
COMMUN. MATH. SCI. c© 2020 International Press

Vol. 18, No. 6, pp. 1755–1774

RADEMACHER COMPLEXITY AND
THE GENERALIZATION ERROR OF RESIDUAL NETWORKS∗

WEINAN E† , CHAO MA‡ , AND QINGCAN WANG§

Abstract. Sharp bounds for the Rademacher complexity and the generalization error are derived
for the residual network model. The Rademacher complexity bound has no explicit dependency on
the depth of the network, while the generalization bounds are comparable to the Monte Carlo error
rates, suggesting that they are nearly optimal in the high dimensional setting. These estimates are
achieved by constraining the hypothesis space with an appropriately defined path norm such that the
constrained space is large enough for the approximation error rates to be optimal and small enough
for the estimation error rates to be optimal at the same time. Comparisons are made with other
norm-based bounds.
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1. Introduction

One of the major theoretical challenges in machine learning is to understand, in a
high dimensional setting, the generalization error for deep neural networks, especially
residual networks [10] which have become one of the default choices for many machine
learning tasks. To this end, one needs to understand both the approximation error,
which measures the error of the best approximation of the target function in the hy-
pothesis space, and the estimation error, which measures the additional error due to
the fact that we have a finite dataset. Naturally the larger the hypothesis space, the
smaller the approximation error. Since the estimation error goes roughly in the oppo-
site direction, one most crucial step in obtaining good estimates for the generalization
error is the choice of the hypothesis space in order to achieve the right balance. In this
regard, the norm-based bounds use some appropriate norms of the parameters to define
the hypothesis space [3,5,9,14]. More sophisticated ways of constraining the hypothesis
space can be found in [1] and [12]. As we will show later, these constraints are either
too strong in the sense that the hypothesis space is not big enough for the optimal
approximation error bounds to hold, or too weak in the sense that the complexity of
the hypothesis space is too large.

To achieve the right balance, we define a weighted path norm for the parameters
in a residual neural network. Our main result is that the Rademacher complexity
scales optimally (i.e. 1/

√
n where n is the size of the dataset) for the hypothesis space

constrained by this weighted path norm. By itself this result simply means that we
have chosen a strong enough path norm to constrain the hypothesis space. So it is
important to complement this result with one in a different direction, namely, we will
also show that one can approximate reasonable target functions optimally (i.e. with
Monte Carlo type of rates) by residual neural networks with the weighted path norm
uniformly bounded by some norm of the target function. Together these results imply
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a Monte Carlo kind of bounds for the generalization error. It is possible that the same
result can also be established under the usual path norm. But so far we have not
succeeded in proving this result.

While existing generalization bounds differ in many ways, they have one thing
in common: they depend on information about the final parameters obtained in the
training process. Following [7], we call them a posteriori bounds. A posteriori bounds
have the advantage that they can be readily computed at the end of the training process.
In practice the numerical values of these bounds are so large that they are often vacuous.
In this paper, besides the a posteriori bounds, we will also derive a priori bounds.
These bounds do not depend on the parameters computed. Instead, they depend on
some norms of the target function. Although these a priori bounds can not be readily
evaluated due to the lack of the required information about the target function, they
still provide much-needed insight about the qualitative behavior of different models and
different theoretical results. To use these bounds in practice, one can approximately
evaluate the required norms of the target function using the output of the model.

We remark that results of similar nature have already been established in [7] for
the case of two-layer neural network models.

Our estimates are optimal in the sense that they are comparable to the Monte Carlo
rate. Indeed what we succeed here is to show that both the approximation error and
the estimation error are controlled by quantities with a Monte Carlo origin. This gives
us the O(1/Lm+1/

√
n) type of bounds shown below. It is well-known that one can

use standard tricks in Monte Carlo methods (as well as the use of local Rademacher
complexity) to improve the exponent by some O(1/d) factors [4, 15], where d is the
dimensionality of the problem. In the high dimensional case, this factor does not make
a big difference and we will not pursue these possible improvements. For this reason,
we will refer to the Monte Carlo-like error rates as being “optimal”.

Table 1.1 shows a comparison of our results with other results in the literature.
Since existing a posteriori estimates in machine learning are only concerned with the
estimation error or the generalization gap (see below for precise definitions), to be able
to make a comparison, we develop in Section 3 a standard routine that converts a
posteriori estimates to a priori ones and this is how we obtain some of the items in the
table.

From the table one can see the following:

(1) The estimates of [13] (l1 path norm) and [11] (variational norm) contain an ex-
ponential and algebraic depth-dependent factor in the bound for the generalization
gap respectively.

(2) The spectral norm used in [5] is strong enough to guarantee a Monte Carlo-like
bound for the estimation error. But the hypothesis space with a fixed spectral
norm is too small for getting a Monte Carlo-like rate for the approximation error.
For the latter purpose we have to increase the size of the norm with the depth, and
this results in a deterioration of the bound for the total error.

Norm Weighted path norm l1 path norm Spectral norm Variational norm

A posteriori O
(

1√
n

)
O

(
2L√
n

)
O

(
1√
n

)
O

(
L3/2
√
n

)
A priori O

(
1
Lm + 1√

n

)
O

(
1
Lm + 2L√

n

)
O

(
1
Lm +

(Lm)3/2√
n

)
O

(
1
Lm + L3/2√m√

n

)

Table 1.1. Comparison of the a posteriori and a priori estimates for different norms. m is the
width of the networks, and L is the depth.
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Other works that control the generalization error using norm-like quantities in-
clude [1, 9, 12].

Notations. In this paper, we let Ω = [0,1]
d

be the unit hypercube, and consider
target functions with domain Ω. Let π be a probability measure on Ω, for any function
f : Ω→R, let ‖f‖ be the L2 norm of f based on π,

‖f‖2 =

∫
Ω

f2(x)π(dx). (1.1)

Let σ be the ReLU activation function used in the neural network models: σ(x) =
max{x,0}. For a vector x, σ(x) is a vector of the same size obtained by applying ReLU
component-wise. Throughout this paper, we use Sd−1 to denote the unit L1 sphere in
Rd.

