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A BISMUT-ELWORTHY-LI FORMULA FOR SINGULAR SDES
DRIVEN BY A FRACTIONAL BROWNIAN MOTION AND
APPLICATIONS TO ROUGH VOLATILITY MODELING∗

OUSSAMA AMINE† , EMMANUEL COFFIE‡ , FABIAN HARANG§ , AND FRANK PROSKE¶

Abstract. In this paper we derive a Bismut-Elworthy-Li-type formula with respect to strong
solutions to singular stochastic differential equations (SDE’s) with additive noise given by a multi-
dimensional fractional Brownian motion with Hurst parameter H<1/2. “Singular” here means that
the drift vector field of such equations is allowed to be merely bounded and integrable. As an application
we use this representation formula for the study of the δ price sensitivity of financial claims based on
a stock price model with stochastic volatility, whose dynamics is described by means of fractional
Brownian motion driven SDE’s.

Our approach for obtaining these results is based on Malliavin calculus and arguments of a recently
developed “local time variational calculus”.

Keywords. Bismut-Elworthy-Li formula; singular SDEs; fractional Brownian motion; Malliavin
calculus; stochastic flows; stochastic volatility.
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1. Introduction
In recent years the construction and computation of risk measures have become an

indispensable tool for the risk analysis and risk management of portfolios in banks and
insurance companies worldwide. An important class of risk measures often applied by
investors on financial markets to hedge their positions is given by the “greeks”. These are
market sensitivities usually denoted by Greek letters e.g. “Delta”, “Gamma”, “Rho”,
“Theta”, “Vega”..., and hence the name. For example the Delta ∆, which can be used
for the construction of delta hedges in portfolio management, measures the sensitivity of
price changes of financial derivatives with respect to the initial price of the underlying
asset. Roughly speaking, greeks are derivatives with respect to a parameter λ of a
(risk-neutral) price, that is, for example of the form

∂

∂λ
E[Φ((Xλ

T ))], (1.1)

where Φ is the payoff function of a claim and Xλ
T the underlying asset at terminal time

T , which depends on λ.
In general, greeks cannot be obtained by closed-form formulas, especially in the case

of discontinuous payoff functions. Therefore, one has to resort to numerical techniques
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to approximate such sensitivities. A ground breaking method in this direction, which
is also applicable to path-dependent options, has been developed in Fournié et al. [13,
14]. Assuming that the dynamics of asset prices Xt=Xλ

t is modeled by a stochastic
differential equation of the form

dX(t) = b(t,X(t))dt+σ(t,X(t))dWt,X0 =x∈Rd,0≤ t≤T, (1.2)

where Wt,0≤ t≤T is a d−dimensional Wiener process and b, σ are continuously differ-
entiable coefficients, the authors in [13] were able to represent (1.1) in a derivative-free
form, that is by

E[Φ(S(T ))π], (1.3)

where π is the so-called Malliavin weight. Such a representation is also referred to as
Bismut-Elworthy-Li formula (BEL-formula) in the literature. See [7] and [8].

An advantage of this method is that the representation in (1.3) does not involve
derivatives of Φ and that it exhibits numerical tractability via efficient use of Monte-
Carlo simulation. However, a deficiency of this approach is the requirement that the
coefficients of the SDE, which describe the dynamics of the asset prices in (1.2), are
continuously differentiable. The latter assumption is rather restrictive and excludes
the study of interesting financial models. Such models could, for example, pertain to a
generalization of the Black-Scholes model with “regime-switching” drift, that is

Sxt =xexp(Yt), (1.4)

where

dYt= (b1χ{Yt>R}+b2χ{Yt≤R})dt−
1

2
σ2dt+σdWt

for constants b1, b2 and a “threshold” R.
Another possible application is to interest rate or commodity markets with a model

whose dynamics is given by a generalized Ornstein-Uhlenbeck process with regime
switching mean reversion rate, that is

dYt= (a1χ{Yt>R}+a2χ{Yt≤R})(b−Yt)dt+σdWt (1.5)

for mean reversion coefficients a1,a2>0, a threshold R, the long-run average level b∈R,
interest rate volatility σ>0.

In the above models (1.4) and (1.5) the drift coefficients are chosen to be discon-
tinuous and used to capture regime-switching effects which may arise from regulations,
credit rating changes, market crashes or other financial disasters.

We mention that a BEL-representation for Wiener process driven SDE’s with merely
bounded and measurable drift functions as, for example, the one in (1.5) was first
obtained in Menoukeu-Pamen et al. [17, Theorem 4.6, Remark 4.7]. To be more precise,
for strong solutions Xt,0≤ t≤T to SDE’s with additive Wiener noise

dXx
t = b(t,Xx

t )dt+dWt,

where b∈L∞([0,T ]×Rd;Rd), the authors prove, for bounded Borel-measurable Φ and
bounded open sets U ⊂Rd, that

∂

∂x
E[Φ(Xx

T )] =E[Φ(Xx
T )π]∗ (1.6)
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for all x∈U a.e., where the Malliavin weight π is∫ T

0

a(s)

(
∂

∂x
Xx
s

)∗
dWs.

Here the derivatives appearing on both sides of (1.6) are Sobolev derivatives on U ,

a : [0,T ]−→R is a bounded Borel-measurable function with
∫ T

0
a(s)ds= 1 and ∗ denotes

transposition. See also the related articles [3, 4, 20] and the references therein.

Using techniques from Malliavin calculus and arguments of a “local time variational
calculus” as recently developed in the series of works [2, 5, 6] in the case of fractional
Brownian motion, we aim at obtaining in this paper an extension of the above mentioned
results to the case of fractional Brownian motion driven singular SDE’s. More precisely,
we want to derive a BEL-formula of the type (1.6) with respect to strong solutions to
SDE’s of the form

dXt= b(t,Xt)dt+dBHt ,X0 =x,0≤ t≤T, (1.7)

where BHt ,0≤ t≤T is a d−dimensional fractional Brownian motion with Hurst param-
eter H ∈ (0, 1

2 ) and where the vector field b is singular in the sense that

b∈L1,∞
∞,∞ :=L1(Rd;L∞([0,T ];Rd))∩L∞(Rd;L∞([0,T ];Rd)).

As an application of the techniques used in connection with the BEL-formula, we
also wish to study a Black-Scholes model with “turbulent” stochastic volatility, where
the dynamics of stock prices is described by the (singular) SDE

dXx
t =µXx

t dt+σtX
x
t dWt,X

x
0 =x,0≤ t≤T.

Here Wt,0≤ t≤T is a one-dimensional Wiener process, µ the mean return and σt the
volatility at time t, modeled by means of the SDE

dY yt = b(t,Y yt )dt+BHt ,Y
y
0 =y,0≤ t≤T

for small Hurst parameters H ∈ (0,1/2) and singular vector fields b∈L1,∞
∞,∞, which can be

used as explained above for the modeling of regime switching effects in stock markets.
Let us also mention that the choice of fractional Brownian motion with small Hurst
parameters H in the latter model, which becomes “rougher” the lower H is, is in fact
supported by empirical evidence (see [15]) and useful for the description of stock price
volatilities σt in “turbulent” stock markets.

Finally, we also point out the interesting work [12], where the authors derived
BEL-formulas for (functional) SDE’s driven by fractional Brownian motion with Hurst
parameters H ∈ (0,1) in the case of differentiable vector fields, which they applied to
e.g. the study of Harnack type of inequalities.

The paper is organized as follows: In Section 2 we prove a BEL-formula with respect
to the SDE (1.7) for H< 1

2(d+2) . See Theorem 2.2. We then show, in Proposition 2.2,

that the BEL-representation has a continuous version, if H< 1
2(d+3) . Finally, in Section

3 we discuss an application of our techniques used in Section 2 to the sensitivity analysis
of prices of options based on a Black-Scholes model with “rough” stochastic volatility
(Theorem 3.1).
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2. Bismut-Elworthy-Li formula
In this section we aim at deriving a new Bismut-Elworthy-Li-type formula with

respect to SDE’s driven by discontinuous vector fields and a fractional Brownian motion
with a Hurst parameter H< 1

2 . We also propose a stock price model with “rough”
stochastic volatility, which allows for the description of regime switching effects with
respect to volatility data caused e.g. by economical crises, political changes or other
shocks on markets. Here, regime switching effects are modeled by means of singular
coefficients of SDE’s driven by a fractional Brownian motion. On the other hand, the
“roughness” of the volatility paths in the sense of paths with low Hölder regularity is
described through the driving fractional noise of such SDE’s. Further, we also prove a
BEL-representation for the delta of an option with respect to that model.

In what follows, let us consider a fractional Brownian motion BHt ,t≥0 with Hurst
parameter H ∈ (0,1) on some complete probability space (Ω,F ,µ), which is (in the
1−dimensional case) a centered Gaussian process with a covariance structure RH(t,s)
of the form

RH(t,s) =E[BHt B
H
s ] =

1

2
(s2H + t2H−|t−s|2H)

for all t,s≥0. See the Appendix. In the special case, when H= 1
2 the fractional Brow-

nian motion coincides with a Wiener process.
We also recall that the fractional Brownian motion is self-similar, that is

{BHαt}t≥0
law
= {αHBHt }t≥0

for all α>0. Further, BH has a version with paths, which are (H−ε)-Hölder continuous
for all ε∈ (0,H). Another property satisfied by BH , which actually rather complicates
the study of fractional Brownian motion, is that it is neither a Markov process nor
a semimartingale, when H 6= 1

2 . See, for example, [18] and the references therein for
further information on the fractional Brownian motion.

