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ON THE FREE BOUNDARY PROBLEM OF 1D COMPRESSIBLE
NAVIER-STOKES EQUATIONS WITH HEAT CONDUCTIVITY

DEPENDENT OF TEMPERATURE∗

ZILAI LI† AND YULIN YE‡

Abstract. The free boundary problem of one-dimensional heat conducting compressible Navier-
Stokes equations with large initial data is investigated. We obtain the global existence of strong solution
under stress-free boundary condition along the free surface, where the heat conductivity depends on
temperature (κ=κθb, b∈ (0,∞)) and the viscosity coefficient depends on density (µ=µ(1+ρa), a∈
[0,∞)). Moreover, the large-time behavior of the free boundary for the full compressible Navier-Stokes
equations is also considered when the viscosity is constant and it is first shown that the interfaces which
separate the gas from vacuum will expand outwards at an algebraic rate in time for all γ >1.
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1. Introduction
The free boundary problem of one dimensional compressible heat-conducting

Navier-Stokes equations can be described in the Eulerian coordinates as follows:
ρτ +(ρv)y = 0,

(ρv)τ +(ρv2 +P )y = (µvy)y,

(ρ(e+ 1
2v

2))τ +(ρ(e+ 1
2v

2)v)y+(Pv)y = (µvvy)y+(κey)y,

(1.1)

for 0≤y≤a(τ), τ >0, with the initial condition

(ρ,v,e)
∣∣
τ=0

= (ρ0,v0,e0) for y∈ [0,a], (1.2)

and boundary condition

ey(d,τ) = 0, d= 0,a(τ); (P −µvy)(a(τ),τ) = 0, v(0,τ) = 0, τ ≥0, (1.3)

where ρ, v, e and P denote the density, the fluid velocity, the internal energy and the
pressure respectively; µ and κ are the viscosity coefficient and the heat conductivity
coefficient. In this paper, we focus on ideal polytropic gas and the constitution relation
reads

P (ρ,θ) =Rρθ=Ae
S
cv ργ , e= cvθ, cv =

R

γ−1
, γ >1, (1.4)

where R is the ratio of the ideal fluid constant over the heat capacity, S is the specific
entropy and cv is the heat capacity. a(τ) is the free boundary defined by{

da(τ)
dτ =v(a(τ),τ), τ >0

a(0) =a,
(1.5)
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which is the interface separating the gas from the vacuum.
To solve the free boundary problem (1.1)-(1.3), it is convenient to convert the free

boundaries to the fixed boundaries by using Lagrangian mass coordinates. This means,
let

x=

∫ y

0

ρ(z,τ)dz, t= τ, (1.6)

then the free boundary y=a(τ) becomes x=
∫ a(τ)
0

ρ(z,τ)dz=
∫ a
0
ρ0(z)dz by the conser-

vation of mass. Without loss of generality, we assume
∫ a
0
ρ0(z)dz= 1. Let u= 1

ρ be

specific volume, then P = Rθ
u . Thus the free boundary problem (1.1)-(1.3) becomes
ut−vx= 0,

vt+Px= [µvxu ]x,

(e+ 1
2v

2)t+(Pv)x= [κθx+µvvxu ]x,

(1.7)

for (x,t)∈ [0,1]×(0,+∞), with the initial condition

(u,v,θ)
∣∣
t=0

= (u0,v0,θ0) for x∈ [0,1], (1.8)

and the boundary condition

θx(d,t) = 0, d= 0,1,
(
P − µvx

u

)
(1,t) = 0, v(0,t) = 0, t≥0. (1.9)

when µ and κ are positive constants, the existence of strong solutions to (1.1) has
been successfully studied by many mathematicians. The local theories were established
long ago, see [9, 11, 15]. Kazhikhov and Shelukhin [10] first obtained global existence
and uniqueness of smooth solution for arbitrarily large and smooth initial data under
Dirichlet boundary condition. Such results have been further generalized to nonlinear
thermoviscoelasticity by [2,3], and to viscous heat-conductive real gases by [6,8,12,13].
It is noted that in the above results, µ is independent of θ, and heat conductivity is
allowed to depend on temperature in a special way with a positive lower bound and
balanced with corresponding constitution relations.