2. Setup of the problem and the main theorem

2.1. Setup of the problem. We consider the regression problem and residual
networks with ReLU activation σ(·). Assume that the target function f∗ : Ω→ [0,1].
Let the training set be {(xi,yi)}ni=1, where the xi’s are independently sampled from an
underlying distribution π and yi=f∗(xi). Later we will consider problems with noise.

Consider the following residual network architecture with skip connection in each
layer1

h0 =V x,

gl=σ(Wlhl−1),

hl=hl−1 +Ulgl, l= 1,. ..,L,

f(x;θ) =uThL. (2.1)

Here the set of parameters θ={V ,Wl,Ul,u}, V ∈RD×d, Wl∈Rm×D, Ul∈RD×m, u∈
RD, L is the number of layers, m is the width of the residual blocks and D is the width
of skip connections. Note that we omit the bias term in the network by assuming that
the first element of the input x is always 1.

To simplify the proof we will consider the truncated square loss

`(x;θ) =
∣∣T[0,1]f(x;θ)−f∗(x)

∣∣2, (2.2)

where T[0,1] is the truncation operator: for any function h(·)

T[0,1]h(x) = min{max{h(x),0},1}. (2.3)

The truncated population risk and empirical risk functions are

L(θ) =Ex∼π`(x;θ), L̂(θ) =
1

n

n∑
i=1

`(xi;θ), (2.4)

Remark 2.1. The truncation is used in order to simplify the proof for the complexity
control (Theorem 2.2). Other truncation methods can also be used. For example, we
can truncate the loss function `, instead of f .

1In practice, residual networks may use skip connections every several layers. We consider skip
connections every layer for the sake of simplicity. It is easy to extend the analysis to the more general
cases.
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Let f̂ be the output of the machine learning model for the target function f∗ and
fm be the best approximation to the target function f∗ in the hypothesis space Fm.
We can decompose the error into

f∗− f̂ =f∗−fm+fm− f̂

• f∗−fm is the approximation error, due entirely to the choice of the hypothesis
space.

• fm− f̂ is the estimation error — the additional error due to fact that we only
have a finite dataset.

2.2. Function space and norms. In this paper, we consider target functions
belonging to the Barron space B. Note that in principle one can and should consider
target functions in the compositional spaces defined in [6] since as shown there, they are
the natural function spaces associated with residual networks. However, the machineries
of the compositional spaces are much more complicated and less intuitive. Therefore
to present the main ideas on estimating the Rademacher complexity, we will consider
Barron space for simplicity.

The following definitions of the Barron space and the corresponding norm are
adopted from [7].

Definition 2.1 (Barron space). Let Sd−1 be the unit L1 sphere in Rd, and F be the
Borel σ-algebra on Sd−1. For any function f : Ω→R, define the Barron norm of f as

‖f‖B= inf

[∫
Sd−1

|a(ω)|2π(dω)

]1/2

, (2.5)

where the infimum is taken over all measurable function a(ω) and probability distribution
π on (Sd−1,F) that satisfies

f(x) =

∫
Sd−1

a(ω)σ(ωTx)π(dω), (2.6)

for any x∈Ω.
The Barron space B is the set of L2 functions with finite Barron norm,

B={f : Ω→R | ‖f‖B<∞}. (2.7)

The Barron space is large enough to contain many functions of interest. For exam-
ple, it was shown in [11] that if a function has finite spectral norm, then it belongs to
the Barron space.

Definition 2.2 (Spectral norm). Let f ∈L2(Ω), and let F ∈L2(Rd) be an extension
of f to Rd, and F̂ be the Fourier transform of F . Define the spectral norm of f as

γ(f) = inf

∫
Rd
‖ω‖21|F̂ (ω)|dω, (2.8)

where the infimum is taken over all possible extensions F .

Corollary 2.1. Let f : Ω→R be a function that satisfies γ(f)<∞. Then

‖f‖B≤γ(f)<∞. (2.9)
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On the other hand, for residual networks, we define the following parameter-based
norm to control the estimation error. We call this norm the weighted path norm since
it is a weighted version of the l1 path norm studied in [13] and [18].

Definition 2.3 (Weighted path norm). Given a residual network f(·;θ) with archi-
tecture (2.1), define the weighted path norm of f as

‖f‖P =‖θ‖P =
∥∥|u|T (I+2|UL||WL|)·· ·(I+2|U1||W1|)2|V |

∥∥
1
, (2.10)

where |A|, with A being a vector or matrix, means taking the absolute values of all the
entries of the vector or matrix.

The weighted path norm is a weighted sum over all paths in the neural network
flowing from the input to the output, and gives larger weight to the paths that go
through more nonlinearities. More precisely, given a path P, let wP1 ,w

P
2 ,. ..,w

P
L be the

weights on this path, let p be the number of non-linearities that P goes through. Then,
it is straightforward to see that our weighted path norm can also be expressed as

‖f‖P =
∑

P is activated

2p+1
L∏
l=1

|wPl |. (2.11)

This weighted path norm can also be seen from an “effective depth” viewpoint. It
has been observed that although residual networks can be very deep, most information
is processed by only a small number of nonlinearities. This has been explored for
example in [17], where the authors observed numerically that residual networks behave
like ensembles of networks with fewer layers. The weighted path norm naturally takes
this into account.

Remark 2.2. At a first sight, the factor 2 may trigger an alarm for fear that one
might end up with some exponential depth-dependent factors in the estimates. This
is not the case. In fact, as one can see in the proof, if 2 is changed by a factor of k,
the result is that the constant 4 in (2.17) is changed by a factor of k. This does not
mean that the factor 2 can be replaced by an arbitrary small number, since we need it
to be big enough to control the Rademacher complexity. But it does not introduce any
seriously bad term in the estimates. At this point, it is not clear whether the factor 2
can be removed.