In this section, we consider for H< 1
2 the SDE

dXx
t = b(t,Xx

t )dt+dBHt ,X
x
0 =x,0≤ t≤T. (2.1)

We mention that BH in this case has the representation

BHt =

∫ t

0

KH(t,s)Id×ddBs (2.2)

for a d−dimensional Brownian motion B·, where Id×d∈Rd×d is the unit matrix and KH

the kernel as given in (A.2) in the Appendix.
In the sequel, we also need the following notation for function spaces:

L1
∞ : =L1(Rd;L∞([0,T ];Rd)),

L∞∞ : =L∞(Rd;L∞([0,T ];Rd)),
L1,∞
∞,∞ : =L1

∞∩L∞∞.

We have the following result for the existence and uniqueness of strong solutions to
the SDE (2.1) which is due to [5] (compare also the results in [9] and [19], which cannot
be used to treat the case b∈L1,∞

∞,∞ for d>1):

Theorem 2.1. Let b∈L1,∞
∞,∞. Then if H< 1

2(d+2) there exists a unique (global) strong

solution Xx
· of the SDE (2.1). Moreover, for every x∈Rd,t∈ [0,T ] Xx

t is Malliavin
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differentiable in the direction of the Brownian motion B in (2.2) and X ·t is locally
Sobolev differentiable µ−a.e.

That is, more precisely,

X ·t ∈
⋂
p≥2

L2(Ω;W 1,p(U))

for bounded and open sets U ⊂Rd.

In preparation of our main result (Theorem 2.2), we also need a series of auxiliary
results:

Lemma 2.1. Let b∈C∞c ((0,T )×Rd). Fix integers p≥2. Then, if H< 1
2(d+2) , we have

sup
x∈Rd

E[

∥∥∥∥ ∂∂xXx
t

∥∥∥∥p]≤Cp,H,d,T (‖b‖L∞∞ ,‖b‖L1
∞

)<∞

for some continuous function Cp,H,d,T : [0,∞)2−→ [0,∞).

Proof. See [5].

Lemma 2.2. Let H< 1
2(d+2) , b∈L1,∞

∞,∞. Further, let Xn
· ,n≥1 be the sequence of

strong solutions to (2.1) associated with functions bn∈C∞c ((0,T )×Rd),n≥1 such that

bn(t,x) −→
n−→∞

b(t,x) (t,x)−a.e., (2.3)

sup
n≥1
‖bn‖L1

∞
<∞ (2.4)

and

|b(t,x)|≤M<∞,n≥1 a.e. for some constant M. (2.5)

Fix t∈ [0,T ] and x∈Rd. Then there exists a β∈ (0,1/2) such that

sup
n≥1

∫ t

0

∫ t

0

E[‖DθX
n
t −Dθ′X

n
t ‖

2
]

|θ−θ′|1+2β
dθ′dθ≤ sup

n≥1
CH,d,T (‖bn‖L∞∞ ,‖bn‖L1

∞
)<∞

and

sup
n≥1
‖D·Xn

t ‖L2(Ω×[0,T ])≤ sup
n≥1

CH,d,T (‖bn‖L∞∞ ,‖bn‖L1
∞

)<∞ (2.6)

for some continuous function CH,d,T : [0,∞)2−→ [0,∞).

Proof. See [5].

Proposition 2.1. Let Xx,n
· ,n≥1 be a sequence of strong solutions as in Lemma 2.2

and X· the strong solution to (2.1). Then

Xx,n
t −→

n−→∞
Xx
t in L2(Ω)

for all t,x.
Proof. See [5].
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Lemma 2.3. Let U ⊂Rd be an open and bounded subset. Consider the sequence
Xx,n
· ,n≥1 in Proposition 2.1. Then

∂

∂x
X ·,n· −→

n−→∞

∂

∂x
X ··

in L2([0,T ]×Ω×U) weakly.

Proof. This result is a consequence of Proposition 2.1 and the estimate in Lemma
2.1.

We are coming now to the main result of our article:

Theorem 2.2 (Bismut-Elworthy-Li formula). Let H< 1
2(d+2) and let Xx

· be the unique

strong solution to the SDE

dXx
t = b(t,Xx

t )dt+dBHt ,X
x
0 =x,0≤ t≤T

for b∈L1,∞
∞,∞. Further, assume that U is a bounded and open subset of Rd and Φ :Rd−→

R a Borel-measurable function such that

Φ(X ·T )∈L2(Ω×U,µ×dx).

In addition, consider a bounded Borel-measurable function a : [0,T ]−→R such that∫ T

0

a(s)ds= 1.

Then

∂

∂x
E[Φ(Xx

T )] =CHE[Φ(Xx
T )

∫ T

0

u−H−
1
2

∫ T

u

a(s−u)(s−u)
1
2
−HsH−

1
2

(
∂

∂x
Xx
s−u

)∗
dBsdu]∗

(2.7)

for all x∈U a.e., 0<t≤T , where ∗ denotes the transposition of matrices and where
CH = 1/(cHΓ( 1

2 +H)Γ( 1
2−H)) for

cH = (
2H

(1−2H)B(1−2H,H+1/2)
)1/2.

Here Γ and B are the Gamma and Beta functions, respectively.

Remark 2.1. Let P be the predictable σ−algebra with respect to the µ−augmented
filtration {Ft}0≤t≤T generated by BH· . Then ∂

∂xX
x
t ,0≤ t≤T on the right-hand side

of Theorem 2.2 stands for a process Y : [0,T ]×Ω×U −→Rd×d in L2([0,T ]×Ω×U,P⊗
B(U);Rd×d) such that Y ·t (ω) is the Sobolev derivative of X ·t(ω) (t,ω)−a.e.

Remark 2.2. The condition of boundedness of the Hurst parameter by the function
(d 7→ 1

2(d+2) ) poses some serious questions on the applicability of the previous result.

The results in [15] show, see also Section 3, that when the volatility is modeled as a
one-dimensional process the restriction can accommodate many of the observed time
series. When d>2 the previous result as it is is not directly applicable and two potential
solutions are as follows:

• The strength of the previous result lies in its applicability to very singular vector
fields. This, not surprisingly, is also the reason for the restriction on H as a
function of the dimension, see [5]. Thus a possible solution would be to restrict
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the class of vector fields that are covered by the previous theorem or by working
in Besov spaces, in the spirit of [9], where the interplay between the regularity
of the vector field and the roughness of the driving noise is much more explicit.
This is in fact a work in progress and an extension to the results in [5].

• Provided one can accommodate a multiplicative volatility of volatility (vol-of-
vol), then a Black-and-Scholes-type model where the volatility is driven by
rough one-dimensional volatility is a very rich model that can accommodate
many of the stylized facts observed in the markets. This is in principle possible
to achieve but at the cost of either strong smoothness requirement on the vol-
of-vol or the use of the theory of rough paths in order to give a meaning to
integrals with respect to fBm with H< 1

2 . At this moment in time it is not
clear to us how to integrate the last solution with the method used in the proof
of the theorem.

Proof. (Proof of Theorem 2.2.) Let Φ∈C∞c (Rd) and choose a sequence of
functions bn∈C∞c ((0,T )×Rd), which approximates the vector field b in the sense of
(2.3), (2.4) and (2.5).

Denote by Xs,x,n
· the unique strong solution to

dXs,x,n
t = bn(t,Xs,x,n

t )dt+dBHt ,X
s,x,n
s =x,s≤ t≤T

for all n. Since bn∈C∞c ((0,T )×Rd), it follows that there exists a Ω∗ with µ(Ω∗) = 1
such that for all ω∈Ω∗,0≤s≤ t≤T

(x 7→Xs,x,n
t (ω))∈C∞(Rd).

See e.g. [16].
The latter and dominated convergence then give

∂

∂x
E[Φ(Xx,n

T )] =E[Φp(Xx,n
T )

∂

∂x
Xx,n
T ],

where Φp is the derivative of Φ and Xx,n
t =X0,x,n

t . On the other hand, we have that for
all 0≤s≤ t≤T,x∈U

Xx,n
t =X

s,Xx,ns ,n
t a.e.

So we obtain that

∂

∂x
E[Φ(Xx,n

T )] =E[Φp(Xx,n
T )

∂

∂x
X
s,Xx,ns ,n
T

∂

∂x
Xx,n
s ].

We also know that the Malliavin derivative DH
· X

s,x,n
t of Xs,x,n

t in the direction of BH·
exists and satisfies the equation

DH
u X

s,x,n
t =

∫ t

u

bpn(t,Xs,x,n
r )DH

u X
s,x,n
r dr+χ

(s,t](u)Id×d,

where Id×d is the identity matrix. Further, we see that ∂
∂xX

u,Xx,nu ,n
· solves the same

equation for s= 0. Therefore, we obtain by uniqueness of solutions that

DH
u X

x,n
t =

∂

∂x
X
u,Xx,nu ,n
t a.e.
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Hence

∂

∂x
E[Φ(Xx,n

T )] =E[Φp(Xx,n
T )DH

s X
x,n
T

∂

∂x
Xx,n
s ]

Let ϕ∈C∞c (U). Then

−
∫
U

E[Φ(Xx,n
T )]

∂

∂x
ϕ(x)dx=

∫
U

ϕ(x)E[Φp(Xx,n
T )DH

s X
x,n
T

∂

∂x
Xx,n
s ]dx.