When one derives the compressible Navier-Stokes Equations (1.1) from the cele-
brated Boltzmann equation for the monatomic gas with a slab symmetry by using the
Chapman-Enskog expansion, then the viscosity coefficient µ and the heat conductivity
coefficient κ are functions of temperature. The functional dependence is the same for
both coefficients as

µ=µθb, κ=κθb, b∈ (
1

2
,∞). (1.10)

where µ and κ are positive constants. See Chapman and Cowling [1] for a thorough
discussion of these issues. With some smallness assumptions, considering the one-
dimensional full compressible Navier-Stokes equations for ideal polytropic gas whose
viscosity coefficient and heat conductivity coefficient satisfy µ= µ̃h(u)θα,κ= κ̃h(u)θα,
Liu and Yang et al. in [17] obtained the global non-vacuum classical solution with
smallness mechanism (i.e., γ−1 small), and later Wang and Zhao in [19] obtained the
global non-vacuum classical solution with smallness assumptions for |α|. However, if
both viscosity coefficients and heat conductivity coefficient depend on temperature, the
well-posedness of solutions to (1.1) is still open. Note that, if the viscosity is a posi-
tive constant and only the heat conductivity coefficient depends on temperature, the
framework of Kazhikhov and Shelukhin [10] works. As an example of this direction,
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• Jenssen and Karper [7] proved the global existence of a weak solution to initial-
boundary value problem (IBVP) (1.1) under the assumption

µ=µ, κ=κθb, b∈ [0,
3

2
).

• Wen and Zhu [18] proved the existence of global classical solutions of (1.1) with
vacuum under the boundary condition θx(d,t) = 0,v(d,t) = 0, d= 0,1, where κ∈
C2[0,∞) satisfies C6(1+θq)≤κ(θ)≤C7(1+θq), q≥2 .

• Pan and Zhang [14] proved the existence of global strong solutions of (1.7) with
b∈ [0,∞) under the boundary condition θx(d,t) = 0,v(d,t) = 0, d= 0,1. where

boundary condition v(d,t) = 0, d= 0,1 offers conservative quality
∫ 1

0
u(x,t)dx=∫ 1

0
u0(x)dx which plays an important role when getting the bound of u.

• Duan, Guo and Zhu [4] studied the same problem of (1.7) with b∈ (0,∞) under
the boundary θx(d,t) = 0,

(
P − µvx

u

)
(d,t) = 0,d= 0,1. Although the boundary

condition
(
P − µvx

u

)
(d,t) = 0,d= 0,1 does not yield

∫ 1

0
u(x,t)dx=

∫ 1

0
u0(x)dx,

but gives
∫ 1

0
v(x,t)dx=

∫ 1

0
v0(x)dx which yields

∫ 1

0
u(x,t)dx≤C. This estimate

together with C≤u(x,t) implies C−1≤
∫ 1

0
u(x,t)dx≤C.

However, compared with results in [4] and [14], stress-free boundary condition(
P − µvx

u

)
(1,t) = 0,v(0,t) = 0 can neither yield

∫ 1

0
u(x,t)dx=

∫ 1

0
u0(x)dx nor imply∫ 1

0
v(x,t)dx=

∫ 1

0
v0(x)dx. Hence, our main goal in this paper is to establish the global

existence of strong solutions and consider the large-time behavior of the free boundary
to free boundary problems (1.1)-(1.3) with assumptions

µ=µ(1+u−a), a∈ [0,∞), κ=κθb, b∈ (0,∞). (1.11)

Where µ and κ are positive constants.
Notations:

(1) I= [0,1], ∂I={0,1}, QT = I× [0,T ] for T >0.