2.3. Rademacher complexity. A crucial step in estimating the generalization
error is to bound the generalization gap L(θ)−L̂(θ). As usual, this is done by bounding
the Rademacher complexity of the hypothesis space. Recall the definition of Rademacher
complexity:

Definition 2.4 (Rademacher complexity). Given a function class H and sample set
S={xi}ni=1, the (empirical) Rademacher complexity of H with respect to S is defined
as

R̂(H) =
1

n
Eξ

[
sup
h∈H

n∑
i=1

ξih(xi)

]
, (2.12)

where the ξi’s are independent random variables with Pr{ξi= 1}= Pr{ξi=−1}= 1/2.

By its definition, the Rademacher complexity measures the capability of the func-
tion class ability to fit random binary labels (represented by {ξi}). Larger Rademacher
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complexity means that the function class can fit noises better, and hence is more vul-
nerable to overfitting. It is well-known that the Rademacher complexity can be used to
control the generalization gap [16].

Theorem 2.1. Given a function class H, for any δ∈ (0,1), with probability at least
1−δ over the random samples {xi}ni=1,

sup
h∈H

∣∣∣∣∣Ex[h(x)]− 1

n

n∑
i=1

h(xi)

∣∣∣∣∣≤2R̂(H)+2 sup
h,h′∈H

‖h−h′‖∞

√
2log(8/δ)

n
. (2.13)

The following theorem is our first result. It shows that the Rademacher complexity
of residual networks can be controlled by the weighted path norm, with the optimal
1/
√
n scaling.

Theorem 2.2. Let FQ={f(·;θ) :‖θ‖P≤Q} where the f(·,θ)’s are residual networks
defined by (2.1). Assume that the samples {xi}ni=1⊂Ω. Then we have

R̂(FQ)≤2Q

√
2log(2d)

n
. (2.14)

Note that the definition of FQ does not specify the depth or width of the network.
Consequently our Rademacher complexity bound does not depend on the depth and
width of the network. Hence, the resulted a posteriori estimate has no dependence on
L and m either.

A corollary of this is:

Corollary 2.2 (A posteriori estimates). Let ‖θ‖P be the weighted path norm of
residual network f(·;θ). Let n be the number of training samples. Let L(θ) and L̂(θ) be
the truncated population risk and empirical risk defined in (2.4). Then for any δ∈ (0,1),
with probability at least 1−δ over the random training samples, we have∣∣∣L(θ)−L̂(θ)

∣∣∣≤2(‖θ‖P +1)
2
√

2log(2d)+1√
n

+2

√
2log(14/δ)

n
. (2.15)

2.4. A priori estimates of the generalization error. We adopt a relaxed
form of the weighted norm constraint in the form of a regularized model:

min
θ
J (θ) := L̂(θ)+3λ‖θ‖P

√
2log(2d)

n
. (2.16)

Theorem 2.3 (A priori estimate). Let f∗ : Ω→ [0,1] and assume that the residual
network f(·;θ) has architecture (2.1). Let n be the number of training samples, L be
the number of layers and m be the width of the residual blocks. Let ‖f‖B be the Barron
norm of f∗ and ‖θ‖P be the weighted path norm of f(·;θ) in Definition 2.1 and 2.3.

For any λ≥4+2/[3
√

2log(2d)], assume that θ̂ is an optimal solution of the reg-
ularized model (2.16). Then for any δ∈ (0,1), with probability at least 1−δ over the
random training samples, the population risk satisfies

L(θ̂)≤ 3‖f‖2B
Lm

+(4‖f‖B+1)
3(4+λ)

√
2log(2d)+2√
n

+4

√
2log(28/δ)

n
. (2.17)
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Remark 2.3.
(1) The estimate is a priori in nature since the right-hand side of (2.17) depends only

on the Barron norm of the target function instead of the norm of θ̂.

(2) We want to emphasize that our estimate is nearly optimal. The first term in (2.17)
shows that the convergence rate with respect to the size of the neural network is
O(1/(Lm)), which matches the rate in the approximation theory for shallow net-
works [2]. The last two terms show that the rate with respect to the number of
training samples is O(1/

√
n), which matches the classical estimates of the general-

ization gap.

(3) The second term depends only on ‖f‖B instead of the network architecture, thus
there is no need to increase the sample size n with respect to the network size
parameters L and m to ensure that the model generalizes well. This is not the case
for existing error bounds (see Section 3).

2.5. Extension to the case with noise. Our a priori estimates can be
extended to problems with sub-Gaussian noise.

Assumption 2.1. Assume that yi are given by yi=f∗(xi)+εi, and {εi} are i.i.d.
random variables such that Eεi= 0 and

Pr{|εi|>t}≤ ce−
t2

2σ2 , ∀t≥ τ, (2.18)

for some constants c, σ and τ .

Let `B(x;θ) = `(x;θ)∧B2 be the square loss truncated by B2, and define

LB(θ) =Ex∼π`B(x;θ), L̂B(θ) =
1

n

n∑
i=1

`B(xi;θ). (2.19)

Then, we have

Theorem 2.4 (A priori estimate for noisy problems). In addition to the conditions
in Theorem 2.3, assume Assumption 2.1 holds. Let LB(θ) and L̂B(θ) be the truncated
population risk and empirical risk defined in (2.19). For B≥1+max{τ,σ

√
logn} and

λ≥4+2B/[3
√

2log(2d)], assume that θ̂ is an optimal solution of the regularized model

min
θ
J (θ) := L̂(θ)+λB‖θ‖P ·3

√
2log(2d)

n
. (2.20)

Then for any δ∈ (0,1), with probability at least 1−δ over the random training sample,
the population risk satisfies

L(θ̂)≤16‖f‖2B
Lm

+(12‖f‖B+1)
3(4+λ)B

√
2log(2d)+2B2

√
n

+4B2

√
2log(28/δ)

n
+

2c(4σ2 +1)√
n

. (2.21)

We see that the a priori estimates for problems with noise only differ from that
for problems without noise by a logarithmic term. In particular, the estimates of the
generalization error are still nearly optimal.
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2.6. Proof sketch. First, we show that any function f in the Barron space
can be approximated by residual networks with increasing depth or width, and with
weighted path norm uniformly bounded.