Further, using the fact that the function a sums up to one combined with the chain rule
for DH

· (see [18]), we obtain that

−
∫
U

E[Φ(Xx,n
T )]

∂

∂x
ϕ(x)dx

=

∫
U

ϕ(x)E[

∫ T

0

{a(s)Φp(Xx,n
T )DH

s X
x,n
T

∂

∂x
Xx,n
s }ds]dx

=

∫
U

ϕ(x)E[

∫ T

0

{a(s)DH
s Φ(Xx,n

T )
∂

∂x
Xx,n
s }ds]dx

On the other hand, Proposition 5.2.1 and p. 285 in [18] show that

DH
s Φ(Xx,n

T ) =Cs
1
2−H

(∫ T

s

(u−s)−H− 1
2uH−

1
2DuΦ(Xx,n

T )du
)
.

for a constant C depending on H. D. stands here for the Malliavin derivative in the
direction of the Brownian motion B..

Hence, we obtain by substitution (first for u substituted by u+s in the above
relation and then for s by s−u in the next step), Fubini’s theorem and the duality
formula with respect to the Malliavin derivative D· that

−
∫
U

E[Φ(Xx,n
T )]

∂

∂x
ϕ(x)dx

=C

∫
U

ϕ(x)E[

∫ T

0

{a(s)Cs
1
2−H

×(

∫ T

s

(u−s)−H− 1
2uH−

1
2DuΦ(Xx,n

T )du)
∂

∂x
Xx,n
s }ds]dx

=C

∫
U

ϕ(x)E[

∫ T

0

u−H−
1
2

×
∫ T

u

a(s−u)(s−u)
1
2−HsH−

1
2DsΦ(Xx,n

T )
∂

∂x
Xx,n
s−udsdu]dx

=C

∫
U

ϕ(x)E[Φ(Xx,n
T )

×
∫ T

0

u−H−
1
2

∫ T

u

a(s−u)(s−u)
1
2−HsH−

1
2

(
∂

∂x
Xx,n
s−u

)∗
dBsdu]∗dx

= I1(n)+I2(n),

where

I1(n) :=C

∫
U

ϕ(x)E[(Φ(Xx,n
T )−Φ(Xx

T ))
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×
∫ T

0

u−H−
1
2

∫ T

u

a(s−u)(s−u)
1
2−HsH−

1
2

(
∂

∂x
Xx,n
s−u

)∗
dBsdu]∗dx

and

I2(n) :=C

∫
U

ϕ(x)E[Φ(Xx
T )

∫ T

0

u−H−
1
2

×
∫ T

u

a(s−u)(s−u)
1
2−HsH−

1
2

(
∂

∂x
Xx,n
s−u

)∗
dBsdu]∗dx

= C

∫
U

ϕ(x)E[Φ(Xx
T )

∫ T

0

u−H−
1
2

×
∫ T

u

a(s−u)(s−u)
1
2−HsH−

1
2

(
∂

∂x
Xx
s−u

)∗
dBsdu]∗dx+I3(n),

where

I3(n)

:=C

∫
U

ϕ(x)E[Φ(Xx
T )

∫ T

0

u−H−
1
2

∫ T

u

a(s−u)(s−u)
1
2−HsH−

1
2

×{
(
∂

∂x
Xx,n
s−u

)∗
−
(
∂

∂x
Xx
s−u

)∗
}dBsdu]∗dx.

It follows from Fubini’s theorem, Hölder’s inequality, the Itô isometry, Lemma 2.1,
Lemma 2.1 and dominated convergence that

‖I1(n)‖

≤C ‖ϕ‖∞
∫
U

(E[|Φ(Xx,n
T )−Φ(Xx

T )|2])1/2

×(

∫ T

0

s2H−1E[(

∫ s

0

u−H−
1
2 |a(s−u)|(s−u)

1
2−H

∥∥∥∥ ∂∂xXx,n
s−u

∥∥∥∥du)2]ds)1/2dx

≤C ‖ϕ‖∞
∫
U

(E[|Φ(Xx,n
T )−Φ(Xx

T )|2])1/2(

∫ T

0

s2H−1

×
∫ s

0

∫ s

0

u
−H− 1

2
1 |a(s−u1)|(s−u1)

1
2−Hu

−H− 1
2

2 |a(s−u2)|(s−u2)
1
2−H

×E[

∥∥∥∥ ∂∂xXx,n
s−u1

∥∥∥∥2

]1/2E[

∥∥∥∥ ∂∂xXx,n
s−u2

∥∥∥∥2

]1/2du1du2ds)
1/2dx

=C ‖ϕ‖∞
∫
U

(E[|Φ(Xx,n
T )−Φ(Xx

T )|2])1/2(

∫ T

0

s2H−1

×(

∫ s

0

u−H−
1
2 |a(s−u)|(s−u)

1
2−HE[

∥∥∥∥ ∂∂xXx,n
s−u

∥∥∥∥2

]1/2du)2ds)1/2dx

≤C ‖ϕ‖∞
∫
U

(E[|Φ(Xx,n
T )−Φ(Xx

T )|2])1/2dx(

∫ T

0

s2H−1

×sup
n≥1

C1,2H,d,T (‖bn‖L∞∞ ,‖bn‖L1
∞

)1/4(

∫ s

0

u−H−
1
2 |a(s−u)|(s−u)

1
2−Hdu)2ds)1/2

≤C ‖ϕ‖∞
∫
U

(E[|Φ(Xx,n
T )−Φ(Xx

T )|2])1/2dx(

∫ T

0

sH−
1
2 ds)1/2 −→

n−→∞
0,
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where we used the boundedness of the function a in the last estimate.
By applying the Clark-Ocone formula (see e.g. [18]) in combination with Itô’s isom-

etry and the chain rule for the Malliavin derivative, we see that

I3(n)

:=C

∫
U

ϕ(x)E[E[Φ(Xx
T )]

∫ T

0

u−H−
1
2

∫ T

u

a(s−u)(s−u)
1
2−HsH−

1
2

×{
(
∂

∂x
Xx,n
s−u

)∗
−
(
∂

∂x
Xx
s−u

)∗
}dBsdu]∗dx

+C

∫
U

ϕ(x)E[

∫ T

0

u−H−
1
2

∫ T

u

a(s−u)(s−u)
1
2−HsH−

1
2DsΦ(Xx

T )

×{ ∂
∂x
Xx,n
s−u−

∂

∂x
Xx
s−u}∗dsdu]∗dx

= C

∫
U

ϕ(x)E[

∫ T

0

u−H−
1
2

∫ T

u

a(s−u)(s−u)
1
2−HsH−

1
2 Φp(Xx

T )DsX
x
T

×{ ∂
∂x
Xx,n
s−u−

∂

∂x
Xx
s−u}∗dsdu]∗dx.

Then using Lemma 2.3, Lemma 2.2 and dominated convergence in connection with
Lemma 2.1, we find that

‖I3(n)‖ −→
n−→∞

0.

Here we mention that D·X
·
T used above stands for a weak limit of a subsequence of

D·X
·,n
T ,n≥1 in L2([0,T ]×Ω×U) such that D·X

x
T is a representative of the Malliavin

derivative of Xx
T for almost all x in U . The latter however is a consequence of Lemma

1.2.3 in [18] in connection with Lemma 2.1, dominated convergence and the bound (2.6),
which is independent of x.

Similarly, we also obtain that

−
∫
U

E[Φ(Xx,n
T )]

∂

∂x
ϕ(x)dx −→

n−→∞

∫
U

E[Φ(Xx
T )]

∂

∂x
ϕ(x)dx.

So

−
∫
U

E[Φ(Xx
T )]

∂

∂x
ϕ(x)dx

=C

∫
U

ϕ(x)E[Φ(Xx
T )

×
∫ T

0

u−H−
1
2

∫ T

u

a(s−u)(s−u)
1
2−HsH−

1
2

(
∂

∂x
Xx
s−u

)∗
dBsds]

∗dx.

Finally, we can apply the monotone class theorem in connection with dominated
convergence and the Cauchy-Schwarz inequality and verify the latter relation for Borel
measurable functions Φ :Rd−→R such that

Φ(X ·T )∈L2(Ω×U,µ×dx).

Hence the result follows.
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In financial applications the right-hand side of relation (2.7), say M may be inter-
preted as a sensitivity measure- known as delta- for changes of the fair value of an option
with payoff function Φ and underlying d stock price processes Xx

· (under a change of
measure) with respect to the initial prices x∈Rd of the stocks. The quantity M , is a
priori, for H< 1

2(d+2) , only defined for almost all initial values x. In practice, however,

where a trader is interested in sensitivities with respect to specific initial prices of the
stocks, the choice of M as a sensitivity measure would be not satisfactory. On the other
hand, in order to make sense of M as a delta for all x∈Rd, one can in fact choose a
version of M , which is continuous and hence defined for all x. It turns out, however that
such a version of M exists, if the Hurst parameter is allowed to be a little bit smaller
than in Theorem 2.2, that is H< 1

2(d+3) . See Proposition 2.2, whose proof requires the

following new estimate, which is based on Theorem A.3:

Lemma 2.4. Let b∈C∞c ((0,T )×Rd). Fix integers p≥2. Then, if H< 1
2(d+3) , we have

sup
x∈Rd

E[

∥∥∥∥ ∂2

∂x2
Xs,x
t

∥∥∥∥p]≤Cp,H,d,T (‖b‖L∞∞ ,‖b‖L1
∞

)<∞

for some continuous function Cp,H,d,T : [0,∞)2−→ [0,∞).