(2) For p≥1, Lp=Lp(I) denotes the Lp space with the norm ‖·‖Lp . For k≥1 and
p≥1, W k,p=W k,p(I) denotes the Sobolev space, whose norm is denoted as ‖·‖Wk,p ,
Hk =W k,2(I).

(3) Throughout this paper, the same letter C (sometimes used as C(X) to emphasize
the dependence of C on X) denotes various generic positive constants.

The following are the main results of this paper.

Theorem 1.1. Suppose that µ and κ statisfy (1.11) for some positive constants µ and
κ. If the initial data (u0,v0,θ0)(x) is compatible with the boundary conditions, satisfying

(u0,v0,θ0)(x)∈H1×H2×H2, (1.12)

and there are constants u, u, θ, θ such that

0<u≤u0(x)≤u, 0<θ≤θ0(x)≤θ. (1.13)

Then for any T >0, there exists a unique global strong solution (u,v,θ) to the initial-
boundary value problems (1.7)-(1.9) satisfying

C−1≤u(x,t)≤C, C−1≤θ(x,t)≤C,
‖(u,v,θ)(.,t)‖2H1 +

∫ t
0
‖(u,v,θ)(.,s)‖2H1ds≤C,

‖(v,θ)(.,t)‖2H2 +
∫ t
0
‖(uxt,vxt,vxx,θxt,θxx)(.,s)‖2L2ds≤C,

(1.14)



2042 FREE BOUNDARY PROBLEM OF 1D NAVIER-STOKES EQUATIONS

where C>0 is some finite constant depending on initial data and T .

Theorem 1.2. In addition to the assumptions of Theorem 1.1, if the viscosity µ=
constant>0 and the initial total entropy satisfies∫ a

0

ρ0S0dy
.
=k0>0,

where S(x,t) is the entropy of the fluid and S0 =S(x,0). Then we have

M(t) = max
s∈[0,t]

(a(s)−0)≥

{
C(1+ t)1−

1
γ , 1<γ<2,

C(1+ t)
1
γ , γ≥2.

(1.15)

Remark 1.1. It should be noted that the Theorem 1.1 also holds for constant
viscosity.

Remark 1.2. The additional assumption in Theorem 1.2 where we require the initial
entropy has a positive bound is natural due to the the second law of thermodynamics,
and these expanding rates also hold for the constant heat conductivity and other various
free boundary conditions just with some small modifications in the proof.

Remark 1.3. To our best knowledge, although the large-time behavior of the free
boundary for the isentropic compressible Navier-Stokes equations has been studied by
many authors (see [5], [16]), however the similar results for the full compressible Navier-
Stokes equations are very few, our result in Theorem 1.2 is the first one to give the
expanding rate of the free boundary by using the entropy variable.

The existence and uniqueness of local-in-time solution can be obtained by a standard
Banach fixed point argument due to the contraction of the solution operators defined
by the linearized problem, c.f. [9,11] and [15]. As a special case of the result in [15], the
following lemma gives the local existence for the purpose of our problem.

Lemma 1.1. If (1.11)-(1.13) hold, and the initial data is compatible with boundary
conditions, then there exists a unique local strong solution (u,v,θ) to (1.7) on [0,1]×
[0,T∗], for T∗ depending on the initial data satisfying

C−1≤u(x,t)≤C, C−1≤θ(x,t)≤C,
‖(u,v,θ)(.,t)‖2H1 +

∫ t
0
‖(u,v,θ)(.,s)‖2H1ds≤C,

‖(v,θ)(.,t)‖2H2 +
∫ t
0
‖(uxt,vxt,vxx,θxt,θxx)(.,s)‖2L2ds≤C.

(1.16)

The rest of the paper is organized as follows. In Section 2, we give some a priori
estimates. In Section 3, first, based on the local existence of the solutions and the a
priori estimates in Section 2, we prove Theorem 1.1 by a standard continuity argument
and then we give the proof of Theorem 1.2.

