈S1 the study of LV reduces to
identifying the term dominating the polynomial under that scaling. This establishes a
connection with the domain of tropical geometry [17].

In the following sections we realize the program outlined above. First of all we
characterize the operator ∆ for which (3.5) holds, and divide the space into regions
{T } where the leading term in the approximation of LV is constant. We then locally
construct a region-specific Lyapunov pair (V ,h) satisfying the Definition (3.7) by solving
the Poisson Equation (3.9) in each region, i.e.,{

TiV i(x) =−hi(x) for x∈Ti
V i(x) =V j(x) for x∈∂Ti

. (3.11)

for a function h
w∼ lδ′(w) and boundary conditions V j

w∼ lδ(w). This way we enforce (3.7)
to the first order in the scaling parameter l. By the leading order expansion we expect
such candidate Lyapunov functions to solve (3.1) with ϕ as in (3.10). We verify that
this condition is indeed satisfied in the last paragraph of this section.

3.1. Scaling of the generator. Assuming that for w∈S1
+ the function V (x)

satisfies (3.5), we have that

LV (S w
l (x)) =

∑
r∈R

Λr(S
w
l (x))(V (S w

l (x)+cr)−V (S w
l (x))

=
∑
r∈R

l〈c
r
in,w〉+vrλr(x)

(
V (x+(S w

l )−1(cr))−V (x)
)

+O(l〈c
r
in,w〉+vr ). (3.12)

Now, for w∈S1
+ we can approximate to leading order the difference terms in (3.12) by

partial derivatives. Indeed, for each r∈R we expand V as

V
(
x+(S w

l )−1(cr)
)

=V
(
xi+ l−wicri

)
=V (x)+

∑
i∈Ir

l−wicri ∂iV (x)+O(l−wi). (3.13)

where ∂i denotes a partial derivative in direction i∈S and we have defined the index set
Ir := min{i∈ suppcr : wi≤wj∀j 6= i}. We make this statement precise in Lemma 3.9
below. We see that the dominant term in (3.3) depends on the chosen vector w. There-
fore we can divide S1

+ into regions characterized by different dominating terms in (3.3).
In this case we write:

L∼T1 :=x51x
2
2(−5∂1) for w∈W1 :={w∈S1 : w2>w1>0}

L∼T2 :=x51x
2
2 (∂2−5∂1) for w∈W2 :={w∈S1 :w2 =w1 = 1/

√
2}

L∼T3 :=x51x
2
2∂2 for w∈W3 :={w∈S1 : 0<w2<w1}

. (3.14)



A. AGAZZI AND J.C. MATTINGLY 1615

Remark 3.2. We see that the dominant terms in (3.14) and the dominance re-
gions are the same as the ones of the deterministic transport generator Tf(x) :=∑
r∈Rλr(x)〈cr,∇f(x)〉, which for crn0 reads

T :=
(
l−w1∂1 + l−w2∂2

)
+ l−w2(−∂2)

+ l5w1+2w2x51x
2
2

(
l−w1(−5∂1)+ l−w2∂2

)
+ l2w2x32(−∂2) . (3.15)

In this sense, for w∈S1
+ the discrete generator (1.1) is well approximated under S w

l by
its deterministic, continuous counterpart T . For w∈{(1,0),(0,1)} this approximation
is not possible because the jumping nature of the process becomes dominant, as we will
see in the upcoming sections.

It is apparent in (3.14) that the point sets W0 :={(0,1)},W2 ={1/
√

2(1,1)},W4 :=
{(1,0)} limit intervals of w where one single term dominates the generator. These points
uniquely identify radial lines in R2 through the polar coordinate system with parameters
(l,w)∈ (R+,S

1). In the neighborhoods of these lines, defined throughout as

Wi(ξ) :=

{
(ϑ,w)∈R≥1×Sd−1 : log(ϑ) inf

w′∈Wi

‖(w−w′)‖2≤ ξ
}
, (3.16)

we observe a transition between dominant terms of the generator, as depicted in Figure
3.1 (a). Such neighborhoods and their complement define a partition of R2. This
partition can be mapped through the component-wise exponential function to a partition
of R2

+ into dominance regions of the generator, as displayed in Figure 3.1 (b).

Remark 3.3. The partition W0,. ..,W4 defined above corresponds to the partition
W∗1 ∪W∗2 introduced in [1]. (See [1] for the definition ofW∗1 andW∗2 .) This construction
is therefore naturally generalizable to a higher-dimensional framework. Furthermore,
the regions defined in (3.16) correspond, asymptotically in l, to the sets introduced
in [1, Definition 4.16], and the geometric results of [1, Lemma 4.26] therefore directly
apply to the problem at hand. We denote the regions in R2

+ corresponding to the
dominant behaviors in (1.1) by Ti for i∈ (0,. ..,4). We further define, throughout, the
boundaries separating two regions i and j by Tij :=T i∩T j , where A denotes the closure
of the set A. In our case these sets can be written as

T01 :={x2 = b0}, T12 :={x2 =x1/b1}, T23 :={x2 = b1x1}, T34 :={x1 = b2}, (3.17)

where the parameters b0,b1,b2∈ (1,∞) will be fixed to our convenience at a later point
of the analysis. The dominant behaviors of the generator and the above definitions are
summarized in Figure 3.1.

Remark 3.4. The boundaries separating different dominating regions of the generator
are so-called toric rays and they partition the phase space into a tropical fan . A similar
asymptotic partition was used in [1, 9] always for the study of crns, establishing a
connection between this subject and the one of tropical geometry.

3.2. Construction of the Lyapunov function. We now use the partition
developed in the previous section to construct a Lyapunov function satisfying (3.9)
and scaling homogeneously as required in (3.5). More precisely we construct such a
Lyapunov function V i(x) in each Ti by solving the Poisson problem (3.11) with ∂Ti=Tij
for all j with T i∩T j 6=∅. The reason for this choice of Lyapunov function is twofold.
On one hand, since both Ti and our choice of hi and boundary conditions V j scale
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W2(4)W3

W1

W0(2)

W4(2)

(a)

T2T3

T1
T0

T4

(b)

Fig. 3.1: The vector field for (3.15) under the S w
l scaling for large l in the coordinates (l,w) for

w∈S1
+ (a) and in the original coordinates (x1,x2) (b). In (a) dashed lines denote the radial directions

associated to W0,W2,W4. The corresponding neighborhoods W0(2),W2(4),W4(2) are mapped by the
component-wise exponential into the transition regions T0,T2,T4 respectively. Solid lines denote tran-
sitions between different dominance regions in both coordinate systems: in (b) T01 in blue, T12 in red,
T23 in green and T34 in yellow.

homogeneously under S w
l for w∈Wi, we expect the candidate Lyapunov function to

also scale homogeneously under the same set of transformations, thereby satisfying the
key assumption (3.5) of Section 3.1. On the other hand, as the function V i satisfies
(3.9) by construction, by the dominance of Ti in Ti and the discussion of Section 3.1 we
expect it to satisfy (3.1) with ϕ as in (3.10).

We solve (3.11) by the method of characteristics, i.e., by direct integration of the
right-hand side:

V i(x) =Ex
[
V j(Xτi)

]
+Ex

[∫ τi

0

hi (Xt)dt

]
, (3.18)

where τi := inf{t : Xt 6∈ Ti} is the exit time from Ti and expectations are taken with
respect to the dynamics of Xt with generator Ti from (3.11). We proceed to calculate
(3.18) by considering different regions of phase space separately. In each of these regions
we will assume that h scales homogeneously as in Definition 3.1 under a scaling that
depends on the region where they are defined.

Priming region: T4. We start by studying the dynamics of Xt in T4. As
displayed in Figure 3.1(a) in this region of phase space the process Xt is rapidly con-
verging to a compact set. For this reason, we call T4 the priming region. We estab-
lish (3.1) asymptotically by using the transformation from Definition 3.1 that leaves
T4 invariant, i.e., S w

l with w= (0,1). We seek to obtain the Lyapunov function by
solving (3.11) with the assumption that both h4 and the boundary condition V ∗4 on
T ∗4 :=:={(x,y)∈N2

0 : x= 0} scale homogeneously under such transformation. In order
to realize this program we first identify the dominant terms of the generator L under
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the scaling S w
l . We proceed similarly to (3.12) and assuming that (3.5) holds we obtain

LV (S w
l x) = l3x32(V (x1,x2− l−1)−V (x)+ l2

(
x1
5

)
x22
(
V (x1−5,x2)−V (x)

)
+O(l2).

(3.19)
where we have not approximated the binomial coefficients involving x1 as (3.4) does not
hold in this regime and used the fact that the first difference term on the right-hand
side scales as l−1to leading order by Taylor expansion. In light of this we write the
asymptotic generator in T4 as

T4f(x) =x32 (f(x1,x2−1)−f(x))+

(
x1
5

)
x22 (f(x1−5,x2)−f(x)). (3.20)

Remark 3.5. Because w1 = 0, in this region (3.4) and (3.13) cannot be used to
approximate (3.19) by a first-order differential operator with monomial rates as in (3.12).
In particular, despite being significantly simplified with respect to its original form, the
operator T4 remains the one of a jump Markov process. In this sense, the discrete nature
of the problem at hand is “felt” by the Lyapunov function only close to ∂R2

+.

We now proceed to propagate the Lyapunov function in T4 by using (3.18). To do
so we specify the behavior of V on the boundary T ∗4 . Denoting throughout by ei the
unit vector in direction i∈S, by computing the two terms on the right-hand side of
(3.18) for T4 as in (3.20) we obtain the following result.

Lemma 3.1. The function

V4(x) :=m∗4x
δ∗4
2 +h4

x1∑
k=1

kδ
′
4

δ′′4 −2+
(
k
5

)
5!
x
δ′′4−2
2 , (3.21)

approximating the solution of (3.11) with

h4(x) :=h4x
δ′4
1 x

δ′′4
2 and V ∗4 (x) :=m∗4x

δ∗4
2 , (3.22)

for h4∈R+ and m∗4∈R+ is a well defined local Lyapunov function for all x= (x1,x2)∈T4
and all δ∗4 ,δ

′′
4 >0, δ′4∈R. Furthermore assuming that

δ′′4 −2 = δ∗4 , (3.23)

we have V4
w∼ lδ4 for w=e2 and δ4 := δ∗4 .