Proof. Since the stochastic flow associated with the smooth vector field b is
smooth too (compare to e.g. [16]), we obtain that

∂

∂x
Xs,x
t = Id×d+

∫ t

s

Db(u,Xs,x
u )

∂

∂x
Xs,x
u du, (2.8)

where Db :Rd−→L(Rd,Rd) is the derivative of b with respect to the space variable.
Using Picard iteration, we see that

∂

∂x
Xs,x
t = Id×d+

∑
m≥1

∫
∆m
s,t

Db(u1,X
s,x
u1

)...Db(um,X
s,x
um)dum...du1, (2.9)

where

∆m
s,t={(um,...u1)∈ [0,T ]m :θ<um<...<u1<t}.

By using dominated convergence, we can differentiate both sides with respect to x
and get that

∂2

∂x2
Xs,x
t =

∑
m≥1

∫
∆m
s,t

∂

∂x
[Db(u1,X

s,x
u1

)...Db(um,X
s,x
um)]dum...du1.

Then application of the Leibniz and chain rule yields

∂

∂x
[Db(u1,X

s,x
u1

)...Db(um,X
s,x
um)]

=

m∑
r=1

Db(u1,X
s,x
u1

)...D2b(ur,X
s,x
ur )

∂

∂x
Xs,x
ur ...Db(um,X

s,x
um),

where D2b=D(Db) :Rd−→L(Rd,L(Rd,Rd)).



1874 BEL FORMULA FOR SINGULAR SDES FRACTIONAL BROWNIAN MOTION

So it follows from (2.9) that

∂2

∂x2
Xs,x
t =

∑
m1≥1

∫
∆
m1
s,t

m1∑
r=1

Db(u1,X
s,x
u1

)...D2b(ur,X
s,x
ur )

×

Id×d+
∑
m2≥1

∫
∆
m2
s,ur

Db(v1,X
s,x
v1 )...Db(vm2

,Xs,x
vm2

)dvm2
...dv1


×Db(ur+1,X

s,x
ur+1

)...Db(um1
,Xs,x

um1
)dum1

...du1

=
∑
m1≥1

m1∑
r=1

∫
∆
m1
s,t

Db(u1,X
s,x
u1

)...D2b(ur,X
s,x
ur )...Db(um1

,Xs,x
um1

)dum1
...du1

+
∑
m1≥1

m1∑
r=1

∑
m2≥1

∫
∆
m1
s,t

∫
∆
m2
s,ur

Db(u1,X
s,x
u1

)...D2b(ur,X
s,x
ur )

×Db(v1,X
s,x
v1 )...Db(vm2

,Xs,x
vm2

)Db(ur+1,X
s,x
ur+1

)...Db(um1
,Xs,x

um1
)

dvm2
...dv1dum1

...du1

= : I1 +I2. (2.10)

We now aim at applying Lemma A.3 to the term I2 in (2.10) and find that

I2 =
∑
m1≥1

m1∑
r=1

∑
m2≥1

∫
∆
m1+m2
s,t

HXm1+m2
(u)dum1+m2 ...du1 (2.11)

for u= (u1,...,um1+m2
), where the integrandHXm1+m2

(u)∈Rd⊗Rd⊗Rd has entries given
by sums of at most C(d)m1+m2 summands, each of which is a product of length m1 +m2

of functions belonging to the class{
∂j

∂xl1∂xlj
b(i)(u,Xs,x

u ),j= 1,2,l1,l2,i= 1,...,d

}
.

Here it is crucial to mention that the number of times second-order derivatives appear
in those products of functions in (2.11) is exactly one. Thus the absolute value of the
multi-index α with respect to the total order of derivatives of those products of functions
in connection with Proposition A.4 in the Appendix is given by

|α|=m1 +m2 +1. (2.12)

We now choose p,c,r∈ [1,∞) such that cp= 2q for some integer q and 1
r + 1

c = 1. Then we
can employ Hölder’s inequality and Girsanov’s theorem (Theorem A.2) in combination
with Lemma A.2 in the Appendix and get that

E[‖I2‖p]

≤C(‖b‖L∞∞)

∑
m1≥1

m1∑
r=1

∑
m2≥1

∑
i∈I

∥∥∥∥∥
∫

∆
m1+m2
s,t

HB
H

i (u)dum1+m2
...du1

∥∥∥∥∥
L2q (Ω;R)

p

,(2.13)

where C : [0,∞)−→ [0,∞) is a continuous function. Here #I≤Km1+m2 for a constant

K=K(d) and the integrands HBHi (u) are of the form

HB
H

i (u) =

m1+m2∏
l=1

hl(ul),hl∈Λ,l= 1,...,m1 +m2
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where

Λ :=

{
∂j

∂xl1∂xlj
b(i)(u,x+BHu ),j= 1,2,l1,l2,i= 1,...,d

}
.

Also in this case functions with second-order derivatives only appear once in those
products.

Define

J =

(∫
∆
m1+m2
s,t

HB
H

i (u)dum1+m2
...du1

)2q

.

Using again Lemma A.3 in the Appendix, successively, we obtain that J can be written
as a sum of, at most of length K(q)m1+m2 with summands of the form∫

∆
2q(m1+m2)
s,t

2q(m1+m2)∏
l=1

fl(ul)du2q(m1+m2)...du1, (2.14)

where fl∈Λ for all l.
Here the number of factors fl in the above product, which have a second-order

derivative, is exactly 2q. Thus the total order of the derivatives involved in (2.14) in
connection with Proposition A.4 is given by

|α|= 2q(m1 +m2 +1). (2.15)

We can now invoke Theorem A.3 for m= 2q(m1 +m2) and εj = 0 and find that∣∣∣∣∣∣E
∫

∆
2q(m1+m2)
s,t

2q(m1+m2)∏
l=1

fl(ul)du2q(m1+m2)...du1

∣∣∣∣∣∣
≤Cm1+m2(‖b‖L1(Rd;L∞([0,T ];Rd)))

2q(m1+m2)

× ((22q(m1 +m2 +1))!)1/4

Γ(−H(2d2q(m1 +m2)+42q(m1 +m2 +1))+22q(m1 +m2))1/2

for a constant C depending on H,T,d and q.
So the latter combined with (2.13) shows that

E[‖I2‖p]
≤C(‖b‖L∞∞)(

∑
m1≥1

∑
m2≥1

Km1+m2((‖b‖L1(Rd;L∞([0,T ];Rd)))
2q(m1+m2)

× ((2(2q(m1 +m2 +1))!)1/4

Γ(−H(2d2q(m1 +m2)+42q(m1 +m2 +1))+22q(m1 +m2))1/2
)1/2q )p

for a constant K depending on H,T,d,p and q.
Since 1

2(d+3) ≤
1

2(d+2
m1+m2+1
m1+m2

)
for m1,m2≥1, the above sum converges, when H<

1
2(d+3) .

Further, one establishes in the same way a similar estimate for E[‖I1‖p]. Altogether,
the proof follows.

Using Lemma 2.4, we can obtain the following result:
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Theorem 2.3. Let b∈L1,∞
∞,∞, H< 1

2(d+3) and U ⊂Rd a bounded and open set. Then

for all 0≤ t≤T we have that

X ·t ∈
⋂
p≥2

L2(Ω;W 2,p(U)).

In particular, for all 0≤ t≤T there exists a Ω∗ with µ(Ω∗) = 1 such that for all ω∈Ω∗

(x 7−→Xx
t (ω)) has a continuous version on U .

Proof. Following the ideas of Proposition 4.2 in [17], we approximate b by a
sequence of vector fields bn∈C∞c ((0,T )×Rd),n≥1 in the sense of the conditions (2.3),
(2.4), (2.5). Let Xx,n

· ,n≥1 be the sequence of strong solutions to (2.1) associated with
those functions. Let φ∈C∞c (U ;Rd) and define for fixed t∈ [0,T ] the sequence of random
variables 〈

X ·,nt ,φ
〉

:=

∫
U

〈Xx,n
t ,φ〉Rd dx,n≥1.

By invoking similar arguments as in the proof of Proposition 4.2 in [17], which relies on
a compactness criterion for square integrable functionals of Wiener processes (see [10]),
in combination with the estimates of Lemma 5.6 in [6] one proves that there exists a
subsequence nj ,j≥1 such that 〈

X
·,nj
t ,φ

〉
−→
j−→∞

〈X ·t,φ〉 (2.16)

in L2(Ω) strongly for all φ∈C∞c (U ;Rd), where Xx
s ,0≤s≤T is the strong solution of

Theorem 2.1. Note that we also have from Proposition 2.1 that

Xx,n
t −→

n−→∞
Xx
t

in L2(Ω) strongly.
Further, one gets from Lemma 2.4 that

sup
n≥1

∥∥X ·,nt ∥∥2

L2(Ω;W 2,p(U))
≤

2∑
i=0

(

∫
U

sup
n≥1

E
[∥∥DiXx,n

t

∥∥p]dx)
2
p <∞

for H< 1
2(d+3) .