2. A priori estimates
In this section, we will perform a sequence of estiamtes which are stated in the

following as lemmas to prove Theorem 1.1. Furthermore, we get a unique global strong
solution of (1.7)-(1.9) by using some a priori estimates of the solution based on the
local existence. We now assume that (u,v,θ)(x,t) is the unique global strong solution
of (1.7) defined on [0,1]× [0,T ] for any T >0. For simplicity of presentation, we will
denote µ=κ= cv = 1.
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Lemma 2.1. There exists a constant C such that∫
I

(θ+
1

2
v2)dx=

∫
I

(θ0 +
1

2
v20)dx=E0, (2.1)

and there exists ξ(t)∈ (0,1) and a constant C, such that

θ(ξ(t),t)≤C. (2.2)

Proof. Integrating (1.7)3 over QT , using integration by parts and (1.9), we get
(2.1). From (2.1), we have

∫
I
θdx≤C, then by the mean value theorem, there exists

ξ(t)∈ (0,1), such that

θ(ξ(t),t) =

∫
I

θdx≤C.

This completes the proof of Lemma 2.1.

Lemma 2.2. There exists a constant C such that

C−1≤u(x,t)≤C
(

1+

∫ t

0

θ(x,s)ds

)
, (2.3)

and ∫ 1

0

|lnu|dx≤C. (2.4)

Proof. Using the mass equation, one can rewrite the momentum equation as

vt+

(
θ

u

)
x

=
(
µ(u)

ut
u

)
x
. (2.5)

Integrating this equation in space from x to 1, and then integrating this equation in
time over [0,t] for any t∈ [0,T ], we get

lnu− u
−a

a
= lnu0−

u−a0

a
+

∫ t

0

θ

u
(x,s)ds−

∫ 1

x

(v(y,t)−v0(y))dy, (2.6)

taking exponential on both sides of (2.6), then we have

e
∫ t
0
θ
u (x,s)ds

u(x,t)
=

1

u0(x)

B1(x,t)B3(x)

B2(x,t)
, (2.7)

where

B1(x,t) = exp

(∫ 1

x

(v(y,t)−v0(y))dy

)
,B2(x,t) = exp

(
u−a

a

)
,B3(x) = exp

(
u−a0

a

)
.

(2.8)
Mutiplying (2.7) with θ and integrating in time, we get

e
∫ t
0
θ
u (x,s)ds= 1+

B3(x)

u0(x)

∫ t

0

B1(x,s)

B2(x,s)
θ(x,s)ds, (2.9)

plugging (2.9) into (2.7), we get

u(x,t) =
u0(x)B2(x,t)

B1(x,t)B3(x)

(
1+

B3(x)

u0(x)

∫ t

0

B1(x,s)

B2(x,s)
θ(x,s)ds

)
. (2.10)
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Note ∣∣∣∣∫ 1

x

(v0(y)−v(y,t))dy

∣∣∣∣≤2

(∫ 1

0

v2(y,t)dy

) 1
2

+2

(∫ 1

0

v20(y)dy

) 1
2

≤C, (2.11)

therefore, from (2.8) and (1.13), there exists a constant C>0 such that

C−1≤B1(x,t),B3(x)≤C, 1≤B2(x,t) (2.12)

which together with (2.10), (1.13) and nonnegative of θ(x,s) implies that

0<C−1≤u, 1≤B2(x,t)≤C, (2.13)

consequently, we have

C−1≤u≤C
(

1+

∫ t

0

θ(x,s)ds

)
.

Moreover, in combination with (2.1), (2.6), (2.11) and (2.13), we have∫ 1

0

|lnu|dx≤C.

The proof of Lemma 2.2 is completed.

The following lemma shows that the absolute temperature θ stays positive all the
time. The proof of Lemma 2.3 is almost exactly the same as Lemma 2.2 in [4]. Here for
the convenience of the reader and the completeness of the paper, we state the details.

