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ON A NONLOCAL DIFFERENTIAL EQUATION DESCRIBING
ROOTS OF POLYNOMIALS UNDER DIFFERENTIATION∗

RAFAEL GRANERO-BELINCHÓN†

Abstract. In this work we study the nonlocal transport equation derived recently by Steinerberger
[Proc. Amer. Math. Soc., 147(11):4733–4744, 2019]. When this equation is considered on the real
line, it describes how the distribution of roots of a polynomial behaves under iterated differentiation
of the function. This equation can also be seen as a nonlocal fast diffusion equation. In particular,
we study the well-posedness of the equation, establish some qualitative properties of the solution and
give conditions ensuring the global existence of both weak and strong solutions. Finally, we present
a link between the equation obtained by Steinerberger and a one-dimensional model of the surface
quasi-geostrophic equation used by Chae et al. [Adv. Math., 194(1):203–223, 2005].
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1. Introduction and main results
In this paper, we consider the following one-dimensional nonlinear transport equa-

tion

∂tu+∂xarctan

(
Hu

u

)
= 0 (x,t) on S× [0,T ], (1.1)

where

Hu(x,t) =
1

2π
p.v.

∫
S

u(y,t)

tan
(
x−y
2

)dy,
is the periodic Hilbert transform and S is the one-dimensional circle (or, equivalently,
the interval [−π,π] with periodic boundary conditions). The previous equation needs
to be supplemented with the initial data

u(x,0) =u0(x). (1.2)

This equation (when posed on the real line R) has been derived by S. Steinerberger
[33] when studying how the distribution of roots behaves under iterated differentia-
tion. Besides the derivation of Equation (1.1), Steinerberger also found certain explicit
solutions. Furthermore, Steinerberger obtained that the arcsine distribution

U(x) =
C√

1−x2
1|x|<1, (1.3)

is a steady state when considering the equation only in the interval (−1,1). We observe
that this steady state is not smooth because the derivative blows up at the boundary
of its support. Whether such singularities occur in the evolution problem (1.1) is an
interesting open question.

The purpose of this work is to study the properties of the transport Equation
(1.1) and, in particular, to obtain global-in-time results that exclude the formation in

∗Received: November 04, 2019; Accepted (in revised form): March 30, 2020. Communicated by
Alexander Kiselev.
†Departamento de Matemáticas, Estad́ıstica y Computación, Universidad de Cantabria, Avda. Los

Castros s/n, Santander, Spain. (rafael.granero@unican.es).

1643

mailto:rafael.granero@unican.es


1644 ON A NONLOCAL DIFFERENTIAL EQUATION

finite time of such singularities. The study of nonlocal and nonlinear one-dimensional
equations is a wide research area with a large literature. For other similar equations
and related results we refer to [5, 6, 9, 13, 14, 24, 15, 16, 25, 27, 30, 26].

In this paper we prove the following results: first we establish the local existence
of smooth solution emanating from smooth initial data together with some qualitative
properties of such solutions. Even if this is a rather basic result, the nonlinearity of the
equation makes it non-trivial.

Theorem 1.1. Let 0<u0∈H2(S) be the initial data. Then there exists a time
0<T ≤∞, T =T (‖u0‖H2 ,minxu0(x)) and a unique positive classical solution to (1.1)

0<u∈C([0,T ],H2(S)).

Furthermore, this solution verifies the following properties:
•

‖u(t)‖2L2 +

∫ t

0

D[u(s)]ds=‖u0‖2L2 . (1.4)

where

D[u(t)] =
1

4π

∫
S

p.v.

∫
S

u(x,t)−u(y,t)

sin
(
x−y
2

)2 log

(
u(x,t)2 +(Hu(x,t))2

u(y,t)2 +(Hu(y,t))2

)
dxdy,

• ‖u(t)‖L1 =‖u0‖L1 ,

• if u0(x) is even, u(x,t) is even for all t≥0,

• Maximum principle: maxxu(x,t)≤maxxu0(x),

• Minimum principle: minxu0(x)≤minxu(x,t).

Remark 1.1. We remark that, for an arbitrary u(x,t), we are not able to give a sign
to D[u(t)] (compare with [1, 19]). In other words, we are not able to show whether the
L2 norm decays.