On the other hand, we know that L2(Ω;W 2,p(U)) is a reflexive space for p>1.
Hence there exists a subsequence nj ,j≥1 such that

X
·,nj
t −→

j−→∞
Y

in L2(Ω;W 2,p(U)) weakly. For simplicity, suppose nj ,j≥1 coincides with the subse-
quence in (2.16). In addition, we obtain for all A∈F , φ∈C∞c (U ;Rd),α(1) + ...+α(d)≤2
with α(i)∈N0,i= 1,...,d that

E

[
1A

〈
X
·,nj
t ,

∂α
(1)+...+α(d)

∂α(1)x1...∂α
(d)xd

φ

〉]

= (−1)α
(1)+...+α(d)

E

[
1A

〈
∂α

(1)+...+α(d)

∂α(1)x1...∂α
(d)x1

X
·,nj
t ,φ

〉]
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−→
j−→∞

(−1)α
(1)+...+α(d)

E

[
1A

〈
∂α

(1)+...+α(d)

∂α(1)x1...∂α
(d)x1

Y,φ

〉]
.

On the other hand (2.16) also implies that

E

[
1A

〈
X
·,nj
t ,

∂α
(1)+...+α(d)

∂α(1)x1...∂α
(d)xd

φ

〉]
−→
j−→∞

E

[
1A

〈
X ·t,

∂α
(1)+...+α(d)

∂α(1)x1...∂α
(d)xd

φ

〉]
.

Hence X ·t ∈L2(Ω;W 2,p(U)) for all p≥2.

Denoting by M =M(x),x∈U the right-hand side of relation (2.7), we prove that
M possesses a continuous version:

Proposition 2.2. Retain the conditions of Theorem 2.3. Let p>max(d,4) and
Φ :Rd−→R be a bounded continuous function. Then M has a continuous version on
U , which is obtained by replacing in M on the right-hand side of (2.7) the derivative
of the flow by a predictable version {Y ·t ,0≤ t≤T}∈ L2([0,T ]×Ω,dt×µ;W 1,p(U)) with
Y ·t (ω)∈C(U) for all (t,ω).

Proof. As before denote by P the predictable σ−algebra on [0,T ]×Ω with respect
to {Ft}0≤t≤T . Then, by using almost the same proof of Theorem 2.3 combined with
Lemma 2.4, one shows that there exists a ∂

∂xX
·
· ∈L2([0,T ]×Ω,P,dt×µ;W 1,p(U)) with

p>max(d,4) such that ∂
∂xX

·
t(ω) is the Sobolev derivative of X ·t(ω) on U (t,ω)−a.e. So

in particular, we see for φ∈L∞(U ;R) that∫
U

∂

∂x
Xx
t φ(x)dx,0≤ t≤T

is a predictable process. Now let us choose a continuous version Y ·t (ω) of ∂
∂xX

·
t(ω) for

all (t,ω) (which exists by a classical Sobolev space theory and our assumptions). Then
the process ∫

U

Y xt (ω)φ(x)dx,0≤ t≤T

is predictable, too. Let δε,y ∈L∞(Rd),ε>0 be an approximation of the Dirac delta
measure in y∈U. Further, let V be an open and bounded set with V ⊂U and y∈V . In
addition, consider a continuous function ς on U with compact support in U such that
ς(x) = 1 for all x∈V . Then∫

U

Y xt (ω)ς(x)δε,y(x)dx−→
ε↘0

Y yt (ω)

for all (t,ω). So Y yt ,0≤ t≤T is a predictable process for all y∈U .
Using Itô’s isometry we find that

sup
x∈U

E[

∥∥∥∥∥
∫ T

0

u−H−
1
2

∫ T

u

a(s)(s−u)
1
2−HsH−

1
2

(
Y xs−u

)∗
dBsdu

∥∥∥∥∥
2

]

=C sup
x∈U

E[

∫ T

0

∥∥∥∥∥
∫ T

0

u−H−
1
2χ(u,T )(s)a(s)(s−u)

1
2−HsH−

1
2

(
Y xs−u

)∗
du

∥∥∥∥∥
2

ds]
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≤C sup
x∈U

∫ T

0

E[

(∫ T

0

u−H−
1
2χ(u,T )(s)|a(s)|(s−u)

1
2−HsH−

1
2

∥∥Y xs−u∥∥du
)2

]ds.

On the other hand, we see that

E[

(∫ T

0

u−H−
1
2χ(u,T )(s)|a(s)|(s−u)

1
2−HsH−

1
2

∥∥Y xs−u∥∥du
)2

=

∫ T

0

∫ T

0

u
−H− 1

2
1 χ(u1,T )(s)|a(s)|(s−u1)

1
2−HsH−

1
2

×u−H−
1
2

2 χ(u2,T )(s)|a(s)|(s−u2)
1
2−HsH−

1
2

×E[
∥∥Y xs−u1

∥∥∥∥Y xs−u2

∥∥]du1du2

≤
∫ T

0

∫ T

0

u
−H− 1

2
1 χ(u1,T )(s)|a(s)|(s−u1)

1
2−HsH−

1
2

×u−H−
1
2

2 χ(u2,T )(s)|a(s)|(s−u2)
1
2−HsH−

1
2

×E[
∥∥Y xs−u1

∥∥2
]1/2E[

∥∥Y xs−u2

∥∥2
]1/2du1du2. (2.17)

Let bn,n≥1 be a sequence of smooth functions, which approximates b in the sense of
Theorem 2.3. Denote by Xx,n

· ,n≥1 the corresponding solutions. Then it follows from
Lemma 2.1 that for all B∈B([0;T ]), G∈B(U) :∫

B

∫
G

E[

〈
∂

∂x
Xx,n
t ,

∂

∂x
Xx,m
t

〉
Rd×d

]dxdt

≤
∣∣∣∣∫
B

∫
G

E[

〈
∂

∂x
Xx,n
t ,

∂

∂x
Xx,m
t

〉
Rd×d

]dxdt

∣∣∣∣
≤
∫
B

∫
G

E[

∥∥∥∥ ∂∂xXx,n
t

∥∥∥∥2

]1/2E[

∥∥∥∥ ∂∂xXx,m
t

∥∥∥∥2

]1/2dxdt

≤
∫
B

∫
G

(C2,H,d,T (‖bn‖L∞∞ ,‖bn‖L1
∞

))1/2(C2,H,d,T (‖bm‖L∞∞ ,‖bm‖L1
∞

))1/2dxdt

≤
∫
B

∫
G

Kdxdt,

where K<∞ is a constant only depending on H,d,T and the “size” of b. Hence,
by using Lemma 2.1 and weak convergence both in L2([0,T ]×Ω×U,dt×µ×dx;Rd×d)
and L2([0,T ]×Ω,P,dt×µ;W 1,p(U)) for suitable subsequences with respect to n and m,
successively, we see that t−a.e, x−a.e.

E[‖Y xt ‖
2
]≤C.

Using Fatou’s Lemma combined with the continuity of (x 7−→Y xt (ω)) for all (t,ω), we
also find that t−a.e.

E[‖Y xt ‖
2
]≤C (2.18)

for all x∈U . Similarly, one shows that

E[‖Y xt ‖
4
]≤C (2.19)
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for a constant C<∞ for all x∈U . So we obtain from (2.17) that

sup
x∈U

E[

(∫ T

0

u−H−
1
2χ(u,T )(s) |a(s)|(s−u)

1
2−HsH−

1
2

∥∥Y xs−u∥∥du
)2

]

≤C
∫ T

0

∫ T

0

u
−H− 1

2
1 χ(u1,T )(s)(s−u1)

1
2−HsH−

1
2

×u−H−
1
2

2 χ(u2,T )(s)(s−u2)
1
2−HsH−

1
2 du1du2

=C

∫ T

0

u−H−
1
2

∫ T

u

(s−u)
1
2−HsH−

1
2 dsdu<∞. (2.20)

So

sup
x∈U

E[

∥∥∥∥∥
∫ T

0

u−H−
1
2

∫ T

u

a(s)(s−u)
1
2−HsH−

1
2

(
Y xs−u

)∗
dBsdu

∥∥∥∥∥
2

]<∞. (2.21)

Now let xm −→
m−→∞

x∈U . Then∥∥∥∥∥E[Φ(Y xmT )

∫ T

0

u−H−
1
2

∫ T

u

a(s)(s−u)
1
2−HsH−

1
2

(
Y xms−u

)∗
dBsdu

−Φ(Y xT )

∫ T

0

u−H−
1
2

∫ T

u

a(s)(s−u)
1
2−HsH−

1
2

(
Y xs−u

)∗
dBsdu]

∥∥∥∥∥
≤‖I1‖+‖I2‖,

where

I1 :=E[(Φ(Y xmT )−Φ(Y xT ))

∫ T

0

u−H−
1
2

∫ T

u

a(s)(s−u)
1
2−HsH−

1
2

(
Y xms−u

)∗
dBsdu]

and

I2 :=E[Φ(Y xT )

∫ T

0

u−H−
1
2

∫ T

u

a(s)(s−u)
1
2−HsH−

1
2 (
(
Y xms−u

)∗−(Y xs−u)∗)dBsdu].

It follows from Itô’s isometry and (2.20) that

‖I1‖≤E[(Φ(Y xmT )−Φ(Y xT ))2]1/2

×(sup
x∈U

E[

(∫ T

0

u−H−
1
2χ(u,T )(s)|a(s)|(s−u)

1
2−HsH−

1
2

∥∥Y xs−u∥∥du
)2

])1/2

≤CE[(Φ(Y xmT )−Φ(Y xT ))2]1/2.

So because of dominated convergence I1 = I1(m) −→
m−→∞

0.