Lemma 2.3. There exists a constant C such that for any p>2∥∥∥∥1

θ

∥∥∥∥
L∞(Lp)

+

∫
QT

(
µ(u)v2x
uθp+1

+(p−1)
θbθ2x
uθp+2

)
dxdt≤C. (2.14)

In particular, we have

0<C≤θ(x,t), for any (x,t)∈QT . (2.15)

Proof. Using (1.7)1 and (1.7)2, we rewrite (1.7)3 as

θt=

(
θbθx
u

)
x

+
µ(u)v2x
u
− θvx

u
. (2.16)

Multiplying above equation by −p 1
θp+1 , then integrating it over [0,1], using integration

by parts and the Cauchy inequality, we have

d

dt

∫
1

θp
dx+p(p+1)

∫
θbθ2x
uθp+2

dx+p

∫
µ(u)v2x
θp+1u

dx=

∫
p
vx
θpu

≤εp
∫

v2x
θp+1u

dx+Cp

∫
θ2

θp+1u
dx

≤εp
∫

v2x
θp+1u

dx+Cp

(∫
1

θp
dx

) p−1
p

,

(2.17)
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due to the Grönwall inequality, which yields∥∥∥∥1

θ

∥∥∥∥
L∞(Lp)

≤C,

where C is uniform of index p, so letting p→+∞, we have∥∥∥∥1

θ

∥∥∥∥
L∞(L∞)

≤C⇒θ(x,t)≥C>0, for any (x,t)∈QT .

Then the proof of Lemma 2.3 is completed.

Lemma 2.4. For any 0<ε<min{1,b}, the following estimates hold:∫
QT

θbθ2x
uθ1+ε

dxdt≤C, (2.18)

∫
QT

θb+3−εdxdt+

∫ T

0

max
[0,1]

θb+2−εdt≤C, (2.19)

in particular, when ε= 1, it also holds that∫
QT

θbθ2x
uθ2

dxdt+

∫
QT

µ(u)v2x
uθ

dxdt≤C. (2.20)

Proof. Multiplying (2.16) by 1
θε , integrating it over QT , and using integration by

parts, it turns out

ε

∫
QT

θbθ2x
uθε+1

dxdt+

∫
QT

µ(u)v2x
uθε

dxdt=
1

1−ε

∫
I

(θ1−ε−θ1−ε0 )dx+

∫
QT

θ1−εvx
u

dxdt.

(2.21)
Using the fact that 1−ε∈ (0,1), Young’s inequality and (2.1), it is clear that∫

I

θ1−εdx≤
∫
I

θdx+C≤C.

This, together with (2.21), (2.3) and Young’s inequality, gives

ε

∫
QT

θbθ2x
uθε+1

dxdt+

∫
QT

µ(u)v2x
uθε

dxdt≤C+

∫
QT

µ(u)θ1−εvx
µ(u)u

dxdt

≤ 1

2

∫
QT

µ(u)v2x
uθε

dxdt+2

∫
QT

θ2−ε

µ(u)u
dxdt+C

≤ 1

2

∫
QT

µ(u)v2x
uθε

dxdt+C

∫ T

0

max
0≤x≤1

θdt+C.

Thus, we have ∫
QT

θbθ2x
uθε+1

dxdt+

∫
QT

v2x
uθε

dxdt≤C
∫ T

0

max
0≤x≤1

θdt+C. (2.22)
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On the other hand, using (2.2), (2.3), (2.22) and Hölder’s inequality, we have∫
QT

θb+3−εdxdt≤C
∫ T

0

max
0≤x≤1

θb+2−εdt

≤C+C

∫ T

0

max
0≤x≤1

(
θ

2+b−ε
2 (x,t)−θ

2+b−ε
2 (ξ(t),t)

)2
dt

≤C+C

∫ T

0

(∫
I

θ
b−ε
2 |θx|dx

)2

dt

≤C+C

∫ T

0

(∫
I

θbθ2x
uθε+1

dx

)(∫
I

uθdx

)
dt

≤C+Cmax
QT

u

∫
QT

θbθ2x
uθε+1

dxdt

≤C+C

(∫ T

0

max
0≤x≤1

θdt

)2

≤C+C

∫ T

0

max
0≤x≤1

θ2dt.