Proof. Under the assumptions of this lemma we show in the appendix that the
solution to (3.11) is well-defined and can be approximated by (3.21). We immediately
notice that this function scales homogeneously under S w

l for w=e2 iff δ′′4 −2 = δ∗4 . We
now show that this function is a local Lyapunov function on T4 for the generator T4.
Computing

T4V4(x) =x22

(
x1
5

)
5!(V4(x−5e1)−V4(x))−x32∂2V4(x)

≤−
(
x1
5

)
5!

h4

δ4 +5
(
x1

5

)
5!
x
δ′′4
2 −

(
m∗4 +

x1∑
k=1

h4

δ4 +
(
k
5

)
5!

)
δ4x

δ′′4
2 ≤−C(m∗4 +h4),

for a constant C>0.
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Transport regions: T1, T2 and T3. Recall from (3.14) and Remark 3.2 that
for w∈S1

+ the scaled generator L(S w
l x) converges to a transport operator {Ti}. For

this reason we call regions T1,T2 and T3 transport regions. In these regions, we obtain
the solution to the Poisson Equation (3.11) by the method of characteristics (3.18), as
we do below.

We further recall that in L is approximated by Ti under the family of scalings S w
l

for w∈Wi. For this reason instead of defining one scaling that maps the interior of the
region Ti to a compact we explore the asymptotic behavior of L and the candidate local
Lyapunov function V i through a family of scaling transformations. We use this fact to
prove (3.1) by the scaling analysis of Section 3.1 carried out for all w∈Wi. To do so we
need to assume that hi scales homogeneously under all such transformations, i.e., that
there exists δi : S

1→R such that

hi
w∼ lδ

′
i(w) ∀w∈Wi. (3.24)

This condition is in particular satisfied by choosing hi to be a monomial, as we do below.
We start by T3.

Lemma 3.2. The Lyapunov function V 3 solving (3.11) with

h3(x) :=h3x
δ′3
1 x

δ′′3
2 and V4(x) =m4x

δ4
2 , (3.25)

for h3>0 and m4 =m4(b2)>0 is well defined for all x= (x1,x2)∈T3 and all δ4>0,
δ′′3 ∈R and δ′3 6= 4. Furthermore, for the choice of constants

δ′3>4, δ′′3 −2 = δ4 and h3 = (δ′3−4)m4b
−(δ′3−4)
2 , (3.26)

we can write V 3(x) =h3(δ′3−4)x
δ′3−4
1 x

δ′′3−2
2 .

Proof. By the method of characteristics we obtain V 3 satisfying (3.11) by integrat-
ing h3 along the solutions of the set of ordinary differential equations ẋ=T3x. Recalling
by (3.14) that such solutions are moving from x1(0) to b2 on lines with x2(t) =x2(0),
by our choice (3.25) of boundary condition on T34 we obtain

V 3(x) =m4x
δ4
2 +

∫ x1

b2

h3z
δ′3x

δ′′3
2

1

z5x22
dz

=m4x
δ4
2 −

h3
δ′3−4

b
δ′3−4
2 x

δ′′3−2
2 +

h3
δ′3−4

x
δ′3−4
1 x

δ′′3−2
2 ,

where we have assumed that δ′3>4. This function is clearly well defined in R2
+ for all

choices of parameters. Now we see that in order for V 3 to scale homogeneously under
S w
l for all w∈W3 we need (3.26) as h3>0. This directly implies that V 3 has the

desired form.

Remark 3.6. The requirement of having a Lyapunov function V that scales homo-
geneously under all transformations S w

l for w∈Wi can be relaxed to having V scale
homogeneously under S w

l for w= (1,1)/
√

2. This method allows to construct a larger
family of Lyapunov functions. However, in this case attention must be paid not to
construct candidate Lyapunov functions that diverge at the boundary. We carry out
such an alternative construction in the regions T1,T2,T3 in the appendix.

Proceeding to construct the candidate local Lyapunov function in T2, we notice that
this region is invariant under S w

l for w= (1,1)/
√

2. Defining throughout for any x∈Ti,
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πijx as the projection of x onto Tij along the characteristics of Ti in Ti we construct V 2

assuming that h2( ·) scales homogeneously under that transformation:

Lemma 3.3. The Lyapunov function V 2 solving (3.11) with

h2(x) :=h2(x1 +5x2)δ
′
2 and V3(π23x) =m3(x1 +5x2)δ3 , (3.27)

for h2>0 is well defined for all x= (x1,x2)∈T2 and all δ′2∈R, δ3>0. Furthermore, for
the choice of constants

δ′2 = δ′3 +δ′′3 , (3.28)

we have V 2
w∼ lδ2 for w= (1,1)/

√
2 and δ2 := δ′2−6.

Proof. We again find the solution to (3.11) in T2 by the method of characteristics.
Denoting by γ3(x,π23) the path along the characteristic of T2 starting at x and ending
at π23x and noting that h2( ·) defined in (3.27) is constant on such a path we have

V 2(x) =V3(π23x)+h2(x1 +5x2)δ
′
2

∫
γ3(x,π23x)

1

z51z
2
2

dz. (3.29)

Consequently, using that π23x= (x1 +5x2)(1+5b1)−1(1,b1) we write the explicit result
of the integral as

V 2(x) =m3(x1 +5x2)δ3 +
h2
12

(x1 +5x2)δ
′
2−6 5+b−11

1−b−21

(P (b1)−P (x2/x1)), (3.30)

for P (x) :=−(12/x)+3000x+7500x2 +12500x3 +9375x4 +300logx, δ3 := δ′3 +δ′′3 −6
and m3 =m3(b1) :=h3(b1)δ

′′
3 (1+b1)δ3 . Since the difference term is scale–invariant under

S w
l for w= (1,1) we obtain the homogeneous scaling behavior of (3.30) iff δ3 = δ′2−6,

leading to (3.28).

Remark 3.7. The homogeneous scaling behavior of V 2 in (3.30) could also be derived
without explicit integration of (3.29). Indeed, since both the integrand and the path

length of γ scale homogeneously in l under S
(1,1)/

√
2

l , one must have V 2
w∼ lδ′2−7+1 for

w= (1,1)/
√

2 in T2 (up to a constant that increases in the parameters b0,b1).

We conclude by considering the region T1. Similarly to the case of T3 we construct
a local Lyapunov function choosing a function h1 that scales homogeneously under the
family of scaling transformations S w

l for w∈W1.

Lemma 3.4. The Lyapunov function V 1 solving (3.11) with

h1(x) :=h1x
δ′1
1 x

δ′′1
2 and V 2(x) =m2x

δ2
1 ,

for h1>0 is well defined for all x= (x1,x2)∈T2 and all δ2>0, δ′1,δ
′′
1 ∈R with δ′′1 6= 1.

Furthermore, for the choice of constants

δ′′1 <1, δ′2 = δ′1 +δ′′1 and h1 =m2 (1−δ′′1 )b
δ′′1−1
1 , (3.31)

we can write V 1(x) =h1(1−δ′′1 )−1x
δ′1−5
1 x

δ′′1−1
2 .

Proof. We obtain the Lyapunov function by integrating along the characteristic
lines of the transport operator T1. Noting that these lines satisfy x1(t) =x1(0) for all
t>0 we write

V 1(x) =V 2(π12(x))+h1

∫ x2

x1/b1

x
δ′1
1 y

δ′′1
1

x51y
2

dy
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=m2x
δ2
1 −

h1
1−δ′′1

x
δ′1−5
1 (x1/b1)δ

′′
1−1 +

h1
1−δ′′1

x
δ′1−5
1 x

δ′′1−1
2 , (3.32)

for

m2(b1) =m3(1+5/b1)δ3 +
h2
12

5+b−11

1−b−21

(P (b1)−P (b−11 ))(1+5/b1)δ2 >0. (3.33)

We immediately recognize that the right-hand side of (3.32) scales homogeneously under
S w
l for w∈W1 if (3.31) holds, resulting in the desired definition for V 1(·).

Diffusive region: T0,T ′0 . Because noise dominates the behavior of the process
for small values of x2, throughout we refer to T0 as the diffusive region.

First, we continue to T0 the Lyapunov function generated in the previous sections
{x2 = b0} by propagation through (3.18) in the transition region T ′0 :={x∈N2

0 : x2∈
[2,b2]}. Here, expectations are taken with respect to the process Xt with asymptotic
generator

T ′0f(x) :=k3x
5
1

(
x2
2

)
(f(x1,x2 +1)−f(x)). (3.34)

This generator approximates the rate Λr(x) as a power in the components that diverge
under the scaling S w

l for the chosen w while leaving the binomial formulation in the
components that are not affected by such scaling. We refer to such a generator as a
semi-continuous approximating generator.

Lemma 3.5. The function V ′0 defined in (3.18) with h′0(x),V1(x) given by

h′0(x) :=h′0x
δ′′0
1 and V1(x) =m1x

δ1
1 ,

for h′0>0 and m1 =m1(b1)>0 is well defined for all x= (x1,x2)∈T ′0 and all δ′′0 ∈R,
δ1>0. Furthermore, for the choice of constants

δ1 = δ′′0 −5, (3.35)

we have that V
′
0(x)

w∼ lδ1 for w=e1.

Proof. The above result is obtained by directly applying (3.18) for the dominant
generator T ′0 from (3.34):

V
′
0(x) =m1x

δ0
1 +h′0x

δ′′0−5
1

b1∑
k=x2

(
k

2

)−1
,

which scales homogeneously under S w
l for w=e1 iff (3.35) holds.

We now consider the region T0. By our fundamental assumption, we choose h0 and

V
′
0 to scale homogeneously under the transformation that leaves the set T0 invariant

(S w
l for w=e1), i.e.,{

h0(x) :=h0x
δ′0
1

V
′
0(x) :=m′0x

δ0
1

for δ′0∈R,δ0∈R+,h0,m0∈R+. (3.36)

We then obtain the following result for the propagated local Lyapunov function in T0:
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Lemma 3.6. Let V0 be the function defined on T0 through (3.18) with h0(x),V
′
0(x)

specified in (3.36). Then, for crn0 V0 is well defined for all choices of δ0∈R+ and δ′0∈R,
while the same is true for crn1 only if δ0<1 and δ′0<0. If the above conditions are
satisfied and we choose δ0>0, there exists a decreasing, positive function m0 : (1,2)→
R+, such that the function

V0(x) =

{
m0(x2)xδ01 for x2∈ (1,2)

m0(1)(x1 +1)δ0 +h0x
δ′0
1 for x2 = 0

, (3.37)

is a Lyapunov function in T0 setting δ′0 = δ0 for crn0 and δ′0 = δ′0 +1 for crn1.