Theorem 2.5. For any target function f∗∈B, and any L,m≥1, there exists a residual
network f(·;θ̃) with depth L and width m, such that

‖f(x;θ̃)−f∗‖2≤ 3‖f∗‖2B
Lm

(2.22)

and

‖θ̃‖P≤4‖f∗‖B.

Next, consider the decomposition

L(θ̂)−L(θ̃) =
[
L(θ̂)−J (θ̂)

]
+
[
J (θ̂)−J (θ̃)

]
+
[
J (θ̃)−L(θ̃)

]
. (2.23)

Recall that θ̂ is the optimal solution of the minimization problem (2.16), and θ̃ corre-
sponds to the approximation in Theorem 2.5.

By the definition of J (2.16),

L(θ̂)−J (θ̂)≤
∣∣∣L(θ̂)−L̂(θ̂)

∣∣∣−3λ‖θ̂‖P

√
2log(2d)

n
,

J (θ̃)−L(θ̃)≤
∣∣∣L(θ̃)−L̂(θ̃)

∣∣∣+3λ‖θ̃‖P

√
2log(2d)

n
.

From the a posteriori estimate (2.15), both |L(θ̂)−L̂(θ̂)| and |L(θ̃)−L̂(θ̃)| are bounded

with high probability, thus both L(θ̂)−J (θ̂) and J (θ̃)−L(θ̃) are bounded with high

probability. In addition, J (θ̂)−J (θ̃)≤0, and the approximation result (2.22) bounds
L(θ̃). Plugging all of the above into (2.23) will give us the a priori estimates in Theo-
rem 2.3.

For problems with noise, we can similarly bound LB(θ)−J (θ) instead of L(θ)−
J (θ). Hence, to formulate an a priori estimate, we also need to control L(θ)−LB(θ).
This is given by the following lemma:

Lemma 2.1. Assume that the noise ε has zero mean and satisfies (2.18), and B≥
1+max

{
τ,σ
√

logn
}

. For any θ we have

|L(θ)−LB(θ)|≤ c(4σ
2 +1)√
n

. (2.24)

3. Comparison with norm-based a posteriori estimates
Different norms have been used as a vehicle to bound the generalization error of

deep neural networks, including the group norm and path norm given in [14], the spec-
tral norm in [5], and the variational norm in [3]. In these works, the bounds for the
generalization gap L(θ)−L̂(θ) is derived from a Rademacher complexity bound of the
set FQ={f(x;θ) :‖θ‖N≤Q}, as in Theorem 2.2, where ‖θ‖N is some norm or value
computed from the parameter θ. These estimates are a posteriori estimates. They are
shown to be valid once the complexity of FQ is controlled.



WEINAN E, CHAO MA, AND QINGCAN WANG 1763

However, finding a set of functions with small complexity is not enough to explain
the generalization of neural networks. The population risk contains two parts—the
approximation error and the estimation error. In general, optimal bounds for the ap-
proximation error requires the hypothesis space to be large enough and optimal bounds
for the estimation error requires the hypothesis space to be small enough. A posteriori
estimates only deal with the estimation error. In a priori estimates, both effects are
present and we have to strike a balance between them. In this sense, a priori estimates
can better reflect the quality of the norm or the hypothesis space selected. Therefore
in order to compare our estimates with previous results, we need to turn the previous a
posteriori estimates into a priori estimates by establishing approximation error bounds
for the other approaches in the same way as we did for ours. These approximation error
bounds allow us to translate existing a posteriori estimates into a priori estimates and
thereby put previous results on the same footing as ours.

To start with, based on the analysis in Section 2.6, we provide a general frame-
work for establishing a priori estimates from norm-based a posteriori estimates. This
framework holds for both residual networks and deep fully-connected networks:

f(x;θ) =WLσ(WL−1σ(·· ·σ(W1x))) (3.1)

where W1∈Rm×d, Wl∈Rm×m, l= 2,. ..,L−1 and WL∈R1×m, and m is the width of
the network.

Let ‖θ‖N be a general norm of the parameters θ, we make the following assumptions
about ‖θ‖N.

Assumption 3.1. For any set of parameters θ, let f(·;θ) be a neural network as-
sociated with θ. Then, there exists a function ψ(d,L,m), such that the Rademacher

complexity of the set FQL,m={f(·;θ) : f(·;θ) has depth L and width m, and ‖θ‖N≤Q}
can be bounded by

R̂(FQL,m)≤Q · ψ(d,L,m)√
n

, (3.2)

where d is the dimension of x, L and m are the neural network depth and width respec-
tively.

The above Rademacher complexity bound implies the following a posteriori esti-
mate.

Theorem 3.1 (A posteriori estimate). Let n be the number of training samples.
Consider parameters θ of a network with depth L and width m. Let L(θ) and L̂(θ) be
the truncated population risk and empirical risk defined in (2.4). Then for any δ∈ (0,1),
with probability at least 1−δ over the random choice of training samples, we have

∣∣∣L(θ)−L̂(θ)
∣∣∣≤2(‖θ‖N +1)

2ψ(d,L,m)+1√
n

+2

√
2log(14/δ)

n
. (3.3)

The proof of Theorem 3.1 follows the same way as the proof of Theorem 2.2. With
the a posteriori estimate, we obtain an a priori estimate by formulating a regularized
problem, and comparing the solution of the regularized problem to a reference solution
with good approximation property.
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Theorem 3.2 (A priori estimate). Under the same conditions as in Theorem 3.1, for

λ≥4+2/ψ(d,L,m), assume that θ̂ is a minimizer of the regularized model

min
θ
J (θ) := L̂(θ)+λ‖θ‖N ·

ψ(d,L,m)√
n

, (3.4)

Then, for any δ∈ (0,1), with probability at least 1−δ over the random training samples,

L(θ̂)≤L(θ̃)+
(
‖θ̃‖N +1

) (4+λ)ψ(d,L,m)+2√
n

+4

√
2log(28/δ)

n
. (3.5)

where θ̃ is an arbitrary set of parameters for the same hypothesis space.