Before stating the rest of our results, we observe that, in the case where the domain
is a re-scaled torus or the whole real line, there is a one-parameter family of scale
invariant transformations for this equation. Indeed, if u(x,t) is a solution to (1.1), then

uλ(x,t) =λαu(λx,λ1−αt)∀α∈R, (1.5)

is also a solution. In other words, the previous scaling is invariant for the equation.
In addition, under certain restrictions in the Wiener spaces Ȧs (see (1.7) for the

definition), we can ensure that the solution is global. Although this size constraint
may be seen as very restrictive, we think it is neeeded in order that the solution re-
mains smooth. In particular, we observe the fact that the solution approaching the
homogeneous steady state in the space

L∞(0,T ;A1)

excludes two main scenarios. On the one hand, due to the size restriction and the
decay, the solution cannot vanish. On the other hand the derivative of the solution
cannot blow up. In other words, even if we cannot prove it (and so far this remains an
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open question), we somehow expect finite time singularity for certain vanishing initial
data with large initial slope. The precise statement of the theorem is

Theorem 1.2. Let 0<u0∈H2(S) be the initial data and denote

〈u0〉=
1

2π

∫
S
u0(x)dx.

There exists 0<C such that if

‖u0−〈u0〉‖Ȧ1

〈u0〉
≤C,

where the Wiener space Ȧ1 is defined in (1.7), then the solution (from Theorem 1.1) is
global and satisfies

‖u(t)−〈u0〉‖Ȧ1 ≤‖u0−〈u0〉‖Ȧ1e
−δt

for certain 0<δ(〈u0〉) small enough.

Remark 1.2. The explicit lower bound 0.13<C is obtained as a byproduct.

We observe that the

L∞(0,∞;Ȧ1)

norm is also invariant by the scaling

uλ(x,t) =
1

λ
u(λx,λ2t).

This scaling corresponds to the scaling of the Equation (1.5) when α=−1. As a con-
sequence, Ȧ1 is a (scaling) critical space which makes Theorem 1.2 a global existence
result in a critical space.

Finally, we study the existence of weak solutions i.e. solutions that satisfy the
equation in the following sense:

−
∫ T

0

∫
S
u(x,s)∂tφ(x,s)+arctan

(
Hu(x,s)

u(x,s)

)
∂xφ(x,s)dxds=

∫
S
u0(x)φ(x,0)dx,

for all test functions φ∈C∞(S× [0,T )).
In that regards, we prove the global existence of weak solution for initial data

satisfying certain size conditions in a critical space:

Theorem 1.3. Let 0<u0∈A0(S) be the initial data and denote

〈u0〉=
1

2π

∫
S
u0(x)dx.

There exists 0< C̃ such that if

‖u0−〈u0〉‖A0

〈u0〉
≤ C̃,

where the Wiener space A0 is defined in (1.7), then there exists a unique global weak
solution

u∈C([0,T ],A0)∩L1(0,T ;A1), ∀0<T <∞
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and this solution satisfies

‖u(t)−〈u0〉‖C0 ≤‖u0−〈u0〉‖A0e−δt

for certain 0<δ(〈u0〉) small enough.

Remark 1.3. The explicit lower bound 0.24< C̃ is obtained as a byproduct.

We observe that the

L∞(0,∞;A0)

norm is also invariant by the scaling

uλ(x,t) =u(λx,λt).

This scaling corresponds to the scaling of the Equation (1.5) when α= 0. As a conse-
quence, A0 is a (scaling) critical space. Thus, Theorem 1.3 is a global existence result
in a critical space.

Remark 1.4. Similar results can be proved for the nonlocal fast diffusion equation
(see also [32, 31, 3])

∂tu+∂x

(
Hu

um

)
= 0, m∈N.

The rest of the paper is devoted to the proofs of the results (Sections 2-4) and the
link between (1.1) and the equation

∂tg+Λg=∂x (gHg) , (1.6)

(see Section 5). We would like to remark that (1.6) was proposed as a one-dimensional
model of the 2D surface quasi-geostrophic equation by Chae, Córdoba, Córdoba and
Fontelos [7] (see also the papers by Matsuno [29] and Baker, Li and Morlet [2]). It is
well-known that the solutions of (1.6) blow up in finite time for certain vanishing initial
data [5]. The (so far formal) link between (1.1) and (1.6) suggests the possible occurence
of finite time blow up for (1.1) for solutions corresponding to vanishing initial data. To
the best of the author’s knowledge, this question is still open and should be the object
of a future study elsewhere.

Notation. We denote

Λu=H∂xu(x) =
1

4π
p.v.

∫
S

u(x)−u(x−y)

sin2(y/2)
dy.