Proof. See the appendix.

Remark 3.8. The Lyapunov function (3.37) does not scale homogeneously as x1→∞
when x2 = 0. The leading order dynamics (3.13), which simply moves back and forth
between x2 = 0 and x2 = 1 without changing x1, does not faithfully capture the govern-
ing dynamics as x1→∞. Rather than performing a systematic singular perturbation
analysis, we choose to keep the entire generator in this region. Therefore we must choose
a Lyapunov function which captures the interplay between terms in the generator and
hence can not scale homogeneously.

Combining the continuity conditions presented in Lemmas 3.1–3.5, we obtain the
following relationships between the exponents of our Lyapunov functions:

δ′1 = δ′′0 = 5+δ0, δ′′1 = δ′2−5−δ0, δ′2 = δ′3 +δ′′3 , δ′′3 = δ′′4 = δ∗4 +2.

Furthermore, the condition on compact sublevels sets of the Lyapunov function reads:

δ0>0, δ′′1 <1, δ′2>6, δ′3>4 .

In particular, for any ε∈ (0,δ0/2) the following choice of constants works for crn1:

δ0∈ (0,1), δ′0 = δ0, δ′1 = δ′′0 = 5+δ0, δ′′1 = 1−ε, δ′2 = 6+δ0−ε,
δ′3 = 4+ε, δ′′3 = 2+δ0−2ε, δ4 = δ0−2ε. (3.38)

We introduce the ε>0 in the definition of δ′1 and δ′′1 in (3.38) to enforce the conditions on
δ′′1 stated in Lemma 3.4. In doing so, we ensure that V1 =C−

∫ x2

1
s−1±εds=−x±ε2 +C

scales as a power. When ε= 0, V1 =−
∫ x2

1
s−1ds= logx2. This logarithmic scale would

complicate the analysis. Having chosen ε>0, the Lyapunov functions Vi scale at least
as lδ0−2ε under the relevant transformations.

3.3. Verification of the stability condition. We now proceed to prove that
the local Lyapunov functions defined in the previous section satisfy asymptotically the
boundary value problem for the full generator (1.1) as stated in Lemma 3.7.

Lemma 3.7. Let i index a region of phase space. Then there exists a compact set K
and a constant Ch>0 such that the Lyapunov pair (Vi,hi) satisfies

LVi(x)≤−Chhi(x) for all x∈Ti∩Kc. (3.39)

To prove Lemma 3.7, we apply the full generator (1.1) to the candidate local Lya-
punov function Vi obtained in the previous section and show that the corrections to the
leading order term hi are negligible for large l. We proceed by considering each region
of phase space separately.
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Diffusive region: T0. In the diffusive region T0, the full generator of the Markov
process was used to construct the Lyapunov function in Lemma 3.6, so (3.39) holds by
construction. In particular, for x2 = 0 we have

LV0(x) = Λ1(x)∆1V0(x) =m0(1)(x1 +1)δ0−(m0(1)(x1 +1)δ0 +h0x
δ′0
1 ) =−h0x

δ′0
1 ,

as expected. Similarly, for x2 = 1 we obtain for crn1 that for x1 large enough

LV0(x) =
2∑
i=1

Λi(x)∆iV0(x)

=m0(2)(x1 +1)δ0−m0(1)xδ01 +x1(m0(1)(x1 +1)δ0 +h0x
δ′0
1 −m0(1)xδ01 )

≤ (m0(2)−m0(1))xδ01 +m0(1)δ0x
δ0
1 +h0x

δ′0+1
1 . (3.40)

For small enough h0>0, because δ′0 +1 = δ0<1 the right-hand side of the above expres-
sion is negative upon choosing m0(2)∈ (0,m0(1)(1−δ0)−h0).

We now proceed to establish (3.39) in the region T ′0 as a special case of the following
result. To do so, we define the semi–continuous approximation to the reaction rates Λr
in direction w∈∂S1

+ as follows:

λwr (x) :=κr
∏

i∈S\Pw

x
(crin)i
i

∏
i∈Pw

(
xi

(crin)i

)
(crin)i!,

where we have defined Pw :={i∈S :wi= 0}.

Lemma 3.8. For any i∈S, b,b′∈N0 with b′>b≥maxR(crin)i let T :={x∈N2
0 :xi∈

(b,b′)}. Then if Rw ={r∗}, (3.39) holds on T for l large enough.

Proof. To study the behavior of LV under S w
l for w=ej we start by writing

∆rV (S w
l (x)) = (V (S w

l (x)+cr)−V (S w
l (x)+cri ei))

+(V (S w
l (x)+cri ei)−V (S w

l (x))). (3.41)

and proceed to consider the two difference terms separately. We start by the second
term, corresponding to a jump in direction i∈Pw, and write

V (x+cri ei)−V (x) =−Ex

cri−1∑
k=0

h(x+kei)∆τx+kei

=−
cri−1∑
k=0

h(x+kei)

λwr∗(x+kei)

≤ cri max
|k|<|cri |

(
h(x+kei)

λwr∗(x+kei)

)
, (3.42)

where r∗∈RW and ∆τx is the exponentially distributed jumping time of Xt at x∈Nd0.
Similarly, in the case of r∗ using that h(x)>0 we have

V (x+cr
∗

i ei)−V (x) =−
cr
∗

i −1∑
k=0

h(x+kei)

λwr∗(x+kei)
≤− h(x)

λwr∗(x)
. (3.43)

At the same time by combining our homogeneous scaling assumption with Taylor the-
orem for the second term we have

V (S w
l (x)+cr)−V (S w

l (x)+cri ei)≤ lδ−1(∂jV (x+cri ei)+ l−1Rrj,j(x+cri ei,l)), (3.44)
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where V is C2 in the j direction and we define the remainder Rri,j(y,l) :=

supa∈(−1,1) |∂i∂jV (y+ l−1aei)|. Furthermore, we note that there exists a constant Crλ>0

such that for all r∈R and all x∈Nd0 such that x−crin≥0 componentwise we have

Crλλr(x)≤Λr(x)≤λr(x), (3.45)

where the right inequality holds by definition while the left one results from the increas-
ing character of x−a

(
x
a

)
in x>a for a>0.

Combining (3.42)–(3.45) and using the boundedness of V in any compact set we
obtain, for any x∈πT :={x∈T : xj = 1},

LV (S w
l (x)) =

∑
r∈R

Λr(S
w
l (x))(V (S w

l (x)+cr)−V (S w
l (x)))

≤
∑
r∈R

Λr(S
w
l (x))

(
V (x+cri ei)−V (x)+ lδ−1(∂jV (x+cri ei)

+ l−1Rrj,j(x+cri ei,l))
)

≤−lδ
′(w)

(
h(x)

Cλr − l−1c∗ ∑
r∈R\Rw

Λr(x)

h(x)
max
|k|<|cri |

h(x+kei)

λwr∗(x+kei)


+ l−1

(∑
r∈R

Λr(x)CV

))
,

where in the second inequality we have used that h(x)
w∼ lδ+〈cr

∗
in ,w〉, that

Λr(S w
l x)/λwr∗(S

w
l x)≤ l−1Λr(x)/λwr∗(x) for all r∈R\Rw if w∈{ei} and we have

bounded from above the derivative terms ∂jV (x+cri ei)+ l−1Rrj,j(x+cri ei)≤CV on the
compact πT . The boundedness of the x-dependent term in square brackets on the
right-hand side of (3.3) on the finite set πT and the divergence of l prove the desired
result.

Transport regions: T1, T2 and T3. As anticipated in the previous section,
the function V i on T1 (resp. T3) is assumed to scale homogeneously under S w

l for all
w∈W1 (resp. W3). We use this fact to explore the asymptotic behavior of V i by writing
every point z∈Rd+ in terms of toric coordinates (ϑ,w) :

(
Rn+
)o→R>1×Sn−1 defined by

ϑ(z) := exp(‖log((2c∗)−1z)‖2), w(z) : =
1

logϑ(z)
log((2c∗)−1z)

where z= [ϑ(z)w(z)i ]i∈S , c∗ := supr∈R{‖crin‖1,‖crout‖1} and log : Rd+→Rd represents the
component-wise logarithm. This transformation maps a c∗ neighborhood of any point
x∈Nd0 such that xi>2c∗ to the c∗-neighborhood of the point z∗ with z∗i := c∗ for all
i∈S.

Under the assumption of homogeneous scaling of the Lyapunov function, the gen-
erator of the Markov process can be asymptotically approximated along toric rays in
S1
+ by the generator of the transport process from (3.15). This convergence happens

pointwise in w, and is therefore not sufficient for ensuring the required scaling property,
which must hold uniformly in w. This uniform convergence is established in Lemma 3.9
below.
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Lemma 3.9. For all ε>0 and r∈R there exist Cr ∈ (1−ε,1+ε) and CX >0 such that
for all w∈S+ we have, for l large enough, and for all x∈Nd0, xi>CX and all i∈S

LV (S w
l (x))≤

∑
r∈R

l〈c
r
in,w〉+vr(w)Crλr(x)〈(S w

l )−1(cr),∇V (x)〉. (3.46)

Proof. Consider the scaling of the generator (1.1) along an arbitrary toric ray.
By definition of the transformation in (3.3) it is sufficient to know the value of V on a
compact set K∗ to obtain through a scaling transformation of the values of V outside
of K∗.

Using the homogeneity of V we bound the differences ∆r from (3.41) similarly to
(3.44):

V (S w
l (x)+cri ei)−V (S w

l (x))≤ lvr−wi(∂iV (x)+ l−wiRr
i,i(x)),

V (S w
l (x)+cr)−V (S w

l (x)+cri ei)≤ lvr−wj (∂jV (x+ l−wicri ei)+ l−wjRr
j,j(x+ l−wicri ei))

≤ lvr−wj (∂jV (x)+ l−wiRr
i,j(x)+ l−wjRr

j,j(x+ l−wicri ei)),

where we have chosen the indices i,j∈S such that wj≥wi>0. Note that by the
boundedness of V and its partial derivatives, we have that supK∗(R

r
i,i+Rrj,j +Rri,j)≤K

for all r∈R. Consequently, choosing CX large enough for l−wi <ε/6K for all i∈S we
have

∆r(V ◦S w
l (x))≤C ′λ

(
l−w1cr1∂1V (x)+ l−w2cr2∂2V (x)

)
, (3.47)

where C ′λ∈ (1−ε/3,1+ε/3). Because of limx→∞x
−a(x

a

)
a! = 1 we can choose the con-

stant Crλ∈ (1−ε/3,1) in (3.45) upon possibly increasing CX further, and we finally ob-
tain the desired result by combining (3.45) with (3.47) and upon choosing Cr :=C ′λ ·Crλ.