Next, we apply this general framework to the l1 path norm [14], spectral complexity
norm [5] and variational norm [3]. The definitions of the norms are given below.

l1 path norm. For a residual network defined by (2.1), the l1 path norm [14] is defined
as

‖θ‖=
∥∥|u|T (I+ |UL||WL|)·· ·(I+ |U1||W1|)|V |

∥∥
1
, (3.6)

Spectral complexity norm. For a fully-connected network (3.1), the spectral com-
plexity norm proposed in [5] is given by

‖θ‖N =

[
L∏
l=1

‖Wl‖σ

][
L∑
l=1

‖W T
l ‖

2/3
2,1

‖Wl‖2/3σ

]3/2

, (3.7)

where ‖·‖σ denotes the matrix spectral norm and ‖·‖p,q denotes the (p,q)
matrix norm ‖W ‖p,q =‖(‖W :,1‖p,. ..,‖W :,m‖p)‖q.

Variational norm. For a fully-connected network (3.1), the variational norm proposed
in [3] is

‖θ‖N =
1

L

√
V

L∑
l=1

∑
jl

√
V in
jl
V out
jl

, (3.8)

where

V =
∥∥|WL|· ··|W1|

∥∥
1
,

V in
jl

=
∥∥|W jl,:

l ||Wl−1|· ··|W1|
∥∥

1
,

V out
jl

=
∥∥|WL|· ··|Wl+1||W :,jl

l |
∥∥

1
.

When applying Theorem 3.2, for residual networks, we choose θ̃ to be the solution
given by Theorem 2.5, which is the same solution used in our main theorem. For
fully-connected networks, we slightly modify the construction of θ̃ (see the appendix
for details), such that the a priori estimates we obtain for different norms all have the
same approximation error. But as ‖θ̃‖N and ψ vary for different norms, the estimation
error comes out differently. To this end, let us recall the expressions of ψ for the norms
mentioned above

l1 path norm : ψ(d,L,m) = 2L
√

2log2m,
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Spectral norm : ψ(d,L,m) = 12logn
√

2log2m,

Variational norm : ψ(d,L,m) =Llogn
√

(L−2)logm+log(8ed).

On the other hand, one can derive following bounds for ‖θ̃‖N (see the appendix for
details):

l1 path norm : ‖θ̃‖N≤4‖f∗‖B,

Spectral norm : ‖θ̃‖N≤16(Lm)
3/2‖f∗‖B,

Variational norm : ‖θ̃‖N≤4
√
m‖f∗‖B.

Plugging the results above into Theorem 3.2, we get a priori estimates of the regularized
model using different norms. The results are summarized in Table 1.1 in Section 1. They
are shown in the order of L, m and n, the logarithmic terms are ignored. The notation
O(·) hides constants that depend only on the target function. We see that the weighted
path norm is the only one in which the second term in the a priori error bound scales
cleanly as O(1/

√
n), i.e., it is independent of the depth L.

Note that in Table 1.1 the standard l1 path norm gives an a priori estimate with an
exponential dependence on L, different from the case for the weighted path norm. To see
why, consider a network f(·;θ) with θ={V ,Wl,Ul,u}. By the Rademacher complexity
bound associated with the weighted path norm (2.14), this function is contained in a
set with Rademacher complexity smaller than

C1√
n

∥∥|u|T (I+2|UL||WL|)·· ·(I+2|U1||W1|)|V |
∥∥

1
. (3.9)

On the other hand, if we use the l1 path norm, this function is contained in a set with
Rademacher complexity smaller than

C2√
n

∥∥|u|T (2I+2|UL||WL|)·· ·(2I+2|U1||W1|)|V |
∥∥

1
, (3.10)

where C1 and C2 are constants. This gives rise to the exponential dependence. This is
not the case in (3.9) as long as the weighted path norm is controlled.

The use of the variational norm eliminates the exponential dependence for the
complexity bound, but still retains an algebraic dependence.

The story for the spectral norm is different. It was shown in [5] that the Rademacher
complexity of the hypothesis space with bounded spectral norm has an optimal scaling
(1/
√
n). However, as the depth of the network goes to infinity, this hypothesis space

shrinks to 0 if the bound on the spectral norm is fixed. Therefore, in order to get the
desired bound on the approximation error, one has to increase the bound on the spectral
norm (the value of Q). This again results in the L dependence in the estimation error.

When deriving the results in Table 1.1, we used a specific construction θ̃ to control
the approximation error. Other constructions may exist. However, they will not change
the qualitative dependence of the estimation error, specifically the dependence (or the
lack thereof) on L,m in the second term of these bounds, the term that controls the
estimation error.

4. Conclusion
By designing proper constraints on the hypothesis space, we have established Monte

Carlo-like bounds of the population risk for deep residual networks. This result gener-
alizes the result in [7] for two-layer neural networks. In particular, the error rates estab-
lished here are dimension-independent. This is the first time that results of this kind
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have been achieved. Previous results suffer from either the lack of depth-independent
control for the Rademacher complexity, as is the case for the results in [14] and [3], or
the fact that the hypothesis space is too small to allow dimension-independent approx-
imation error estimates, as is the case for the results in [5].

The present work still does not explain why vanilla deep residual networks, without
regularization, can still perform quite well. This issue of “implicit regularization” still
remains quite mysterious.

Appendix A. The full proof in Section 2.6.

A.1. Approximation error. For the approximation error, [7] proved the
following result for shallow networks.

Theorem A.1. For any target function f∗∈B and any M ≥1, there exists a two-layer
network with width M , such that∥∥∥∥∥∥

M∑
j=1

ajσ(bTj x)−f∗(x)

∥∥∥∥∥∥
2

≤ 3‖f∗‖2B
M

(A.1)

and

M∑
j=1

|aj |‖bj‖1≤2‖f∗‖B. (A.2)

We have omitted writing out the bias term. This can be accommodated by assuming
that the first element of input x is always 1. For residual networks, we prove the approx-
imation result (Theorem 2.5) by splitting the shallow network into several parts and
stack them vertically [8]. This is allowed by the special structure of residual networks.