We define the (homogeneous) L2-based Sobolev spaces

Ḣs=

{
u(x) =

∑
n∈Z

û(n)einx with
∑
n∈Z
|n|2s|û(n)|2<∞

}
,

with norm ‖u‖Ḣs =‖Λsu‖L2 . The standard non-homogeneous Sobolev spaces are then

Hs=

{
u(x) =

∑
n∈Z

û(n)einx with
∑
n∈Z

(1+ |n|2s)|û(n)|2<∞

}
.
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Similarly, we recall the definition of the (homogeneous) Wiener spaces

Ȧs=

{
u(x) =

∑
n∈Z

û(n)einx with
∑
n∈Z
|n|s|û(n)|<∞

}
. (1.7)

with norm ‖u‖Ȧs =‖Λ̂su‖`1 . The standard non-homogeneous Wiener spaces are then

As=

{
u(x) =

∑
n∈Z

û(n)einx with
∑
n∈Z

(1+ |n|s)|û(n)|<∞

}
.

2. Proof of Theorem 1.1

Well-posedness. The existence will follow using the energy method [28, Chapter
3] once the appropriate a priori estimates are obtained. We define the energy

E(t) =
1

minxu(x,t)
+‖u(t)‖H2 . (2.1)

We have to prove an inequality of the type

d

dt
E(t)≤C(1+E(t))p,

for certain C and p.
To estimate the first term in the energy we use a pointwise argument (see [12, 10,

21, 4] for more details). The solution has at least a minimum:

m(t) = min
x
u(x,t) =u(xt,t).

Because of the positivity of the initial data, we have that m(0)>0. Following the
argument in [12, 21, 4], we have that

d

dt
m(t) =∂tu(xt,t) =− m(t)Λu(xt,t)

m(t)2 +(Hu(xt,t))
2

a.e..

Then,

d

dt

1

minxu(x,t)
=−∂tu(xt,t)

m(t)2
≤C ‖u‖H

2

m(t)3
≤C(E(t))4 (2.2)

For the sake of brevity we only provide with the estimates for the higher order terms
(the lower order terms being easier). We take two derivatives of the equation and test
against ∂2xu. We find that

1

2

d

dt
‖u(t)‖2Ḣ2 =−

∫
S

(∂2
xuΛu+uΛ∂2

xu)∂2
xu

u2 +(Hu)2
dx+

∫
S

uΛu(2u∂2
xu+2Hu∂xΛu)∂2

xu

(u2 +(Hu)2)2
dx

+

∫
S

(∂xΛu∂xu+Hu∂3
xu)∂2

xu

u2 +(Hu)2
dx−

∫
S

Hu∂xu(2u∂2
xu+2HuΛ∂xu)∂2

xu

(u2 +(Hu)2)2
dx+R

=I1 +I2 +I3 +I4 +R,

with

I1 =−
∫
S

(∂2xuΛu+uΛ∂2xu)∂2xu

u2 +(Hu)2
dx,
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I2 =

∫
S

uΛu(2u∂2xu+2Hu∂xΛu)∂2xu

(u2 +(Hu)2)2
dx,

I3 =

∫
S

(∂xΛu∂xu+Hu∂3xu)∂2xu

u2 +(Hu)2
dx,

I4 =−
∫
S

Hu∂xu(2u∂2xu+2HuΛ∂xu)∂2xu

(u2 +(Hu)2)2
dx,

and R being either lower order terms or terms akin to I2 and I4. Using that∥∥∥∥ 1

u2 +(Hu)2

∥∥∥∥
L∞
≤
∥∥∥∥ 1

u2

∥∥∥∥
L∞
≤ 1

m(t)2
≤E(t)2,

together with Hölder and Sobolev inequalities and interpolation between Sobolev spaces,
we obtain that

l.o.t.≤C(E(t))8‖u(t)‖H2 . (2.3)

We recall the Córdoba-Córdoba inequality [11]

θΛθ≥ 1

2
Λ(θ2),

to find that ∫
S

uΛ∂2xu∂
2
xu

u2 +(Hu)2
dx≥ 1

2

∫
S
H∂x

(
u

u2 +(Hu)2

)
(∂2xu)2dx.

Thus,

−
∫
S

uΛ∂2xu∂
2
xu

u2 +(Hu)2
dx≤−1

2

∫
S
H∂x

(
u

u2 +(Hu)2

)
(∂2xu)2dx

and we have that

I1≤
‖u(t)‖2H2‖u‖Ȧ1

m(t)2
− 1

2

∫
S
H∂x

(
u

u2 +(Hu)2

)
(∂2xu)2dx

≤
‖u(t)‖2H2‖u‖Ȧ1

m(t)2
+

1

2

‖u(t)‖2H2‖u‖Ȧ1

m(t)2
+
‖u(t)‖2H2‖u‖2A0‖u‖Ȧ1

m(t)4

≤C(1+E(t))8‖u(t)‖H2 .

Similarly, using

‖Hf‖L∞ +‖f‖L∞ ≤2‖f‖A0 ≤C‖f‖H1 ,

together with Hölder inequality and the Sobolev embedding we have that

I2≤C‖u(t)‖H2E(t)8.