We now use the above result to prove that the candidate Lyapunov function satisfies
(3.39). Denoting by Tij(a) :={x∈R2

+ : infy∈Tij ‖x−y‖2<a} we use approximation (3.46)
for S w

l (x)∈Ti \
⋃
j Tij(CX) for CX large enough and we obtain

LV i(S w
l (x))≤

∑
r∈R

lvr(w)
∑
i∈S

l〈c
r
in−ei,w〉Crλr(x)cri ∂iV (x). (3.48)

We note that the dynamics associated to the operator on the right-hand side are, up
to a change of constants κr, the mass action ordinary differential equations for the crn

(S,R′,C′) with

R′ :={(r,i)∈R×S : cri 6= 0} and C′in :={cr,iin : (r,i)∈R′}, (3.49)

where we define cr,iin := crin−ei and to each (r,i)∈R′ we associate a reaction vector
cr,i := cri ei. Furthermore, we define for w∈S1

+ the set of reactions that are exposed by
all w∈W as

R′W :={(r,i)∈R′ : 〈cr,iin ,w〉≥〈c
r′,i′

in ,w〉∀(r′,i′)∈R′,w∈W}. (3.50)

We recognize that the regions W0,...,4 correspond to the partition W∗ associated to the
convex hull W of points in C′in as defined in [1] and proceed to apply [1, Lemma 4.26
(d)] to the present framework. To map this problem to the one in [1] we make the
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change of notation R(P)+→RW′j where w∈W, R(P)−→R′ \R′W and ϑ→ l, so that

Kε(ϑ)→C ′X/log l. Doing so we have that for all w∈W(C ′X) 1

〈cr
′,i′

in −cr,iin ,w〉≤−C
′
X/ log l for all (r,i)∈R′Wj

,(r′,i′)∈R′ \R′Wj
. (3.51)

Using (3.51) we bound the exponent of the scaling parameter for the subdominant terms
in (3.48) obtaining that for any ε>0 we can choose C ′X large enough such that

λr′(S
w
l (x))≤ε/mλr(S w

l (x)) for all r∈RWj
,r′∈R\RWj

.

Now, using that vr(w) = δ(w)−minSwi for all r∈R and that the derivatives of V are
bounded away from 0 in K∗, we see that for all w∈Wj \

⋃
kWk(C ′X) there exist for all

r∈R constants C ′r(ε)∈ (1−2ε,1+2ε) such that we have

LV (S w
l (x))≤

∑
(r,i)∈R′Wj

l〈c
r,i
in ,w〉+vr(w)C ′r(ε)λr(x)cri ∂iV (x).

Recalling Definition (3.8), by continuity in ε of the right-hand side and knowing that
(3.39) holds for Ch= 1 in the limit ε→0 we obtain desired result (3.39) for any Ch∈ (0,1)
upon choosing ε small enough.

Priming region: T4. Recalling that the propagated Lyapunov function in this
region approximates the solution to (3.11) with the ansatz (3.23) for the leading order
generator T4f =

(
x1

5

)
x22(f(x−5e1)−f(x))+x32(f(x−e2)−f(x)), we have for w=e2 that

LV4(S w
l (x)) =T4V4(S w

l (x)))+(L−T4)V4(S w
l (x))

= lδ
′′
4

[
T4V 4(x)+ l−δ

′′
4 (L−T4)V4(S w

l (x))
]
. (3.52)

We proceed to show that the second term in the square brackets goes to 0 as l→∞. By
(3.42) and (3.44) we can approximate (up to a multiplicative constant Cr>0) for large
x2 the difference terms in direction x2 with partial derivatives, and obtain

(L−T4)V4(x) =
∑
r1,r2

Λr(x)(V4(x+cr)−V4(x))

≤−Crx2∂2V 4(x)+Cr∂2V 4(x+e1)

+(V 4(x+e1)−V 4(x))+1{x1≥5}Crx
2
2∂2V 4(x−5e1)

≤xδ4+1
2 Crδ4h4

(
1{x1≥5}B5(x1)G(x1−5)+

G(x1 +1)

x22

+
G(x1)

x2
+

1

x2δ4(δ4 +B5(x1 +1))

)
.

where G(x1) :=
∑x1

i=1(B5(i)+(δ′′4 −2))−1 and B5(i) :=
(
i
5

)
5! and we used that δ4 +2 = δ′′4

from (3.23). Finally, we bound the right-hand side of the above expression by
CB5(x1)G(x1)xδ4+1

2 for a large enough C>0 and we obtain that the second term in
(3.52) scales as l−1, proving the claim.

1Recall that the set (3.50) is nonempty for an W by [1, Remark 4.21].



1626 CHEMICAL KINETICS CAN BE STABLE, MARGINALLY STABLE OR UNSTABLE

4. Assembling a global Lyapunov function

This section is devoted to verifying that the local Lyapunov functions defined in
the previous sections can be assembled to generate a global Lyapunov function. To
guarantee that this is the case, we show that at the interface between two contiguous
nonoverlapping regions of phase space the application of the generator to the global
candidate global Lyapunov function is indeed negative and scales as required. We
prove this in three steps. First, we introduce an intuitive condition for the assembly
between two regions with candidate local Lyapunov functions solving (3.11) to be a
global Lyapunov function on the union of such domains. Then, we show that for any hj
there exists a choice of parameters hi>0 such that the assembly works automatically
for all the interfaces. Finally, we show that the choice of parameters above does not
affect the relevant properties of the candidate global Lyapunov function far from the
patching boundary.

4.1. A condition of natural assembly. In a recent series of papers [13,14], the
problem of assembling local, homogeneously scaling Lyapunov functions was studied to
prove stability of a certain family of diffusion processes. In that paper the authors show,
under geometric assumptions related to the convexity of the (continuously assembled)
Lyapunov function across the boundary separating two contiguous regions of phase
space, that the assembled Lyapunov function automatically satisfies the desired Foster-
Lyapunov condition on the union of those regions, and in particular on their common
boundary. We will refer to these conditions as the interface curvature condition. It
ensures that the term, analogous to the Tanaka or flux term derived in [20], has the
properties needed to avoid the often less intuitive smoothing/mollification procedures
used in this assembly process. In the continuous diffusions setting, this flux term arises
in the generalized Itô formula, called Tanaka’s formula, because the Lyapunov function
is only C1 along the interface rather than the usual C2 required by Itô’s formula.

In this section, we adapt such conditions for “natural assembly” of local Lyapunov
functions to the discrete setting. To establish the interface curvature condition, we study
the behavior of LV close to an interface between two neighboring regions Ti and Tj with
respective local Lyapunov function Vi and Vj to identify the equivalent of Tanaka’s term
in our setting. We take V to be the (asymptotically) continuous assembly of Vi and
Vj along Tij . We immediately note that, in general, only those terms corresponding to
jumps across Tij will feel the discontinuity, as represented in Figure 4.1. We refer to
such terms as cross-terms, and denote the corresponding reactions as Rc(x). For any
given x∈R2 (assuming without loss of generality x∈Ti), for those terms with r∈Rc(x)
we can then choose βr(x)∈ (0,1) such that x+βr(x)cr ∈Tij , and define throughout the
increment operator ∇x,rVi :=V i(x+cr)−V i(x+βr(x)cr). With this definition we can
write

LV (x) =
∑

r∈R\Rc(x)

Λr(x)(Vi(x+cr)−Vi(x))+
∑

r∈Rc(x)

Λr(x)(Vj(x+cr)−Vi(x))

=LVi(x)+
∑

r∈Rc(x)

Λr(x)[Vj(x+cr)−Vi(x+cr)]

=LVi(x)+
∑

r∈Rc(x)

Λr(x)[∇x,rVj−∇x,rVi)], (4.1)

where in the last equation we have used the continuity of V . Throughout, we will refer
to the term in square brackets in (4.1) as the Tanaka or Flux term FrV (x).
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r1

r2

r3
x

Fig. 4.1: Representation of the possible jumps of the process at x∈R2 close to the boundary between
two regions with different local Lyapunov functions (in red and blue). In the generator L, only sum-
mands corresponding to jumps across the boundary (r3) will feel the difference, while all the other
terms will not (r1 and r2).

To prove the result of this section, we now note that LV (x) satisfies (3.11) along
Tij if

Condition 4.1 (Interface Flux Condition). For all x∈Nd0 such that Rc(x) 6=∅, for
any r∈Rc(x) one of the two following conditions holds:

(a) The Tanaka term is of negative sign i.e., FrV (x)<0, or

(b) it is dominated in absolute value by LV in the scaling that leaves Tij invariant.

Throughout we refer to the condition above as interface flux condition. It ensures
that the term generated by any jump across the boundary either has the correct sign
to be comparable with direction of the desired inequality if neglected or that it scales
in such a way to be negligible when compared to the dominant term along the relevant
paths to infinity.

Condition 4.1 (a) can be directly verified in a simple and geometrically intuitive
way considering the convexity property of the Lyapunov function across the interface.
To introduce the notion of V̄ on a boundary Tij we define throughout the function
Tij : Rd+→R whose zero-level set is the surface Tij i.e., Tij ={x∈Rd+ :Tij(x) = 0}.

Definition 4.1. [Discrete Interface Curvature] We define the scalar curvature of the
Lyapunov function V across the boundary Tij as

κ(V ,x) := lim
ε→0
〈c⊥(x),∇V (x+εc⊥)−∇V (x−εc⊥)〉, (4.2)

where c⊥(x) :=∇Tij(x)/‖∇Tij(x)‖2 and Tij is invariant under S w
l for a w∈S1

+. For
interfaces Tij that are parallel to ∂R2

+, i.e., that are invariant under S w
l for w∈{e1,e2}

we define for |α|≤ c∗ the discrete curvature of V at x∈Tij as

κα(V ,x) :=V i(x+αc⊥(x))−V j(x+αc⊥(x)). (4.3)

Now, if the curvature (4.2) resp. (4.3) is negative, the value of the function V j in a
point across but close enough to the interface is smaller than the one of the Lyapunov
function V i continued analytically to the same point. As shown in Lemma 4.1 below,
this makes the term FrV (x) negative and automatically verifies Condition 4.1 (a).