Proof. (Proof of Theorem 2.5). We construct a residual network f(·;θ̃) with
input dimension d, depth L, width m, and D=d+1 using

V =
[
Id 0

]T
, u=

[
0 0 ·· · 0 1

]T
,

Wl=


bT(l−1)m+1 0

bT(l−1)m+2 0
...

...
bTlm 0

, Ul=


0 0 ·· · 0
...

...
. . .

...
0 0 ·· · 0

a(l−1)m+1 a(l−1)m+2 ·· · alm



for l= 1,. ..,L. Then it is easy to verify that f(x;θ̃) =
∑Lm
j=1ajσ(bTj x), and

‖θ̃‖P = 2
Lm∑
j=1

|aj |‖bj‖1≤4‖f∗‖B.

A.2. Rademacher complexity. We use the method of induction to bound the
Rademacher complexity of residual networks. We first extend the definition of weighted
path norm to hidden neurons in the residual network.

Definition A.1. Given a residual network defined by (2.1), recall the definition of
gl,

gl(x) =σ(Wlhl−1), l= 1,. ..,L. (A.3)
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Let gil be the i-th element of gl, and define the weighted path norm

‖gil‖P =
∥∥∥2|W i,:

l |(I+2|Ul−1||Wl−1|)·· ·(I+2|U1||W1|)2|V |
∥∥∥

1
, (A.4)

where W i,:
l is the i-th row of Wl.

The following lemma establishes the relationship between ‖f‖P and ‖gil‖P.
Lemma A.2 gives properties of the corresponding function class.

Lemma A.1. For the weighted path norm defined in (2.10) and (A.4), we have

‖f‖P =
L∑
l=1

m∑
j=1

(
|u|T |U :,j

l |
)
‖gjl ‖P +2

∥∥|u|T |V |∥∥
1
, (A.5)

and

‖gil‖P =
l−1∑
k=1

m∑
j=1

2
(
|W i,:

l ||U
:,j
k |
)
‖gjk‖P +4

∥∥|W i,:
l ||V |

∥∥
1
, (A.6)

where U :,j
l is the j-th column of Ul.

Proof. Recall the definition of ‖f‖P, we have

‖f‖P =
∥∥|u|T (I+2|UL||WL|)·· ·(I+2|U1||W1|)2|V |

∥∥
1

=

∥∥∥∥∥∥
L∑
l=1

|u|T |Ul| ·2|Wl|
l−1∏
j=1

(I+2|Ul−j ||Wl−j |)|V |+2|u|T |V |

∥∥∥∥∥∥
1

=

L∑
l=1

m∑
j=1

(
|u|T |U :,j

l |
)
‖gjl ‖P +2

∥∥|u|T |V |∥∥
1
,

which gives (A.5). Similarly we obtain (A.6).

Lemma A.2. Let GQl ={gil :‖gil‖P≤Q}. Then

(1) GQk ⊆G
Q
l for k≤ l;

(2) Gql ⊆G
Q
l and Gql = q

QG
Q
l for q≤Q.

Proof. For any gk ∈GQk , let V , {Uj ,Wj}kj=1 and w be the parameters of gk,

where w is the vector of the parameters in the output layer (the W i,:
k in the definition

of gil). Then, for any l≥k, consider gl generated by parameters V , {Uj ,Wj}lj=1 and
w, with Uj = 0 and Wj = 0 for any k<j≤ l. Now it is easy to verify that gl=gk and

‖gl‖P =‖gk‖P≤Q. Hence, we have GQk ⊆G
Q
l .

On the other hand, obviously we have Gql ⊆G
Q
l for any q≤Q. For any gl∈Gql , define

g̃l by replacing the output parameters w by Q
q w, then we have ‖g̃l‖P = Q

q ‖gl‖P≤Q,

and hence g̃l∈GQl . Therefore, we have Q
q G

q
l ⊆GQ. Similarly we can obtain q

QG
Q
l ⊆Gq.

Consequently, we have Gql = q
QG

Q
l .

We will also use the following two lemmas about Rademacher complexity [16].
Lemma A.3 bounds the Rademacher complexity of linear functions, and Lemma A.4
gives the contraction property of the Rademacher complexity.



1768 RADEMACHER COMPLEXITY OF RESNET

Lemma A.3. Let H={h(x) =uTx :‖u‖1≤1}. Assume that the samples {xi}ni=1⊂Rd.
Then

R̂(H)≤max
i
‖xi‖∞

√
2log(2d)

n
. (A.7)

Lemma A.4. Assume that φi,i= 1,. ..,n are Lipschitz continuous functions with
uniform Lipschitz constant Lφ, i.e., |φi(x)−φi(x′)|≤Lφ|x−x′| for i= 1,. ..,n. Then

Eξ

[
sup
h∈H

n∑
i=1

ξiφi(h(xi))

]
≤LφEξ

[
sup
h∈H

n∑
i=1

ξih(xi)

]
. (A.8)

With Lemma A.1–A.4, we can come to prove Theorem 2.2.

Proof. (Proof of Theorem 2.2). We first estimate the Rademacher complexity

of GQl ,

R̂(GQl )≤Q
√

2log(2d)

n
. (A.9)

This is done by induction. By definition, gi1(x) =σ(W i,:
1 V x). Hence, using Lemma A.3

and A.4, we conclude that the statement (A.9) holds for l= 1. Now, assume that the
result holds for 1,2,. ..,l. Then, for l+1 we have

nR̂(GQl+1) =Eξ sup
gl+1∈GQl+1

n∑
i=1

ξigl+1(xi)

=Eξ sup
(1)

n∑
i=1

ξiσ(wT
l+1(Ulgl+Ul−1gl−1 + ·· ·+U1g1 +h0))

≤Eξ sup
(1)

n∑
i=1

ξi(w
T
l+1(Ulgl+Ul−1gl−1 + ·· ·+U1g1 +h0))

=Eξ sup
(1)

n∑
i=1

ξi(w
T
l+1(Ulgl+Ul−1gl−1 + ·· ·+U1g1 +V σ(x)−V σ(−x)))

≤Eξ sup
(2)

{
l∑

k=1

ak sup
g∈G1

k

∣∣∣∣∣
n∑
i=1

ξig(xi)