We observe that I4 can be estimated as before and we find that

I2 +I4≤C(1+E(t))8‖u(t)‖H2 .
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Finally, we observe that an integration by parts allows us to write

I3 =

∫
S

∂xΛu∂xu∂
2
xu

u2 +(Hu)2
dx−

∫
S
∂x

(
Hu

u2 +(Hu)2

)
(∂2xu)2

2
dx.

From here it is possible to conclude that

I3≤C(1+E(t))8‖u(t)‖H2 .

Then, we obtain that

d

dt
‖u(t)‖2H2 ≤C(1+E(t))8‖u(t)‖H2 . (2.4)

Thus, collecting (2.2), (2.3) and (2.4), we conclude the desired inequality

d

dt
E(t)≤C(1+E(t))8.

Once the energy E is bounded, we would like to remark that, besides remaining in H2,
the solution is positive.

From here we only have to appropriately mollify the equation as in [28, Chapter 3]
to obtain approximate problems having local-in-time existence. In particular, being

Jε(x)

the periodic heat kernel at time t= ε, we define

∂tu
ε+Jε ∗∂xarctan

(
HJε ∗uε

ε+Jε ∗uε

)
= 0 (x,t) on S× [0,T ]. (2.5)

To ensure a common lifespan for these approximate problems we just invoke the
previous energy estimates. The final step is to obtain that the sequence of approximating
problems uε is Cauchy in the low order norm

L∞(0,T ;L2)

(see [28, Chapter 3] for further details). This concludes with the existence part. The
uniqueness follows from a standard contradiction argument together with the smooth-
ness and positivity of the approximate solutions.

An identity for the evolution of the L2 norm. We test (1.1) against u. We
find that

1

2

d

dt
‖u(t)‖2L2 =

∫
S
− u2Λu

u2 +(Hu)2
+

uHu∂xu

u2 +(Hu)2
dx.

We compute

D[u(t)] =−1

2

∫
S
Hu∂x log

(
u2 +(Hu)2

)
dx

=−
∫
S
Hu

u∂xu+HuΛu

u2 +(Hu)2
dx

=−
∫
S

u∂xuHu

u2 +(Hu)2
− u2Λu

u2 +(Hu)2
+Λudx



1650 ON A NONLOCAL DIFFERENTIAL EQUATION

=−
∫
S

u∂xuHu

u2 +(Hu)2
− u2Λu

u2 +(Hu)2
dx.

As a consequence,

1

2

d

dt
‖u(t)‖2L2 =−D[u(t)].

Furthermore,

D[u(t)] =
1

2

∫
S
Λulog

(
u2 +(Hu)2

)
dx

=
1

8π

∫
S
p.v.

∫
S

u(x)−u(x−y)

sin(y/2)2
log
(
u(x)2 +(Hu(x))2

)
dxdy

=
1

8π

∫
S
p.v.

∫
S

u(x)−u(y)

sin((x−y)/2)2
log
(
u(x)2 +(Hu(x))2

)
dxdy

=
1

8π

∫
S
p.v.

∫
S

u(y)−u(x)

sin((x−y)/2)2
log
(
u(y)2 +(Hu(y))2

)
dxdy.

Then, we have identity (1.4).

Propagation of the L1 norm. Once the solution remains positive, the L1 norm
is preserved due to the divergence form of the equation.

Propagation of the even symmetry. This is a straightforward consequence of
the fact that the Hilbert transform H maps even functions into odd functions.

Maximum principle. We define

M(t) = max
x
u(x,t) =u(xt,t)

Then (see [18, 21, 4] for more details) we have that

d

dt
M(t) =∂tu(xt,t) a.e.,

Then

d

dt
M(t)+

M(t)Λu(xt)

M(t)2 +(Hu(xt))2
= 0,

We observe that

Λu(xt)≥0.

Thus, using 0≤M(t), we obtain that

M(t)≤M(0).

Minimum principle. With the previous definition for m(t), we have that

d

dt
m(t)+

m(t)Λu(xt)

m(t)2 +(Hu(xt))
2

= 0.

Thus, using Λu(xt,t)≤0, we find that

0<m(0)≤m(t).
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3. Proof of Theorem 1.2
The proof of this theorem follows the approach in [20]. We define the new variable

v(x,t) =u(x,t)−〈u0〉.