Lemma 4.1 (Discrete Interface Curvature Condition). Let Tij be invariant under

S w
l for w∈S1

+. If κ(V,x)<0 for all x∈Tij [respectively κα(V,x)<0 for all x∈Tij(c∗),
|α|<c∗] with ‖x‖2 large enough, then FrV (x)<0 for all x∈Tij.
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Proof. We start by proving the desired result for κ(V ,x), i.e., if w∈S1
+. By

Lemma 3.9 we can write for all r∈Rc(x) that ∇r,xV j(x) = 〈cr,∇V j(x∗r)〉+ε for ε small
at will provided that x∗r :=x+βr(x)cr ∈Tij is large enough. Then, defining cr⊥(x) :=
c⊥(x∗r)〈c⊥(x∗r),c

r〉 we write

FrV (x) = 〈cr,∇V j(x∗r)−∇V i(x∗r)〉
= 〈cr⊥(x∗r),∇V j(x∗r)−∇V i(x∗r)〉+〈cr−cr⊥(x∗r),∇V j(x∗r)−∇V i(x∗r)〉.

By continuous differentiability of V along the boundary we note that the second term
on the right-hand side vanishes and we obtain the desired result by identifying the first
summand with (4.2).

We now proceed to consider κα(V ,x). Noting that in this case x+cr−cr⊥(x∗r)∈Tij
we obtain

FrV (x) =V i(x+cr)−V j(x+cr)

=V i((x+cr−cr⊥(x∗r))+cr⊥(x∗r))−V j((x+cr−cr⊥(x∗r))+cr⊥(x∗r)).

Identifying the right-hand side of the above equation with κα(V ,x+cr−cr⊥(x∗r)) for
α= |c⊥(x∗)|/(1−βr(x)) completes the proof.

Remark 4.1. We recall that the negativity of the curvature (4.2) and (4.3) is related
to the existence of super- and sub-solution to the partial differential Equation (3.11)
across the boundary Tij .

4.2. Scaling at the boundary. Assuming that the constructed Lyapunov func-
tion is continuous at the boundary, use Remark 4.1 to avoid the customarily lengthy
calculations needed to assemble local Lyapunov functions between different definition
domains. The idea relies on the tuning of the parameter hi>0 in the regions at the
interface in order to make the curvature conditions (4.2), (4.3) in Remark 4.1 auto-
matically verified. In our case, however, this cannot be done in full generality, as the
following example shows.

Example 4.1. We consider the partition of phase space for the networks (1.4)–
(1.6) with boundaries (3.17) and study the convexity of the assembly of V2 and V1 in
a neighborhood of T12. To do so, by our homogeneous scaling assumption and by the
assumed continuity of the assembled function V along T12, it is sufficient to consider
(4.2) for c⊥=−cr3 .

In this case, for x∈T12 we have by (3.18) and (3.26) that

〈cr3 ,∇V 2(x)〉= 〈cr3 ,∇y
∫ x+y

π12(x+y)

h2(z)

λ3(z)
dz〉=−‖cr3‖1

h2(x)

λ3(x)

=−‖cr3‖1
h2(x1 +5x2)δ

′
2

x51x
2
2

, (4.4)

where we recall that πij is the projection of points in Ti onto Tij along the character-
istic lines used to construct hi and in the last equality we have used the fact that the
characteristics in T2 are parallel to cr3 . Similarly, for V1 we have

〈cr3 ,∇V 1(x)〉= 〈cr3 ,∇
[
h1x

δ′1−5
1 x

δ′′1−1
2

]
〉=−h1

(
5
δ′1−5

x1
+

1−δ′′1
x2

)
x
δ′1−5
1 x

δ′′1−1
2 . (4.5)
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In particular for x∈T12, i.e., for x1 = b1x2 we have for (4.4) and (4.5), respectively{
〈cr3 ,∇V 2(x)〉 =−‖cr3‖1h2(5/b1 +1)δ

′
2b21x

δ′2−7
1 ,

〈cr3 ,∇V 1(x)〉 =−h1 (5(δ′1−5)+(1−δ′′1 )b1)b
1−δ′′1
1 x

δ′1+δ
′′
1−7

1 .
(4.6)

Now, recalling from (3.31) that h1 =m2(1−δ′′1 )b
δ′′1−1
1 , we combine this with the expres-

sion (3.33) for m2 to obtain the upper bound

〈cr3 ,∇V 1(x)〉≤−m′2(b1)h2x
δ′2−7
1

for

m′2(b1) :=
(1−δ′′1 )2(b−11 +5)

12(1−b−21 )
(P (b1)−P (b−11 ))b1.

Combining the estimates from above we have that

x
7−δ′2
1 〈cr3 ,∇V 2(x)−∇V 1(x)〉≥−‖cr3‖1h2(5/b1 +1)δ

′
2b21 +h2m

′
2(b1)

=h2

(
m′2(b1)−‖cr3‖1(5/b1 +1)δ

′
2b21

)
,

We see that the sign of above expression, which bounds the sign of the curvature κ(V ,x)
from below, is positive for large b1 and independent of the parameter h2>0. This pa-
rameter can therefore not be used to correct the curvature of V at this interface. Be-
cause the parameter b1 was already bounded from below in the previous section, and that
limb1→∞m

′
2(b1)/b1 =∞ we see that there is no choice of parameters bi, hi s.t. (4.2) is

satisfied in the general case.

We circumvent the problem highlighted in Example 4.1 by introducing a con-
struction to tune the curvature of V on the boundary of interest while affecting only
marginally its value on that set. This is possible because the value of V at the interface
is obtained by integration of hi(x) in (3.18) across the set Ti while the gradient ∇V is a
strictly local quantity, i.e., it only depends on the choice of hi( ·) close to the boundary.
In particular, changing the value of hi(x) in a small enough neighborhood of Tij will
change the value of ∇V but will have little effect on V . We perform this change along
the characteristics of the asymptotic generator Ti and in a “smooth” way, i.e., over
many small enough steps, in order for (3.39) to hold at the interface between regions
where hi(x) is varied.

To realize the program outlined above (in this particular case of T2), we dissect

the problematic region Ti into ni nonoverlapping radial subsets {T (k)
i }k∈(1,...,ni) with

T (j)

i ∩T
(j′)

i =∅ if |j−j′|>1, as displayed in Figure 4.2. In each cone, we then define

the local Lyapunov functions V
(k)

i by (3.18) with

h
(j)
i (x) := (η∗i )jhi(x),

for η∗i >1 and all j >0. The procedure outlined above constructs a discrete interpolation

given by the set-function pairs {T (j)
i ,V

(j)

i }j∈1,...,ni
. We denote the new candidate local

Lyapunov function assembled over the union of all T (j)
i by Ṽi(·), namely

Ṽi(x) :=V
(k)
i (x) for x∈T (k)

i .
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T23

T12

α

α T (1)
2

T (0)
2

T (2)
2

x1

x2

Fig. 4.2: Representation of the characteristic lines (solid vectors) of the dominant generators in
the transport regions. Black dashed lines represent the original separation of dominance regions Tij
while the green ones arise from the construction of Ṽi. The grey regions represent the diffusive and
the priming regions. In the inset, the direction of the derivative in (4.4) across the boundary T12 is
represented as a red vector. The parameter α defines the slope of T12 and T23, so cosα= b−1

1 .

Lemma 4.2. Assume that Ti is invariant under S w
l for a w∈Wi and that RWi

={r∗}.
Then for any ε>0, M>1 in the partition {T (j)

i ,V
(j)

i }j∈1,...,ni constructed above, the

value of ni, η
∗
i and the sets T (j)

i can be chosen so that Ṽi is a Lyapunov function on Ti
and for all x∈Tij large enough, one has

|V i(x)− Ṽi(x)|≤εV i(x) and |〈c⊥,∇Ṽi(x)〉|≤M |〈c⊥,∇V i(x)〉|. (4.7)

Proof. We prove the above result in two steps: first of all we show that for certain

η∗i the assembled Ṽi is a Lyapunov function on Ti. Then, we construct the sets T (j)
i

such that, by choosing ni large enough the bounds in (4.7) hold.

Note that the functions V
(j)

i are local Lyapunov functions by Lemma 3.7. Therefore

we only have to show that one can safely assemble the local terms V
(j)
i to give a

Lyapunov function Ṽ on Ti. In particular, we proceed to show that for every ε∗>0

there exists a η∗i >1 such that for all x∈T (j)
i (c∗) and all r∈Rc(x) we have

mΛr(x)|Fr
V (x)|≤ε∗|h(j)

i |. (4.8)

By definition of V
(j)

i and V
(j+1)

i we have that

∣∣∣∇x,rV
(j)

i −∇x,rV
(j+1)

i

∣∣∣≤ (η∗i −1)

∫ x+cr

πij(x+cr)

∣∣∣∣∣
h
(j)
i (z)

λw
r∗(z)

∣∣∣∣∣dz

≤ (η∗i −1)c∗ sup
y∈Bc∗ (z)

(
h
(j+1)
i (y)

λw
r∗(y)

)
. (4.9)

where we have used the formulation of (3.18) in the deterministic regime as done in
Lemmas 3.2–3.4. Furthermore, using (3.45) and the homogeneous scaling behavior of

h
(0)
i (x) we have that for all r∈R and z∈Tij(c∗) with ‖z‖2 large enough

sup
y∈Bc∗ (z)

Λr(z)/λr∗(y)≤1 sup
y∈Bc∗ (z)

h
(j+1)
i (y)/h

(j+1)
i (z)≤2.
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Combining this result with (4.9) we obtain that there exists a C>0 such that

Λr(x)|FrV (x)|≤Λr(x)
∣∣∣∇x,rV (j)

i −∇x,rV
(j+1)

i

∣∣∣≤C (η∗i −1)h
(j+1)
i (x).

Combining this with Lemma 3.7 and choosing η∗i close enough to 1 then establishes
(4.8). Combining this result with Lemma 3.7 proves that (3.39) holds on Ti for a new
constant C=C−ε∗>0.