∣∣∣∣∣+2b sup
g∈G1

1

∣∣∣∣∣
n∑
i=1

ξig(xi)

∣∣∣∣∣
}

≤Eξ sup
2a+4b≤Q
a,b≥0

(a+2b) sup
g∈G1

l

∣∣∣∣∣
n∑
i=1

ξig(xi)

∣∣∣∣∣
≤ Q

2
Eξ sup

g∈G1
l

∣∣∣∣∣
n∑
i=1

ξig(xi)

∣∣∣∣∣
where condition (1) is

l∑
k=1

m∑
j=1

2
(
|wl+1|T |U :,j

k |
)
‖gjk‖P +4

∥∥|wl+1|T |V |
∥∥

1
≤Q, and condi-

tion (2) is 2
∑l
k=1ak+4b≤Q. The first inequality is due to the contraction lemma,

while the third inequality is due to Lemma A.2. On the one hand, we have

Eξ sup
‖u‖1≤1

∣∣∣∣∣
n∑
i=1

ξiu
Txi

∣∣∣∣∣=Eξ sup
‖u‖1≤1

n∑
i=1

ξiu
Txi≤n

√
2log(2d)

n
.



WEINAN E, CHAO MA, AND QINGCAN WANG 1769

On the other hand, since 0∈G1
l , for any {ξ1,. ..,ξn}, we have

sup
g∈G1

l

n∑
i=1

ξig(xi)≥0.

Hence, we have

sup
g∈G1

l

∣∣∣∣∣
n∑
i=1

ξig(xi)

∣∣∣∣∣≤max

{
sup
g∈G1

l

n∑
i=1

ξig(xi), sup
g∈G1

l

n∑
i=1

−ξig(xi)

}

≤ sup
g∈G1

l

n∑
i=1

ξig(xi)+ sup
g∈G1

l

n∑
i=1

−ξig(xi),

which gives

Eξ sup
g∈G1

l

∣∣∣∣∣
n∑
i=1

ξig(xi)

∣∣∣∣∣≤2Eξ sup
g∈G1

l

n∑
i=1

ξig(xi) = 2nR̂(G1
l ).

Therefore, we have

R̂(GQl+1)≤ Q
2

2

√
2log(2d)

n
≤Q

√
2log(2d)

n
.

Similarly, based on the control for the Rademacher complexity of GQ1 ,. ..,G
Q
L , we get

R̂(FQ)≤2Q

√
2log(2d)

n
.

A.3. A posteriori estimates.
Proof. (Proof of Corollary 2.2). Let H={`(·;θ) :‖θ‖P≤Q}. Notice that for all

x,

|`(x;θ)−`(x;θ′)|≤2|f(x;θ)−f(x;θ′)|.

By Lemma A.4,

R̂(H) =
1

n
Eξ

[
sup
‖θ‖P≤Q

n∑
i=1

ξi`(xi;θ)

]
≤ 2

n
Eξ

[
sup
‖θ‖P≤Q

n∑
i=1

ξif(xi;θ)

]
= 2R̂(FQ).

From Theorem 2.1, with probability at least 1−δ,

sup
‖θ‖P≤Q

∣∣∣L(θ)−L̂(θ)
∣∣∣≤2R̂(H)+2 sup

h,h′∈H
‖h−h′‖∞

√
2log(8/δ)

n

≤4Q

√
2log(2d)

n
+2

√
2log(8/δ)

n
. (A.10)

Now take Q= 1,2,3,. .. and δQ= 6δ
(πQ)2

, then with probability at least 1−
∑∞
Q=1δQ=

1−δ, the bound

sup
‖θ‖P≤Q

∣∣∣L(θ)−L̂(θ)
∣∣∣≤4Q

√
2log(2d)

n
+2

√
2

n
log

4(πQ)
2

3δ
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holds for all Q∈N∗. In particular, for given θ, the inequality holds for Q= d‖θ‖e<
‖θ‖P +1, thus

∣∣∣L(θ)−L̂(θ)
∣∣∣≤4(‖θ‖P +1)

√
2log(2d)

n
+2

√
2

n
log

14(‖θ‖P +1)
2

δ

≤4(‖θ‖P +1)

√
2log(2d)

n
+2

[
‖θ‖P +1√

n
+

√
2log(14/δ)

n

]

= 2(‖θ‖P +1)
2
√

2log(2d)+1√
n

+2

√
2log(14/δ)

n
.

A.4. A priori estimates. Now we are ready to prove the main Theorem 2.3.

Proof. (Proof of Theorem 2.3). Let θ̂ be the optimal solution of the regularized
model (2.16), and θ̃ be the approximation in Theorem 2.5. Consider

L(θ̂) =L(θ̃)+
[
L(θ̂)−J (θ̂)

]
+
[
J (θ̂)−J (θ̃)

]
+
[
J (θ̃)−L(θ̃)

]
. (A.11)

From (2.22) in Theorem 2.5, we have

L(θ̃)≤ 3‖f∗‖2B
Lm

. (A.12)

Compare the definition of J in (2.16) and the gap L−L̂ in (2.15), with probability at
least 1−δ/2,

L(θ̂)−J (θ̂)≤
(
‖θ̂‖P +1

) 3(4−λ)
√

2log(2d)+2√
n

+3λ

√
2log(2d)

n
+2

√
2log(14/δ)

n

≤3λ

√
2log(2d)

n
+2

√
2log(14/δ)

n
(A.13)

since λ≥4+2/[3
√

2log(2d)]; with probability at least 1−δ/2, we have

J (θ̃)−L(θ̃)≤
(
‖θ̃‖P +1

) 3(4+λ)
√

2log(2d)+2√
n

−3λ

√
2log(2d)

n
+2

√
2log(14/δ)

n
(A.14)

Thus with probability at least 1−δ, (A.13) and (A.14) hold simultaneously. In addition,
we have

J (θ̂)−J (θ̃)≤0 (A.15)

since θ̂= argminθJ (θ).
Now plugging (A.12–A.15) into (A.11), and noticing that ‖θ̃‖P≤4‖f∗‖B from The-

orem 2.5, we see that the main theorem (2.17) holds with probability at least 1−δ.