This variable quantifies the difference between the steady state u∞= 〈u0〉 and u. The
idea of the theorem is first to linearize around the stady state 〈u0〉. Secondly, we obtain
an inequality of the form

d

dt
‖v(t)‖Ȧ1 +

‖v(t)‖Ȧ2

〈u0〉
≤F

(
‖v(t)‖Ȧ1

〈u0〉

)
‖v(t)‖Ȧ2

〈u0〉
,

with F(0) = 0 and F continuous. We observe that this inequality guarantees v(t)→0 in
Ȧ1 for small enough ‖v0‖Ȧ1/〈u0〉.

In what follows we assume that

r=
‖v‖Ȧ1

〈u0〉
<

1

2
,

so that

‖v‖Ȧ1

〈u0〉−‖v‖Ȧ1

=
r

1−r
<1.

Since we have the following Poincaré-type inequality

‖v‖Ȧs ≤‖v‖Ȧr , ∀0≤s<r,

we observe that ∣∣∣∣Huu
∣∣∣∣= ∣∣∣∣Hvu

∣∣∣∣≤ ‖v‖A0

〈u0〉−‖v‖A0

≤
‖v‖Ȧ1

〈u0〉−‖v‖Ȧ1

<1.

As a consequence, we can expand the nonlinearity as a power series

arctan

(
Hu

u

)
=

∑
n∈Z+∪{0}

(−1)n

1+2n

(
Hu

u

)1+2n

,

so

∂tu=−
∑

n∈Z+∪{0}

(−1)n
(
Hu

u

)2n(
Λu

u
−Hu∂xu

u2

)
.

In the new variable, this latter equation reads

∂tv=−
∑
n∈Z+

(−1)n
(

Hv

v+〈u0〉

)2n(
Λv

v+〈u0〉
− Hv∂xv

(v+〈u0〉)2

)
−
(

Λv

v+〈u0〉
− Hv∂xv

(v+〈u0〉)2

)
.

We recall the following Taylor series

1

〈u0〉+v
=

1

〈u0〉
+

1

〈u0〉
∑
n∈Z+

(−1)n
(

v

〈u0〉

)n
,
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1

(〈u0〉+v)2
=

1

〈u0〉2
+

1

〈u0〉2
∑
n∈Z+

(−1)n(1+n)

(
v

〈u0〉

)n
.

We define

S1 =
Hv

〈u0〉
+
Hv

〈u0〉
∑
m∈Z+

(−1)m
(

v

〈u0〉

)m
S2 =

Hv∂xv

〈u0〉2
+
Hv∂xv

〈u0〉2
∑
m∈Z+

(−1)m(1+m)

(
v

〈u0〉

)m
S3 =

Λv

〈u0〉
∑
m∈Z+

(−1)m
(

v

〈u0〉

)m
.

Using the previous Taylor series together with the previous definitions, we find that

∂tv+
Λv

〈u0〉
=−

∑
n∈Z+

(−1)n (S1)
2n

(
Λv

〈u0〉
+S3

)
+
∑
n∈Z+

(−1)n (S1)
2n

S2−S3 +S2. (3.1)

We take a derivative of (3.1) to obtain that

∂t∂xv+
Λ∂xv

〈u0〉
=
∑
n∈Z+

(−1)n+12n(S1)
2n−1

∂xS1

(
Λv

〈u0〉
+S3

)
−
∑
n∈Z+

(−1)n (S1)
2n

(
Λ∂xv

〈u0〉
+∂xS3

)
+
∑
n∈Z+

(−1)n2n(S1)
2n−1

∂xS1S2 +
∑
n∈Z+

(−1)n (S1)
2n
∂xS2

−∂xS3 +∂xS2 (3.2)

We want to estimate

‖v‖Ȧ1 =‖∂xv‖A0 .

To do that we first observe that A0 is an algebra, thus,

‖S2n
1 ‖A0 ≤‖S1‖2nA0 ≤

(
‖v‖A0

〈u0〉
+
‖v‖A0

〈u0〉
∑
m∈Z+

(
‖v‖A0

〈u0〉

)m)2n

.

Summing up the series, we find the estimate

‖S2n
1 ‖A0 ≤

(
‖v‖A0

〈u0〉−‖v‖A0

)2n

.

Similarly,

‖S2n−1
1 ‖A0 ≤

(
‖v‖A0

〈u0〉−‖v‖A0

)2n−1
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‖S2‖A0 ≤
‖v‖A0‖v‖Ȧ1

〈u0〉2
+
‖v‖A0‖v‖Ȧ1

〈u0〉2
∑

m∈Z+

(1+m)

(
‖v‖A0

〈u0〉

)m

≤ ‖v‖A0‖v‖Ȧ1

(〈u0〉−‖v‖A0)2

‖S3‖A0 ≤
‖v‖Ȧ1

〈u0〉
∑

m∈Z+

(
‖v‖A0

〈u0〉

)m

≤ ‖v‖Ȧ1‖v‖A0

〈u0〉(〈u0〉−‖v‖A0)