We now proceed to the second part of the proof. Here, we restrict our attention to
x∈Tij . We immediately obtain the second inequality in (4.7) by noticing that

〈c⊥,∇V i〉=
hi(x)

λr∗(x)
= (η∗i )ni

h
(ni)
i (x)

λr∗(x)
= (η∗i )ni〈c⊥,∇Ṽi〉,

and upon choosing ni= logη∗i M . For the first part of (4.7) we write

Ṽi(x)− Ṽi(πijx) =

ni∑
i=0

∫ x

πijx

1
z∈T (j)

i

h
(j)
i (z)dz

λr∗(x)
dz

≤
∫ x

πijx

h
(0)
2 (z)dz

λr∗(x)
+

∫ x

πijx

1
z∈(T (0)

i )c
h
(0)
i (z)dz

λr∗(z)

ni∑
j=1

((η∗i )j−1). (4.10)

Because V i(πijx) = Ṽi(πijx) we obtain the desired result by bounding the second sum-
mand on the right-hand side of (4.10). In doing so, upon possibly decreasing η∗i further
to have η∗i ∈ (1,2), we write

|V i(x)− Ṽi(x)|=
ni∑
j=1

((η∗i )j−1)

∫ x

πijx

1
z∈(T (0)

i )c
h
(0)
i (z)dz

λr∗(z)

≤ni2ni sup
y∈γi(x)

h
(0)
i (y)

λr∗(y)
εi(T (0)

i ,x),,

where γi(x) denotes the characteristic curve connecting the origin of such curve

on the boundary Tij′ 6=Tij to the point x∈Tij and we have written εi(T (0)
i ,x) :=∫ x

πijx
1
z∈(T (0)

i )c
dz. We note that εi(T (0)

i ,x)≥0 is decreasing in the size of T (0)
i , i.e.,

with respect to the partial order induced by the operation of set inclusion, with lower
bound εi(Ti,x) = 0. Now, by the homogeneous scaling assumptions (3.5) and (3.6), by

the invariance of T (j)
i under S w

l , for x∈Tij and because S w
l (γi(x)) =γi(S w

l (x)) we
have that

|V i(S w
l (x))− Ṽi(S w

l (x))|≤εilδ
′
i−〈c

r∗
in ,w〉+1

(
sup

y∈γi(x)

h
(0)
i (y)

λr∗(y)

)
.

Recall that along Tij , Ṽi(x) and V i(x) can only differ by a multiplicative constant, so
we have

V i ◦S w
l (x) = lδ

′
i−〈c

r∗
in ,w〉+1Vi(x) .

Combining this with the boundedness of both supy∈γi(x)
h
(0)
i (y)

λr∗ (y)
and Vi(x) we obtain the

desired result by choosing T (0)
i large enough for ε(T (0)

i ,x)≤Vi(x)/supy∈γi(x)
h
(0)
i (y)

λr∗ (y)
.
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4.3. The assembly process. We now apply the results obtained in the previous
section to show that the local Lyapunov functions from Section 3 can be intuitively
assembled to give a global Lyapunov function V on the whole phase space.

Bulk interfaces: T12 and T23. In this section we assemble the local Lyapunov
functions at the interfaces T12 and T23. In both cases we can approximate the generator
by its dominant transport part Ti defined in (3.14) by Lemma 3.9.

We start by T12, where by Lemma 4.1 we can assemble the local Lyapunov functions
naturally if we can find parameters for which κ(V ,x)<0 on T12. In turn, this condition
holds if we can show that

〈cr3 ,∇V 1(x)〉> 〈cr3 ,∇V 2(x)〉.

Writing the terms above as in (4.6) and using (3.28) we obtain the desired inequality
through the construction of Lemma 4.2 for a fixed ε>0 and setting M>0 such that

h1

(
5
δ′1−5

b1
+1−δ′′1

)
b
δ′1−5
1 <M‖cr3‖1h2(5b1 +1)δ

′
2b−51 .

Similarly for T23, we study the convexity of the assembled candidate Lyapunov
function V obtained by combining V2 and V3 on the respective regions by considering
the r3 directional derivative across the boundary. For V2 and x∈T12, we have similarly
to (4.4) that

〈cr3 ,∇V 2(x)〉=−‖cr3‖2h2(5+b1)δ
′
2b−21 x

δ′2−7
1 .

Comparing this to the corresponding expression for V 3, i.e.,

〈cr3 ,∇V 3(x)〉= 〈cr3 ,∇
[
h3x

δ′3−4
1 x

δ′′3−2
2

]
x2=b1x1

〉

=−h3(b2)

(
5(δ′1−4)− δ

′′
3 −2

b1

)
b
δ′′3−2
1 x

δ′3+δ
′′
3−7

1 .

we see that by (3.26) we have κ(V ,x)<0 for b1 large enough if

h3(b2)5(δ′1−4)b
δ′′3
1 >‖cr3‖1h2(5+b1)δ

′
2 .

This in turn holds upon choosing h2(b1,b2)>0 small enough, and we obtain by
Lemma 4.1 that Condition 4.1 (a) is satisfied at this interface.

Boundary interface: T00, T01 and T34. In this section we prove that the
discrete interface curvature is negative for the interfaces where the continuum approxi-
mation Lemma 3.9 is not applicable, i.e., T00, T01 and T34.

We start by T34. In this case, for x= (b2,x2) with b2 large enough the discrete
curvature term reads

κα(V ,x) =−h4xδ42
b2+α∑
k=b2+1

kδ
′
4

δ4 +
(
k
5

)
5!

+h3(b2 +α)δ
′
3−4x

δ′′3−2
2

≤xδ42

(
h3c
∗b
δ′3−5
2 − h4b

δ′4
2

δ4 +
(
b2+c∗

5

)
5!

)
, (4.11)



A. AGAZZI AND J.C. MATTINGLY 1633

where without loss of generality we consider α∈ (1,c∗), in the last inequality we have
expanded (b2−α)δ

′
3−4 in b2 and we have applied (3.23) and (3.26). Recalling from

(3.26) that h3(m4,b2) = (δ′3−4)m4b
−(δ′3−4)
2 and our choice of δ′3 = δ′4 from (3.38), while

bounding m4 from below for δ′4>5 as

m4−m∗4 =h4

b2∑
k=1

kδ
′
4

δ4 +
(
k
5

)
5!
≥h4

∫ b2−1

1

kδ
′
4−5dk=

h4
δ′4−4

((b2−1)δ
′
4−4−1),

we obtain that to leading order in b2 the right-hand side of (4.11) reads,

κα(x,V ) =xδ42

(
c∗

h4
δ′4−4

b
δ′4−4
2 b−12 −h4b

δ′4−5
2 +O(b

δ′4−6
2 )

)
.

Therefore, for large enough b2 (possibly increasing it from Section 3.1), the discrete
interface curvature is negative upon choosing

δ′4>c
∗(δ′3−4)+4.

We now turn to the interface T01 :={x : x2 = b0}. Here we evaluate for x∈T01

κα(V ,x) =V
′
0(x+e2)−V 1(x+e2) =xδ21

(
h′0

b2+1∑
k=b2

(
k

2

)−1
−
∫ b2+1

b2

yδ
′′
1−2dy

)
.

which has negative sign by choosing h′0(b2,h1)>0 small enough. Combining this with
Lemma 4.1 guarantees that Condition 4.1 (a) holds at this interface, ensuring natural
assembly.

To conclude, we establish (3.11) on the only interface between two regions that do
not share a dominant reaction: T00 :={x∈N2

0 : x2 = 2}. Because V ′0 is not defined for
x2 = 1, in this case we have to estimate the cross-term of the differential LV explicitly,
as we do below. Setting x2 = 2 we have that

LV (x) = Λ3(x)∆3V
′
0 +Λ1(x)∆1V

′
0(x)+Λ2(x)∆2V0(x), (4.12)

and we compute the three summands separately. For the first one we have, for large x1
and δ1 = δ′1−5 that

Λ3(x)∆3V
′
0 = Λ3(x)(V ′0(π12(x−5e1))−V ′0(π12x)

+
h′0
2

(
(x1−5)δ1

3∑
k=b0

(
k

2

)−1
−xδ11

2∑
k=b0

(
k

2

)−1))

≤−2x
δ′1
1

h′0
2

(
1−5δ1x

−1
1

3∑
k=b0

(
k

2

)−1)
=−h′0x

δ1+5
1 C3(x1,b0), (4.13)

for a C3 with limx1→∞C3(x1,b0) = 1, where in the last passage we have expanded the
difference terms in x1, used that V ′0(π12x) is increasing in x1 and that

(
x1

5

)
5!≤x51.

Similarly to (4.13), we bound the second term in (4.12) from above by

Λ1(x)∆1V
′
0 =m1b

−(δ′′1−2)
1

(
(x1 +1)δ1−xδ11

)
−h′0

(
(x1 +1)δ1

3∑
k=b0

(
k

2

)−1
−xδ11

2∑
k=b0

(
k

2

)−1)
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≤−xδ11 h′0

(
1+δ1x

−1
1

(
m1

b
δ′′1−2
1 h′0

+
3∑

k=b0

(
k

2

)−1))
=−h′0x

δ1
1 C1(x1,b0,b1). (4.14)

for a C1(x1,b0,b1) with limx1→∞C1(x1,b0,b1) = 1 for b0,b1 fixed. For the third term in
(4.12) we have by (3.37)

Λ2(x)∆2V0 = Λ2(x)(V0(x1,x2−1)−V0(x)) =xδ0+#
1 (m0(1)−m0(2)), (4.15)

where # is 0 for crn0 and 1 for crn1. Therefore, recalling that δ0 = δ1 from (3.38), a
comparison of the exponents of (4.13)–(4.15) shows that for large x1 and x∈T00, we
have LV (x)≤−(1−ε(x1,b2))h′0(x) for limx1→∞ε(x1,b2) = 0 as required.

4.4. Summary. Given the involved nature of the process carried out in the
previous sections, we summarize for the reader the order of choice of parameters for
the construction of our global Lyapunov function V . First off, one starts by setting all
the powers of the homogeneous functions {Vi,hi}, i.e., δi,δ

′
i (and δ′′i when available)

as in (3.38), except for δ′4 that will be fixed later. Then one proceeds to check that
the propagated Lyapunov functions satisfy (3.11) in the regions Ti, thereby fixing large
enough constants {bi}. Finally, one has to ensure that the natural assembly condition
(4.1) holds on the interfaces Tij . This last step is performed sequentially from the
priming region through the transport regions to the diffusive regions and fixes, in the
order, δ′4, h4, h3(b2), h2(b1,h3), h1(h2,b1), h′0(h1,b0), h0(h′0,b0). Recall that by (4.1) we

also have to construct the regions T (j)
2 . During this procedure we choose M(h1,b1) large

enough and consequently n2(M,η∗2). In doing so, the parameter h1 is increased by a
constant ε small at will, so this has only marginal effect on the choice of the subsequent
parameters. Finally, choosing a large enough %>0 ensures that (1.9) holds for ‖x‖2>%.