For any ε small enough, such that b−ε>0, Young’s inequality yields∫ T

0

max
0≤x≤1

θb+2−εdt≤C+

∫ T

0

max
0≤x≤1

θ2dxdt≤C+
1

2

∫ T

0

max
0≤x≤1

θb+2−εdt,

and therefore ∫ T

0

max
0≤x≤1

θb+2−εdxdt≤C. (2.23)

Multiplying (2.16) by 1
θ , integrating it over QT , and using integration by parts, (1.13),

(2.4) and (2.1), we have∫
QT

θbθ2x
uθ2

dxdt+

∫
QT

µ(u)v2x
uθ

dxdt=

∫
I

(lnu+lnθ)dx−
∫
I

(lnu0 +lnθ0)dx≤C.

Using (2.22)-(2.23) and Hölder’s inequality, we can complete the proof of Lemma 2.4.

Combining (2.3) with (2.19), we easily get the following lemma.

Lemma 2.5. There exists a constant C such that

max
QT

u≤C, (2.24)

∫
QT

θb−1−εθ2xdxdt≤C. (2.25)

Proof. Combining (2.3) with (2.19), we easily get (2.24). The estimate (2.25) can
be obtained directly by (2.18) and (2.24). This proves Lemma 2.5.

Lemma 2.6. There exists a constant C such that

sup
0≤t≤T

∫
I

v2dx+

∫
QT

v2xdxdt≤C. (2.26)
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Proof. Multiplying (1.7)2 by v, integrating it over QT , using integration by parts,
Cauchy inequality, (2.3) and (2.19), we have

sup
0≤t≤T

∫
I

v2dx+

∫
QT

v2xdxdt≤C+C

∫
QT

P 2dxdt

≤C+C

∫
QT

θ2dxdt

≤C. (2.27)

This completes the proof of Lemma 2.6.

Lemma 2.7. There exists a constant C such that

sup
0≤t≤T

∫
I

u2xdx≤C.

Proof. One can rewrite (2.5) as

((lnu− 1

a
u−a)x−v)t=

(
θ

u

)
x

. (2.28)

We multiply (2.28) by 2((lnu− 1
au
−a)x−v) and integrate the resulting equation over

QT , yields ∫
I

(
(lnu− 1

a
u−a)x−v

)2

dx−
∫
I

(
(lnu0−

1

a
u−a0 )x−v0

)2

dx

=2

∫
QT

(
θx
u
− θ
u

(lnu)x

)(
(lnu− 1

a
u−a)x−v

)
dxdt. (2.29)

By the lower bound of θ and (2.25), the right-hand side can be controlled as follows,∫
QT

θx
u

(
(lnu− 1

a
u−a)x−v

)
dxdt

≤C
∫
QT

θb−1−εθ2xdxdt+C

∫ T

0

max
0≤x≤1

θ1+ε
∫
I

(
(lnu− 1

a
u−a)x−v

)2

dxdt

≤C+C

∫ T

0

max
0≤x≤1

θ1+ε
∫
I

(
(lnu− 1

a
u−a)x−v

)2

dxdt. (2.30)

On the other hand, using (2.1) and (2.19), we have∫
QT

− θ
u

(lnu)x

(
(lnu− 1

a
u−a)x−v

)
dxdt

=−
∫
QT

θ

u
(lnu)2xdxdt+

∫
QT

θ

au
(lnu)x(u−a)xdxdt+

∫
QT

θ

u
(lnu)xvdxdt

≤− 1

2

∫
QT

θ

u
(lnu)2xdxdt−

∫
QT

θ(ux)2

u3+a
dxdt+C

∫ T

0

max
0≤x≤1

θ

∫
I

v2dxdt

≤− 1

2

∫
QT

θ

u
(lnu)2xdxdt−

∫
QT

θ(ux)2

u3+a
dxdt+C. (2.31)
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Substituting (2.30)-(2.31) into (2.29), we have∫
I