‖∂xS1‖A0 ≤
‖v‖Ȧ1

〈u0〉−‖v‖A0
+
‖v‖Ȧ1‖v‖A0

(〈u0〉−‖v‖A0)2

‖∂xS2‖A0 ≤
‖v‖2

Ȧ1 +‖v‖A0‖v‖Ȧ2

(〈u0〉−‖v‖A0)2
+

2‖v‖A0‖v‖2
Ȧ1

(〈u0〉−‖v‖A0)3

‖∂xS3‖A0 ≤
‖v‖Ȧ2‖v‖A0

〈u0〉(〈u0〉−‖v‖A0)
+

‖v‖2
Ȧ1

(〈u0〉−‖v‖A0)2
.

We obtain that

d

dt
‖v‖Ȧ1 +

‖v‖Ȧ2

〈u0〉
≤
‖v‖Ȧ2

〈u0〉

{ ∑
n∈Z+

2n

(
r

1−r

)2n−1[
r

1−r
+

r2

(1−r)2

]
1

1−r

+
∑
n∈Z+

(
r

1−r

)2n(
1+

r

1−r
+

r

(1−r)2

)

+
∑
n∈Z+

2n

(
r

1−r

)2n−1[
r

1−r
+

r2

(1−r)2

]
r

(1−r)2

+2
∑
n∈Z+

(
r

1−r

)2n(
r

(1−r)2
+

r2

(1−r)3

)

+
r

1−r
+

r

(1−r)2
+2

(
r

(1−r)2
+

r2

(1−r)3

)}
. (3.3)

Using

z2

1−z2
=
∑
n∈Z+

z2n,

we find

d

dt
‖v‖Ȧ1 +

‖v‖Ȧ2

〈u0〉
≤
‖v‖Ȧ2

〈u0〉

{
2 r
1−r(

1−
(

r
1−r

)2)2

[
r

1−r
+

r2

(1−r)2

]
1

1−r

+

(
r

1−r

)2
1−
(

r
1−r

)2 (1+
r

1−r
+

r

(1−r)2

)

+
2 r
1−r(

1−
(

r
1−r

)2)2

[
r

1−r
+

r2

(1−r)2

]
r

(1−r)2

+2

(
r

1−r

)2
1−
(

r
1−r

)2 ( r

(1−r)2
+

r2

(1−r)3

)

+
r

1−r
+

3r

(1−r)2
+

r2

(1−r)3

}
. (3.4)
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Finally, we can simplify the previous expression and find that

F(r) =
2 r
1−r(

1−
(

r
1−r

)2)2

(
r

(1−r)3
+

r

(1−r)4

)
+

(
r

1−r

)2
1−2r

+2

(
r

1−r

)2
1−
(

r
1−r

)2 1

(1−r)3
+

r

1−r
+

3r

(1−r)2
+

r2

(1−r)3
.

We observe that F is a continuous function in a neighborhood of r= 0 and satisfies
F(0) = 0. Thus, there exists 0<C such that F(C)<1. We finally observe that if
‖v0‖Ȧ1/〈u0〉<C this condition propagates in time and ensures the following bound

‖v(t)‖Ȧ1 ≤‖v0‖Ȧ1e
−δt,

for small enough 0<δ�1. This last inequality together with a close inspection of the
energy estimates in Theorem 1.1 lead to the following inequality

d

dt
‖u‖2H2 ≤C(u0)‖u‖2H2 ,

and then we conclude the global bound for the H2 norm using Grönwall’s inequality.

4. Proof of Theorem 1.3
In this section we prove the existence of global weak solutions for certain initial

data satisfying appropriate size restriction in the space A0. We emphasize that this
space is scale invariant with respect to the scaling of the equation. First we obtain a
priori estimates, then we consider a vanishing viscosity approximation and prove the
convergence of the approximate solutions.

A priori estimates. Following the previous ideas, the first nonlinear term in (3.1)
contributes with∣∣∣∣∣∣∣∣ ∑

n∈Z+

(−1)n (S1)
2n

(
Λv

〈u0〉
+

Λv

〈u0〉
∑
m∈Z+

(−1)m
(

v

〈u0〉

)m)∣∣∣∣∣∣∣∣
A0

≤
∑
n∈Z+

(
‖v‖A0

〈u0〉−‖v‖A0

)2n( ‖v‖Ȧ1

〈u0〉−‖v‖A0

)

≤
(

‖v‖Ȧ1

〈u0〉−‖v‖A0

) 1

1−
(

‖v‖A0

〈u0〉−‖v‖A0

)2 −1


≤
(

‖v‖Ȧ1

〈u0〉−‖v‖A0

)
(

‖v‖A0

〈u0〉−‖v‖A0

)2
1−
(

‖v‖A0

〈u0〉−‖v‖A0

)2
 .