5. Large-time asymptotics

This section is dedicated to the study of the invariant measure of the crns (1.4)
and (1.5).

5.1. Invariant measure density. We now proceed to prove the existence and
uniqueness of the invariant measure for a process Xt satisfying Condition 1.1 through
the following, standard result.

Lemma 5.1 ( [12,18]). Under Conditions 1.1 and 1.2 there exists a σ-finite invariant
measure µ for the process Xt. Furthermore, if ϕ>1 then there exists a constant Cµ>0
such that ∫

ϕ(V (x))µ(dx)≤Cµ. (5.1)

Proof. The existence of an invariant measure under the assumptions of the lemma
was established in [18, Theorem 12.3.3]. The finiteness of the integral in (5.1) is es-
tablished in [18, Theorem 14.0.1] and in [12] for the case of positive recurrent process.
Therefore, the same result applies to the case of crn0. We adapt the proof to the null
recurrent case below.

Denoting for any set B⊂Nd0 by τ ′B the hitting time to that set we define for any set
A⊂Nd0, any point b∈Nd0 and for any N >0 as in [19, Theorem 3.5.3.] the measure νN
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by

νN (A) :=Eb

[∫ τ ′{b}∧τ
′
{‖x‖2≥N}∧N

0

1A(Xs)ds

]
. (5.2)

Then, using assumption (1.9) and Dynkin’s formula we obtain,

νNϕ(V (x)) =Eb

[∫ τ ′{b}∧τ
′
{‖x‖2≥N}∧N

0

ϕ(V (Xs))ds

]

≤−Eb

[∫ τ ′{b}∧τ
′
{‖x‖2≥N}∧N

0

LV (Xs)ds

]
≤V (b)≤Cµ. (5.3)

The uniform in N finiteness of the upper bound (5.3) and the convergence of νN to the
invariant measure of Xt for N→∞ proves the desired result by application of Fatou’s
lemma.

The exponential convergence to the invariant measure in the case of crn0 is a
standard result [11] under Assumptions 1.1 and 1.2, provided that there exist γ>0 such
that h(x)>γV (x). To see that this condition is satisfied in our case, it is sufficient to
note that in Lemmas 3.1–3.6 the scaling exponent of hi is always larger than or equal
to the one of Vi in all the regions Ti.
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Appendix A. Explitic estimates.
Proof. (Diffusive region.) In this section we evaluate (3.18) in the region T0. We

do so by considering the sets {x1 = 0} and {x1 = 1} separately.
For both crn0 and crn1 we see that for x= (x1,0) the first term of (3.18) reads

E(x1,0) [V ′0(Xτ )] =E(x1+1,1) [V ′0(Xτ )],

while for the second term we have

E(x1,0)

[∫ τ

0

h0(Xt)dt

]
=h0x

δ′0
1 E
[
∆τ(x1,0)

]
+E(x1+1,1)

[∫ τ

0

h0(Xt)dt

]
.

Therefore, we obtain

V0((x1,0)) =V0(x1 +1,1)+h0x
δ′0
1 , (A.1)

thereby reducing the problem to the computation of V0 on the set {x2 = 1}, as we do in
the next paragraph.

For crn0 we calculate the first expectation in (3.18) for x= (x1,1) by writing

E(x1,1)

[
m0(Xτ )δ01

]
=
∞∑

k=x1

E(x1,1)

[
m0(Xτ )δ01 | ↑k

]
P(x1,1) [↑k] =

∞∑
k=x1

kδ0(1−a)ak−x1 ,
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where a=P [↓k]<1 and the definition of the event ↓k was given in Lemma 2.1. Bounding
the right-hand side from above and below by integration produces

∫ ∞
1

ek loga(k+x1)δ0dk≤
Ex
[
m0(Xτ )δ01

]
m0(1−a)

≤
∫ ∞
0

ek loga(k+x1)δ0dk.

From this we see that for crn0 the first term in (3.18) is well-defined for all choices of

δ0 and behaves asymptotically as V0
e1∼ lδ0 . We will keep only the term corresponding to

this scaling for the formula (3.37), as the remaining terms are negligible in the scaling
of interest.

Similarly, for crn1 we have by (2.6)

E(x1,1)

[
m0(Xτ )δ01

]
=m0

∞∑
k=x1

E(x1,1)

[
(Xτ )δ01 | ↑k

]
P(x1,1) [↑k] =

∞∑
k=x1

kδ0
x1

k(k+1)
.

The sum on the right-hand side of the above expression can be bounded from above
and below by integration

x1

∫ ∞
1

(k+x1)δ0−2dk≤E(x1,1)

[
(Xτ )δ01

]
≤x1

∫ ∞
0

(k+x1)δ0−2dk .

By the divergence of the integral on the left-hand side for δ0≥1 and the convergence of
the one on the right-hand side for δ0<1 we obtain the desired well-definiteness result
for V0. The dominant scaling behavior for this component of the sum is given by V0

e1∼ lδ0
by the result of the two integrations above.

We now proceed to estimate the second term on the right-hand side of (3.18). Using
the scaling properties of h0( ·) and using the linearity of the expectation we have

E(x1,1)

[∫ τ

0

h0 (Xt)dt

]
=
∞∑

k=x1

E(x1,1)

[∫ τ

0

h0 (Xt)dt| ↑k
]
P(x1,1) [↑k]

=
∞∑

k=x1

Ex

[
k∑

l=x1

h((l,1))∆τ(l,1) +h((l,0))∆τ(l,0)| ↑k

]
P(x1,1) [↑k]

=
∞∑

k=x1

k∑
l=x1

lδ
′
0E
[
∆τ(l,1) +∆τ(l,0)

]
P(x1,1) [↑k] . (A.2)

Evaluating (A.2) for crn0 with h0(x) =h0x
δ′0
1 yields

E(x1,1)

[
h0

∫ τ

0

(Xt)
δ′0
1 dt

]
=h0

∞∑
k=x1

k∑
l=x1

lδ
′
0E
[
∆τ(l,1) +∆τ(l,0)

]
P(x1,1) [↑k]

=h0a
−x−1

∞∑
k=x1

e− log(1/a)k
k∑

l=x1

lδ
′
0

(
1

κ1 +κ2
+

1

κ1

)∣∣∣∣∣
κ1=κ2=1

=
3

2
h0a
−x1−1

∞∑
k=x1

e− log(1/a)k
k∑

l=x1

lδ
′
0 ,



A. AGAZZI AND J.C. MATTINGLY 1637

Now, similarly to what was done for the first term of (3.18) we bound the right-hand
side of the above equation from above and below by integration:

∫ ∞
1

dke− log(1/a)k

∫ k

0

dl(x1 + l)δ
′
0 ≤

E(x1,1)

[
h0
∫ τ
0

(Xt)
δ′0
1 dt

]
h0

≤
∫ ∞
0

dke− log(1/a)k

∫ k

0

dl(x1 + l)δ
′
0 .

Bounding the right-hand side from above by xδ
′
0 +
∫∞
0

dke−kkδ
′
0+1 we see that it is well

defined for all values of δ′0∈R and it scales as lδ
′
0 to leading order.

Similarly, for crn1 we rewrite (A.2) using (2.6) as

E(x1,1)

[
h0

∫ τ

0

(Xt)
δ′0
1 dt

]
=h0

∞∑
k=x1

k∑
l=x1

lδ
′
0El
[
∆τ(l,1) +∆τ(l,0)

]
Px1 [↑k]

=h0

∞∑
k=0

x1
(x1 +k)(x1 +k+1)

k∑
l=x1

lδ
′
0

(
1

l+1
+1

)
.

We bound from above and below (up to an approximating constant) the right-hand side
by

x1

∫ ∞
0

dk
1

(x1 +k)2

∫ x1+k

x1

dl lδ
′
0 =

x1
δ′0

∫ ∞
0

dk
x
δ′0+1
1 −(k+x1)δ

′
0+1

(k+x1)2
. (A.3)

We notice that the right-hand side of the above expression converges only if δ′0<0. If

this condition holds we have that V0
e1∼ lδ′0+1.

Combining (A.1) and the scaling behavior of (3.18) on {x : (x1,1)} results in (3.37).

Proof. (Priming region.) As in the case of the diffusive region, we couple the process
at hand with a new process, denoted by Xn, jumping to the left (←) or down (↓) with
the respective site-dependent probabilities

Px [←x] =
x22
(
x1

5

)
5!

x32 +x22
(
x1

5

)
5!

=

(
x1

5

)
5!

x2 +
(
x1

5

)
5!

and Px [↓x] =
x32

x32 +x22
(
x1

5

)
5!

=
x2

x2 +
(
x1

5

)
5!
.

Consequently, the hitting distribution of the set {x :x1 = b2−1} by the process Xn with
initial condition X0 = (b2,x2) and x′2≤x2 is given by:

P(b2,x2)

[
←(b2,x′2)

]
=P(b2,x2)

[
←(b2,x′2)

| ↓(b2,x2...x′2)

]
P(b2,x2)

[
↓(b2,x2...x′2)

]
=P(b2,x′2)

[
←(b2,x′2)

]x′2−1∏
k=x2

P(b2,k)

[
↓(b2,k)

]
=

(
b2
5

)
5!

x′2 +
(
b2
5

)
5!

x2∏
k=x′2+1

k

k+
(
b2
5

)
=

B5(b2)

x′2 +B5(b2)

Γ(x2 +1)

Γ(x′2 +1)

(
Γ(x2 +B5(b2)+1)

Γ(x′2 +B5(b2)+1)

)−1
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=B5(b2)
Γ(x′2 +B5(b2))

Γ(x′2 +1)

Γ(x2 +1)

Γ(x2 +B5(b2)+1)
,

where Γ(·) is the gamma function and we have written B5(x) :=
(
x1

5

)
5!. For large values

of x2,x
′
2 we approximate

P(b2,x2)

[
←(b2,x′2)

] e2≈B5(b2)x
′B5(b2)−1
2 x

−B5(b2)
2 , (A.4)

where from now on the symbol
e2≈ denotes equality up to subdominant terms in S w

l for
w=e2. Iterating over multiple levels from b2 to 0, we obtain for the first term of (3.18)

for V4( ·) scaling homogeneously as V4
e2∼ lδ4 by

E(b2,x2) [V4(Xτ )]

m∗4
=

x2∑
x′2=0

P(b2,x2) [Xτ =x′2](Xτ )δ42

=

x2∑
kb2=0

P(b2,x2)