On the other hand

‖I2‖

≤CE[

∥∥∥∥∥
∫ T

0

u−H−
1
2

∫ T

u

a(s)(s−u)
1
2−HsH−

1
2 (
(
Y xms−u

)∗−(Y xs−u)∗)dBsdu
∥∥∥∥∥

2

]1/2
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≤ sup
x∈U

E[

(∫ T

0

u−H−
1
2χ(u,T )(s) |a(s)|(s−u)

1
2−HsH−

1
2

∥∥Y xms−u−Y xs−u∥∥du
)2

]

∫ T

0

∫ T

0

u
−H− 1

2
1 χ(u1,T )(s) |a(s)|(s−u1)

1
2−HsH−

1
2

×u−H−
1
2

2 χ(u2,T )(s) |a(s)|(s−u2)
1
2−HsH−

1
2

×E[
∥∥Y xs−u1

−Y xms−u1

∥∥2
]1/2E[

∥∥Y xs−u2
−Y xms−u2

∥∥2
]1/2du1du2.

Because of continuity we know that

‖Y xt −Y
xm
t ‖2 −→

m−→∞
0

for all (t,ω). So it follows from uniform integrability in connection with (2.19) that

E[‖Y xt −Y
xm
t ‖2] −→

m−→∞
0

for all t. Then using (2.18) and dominated convergence shows that

I2 = I2(m) −→
m−→∞

0.

In summary, we see that M =M(x) with the derivative of the flow replaced by Y ·t ,0≤
t≤T is continuous in x on U .

3. Application: Stock price model with stochastic volatility
In this section we propose a model for stock prices Sx1,x2

t ,0≤ t≤T with stochastic
volatility σx2

t ,0≤ t≤T described by the following SDE

Sx1,x2

t =x1 +

∫ t

0

µSx1,x2
u du+

∫ t

0

g(σx2
u )Sx1,x2

u dWu

σx2
t =x2 +

∫ t

0

b(u,σx2
u )du+BHt ,x1,x2∈R,0≤ t≤T, (3.1)

where W· is a Wiener process, which is independent of a fractional Brownian motion BH·
with Hurst parameter H< 1

2(d+2) = 1
6 , and where µ∈R, b∈L1,∞

∞,∞ and g :R−→ (α,∞)

belongs to C2
b (R) for same α>0. Let us also assume that Ω = Ω1×Ω2 for sample spaces

Ω1, Ω2, on which W· and BH· are defined, respectively.
For a moment, let us assume that b∈C∞c ((0,T )×Rd). Then Xx

t := (Sx1,x2

t ,σx2
t )∗,x=

(x1,x2) is Malliavin differentiable with respect to Z= (Z(1),Z(2))∗= (W,BH)∗ with
Malliavin derivative D= (DW ,DH)∗ and we get

DsX
x
t =

∫ t

s

(
µ 0
0 bp(u,σx2

u )

)
DsX

x
udu

+

 2∑
j=1

∫ t

s

2∑
l=1

∂

∂xl
aij(S

x1,x2
u ,σx2

u )(DsX
x
u)rldZ

(j)
u


1≤i,r≤2

+χ
[0,t](s) (aij(S

x1,x2
s ,σx2

s ))1≤i,j≤2

=

∫ t

s

(
µ 0
0 bp(u,σx2

u )

)
DsX

x
udu
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+

(∫ t

s

2∑
l=1

∂

∂xl
ai1(Sx1,x2

u ,σx2
u )(DsX

x
u)rldWu

)
1≤i,r≤2

+χ
[0,t](s) (aij(S

x1,x2
s ,σx2

s ))1≤i,j≤2

where

(aij(x1,x2))1≤i,j≤2 =

(
g(x1)x2 0
0 1

)
.

We know that Xx,y
t is twice continuously differentiable with respect to (x,y). Then

using a substitution formula for Wiener integrals [18, proof of Theorem 3.2.9], one finds
similarly to the proof of Theorem 2.2 that

DsX
x
t =

∂

∂x
X
s,Xxs
t χ

[0,t](s) (aij(S
x1,x2
s ,σx2

s ))1≤i,j≤2 .

Similarly, we get for a payoff function Φ∈C∞c (R2) that

∂

∂x
E[Φ(Xx,n

T )] =E[Φp(Xx
T )

∂

∂x
X
s,Xxs
T

∂

∂x
Xx
s ].

So

∂

∂x
E[Φ(Xx

T )] =E[Φp(Xx
T )DsX

x
T (aij(S

x1,x2
s ,σx2

s ))
−1
1≤i,j≤2

∂

∂x
Xx
s ].

Hence, for a bounded measurable function a summing up to one we obtain by means of
the chain rule with respect to D· that

∂

∂x
E[Φ(Xx

T )]

=E[

∫ T

0

{a(s)Φp(Xx
T )DsX

x
T (aij(S

x1,x2
s ,σx2

s ))
−1
1≤i,j≤2

∂

∂x
Xx
s }ds]

=E[

∫ T

0

{a(s)DsΦ(Xx
T )(aij(S

x1,x2
s ,σx2

s ))
−1
1≤i,j≤2

∂

∂x
Xx
s }ds]

We have that

(aij(S
x1,x2
s ,σx2

s ))
−1
1≤i,j≤2

∂

∂x
Xx
s

=

(
(Sx1,x2
s g(σx2

s ))−1 ∂
∂x1

Sx1,x2
s (Sx1,x2

s g(σx2
s ))−1 ∂

∂x2
Sx1,x2
s

0 ∂
∂x2

σx2
s

)
.

Thus

DsΦ(Xx
T )(aij(S

x1,x2
s ,σx2

s ))
−1
1≤i,j≤2

∂

∂x
Xx
s

= (DW
s Φ(Xx

T )(Sx1,x2
s g(σx2

s ))−1 ∂

∂x1
Sx1,x2
s ,

DW
s Φ(Xx

T )(Sx1,x2
s g(σx2

s ))−1 ∂

∂x2
Sx1,x2
s

+DH
s Φ(Xx

T )
∂

∂x2
σx2
s )∗.
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So it follows that

∂

∂x
E[Φ(Xx

T )]

= (E[

∫ T

0

a(s)DW
s Φ(Xx

T )(Sx1,x2
s g(σx2

s ))−1 ∂

∂x1
Sx1,x2
s ds],

E[

∫ T

0

a(s)DW
s Φ(Xx

T )(Sx1,x2
s g(σx2

s ))−1 ∂

∂x2
Sx1,x2
s ds]

+E[

∫ T

0

a(s)DH
s Φ(Xx

T )
∂

∂x2
σx2
s ds])

∗.

In fact, using the independence of W· and BH· , we can employ the proof of Theorem 2.2
and get that

E[

∫ T

0

a(s)DH
s Φ(Xx

T )
∂

∂x2
σx2
s ds]

=CHE[Φ(Xx
T )

∫ T

0

u−H−
1
2

∫ T

u

a(s−u)(s−u)
1
2−HsH−

1
2
∂

∂x
σx2
s−udBsdu],

where B· is a one-dimensional Brownian motion with respect to the representation of
BH· in (2.2).

Finally, we can apply the duality formula with respect to W· and similar arguments
as in the proof of Theorem 2.2 based on regular functions g, b, Φ and we obtain the
following BEL-formula for our stock price model (3.1):

Theorem 3.1. Let U ⊂R2 be a bounded, open set and b∈L1,∞
∞,∞ in the stock price

model (3.1). Further, assume that g :R−→ (α,∞) belongs to C2
b (R) for some α>0 and

that Φ :R2−→R satisfies

Φ(S·,·T ,σ
·
T )∈L2(Ω×U,µ×dx).

In addition, let a be a bounded and measurable function on [0,T ], which sums up to 1.
Then

∂

∂x
E[Φ(Sx1,x2

T ,σx2

T )]

= (E[Φ(Xx
T )

∫ T

0

a(s)(Sx1,x2
s g(σx2

s ))−1 ∂

∂x1
Sx1,x2
s dWs],

E[Φ(Xx
T )

∫ T

0

a(s)(Sx1,x2
s g(σx2

s ))−1 ∂

∂x2
Sx1,x2
s dWs]

+CHE[Φ(Xx
T )

∫ T

0

u−H−
1
2

∫ T

u

a(s−u)(s−u)
1
2−HsH−

1
2
∂

∂x
σx2
s−udBsdu])∗ (3.2)

for almost all x= (x1,x2)∈U , where CH is a constant as given in Theorem 2.2.

Remark 3.1. If H< 1
2(d+3) = 1

8 , one can show just as in Theorem 2.2 that the right-

hand side of (3.2) has a continuous version.

Appendix. We start by stating some basic facts about fractional Brownian motion
and then use these to recall some results on the Malliavin calculus with respect to
fractional Brownian motion. For an in-depth treatment of this material see [18]. We
end with a collection of some technical lemmas that we make use of in our paper.
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A.1. Fractional Brownian motion. Let a, b∈R with a<b. Let f ∈Lp([a,b])
with p≥1 and α>0. Introduce the left- and right-sided Riemann-Liouville fractional
integrals as

Iαa+f(x) =
1

Γ(α)

∫ x

a

(x−y)α−1f(y)dy

and

Iαb−f(x) =
1

Γ(α)

∫ b

x

(y−x)α−1f(y)dy

for almost all x∈ [a,b], where Γ is the Gamma function.
For a given integer p≥1, let Iαa+(Lp) (resp. Iαb−(Lp)) be the image of Lp([a,b]) of

the operator Iαa+ (resp. Iαb−). If f ∈ Iαa+(Lp) (resp. f ∈ Iαb−(Lp)) and 0<α<1 then we
can define the left- and right-sided Riemann-Liouville fractional derivatives by

Dα
a+f(x) =

1

Γ(1−α)

d

dx

∫ x

a

f(y)

(x−y)α
dy

and

Dα
b−f(x) =

1

Γ(1−α)

d

dx

∫ b

x

f(y)

(y−x)α
dy.