The second nonlinear term in (3.1) can be estimated as∣∣∣∣∣∣∣∣ ∑
n∈Z+

(−1)n (S1)
2n

(
Hv∂xv

〈u0〉2
+
Hv∂xv

〈u0〉2
∑
m∈Z+

(−1)m(1+m)

(
v

〈u0〉

)m)∣∣∣∣∣∣∣∣
A0
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≤
∑
n∈Z+

(
‖v‖A0

〈u0〉−‖v‖A0

)2n( ‖v‖A0‖v‖Ȧ1

(〈u0〉−‖v‖A0)2

)

≤
(
‖v‖A0‖v‖Ȧ1

(〈u0〉−‖v‖A0)2

)
(

‖v‖A0

〈u0〉−‖v‖A0

)2
1−
(

‖v‖A0

〈u0〉−‖v‖A0

)2
 .

Finally, we find that

‖S3‖A0 =

∥∥∥∥∥Λv
1

〈u0〉
∑
n∈Z+

(−1)n
(

v

〈u0〉

)n∥∥∥∥∥
A0

≤
‖v‖Ȧ1

〈u0〉
∑
n∈Z+

(
‖v‖A0

〈u0〉

)n
≤‖v‖Ȧ1

(
1

〈u0〉−‖v‖A0

− 1

〈u0〉

)
,

‖S2‖A0 =

∥∥∥∥∥
(
Hv∂xv

〈u0〉2
+
Hv∂xv

〈u0〉2
∑
n∈Z+

(−1)n(1+n)

(
v

〈u0〉

)n)∥∥∥∥∥
A0

≤
‖v‖A0‖v‖Ȧ1

〈u0〉2
+
‖v‖A0‖v‖Ȧ1

〈u0〉2
∑
n∈Z+

(1+n)

(
‖v‖A0

〈u0〉

)n
≤
‖v‖A0‖v‖Ȧ1

(〈u0〉−‖v‖A0)2
.

We define

s=
‖v‖A0

〈u0〉
.

Collecting the previous estimates, we find that

d

dt
‖v‖A0 +

‖v‖Ȧ1

〈u0〉
≤
‖v‖Ȧ1

〈u0〉

[
s

(1−s)2
+

s

1−s
+

(
s

(1−s)2

)
(

s
1−s

)2
1−
(

s
1−s

)2


+

(
1

1−s

)
(

s
1−s

)2
1−
(

s
1−s

)2
]

Using the hypotheses on C̃, we conclude that

s≤C̃

implies

d

dt
‖v‖A0 +δ‖v‖Ȧ1 ≤0,

and that, thanks to a Poincaré-type inequality, leads to

‖v(t)‖A0 ≤‖v0‖A0e−δt.
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Furthermore, the solution also enjoys the following parabolic gain of regularity∫ t

0

‖v(s)‖2H0.5ds≤
∫ t

0

‖v(s)‖Ȧ1dssup
s
‖v(s)‖L1 ≤

∫ t

0

‖v(s)‖Ȧ1ds‖v0‖A02π.

Approximated solutions. To construct the approximate solutions, we consider
the following vanishing viscosity approximated problem

∂tu
ε+∂xarctan

(
Huε

uε

)
=ε∂2xu

ε (x,t) on S× [0,T ], (4.1)

with a mollified initial data

uε(x,0) =Mε ∗u0(x).

The corresponding approximate solution exists globally and remains smooth.

Compactness. Fix 0<T <∞. We have that uε is uniformly bounded in

L∞(0,T ;A0)∩L2(0,T ;H0.5).

This implies weak-* convergence

uε
∗
⇀u,

in

L∞([0,T ]×S),

and weak convergence

uε⇀u,

in

L2(0,T ;H0.5(S)).

Furthermore, ∂tu
ε is uniformly bounded in

L2(0,T ;H−1.5).

A standard application of Aubin-Lions Theorem [34] ensures the strong convergence
(after maybe taking a subsequence)

uε→u, Huε→Hu

in

L2(0,T ;L2).

Taking another subsequence if necessary, we obtain that

uε(x,t)→u(x,t) a.e in S× [0,T ]

In particular, we conclude the lower bound

min
x
u0(x)≤u(x,t) a.e in S× [0,T ].
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Using that ∂tu
ε is uniformly bounded in

L1(0,T ;A0),

another application of Aubin-Lions compactness lemma (see [17] for further details),
allows us to also ensure that

uε→u, Huε→Hu

in

Lr(0,T ;A0)∩Lq(0,T ;A0.5), 1≤ r<∞, 1≤ q<2.