[
←(b2,kb2 )

] kb2∑
kb2−1=0

P(b2−1,kb2 )

[
←(b2−1,kb2−1)

]

·· ·
k2∑
k1=0

P(1,k2)

[
←(1,k1)

]
kδ41

=

x2∑
kb2=0

B5(b2)
Γ(x2 +1)

Γ(x2 +B5(b2)+1)

Γ(kb2 +B5(b2))

Γ(kb2 +1)

kb2∑
kb2−1=0

B5(b2−1)
Γ(kb2 +1)

Γ(kb2 +B5(b2−1)+1)

·· ·
k2∑
k1=0

B5(1)
Γ(k2 +1)

Γ(k2 +B5(1)+1)

Γ(k1 +B5(1))

Γ(k1 +1)
kδ41

=

b2∏
j=1

B5(j)
Γ(x2 +1)

Γ(x2 +B5(b2)+1)

x2∑
kb2=0

Γ(kb2 +B5(b2))

Γ(kb2 +B5(b2−1)+1)

·· ·
k2∑
k1=0

B5(1)
Γ(k1 +B5(1))

Γ(k1 +1)
kδ41

e2≈
∏b2
j=1B5(j)

x
B5(b2)
2

∫ x2

0

dkb2k
B5(b2)−B5(b2−1)−1
b2∫ kb2

0

·· ·kB5(2)−B5(1)−1
2

∫ k2

0

dk1k
B5(1)−1+δ4
1

e2≈
∏b2
j=1B5(j)∏b2

j=1(B5(j)+δ4)
xδ42 =

xδ42∏b2
j=1(1+δ4/B5(j))

. (A.5)

We note that the product on the right-hand side of the above expression converges for
large values of b2.
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We now proceed to evaluate the integral term of (3.18). Choosing h4 as in (3.22)
and summing over all paths γ from (b2,x2)→T ∗4 we obtain

E(b2,x2)

[∫ τ

0

h4(Xt)dt

]
=h4

∑
γ:(b2,x2)→T ∗4

P(b2,x2) [γ]
∑
x∈γ

x
δ′4
1 x

δ′′4
2 Ex [τx]

=h4

x2∑
kb2=0

P(b2,x2)

[
←(b2,kb2 )

][
b
δ′4
2

 k
δ′′4
b2

k3b2 +k2b2B5(b2)
+

x2∑
j=kb2

jδ
′′
4

j3 +j2B5(b2)

+

·· ·+
ki+1∑
ki=0

P(i,ki+1)

[
←(i,ki)

][
iδ
′
4

 k
δ′′4
i

k3i +k2iB5(i)
+

ki+1∑
j=ki

jδ
′′
4

j3 +j2B5(i)

+

·· ·+
k2∑
k1=0

P(1,k2)

[
←(1,k1)

] k
δ′′4
1

k31 +k21B5(1)
+

k2∑
j=k1

jδ
′′
4

j3 +j2B5(1)

] .. .].
Furthermore, because we are in the limit x2→∞ we approximate the terms in round
brackets as

k
δ′′4
i

k3i +k2iB5(i)
+

ki+1∑
j=ki

jδ
′′
4

j3 +j2B5(i)

e2≈
∫ ki+1

ki

dj jδ
′′
4−3 =

1

δ′′4 −2

(
k
δ′′4−2
i+1 −k

δ′′4−2
i

)
,

we obtain

E(b2,x2)

[∫ τ

0

h(Xt)dt

]
e2≈h4

b2∑
i=1

iδ
′
4

∏b2
j=iB5(j)

x
B5(b2)
2

∫ x2

0

dkb2k
B5(b2)−B5(b2−1)−1
b2

·· ·kB5(i+1)−B5(i)−1
i+1

∫ ki+1

0

dkik
B5(i)−1
i

(
k
δ′′4−2
i+1 −k

δ′′4−2
i

)
e2≈h4x

δ′′4−2
2

b2∑
i=1

iδ
′
4

(δ′′4 −2)+B5(i)

b2∏
j=i+1

1

1+(δ′′4 −2)/B5(j)
.

Recalling that the product (A.5) converges for large values of b2, we approximate its
value by a constant that can be absorbed by m∗4. Through a similar approxima-
tion, we write the right-hand side of the expression above, for large values of b2, as

h4x
δ′′4−2
2

∑b2
i=1((δ′′4 −2)+B5(i))−1. Combining these two approximations we obtain our

candidate for the local Lyapunov function in T4:

V4(x) =m4x
δ4
2 +h4x

δ′′4−2
2

b2∑
i=1

iδ
′
4

(δ′′4 −2)+B5(i)
.

This function exists for all δ′4∈R, δ4,δ
′′
4 ∈R+ and scales homogeneously under S w

l for
w=e2 if δ′′4 = δ4 +2.

Appendix B. Alternative scaling procedure. In this section we present an
alternative method for the construction of the Lyapunov funtion in the transport regions
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T1,T2,T3. In Section 3.2 we required that the candidate Lyapunov function Vi scales
homogeneously under all scaling transformations mapping certain subsets of Wi onto
themselves. Now we simply require for Vi to scale homogeneously under the scaling
transformation that maps Ti onto a set of R2

+ that includes Ti itself. In other words,
we need the preimage of Ti under S w

l to be in Ti itself. This way, by the homogeneous
scaling assumption it is sufficient to define Vi on a compact subset of Ti to know Vi
in all Ti. Note that for all T1,T2,T3 we have that such a scaling is given by S w

l with
w= (1,1)/

√
2.

Lemma B.1. For an initial condition x0 = (x1,x2)∈T3, the Lyapunov function V 3

solving (3.11) with

h3(x) :=h3x
δ′′3
2 λ3(x) and V4(x) =m4x

δ4
2 , (B.1)

for h3>0 and m4 =m4(b2)>0 is well defined for all δ′′3 ∈R and δ4>0. Furthermore,
for the choice of constants

δ′′3 = δ4, (B.2)

we can write V 3(x) =xδ42 (m4 +h3(x1−b2)).

Proof. By the method of characteristics we obtain V 3 satisfying (3.11) by integrat-
ing h3 along the solutions of the set of ordinary differential equations ẋ=T3x. Recalling
by (3.14) that such solutions are moving from x1(0) to b2 on lines with x2(t) =x2(0),
by our choice (B.1) of boundary condition on T34 we obtain

V 3(x) =m4x
δ4
2 +

∫ x1

b2

h3x
δ′′3
2 λ3((z,x2))

1

λ3((z,x2))
dz=m4x

δ4
2 −h3b2x

δ′′3
2 +h3x1x

δ′′3
2 .

This function is clearly well defined in R2
+ for all choices of parameters. Now we see

that in order for V 3 to scale homogeneously under S w
l for all w∈W3 we need to have

(B.2) for δ′3>4 as h3>0. This directly implies that V 3 has the desired form.

We note that the function V 3 defined in Lemma B.1 does not scale homogeneously
under S w

l . For this reason, proceed as in [13] and introduce a new “dummy” coordinate
λ and a scaling transformation

S
(1,1,1)
l : (x1,x2,χ) 7→ (lx1,lx2,lχ).

Then, we define the Lyapunov function V 3 in the new set of coordinates as

V 3((x1,x2,χ)) :=xδ42 (χm4 +h3(x1−χb2)).

It is manifest that this function scales homogeneously under S
(1,1,1)
l .

Lemma B.2. For an initial condition x0 = (x1,x2)∈T2, the Lyapunov function V 2

solving (3.11) with

h2(x) :=h2(x1 +5x2)δ
′
2λ3(x) and V3(π23x) =m3(x1 +5x2)δ3 , (B.3)

for h2>0 is well defined for all δ′2∈R and δ3>0. Furthermore, for the choice of con-
stants

δ′2 = δ′′3 ,
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we have V 2
w∼ lδ2 for w= (1,1,1) and δ2 := δ′2 +1.

Proof. We again find the solution to (3.11) in T2 by the method of characteristics.
Denoting by γ3(x,π23) the path along the characteristic of T2 starting at x and ending
at π23x and noting that h2( ·) defined in (B.3) is constant on such a path we have

V 2(x) =V 3(π23x)+h2(x1 +5x2)δ
′
2

∫
γ3(x,π23x)

λ3(z)
1

λ3(z)
dz.

Consequently, using that π23x= (x1 +5x2)(1+5b1)−1(1,b1) we write the explicit result
of the integral as

V 2(x) = (x1 +5x2)δ4
(
χm4 +h3

(
x1 +5x2
1+5b1

−χb2
))

+h2(x1 +5x2)δ
′
2Lb1(x), (B.4)

for Lb1(x) :=x1

√
1+b−21 sin(arctan(b−11 )−arctan(1/5))/sin(arctan(x2/x1)+

arctan(b−11 )). By the homogeneous scaling property of V 3 under S
(1,1,1)
l we have that

V 3(π23x) =m3(x1 +5x2)δ3 for δ3 := δ′′3 +1 and m3 =m3(b1) :=h3(b1)δ
′′
3 (1+b1)δ3 . It is

easy to see that the function V 2 from (B.4) scales homogeneously under S
(1,1,1)
l .

Lemma B.3. For an initial condition x0 = (x1,x2)∈T1, the function V 1 solving (3.11)
with

h1(x) :=h1x
δ′1
1 λ3(x) and V 2(x) =m2x

δ2
1 ,

for h1>0 is well defined for all δ′1∈R and δ2>0. Furthermore, for the choice of con-
stants

δ′2 = δ′1, (B.5)

we can write V 1(x) =x
δ′2
1 (m2x1−h1(x2−x1/b1)).

Proof. We obtain the Lyapunov function by integrating along the characteristic
lines of the transport operator T1. Noting that these lines satisfy x1(t) =x1(0) for all
t>0 we write

V 1(x) =V 2(π12(x))+h1

∫ x1/b1

x2

x
δ′1
1 λ3((x1,y))

1

λ3((x1,y))
dy

=m2(x)xδ21 −h1x
δ′1
1 (x2−x1/b1), (B.6)

for π12(x) = (x1,x1/b1) and

m2(x) :=xδ21 (1+5/b1)δ2
(
χm4 +h3

(
x1 +

1+5/b1
1+5b1

−χb2
))

+h2x
δ′2
1 (1+b1/5)δ

′
2 .

We immediately recognize that the right-hand side of (B.6) scales homogeneously under

S
(1,1,1)
l if (B.5) holds, resulting in the desired definition for V 1( ·).
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