The left- and right-sided derivatives of f can be also represented as

Dα
a+f(x) =

1

Γ(1−α)

(
f(x)

(x−a)α
+α

∫ x

a

f(x)−f(y)

(x−y)α+1
dy

)
and

Dα
b−f(x) =

1

Γ(1−α)

(
f(x)

(b−x)α
+α

∫ b

x

f(x)−f(y)

(y−x)α+1
dy

)
.

Using the above definitions, one obtains that

Iαa+(Dα
a+f) =f

for all f ∈ Iαa+(Lp) and

Dα
a+(Iαa+f) =f

for all f ∈Lp([a,b]) and similarly for Iαb− and Dα
b− .

Let now BH ={BHt ,t∈ [0,T ]} be a d-dimensional fractional Brownian motion with
Hurst parameter H ∈ (0,1/2), that is BH is a centered Gaussian process with a covari-
ance function given by

(RH(t,s))i,j :=E[B
H,(i)
t BH,(j)s ] = δij

1

2

(
t2H +s2H−|t−s|2H

)
, i,j= 1,. ..,d,

where δij is one, if i= j, or zero else.
In the sequel we briefly recall the construction of the fractional Brownian motion,

which can be found in [18]. For simplicity, consider the case d= 1.
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Let E be the set of step functions on [0,T ] and H be the Hilbert space given by the
completion of E with respect to the inner product

〈1[0,t],1[0,s]〉H=RH(t,s).

From that we get an extension of the mapping 1[0,t] 7→Bt to an isometry between H
and a Gaussian subspace of L2(Ω) with respect to BH . We denote by ϕ 7→BH(ϕ) this
isometry.

If H<1/2, one shows that the covariance function RH(t,s) has the representation

RH(t,s) =

∫ t∧s

0

KH(t,u)KH(s,u)du, (A.1)

where

KH(t,s) = cH

[(
t

s

)H− 1
2

(t−s)H− 1
2 +

(
1

2
−H

)
s

1
2−H

∫ t

s

uH−
3
2 (u−s)H− 1

2 du

]
. (A.2)

Here cH =
√

2H
(1−2H)β(1−2H,H+1/2) and β is the Beta function. See [18, Proposition 5.1.3].

Based on the kernel KH , one can introduce by means of (A.1) an isometry K∗H
between E and L2([0,T ]) such that (K∗H1[0,t])(s) =KH(t,s)1[0,t](s). This isometry has
an extension to the Hilbert space H, which has the following representations by means
of fractional derivatives

(K∗Hϕ)(s) = cHΓ

(
H+

1

2

)
s

1
2−H

(
D

1
2−H
T− uH−

1
2ϕ(u)

)
(s)

and

(K∗Hϕ)(s) =cHΓ

(
H+

1

2

)(
D

1
2−H
T− ϕ(s)

)
(s)

+cH

(
1

2
−H

)∫ T

s

ϕ(t)(t−s)H− 3
2

(
1−
(
t

s

)H− 1
2

)
dt.

for ϕ∈H. One also proves that H= I
1
2−H
T− (L2). See [11] and [1, Proposition 6].

Since K∗H is an isometry from H into L2([0,T ]), the d-dimensional process W =
{Wt,t∈ [0,T ]} defined by

Wt :=BH((K∗H)−1(1[0,t])) (A.3)

is a Wiener process and the process BH can be represented as

BHt =

∫ t

0

KH(t,s)dWs. (A.4)

See [1].
In what follows we also need the definition of a fractional Brownian motion with

respect to a filtration.

Definition A.1. Let G={Gt}t∈[0,T ] be a filtration on (Ω,F ,P ) satisfying the usual

conditions. A fractional Brownian motion BH is called a G-fractional Brownian motion
if the process W defined by (A.3) is a G-Brownian motion.
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In the following, let W be a standard Wiener process on a filtered probability space
(Ω,A,P ),{Ft}t∈[0,T ], where F ={Ft}t∈[0,T ] is the natural filtration generated by W and
augmented by all P -null sets. Denote by BH the fractional Brownian motion with Hurst
parameter H ∈ (0,1/2) as in (A.4).

We aim at using a version of Girsanov’s theorem for fractional Brownian motion
which is due to [11, Theorem 4.9]. The version stated here corresponds to that in [19,
Theorem 2]. To this end, we need the definition of an isomorphism KH from L2([0,T ])

onto I
H+ 1

2
0+ (L2) with respect to the kernel KH(t,s) in terms of the fractional integrals

as follows (see [11, Theorem 2.1]):

(KHϕ)(s) = I2H
0+ s

1
2−HI

1
2−H
0+ sH−

1
2ϕ, ϕ∈L2([0,T ]).

Using this and the properties of the Riemann-Liouville fractional integrals and
derivatives, one can show that the inverse of KH can be represented as

(K−1
H ϕ)(s) =s

1
2−HD

1
2−H
0+ sH−

1
2D2H

0+ ϕ(s), ϕ∈ IH+ 1
2

0+ (L2).

From this one obtains for absolutely continuous functions ϕ (see [19]) that

(K−1
H ϕ)(s) =sH−

1
2 I

1
2−H
0+ s

1
2−Hϕ′(s).

Theorem A.2 (Girsanov’s theorem for fBm). Let u={ut,t∈ [0,T ]} be an F-adapted

process with integrable trajectories and set B̃Ht =BHt +
∫ t

0
usds, t∈ [0,T ]. Suppose that

(i)
∫ ·

0
usds∈ I

H+ 1
2

0+ (L2([0,T ])), P -a.s.

(ii) E[ξT ] = 1 where

ξT := exp

{
−
∫ T

0

K−1
H

(∫ ·
0

urdr

)
(s)dWs−

1

2

∫ T

0

K−1
H

(∫ ·
0

urdr

)2

(s)ds

}
.

Then the shifted process B̃H is an F-fractional Brownian motion with Hurst pa-

rameter H under the new probability P̃ defined by dP̃
dP = ξT .

Remark A.2. In the the multi-dimensional case, we define

(KHϕ)(s) := ((KHϕ
(1))(s),. ..,(KHϕ

(d))(s))∗, ϕ∈L2([0,T ];Rd),

where ∗ denotes transposition. Similarly for K−1
H and K∗H .

A.2. Malliavin calculus. Let S be the set of smooth and cylindrical random
variables of the form

F =f(BH(φ1),. ..,BH(φn))

where n≥1, f ∈C∞b (Rn) and φ1,. ..,φn∈H (H is defined in the previous section). Given
a random variable F ∈S we define its derivative, as an element in H, to be

DHF =

n∑
i=1

∂f

∂xj
(BH(φ1),. ..,BH(φn))φj .
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For any p≥1, we define the Sobolev space D1,p
H as the completion of S with respect to

the norm

||F ||p1,p=E|F |p+E||DHF ||pH.

Note that that the previous equation holds for any H ∈ (0,1) and in particular for

H= 1
2 . Denote by D :=D

1
2 the Malliavin derivative with respect to W and let D1,p be

its corresponding Sobolev space. We restate the following transfer principle, Proposition
5.2.1, [18], which links the D and DH .

Proposition A.1. For any F ∈D1,p

K∗HD
HF =DF.

A corollary of the previous proposition is the following:

Lemma A.1. Let H ∈ (0,1) and p>1, then BHt belongs to D1,p for all t>0 and its
Malliavin derivative is given by:

DBHt (s) =

∫ min(s,t)

0

KH(t,u)du

and hence

DθB
H
t =KH(t,θ)Id

for any θ∈ (0,t) and where Id is the identity matrix.

A.3. Technical lemmas. In this article we also resort to the following technical
lemma (see [5, Lemma 4.3]):

Lemma A.2. Let B̃Ht be a d-dimensional fractional Brownian motion with respect to
(Ω,A,P̃ ). Then for every k∈R we have

Ẽ

[
exp

{
k

∫ T

0

∣∣∣∣K−1
H

(∫ ·
0

b(r,B̃Hr )dr

)
(s)

∣∣∣∣2ds
}]
≤CH,d,µ,T (‖b‖L∞∞)

for some continuous increasing function CH,d,k,T depending only on H, d, T and k.
In particular,

Ẽ

[
E

(∫ T

0

K−1
H

(∫ ·
0

b(r,B̃Hr )dr

)∗
(s)dWs

)p]
≤CH,d,µ,T (‖b‖L∞∞),

where E(Mt) is the Dolean-Dade exponential of a local martingale Mt,0≤ t≤T and
where Ẽ denotes expectation under P̃ and ∗ transposition.

In this paper, we will also make use of an integration by parts formula for iterated
integrals based on shuffle permutations. For this purpose, let m and n be integers.
Denote by S(m,n) the set of shuffle permutations, i.e. the set of permutations σ :
{1,. ..,m+n}→{1,. ..,m+n} such that σ(1)< ·· ·<σ(m) and σ(m+1)< ·· ·<σ(m+n).