(
(lnu− 1

a
u−a)x−v

)2

dx+
1

2

∫
QT

θ

u
(lnu)2xdxdt+

∫
QT

(ux)2

u3+2a
dxdt

≤C
∫ T

0

max
0≤x≤1

θ1+ε
∫
I

(
(lnu− 1

a
u−a)x−v

)2

dxdt+C, (2.32)

which along with the Grönwall inequality and (2.19) gives∫
I

(
(lnu− 1

a
u−a)x−v

)2

dx≤C for ε≤ 1+b

2
,

which together with (2.1) implies that∫
I

[
u2x
u2

+2
u2x
ua+2

+
u2x

u2(a+1)

]
dx≤C

∫
I

(
(lnu− 1

a
u−a)x−v

)2

dx≤C,

this together with (2.24) gives the proof of Lemma 2.7.

In order to obtain higher norms and the upper bound of θ, similar to [14], we
introduce two useful functionals as follows:

Z= sup
0≤t≤T

∫
I

v2xxdx, Y = sup
0≤t≤T

∫
I

θ2bθ2xdx. (2.33)

Lemma 2.8. There exists a constant C such that

max
QT

θ≤C+CY
1

2b+3 , (2.34)

max
QT
|vx|≤C+CZ

3
8 . (2.35)

Proof. Using W 1,1 ↪→L∞ and the Young inequality, we get

max
0≤x≤1

θ2b+2≤C
∫
I

θ2b+2dx+C

∫
I

θ2b+1|θx|dx

≤C max
0≤x≤1

θ2b+1 +C

(∫
I

θ2bθ2xdx

) 1
2
(∫

I

θ2b+2dx

) 1
2

≤ 1

2
max
0≤x≤1

θ2b+2 +CY
1
2 max
0≤x≤1

θb+
1
2 +C,

which implies

max
0≤x≤1

θ2b+2−b− 1
2 ≤C+CY

1
2 .

Hence

max
0≤x≤1

θ≤C+CY
1

2b+3 .

For the second estimate, using W 1,1 ↪→L∞ and the interpolation inequality, we have

max
0≤x≤1

|vx|2≤C
∫
I

v2xdx+C

∫
I

|vxvxx|dx
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≤C
∫
I

v2xdx+C

(∫
I

v2xdx

) 1
2
(∫

I

v2xxdx

) 1
2

≤C+CZ
3
4 ,

where we have used the fact that∫
I

v2xdx≤C
∫
I

v2dx+C

(∫
I

v2dx

) 1
2
(∫

I

v2xxdx

) 1
2

.

Then the proof of Lemma 2.8 is completed.

Lemma 2.9. There exists a constant C and 0<C(b)<1 such that

Y +

∫
QT

θbθ2t dxdt≤C
(

1+ZC(b)
)
. (2.36)

Proof. Multiplying (2.16) by θbθt, integrating over QT , and using integration by
parts, we have∫

QT

θbθ2t dxdt+

∫
I

θ2bθ2x
2u

dx

=

∫
I

θ2b0 θ
2
0x

2u0
dx−

∫
QT

θ2bθ2xvx
2u2

dxdt+

∫
QT

(
µ(u)v2x
u
− θvx

u

)
θbθtdxdt. (2.37)

Where we have used∫
QT

(
θbθx
u

)xθ
bθtdxdt=−

∫
QT

θbθx
u

(θbθt)xdxdt

=−
∫
QT

θbθx
u

(θbθx)tdxdt

=−
∫
I

θ2bθ2x
2u

dx+

∫
I

θ2b0 θ
2
0x

2u0
dx−

∫
QT

θ2bθ2xvx
2u2

dxdt.

Hence, (2.37) implies that

1

2

∫
I

θ2bθ2x
u

dx+

∫
I

θbθ2t dxdt

≤C+C

∫
QT

θ2bθ2x|vx|dxdt+C

∫
QT

v2xθ
b|θt|dxdt+C

∫
QT

θ|vx|θb|θt|dxdt

.
=C+I1 +I2 +I3.