To conclude that the solution u is in fact a C([0,T ],A0) function, we invoke Fatou lemma
as in [17] to obtain that, for a small enough δ,

‖u(t)‖A0 +δ

∫ t

0

‖u(s)‖A1ds≤ liminf
ε→0

(
‖uε(t)‖A0 +δ

∫ t

0

‖uε(s)‖A1ds

)
≤C(u0).

This in particular implies that

u∈L∞(0,T ;A0).

Now we use the fundamental theorem of calculus to obtain

‖u(t2)−u(t1)‖A0 ≤
∫ t2

t1

‖∂tu(s)‖A0ds,

from where the continuity in time follows.

Passing to the limit. The other terms being linear, we only have to take into
consideration the convergence of

J =

∫ T

0

∫
S

(
arctan

(
Huε

uε

)
−arctan

(
Hu

u

))
∂xφdxds.

We have that

J ≤
∫ T

0

∫
S

∣∣∣∣Huεuε
−Hu

u

∣∣∣∣|∂xφ|dxds.
Using the lower bounds for u and uε together with Hölder inequality, we conclude that

J→0.

This concludes the proof of the existence of a global weak solution u.

Uniqueness. The uniqueness of the solution follows from a standard contradiction
argument once the control of ∫ t

0

‖u(s)‖A1ds

is ensured.
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5. Link between (1.1) and (1.6)
We now look for a solution of (1.1) having the following form

u(x,t) = 〈u0〉+ε
∞∑
j=0

εjf (j)(x,t),

(here ε can be thought as the displacement from the homogeneous state 〈u0〉). The idea
is to truncate the series up to certain order, say, two,

f(x,t) =εf (0)(x,t)+ε2f (1)(x,t),

and see what f solves. In this way we will obtain that (up to O(ε3)), f solves (1.6). A
similar approach has been used in the study of free boundary problems for incompress-
ible fluids (see [8, 22, 23] and the references therein). First, we observe that (1.1) can
be equivalently written as

∂tu+
uΛu−Hu∂xu
u2 +(Hu)2

= 0 (x,t) on S× [0,T ]. (5.1)

Thus,

∂tu
(
〈u0〉2 +2(u−〈u0〉)〈u0〉+(u−〈u0〉)2 +(Hu)2

)
+uΛu−Hu∂xu= 0.

Forcing the previous ansatz and matching the powers of ε, we find that f (0) solves

∂tf
(0) +

Λf (0)

〈u0〉
= 0.

Similarly, f (1) solves

∂tf
(1)〈u0〉2 +2∂tf

(0)f (0)〈u0〉+〈u0〉Λf (1) +f (0)Λf (0)−Hf (0)∂xf (0) = 0.

Thus, substituting 〈u0〉∂tf (0) by −Λf (0), we find that f solves

∂tf+
1

〈u0〉
Λf− 1

〈u0〉2
∂x(Hff) =O(ε3).

Thus, neglecting the O(ε3) terms we find that

g(x,t) =
f(x,t〈u0〉)
〈u0〉

solves (1.6).
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H. Poincaré Anal. Non Lineaire, 2020. 4

[18] R. Granero-Belinchón, Global existence for the confined Muskat problem, SIAM J. Math. Anal.,
46(2):1651–1680, 2014. 2

[19] R. Granero-Belinchón, On the fractional Fisher information with applications to a hyperbolic–
parabolic system of chemotaxis, J. Diff. Eqs., 262(4):3250–3283, 2017. 1.1

[20] R. Granero-Belinchón and M. Magliocca, Global existence and decay to equilibrium for some
crystal surface models, Discrete Contin. Dyn. Syst. Ser. A, 39(4):2101–2131, 2019. 3

[21] R. Granero-Belinchón and R. Orive-Illera, An aggregation equation with a nonlocal flux, Nonlinear
Anal., 108:260–274, 2014. 2, 2

[22] R. Granero-Belinchón and S. Scrobogna, Asymptotic models for free boundary flow in porous
media, Phys. D, 392:1–16, 2019. 5

[23] R. Granero-Belinchón and S. Scrobogna, On an asymptotic model for free boundary Darcy flow
in porous media, arXiv preprint, arXiv:1810.11798, 2018. 5

[24] V. Hoang and M. Radosz, Cusp formation for a nonlocal evolution equation, Arch. Ration. Mech.
Anal., 224(3):1021–1036, 2017. 1

[25] O. Lazar, On a 1D nonlocal transport equation with nonlocal velocity and subcritical or super-
critical diffusion, J. Diff. Eqs., 261(9):4974–4996, 2016. 1
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