Introduce the m-dimensional simplex for 0≤θ<t≤T ,

∆m
θ,t :={(sm,. ..,s1)∈ [0,T ]m : θ<sm< ·· ·<s1<t}.
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The product of two simplices can be represented as follows

∆m
θ,t×∆n

θ,t=
⋃
σ∈S(m,n){(wm+n,. ..,w1)∈ [0,T ]m+n : θ<wσ(m+n)< ·· ·<wσ(1)<t}∪N ,

where the set N has null Lebesgue measure. So, if fi : [0,T ]→R, i= 1,. ..,m+n are
integrable functions we get that∫

∆m
θ,t

m∏
j=1

fj(sj)dsm .. .ds1

∫
∆n
θ,t

m+n∏
j=m+1

fj(sj)dsm+n .. .dsm+1

=
∑

σ∈S(m,n)

∫
∆m+n
θ,t

m+n∏
j=1

fσ(j)(wj)dwm+n ·· ·dw1. (A.5)

A generalization of the latter relation is the following (see [5]):

Lemma A.3. Let n, p and k be non-negative integers, k≤n. Suppose we have
integrable functions fj : [0,T ]→R, j= 1,. ..,n and gi : [0,T ]→R, i= 1,. ..,p. We may
then write∫

∆n
θ,t

f1(s1) .. .fk(sk)

∫
∆p
θ,sk

g1(r1).. .gp(rp)drp .. .dr1fk+1(sk+1) .. .fn(sn)dsn .. .ds1

=
∑

σ∈An,p

∫
∆n+p
θ,t

hσ1 (w1).. .hσn+p(wn+p)dwn+p .. .dw1,

where hσl ∈{fj ,gi : 1≤ j≤n,1≤ i≤p}. Above An,p stands for a subset of permutations of
{1,. ..,n+p} such that #An,p≤Cn+p for an appropriate constant C≥1. Here s0 :=θ.

The proof of Lemma 2.4 relies on an important estimate (see e.g. Proposition 3.3
in [6] for a newer proof of this result). In order to state this result, we need some
notation. Let m be an integer and let f : [0,T ]m×(Rd)m→R be a function of the form

f(s,z) =

m∏
j=1

fj(sj ,zj), s= (s1,. ..,sm)∈ [0,T ]m, z= (z1,. ..,zm)∈ (Rd)m, (A.6)

where fj : [0,T ]×Rd→R, j= 1,. ..,m are smooth functions with compact support. In
addition, let κ : [0,T ]m→R be a function of the form

κ(s) =

m∏
j=1

κj(sj), s∈ [0,T ]m, (A.7)

where κj : [0,T ]→R, j= 1,. ..,m are integrable functions.
Further, denote by αj a multi-index and Dαj its corresponding differential operator.

For α= (α1,. ..,αm) as an element of Nd×m0 with |α| :=
∑m
j=1

∑d
l=1α

(l)
j , we write

Dαf(s,z) =

m∏
j=1

Dαjfj(sj ,zj).

Theorem A.3. Let BH ,H ∈ (0,1/2) be a standard d−dimensional fractional Brownian
motion and functions f and κ as in (A.6), respectively as in (A.7). Let θ,t∈ [0,T ] with
θ<t and

κj(s) = (KH(s,θ))εj ,θ<s<t
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for every j= 1,...,m with (ε1,...,εm)∈{0,1}m. Let α∈ (Nd0)m be a multi-index. If

H<
1
2−γ

(d−1+2
∑d
l=1α

(l)
j )

for all j, where γ∈ (0,H) is sufficiently small, then there exists a universal constant C
(depending on H, T and d, but independent of m, {fi}i=1,...,m and α) such that for any
θ,t∈ [0,T ] with θ<t we have∣∣∣∣∣∣E

∫
∆m
θ,t

 m∏
j=1

Dαjfj(sj ,B
H
sj )κj(sj)

ds
∣∣∣∣∣∣

≤Cm+|α|
m∏
j=1

‖fj(·,zj)‖L1(Rd;L∞([0,T ]))θ
(H− 1

2 )
∑m
j=1 εj

×
(
∏d
l=1(2

∣∣α(l)
∣∣)!)1/4(t−θ)−H(md+2|α|)−(H− 1

2−γ)
∑m
j=1 εj+m

Γ(−H(2md+4 |α|)+2(H− 1
2−γ)

∑m
j=1εj+2m)1/2

.

Remark A.3. The above theorem remains valid for time-homogeneous functions
{fi}i=1,...,m in the Schwartz function space.

The proof of Lemma 2.4 also requires the following auxiliary result:

Lemma A.4. Let n, p and k be non-negative integers, k≤n. Assume we have functions
fj : [0,T ]→R, j= 1,. ..,n and gi : [0,T ]→R, i= 1,. ..,p such that

fj ∈

{
∂α

(1)
j +...+α

(d)
j

∂α
(1)
j x1...∂

α
(d)
j xd

b(r)(u,Xx
u), r= 1,...,d

}
, j= 1,...,n

and

gi∈

{
∂β

(1)
i +...+β

(d)
i

∂β
(1)
i x1...∂β

(d)
i xd

b(r)(u,Xx
u), r= 1,...,d

}
, i= 1,...,p

for α := (α
(l)
j )∈Nd×n0 and β := (β

(l)
i )∈Nd×p0 , where Xx

· is the strong solution to

Xx
t =x+

∫ t

0

b(u,Xx
u)du+BHt , 0≤ t≤T

for b= (b(1),...,b(d)) with b(r)∈Cc((0,T )×Rd) for all r= 1,...,d. So (as we shall say
in the sequel) the product g1(r1) · ·· · ·gp(rp) has a total order of derivatives |β|=∑d
l=1

∑p
i=1β

(l)
i . We know from Lemma A.3 that∫

∆n
θ,t

f1(s1) .. .fk(sk)

∫
∆p
θ,sk

g1(r1).. .gp(rp)drp .. .dr1fk+1(sk+1) .. .fn(sn)dsn .. .ds1

=
∑

σ∈An,p

∫
∆n+p
θ,t

hσ1 (w1).. .hσn+p(wn+p)dwn+p .. .dw1, (A.8)
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where hσl ∈{fj ,gi : 1≤ j≤n, 1≤ i≤p}, An,p is a subset of permutations of {1,. ..,n+
p} such that #An,p≤Cn+p for an appropriate constant C≥1, and s0 =θ. Then the
products

hσ1 (w1) · ·· · ·hσn+p(wn+p)

have a total order of derivatives given by |α|+ |β|.

Proof. The result is proved by induction on n. For n= 1 and k= 0 the result is
trivial. For k= 1 we have∫ t

θ

f1(s1)

∫
∆p
θ,s1

g1(r1) .. .gp(rp)drp .. .dr1ds1

=

∫
∆p+1
θ,t

f1(w1)g1(w2) .. .gp(wp+1)dwp+1 .. .dw1,

where we have put w1 =s1, w2 = r1,. ..,wp+1 = rp. Hence the total order of derivatives

involved in the product of the last integral is given by
∑d
l=1α

(l)
1 +

∑d
l=1

∑p
i=1β

(l)
i =

|α|+ |β|.
Assume the result holds for n and let us show that this implies that the result is

true for n+1. Either k= 0,1 or 2≤k≤n+1. For k= 0 the result is trivial. For k= 1
we have∫

∆n+1
θ,t

f1(s1)

∫
∆
p
θ,s1

g1(r1). ..gp(rp)drp . ..dr1f2(s2). ..fn+1(sn+1)dsn+1 . ..ds1

=

∫ t

θ

f1(s1)

(∫
∆n
θ,s1

∫
∆
p
θ,s1

g1(r1) . ..gp(rp)drp . ..dr1f2(s2). ..fn+1(sn+1)dsn+1 . ..ds2

)
ds1.

From (A.5) we observe by using the shuffle permutations that the latter inner double in-
tegral on diagonals can be written as a sum of integrals on diagonals of length p+n with

products having a total order of derivatives given by
∑
l=1

∑n+1
j=2 α

(l)
j +

∑d
l=1

∑p
i=1β

(l)
i .

Hence we obtain a sum of products, whose total order of derivatives is
∑d
l=1

∑n+1
j=2 α

(l)
j +∑d

l=1

∑p
i=1β

(l)
i +

∑d
l=1α

(l)
1 = |α|+ |β| .

For k≥2 we have (in connection with Lemma A.3) from the induction hypothesis
that∫

∆n+1
θ,t

f1(s1) . ..fk(sk)

∫
∆
p
θ,sk

g1(r1) . ..gp(rp)drp . ..dr1fk+1(sk+1) . ..fn+1(sn+1)dsn+1 . ..ds1

=

∫ t

θ

f1(s1)

∫
∆n
θ,s1

f2(s2) . ..fk(sk)

∫
∆
p
θ,sk

g1(r1) . ..gp(rp)drp . ..dr1

×fk+1(sk+1) . ..fn+1(sn+1)dsn+1 . ..ds2ds1

=
∑

σ∈An,p

∫ t

θ

f1(s1)

∫
∆
n+p
θ,s1

hσ1 (w1) . ..hσn+p(wn+p)dwn+p . ..dw1ds1,

where each of the products hσ1 (w1) · ·· · ·hσn+p(wn+p) have a total order of derivatives

given by
∑
l=1

∑n+1
j=2 α

(l)
j +

∑d
l=1

∑p
i=1β

(l)
i . Thus we get a sum with respect to a set of

permutations An+1,p with products having a total order of derivatives which is

d∑
l=1

n+1∑
j=2

α
(l)
j +

d∑
l=1

p∑
i=1

β
(l)
i +

d∑
l=1

α
(l)
1 = |α|+ |β| .
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