Finally, we deal with the case with noise and prove Theorem 2.4. For problems
with noise, we decompose L(θ̂)−L(θ̃) as

L(θ̂)−L(θ̃) =
[
L(θ̂)−LB(θ̂)

]
+
[
LB(θ̂)−JB(θ̂)

]
+
[
JB(θ̂)−JB(θ̃)

]
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+
[
JB(θ̃)−LB(θ̃)

]
+
[
LB(θ̃)−L(θ̃)

]
. (A.16)

Based on the results we had for the case without noise, in (A.16) we only have to
estimate the first and the last terms. This is given by Lemma 2.1. Finally, we prove
Lemma 2.1.

Proof. (Proof of Lemma 2.1). Let Z=f(x;θ)−f∗(x)−ε. Then we have

|L(θ)−LB(θ)|=E
[
(Z2−B2)1|Z|≥B

]
=

∫ ∞
0

Pr
{
Z2−B2≥ t2

}
dt2

=

∫ ∞
0

Pr
{
|Z|≥

√
B2 + t2

}
dt2.

As 0≤f(x;θ)≤1 and 0≤f∗(x;θ)≤1, we have∫ ∞
0

Pr
{
|Z|≥

√
B2 + t2

}
dt2≤

∫ ∞
0

Pr
{
|ε|≥

√
B2 + t2−1

}
dt2.

Let s=
√
B2 + t2, then∫ ∞

0

Pr
{
|ε|≥

√
B2 + t2−1

}
dt2≤

∫ ∞
B

ce−
(s−1)2

2σ2 ds2

=

∫ ∞
B−1

2ce−
s2

2σ2 ds2 +

∫ ∞
B−1

4ce−
s2

2σ2 ds

≤4cσ2e−
(B−1)2

2σ2 +

√
2

π
ce−

(B−1)2

2σ2

≤c(4σ
2 +1)√
n

.

Appendix B. The missing details in Section 3.

B.1. Approximation properties of deep fully-connected networks. Con-
sider a deep fully-connected network with depth L and width m (3.1) in the form:

f(x;θ) =WLσ(WL−1σ(·· ·σ(W1x)))

where W1∈Rm×d, Wl∈Rm×m, l= 2,. ..,L−1 and WL∈R1×m. Taking the same ap-
proach as in Theorem 2.5 and [8], we construct the deep fully-connected network from
a two-layer network. From Theorem A.1, there exists a two-layer network with width
M , such that ∥∥∥∥∥∥

M∑
j=1

ajσ(bTj x)−f∗(x)

∥∥∥∥∥∥
2

≤ 3‖f∗‖2B
M

and

M∑
j=1

|aj |‖bj‖1≤4‖f∗‖B.
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Since the ReLU activation σ(·) is positively homogeneous, we can assume without loss of
generality that a1 =a2 = ·· ·=aM =a≤4‖f∗‖B and ‖b1‖1 +‖b2‖1 + ·· ·+‖bM‖1 = 1. Now
let M = (m−d)(L−1), and rewrite the subscripts as bl,j =b(m−d)(l−1)+j , l= 1,. ..,L−1,

j= 1,. ..,m−d. Define a fully-connected network f(·;θ̃) by

W1 =


Id
bT1,1

...
bT1,m−d

, Wl=


Id 0
bTl,1

... Im−d
bTl,m−d

, l= 2,. ..,L−1,

WL=
[
0 0 ·· · 0 a a ·· · a

]
,

then it is easy to verify that f(x;θ̃) =a
∑M
j=1σ(bTj x). This ensures that the approxi-

mation property of fully-connected multi-layer neural network is at least as good as the
two-layer network.

B.2. Calculation of the spectral complexity norm. Recall the spectral
complexity norm (3.7) proposed in [5]

‖θ‖N =

[
L∏
l=1

‖Wl‖σ

][
L∑
l=1

‖W T
l ‖

2/3
2,1

‖Wl‖2/3σ

]3/2

.

For l= 1,. ..,L−1, the matrix spectral norm satisfies ‖Wl‖σ≥1, and

‖Wl‖σ−1≤‖Wl−I‖σ≤‖Wl−I‖F =

m−d∑
j=1

‖bl,j‖22

1/2

≤
m−d∑
j=1

‖bl,j‖1,

thus

L−1∏
l=1

‖Wl‖σ≤
L−1∏
l=1

1+
m−d∑
j=1

‖bl,j‖1

<e
since

∑L−1
l=1

∑m−d
j=1 ‖bl,j‖1 = 1. The (p,q) = (2,1) matrix norm satisfies

‖W T
l ‖2,1 =

∥∥(‖W 1,:
l ‖2,. ..,‖W

:,m
l ‖2)

∥∥
1

=d+
m−d∑
j=1

√
1+‖bl,j‖22<

√
2m.

In addition,

‖WL‖σ =‖WL‖2,1 =‖WL‖2 =a
√
m−d≤4‖f∗‖B

√
m−d.

Therefore, the spectral complexity norm satifies

‖θ̃‖N≤e ·4‖f∗‖B
√
m−d ·L3/2 ·

√
2m≤16(Lm)

3/2‖f∗‖B.

B.3. Calculation of the the variational norm. Recall the variational norm
(3.8) proposed in [3]

‖θ‖N =
1

L

√
V

L∑
l=1

∑
jl

√
V in
jl
V out
jl

,
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where

V =
∥∥|WL|· ··|W1|

∥∥
1
,

V in
jl

=
∥∥|W jl,:

l ||Wl−1|· ··|W1|
∥∥

1
,

V out
jl

=
∥∥|WL|· ··|Wl+1||W :,jl

l |
∥∥

1
.

Notice that for any l,

m∑
jl=1

V in
jl
V out
jl

=V.

Therefore

‖θ‖N≤
1

L

√
V ·L ·

√
mV =

√
mV.

Now it is easy to verify that

V =a

L−1∑
l=1

m−d∑
j=1

‖bl,j‖1 =a≤4‖f∗‖B.
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