It follows from (2.25) and (2.34)-(2.35), the fact b+1+ε
2b+3 < 1

2 and Young’s inequality that

I1≤max
QT

(θb+1+ε|vx|)
∫
QT

θb−1−εθ2xdxdt≤C(1+Y
b+1+ε
2b+3 )(1+Z

3
8 )≤C+

δ

3
Y +CZ

3
4 .

(2.38)
To estimate I2, we divide the proof into two cases:
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Case 1: When b≤1, using (2.26), (2.34)-(2.35), and Young’s inequality, we have

I2≤C
∫
QT

v2xθ
b|θt|dxdt≤

1

4

∫
QT

θbθ2t dxdt+C

∫
QT

θbv4xdxdt

≤ 1

4

∫
QT

θbθ2t dxdt+Cmax
QT

(θbv2x)

∫
QT

v2xdxdt

≤ 1

4

∫
QT

θbθ2t dxdt+C(1+Y
b

2b+3 )(1+Z
3
4 )

≤ 1

4

∫
QT

θbθ2t dxdt+C+
δ

3
Y +CZ

3(2b+3)
4(b+3) , (2.39)

where 3(2b+3)
4(b+3) <1, for b≤1.

Case 2: When b>1, we re-estimate the I2 as follows

I2≤C
∫
QT

v2xθ
b|θt|dxdt≤

1

4

∫
QT

θbθ2t dxdt+C

∫
QT

θbv4xdxdt

≤ 1

4

∫
QT

θbθ2t dxdt+Cmax
QT

θb
∫
QT

v4xdxdt

≤ 1

4

∫
QT

θbθ2t dxdt+C(1+Y
b

2b+3 )

∫
QT

v4xdxdt

≤ 1

4

∫
QT

θbθ2t dxdt+C+
δ

3
Y.

Next, we claim that
∫
QT
|vx|4dxdt≤C, when b>1.

Set h(x,t) =
∫ 1

x
v(y,t)dy, then Equation (1.7)2 yields

ht−
µ(u)

u
hxx=p=

θ

u

with the following initial-boundary conditions

h(y,0) =

∫ 1

x

v0(y)dy, h(0,t) =

∫ 1

0

v(y,t)dy, h(1,t) = 0.

Hence the standard Lp−estimate for solution to above linear parabolic problem yields∫
QT

|vx|4dxdt=
∫
QT

|hxx|4dxdt≤C+C

∫
QT

|p|4dxdt≤C+C

∫
QT

|θ|4dxdt≤C, (2.40)

where we have used (2.19) and required b>1.

I3 =

∫
QT

θ|vx|θb|θt|dxdt≤
1

4

∫
QT

θbθ2t dxdt+C

∫
QT

θ2+bv2xdxdt

≤ 1

4

∫
QT

θbθ2t dxdt+Cmax
QT
|vx|2

∫
QT

θ2+bdxdt

≤ 1

4

∫
QT

θbθ2t dxdt+CZ
3
4 +C.



Z.L. LI AND Y.L. YE 2051

Substituting the above estimate and (2.38)-(2.40) into (2.37) and using (2.24), it holds
that for δ suitably small

Y +

∫
QT

θbθ2t dxdt≤C
(

1+ZC(b)
)
.

This completes the proof of Lemma 2.9.

Finally, we are ready to give the estimate on Z.

Lemma 2.10. There exists a constant C such that

sup
[0,t]

∫
I

v2t dx+

∫
QT

v2xt≤C
(

1+ZC(b)
)
, (2.41)

and

Z≤C. (2.42)

Proof. Differentiating (1.7)2 with respect to t, we have

vtt+Pxt=

[
µ(u)vx
u

]
xt

. (2.43)

Multiplying it with vt, and integrating it over [0,1], we have

1

2

d

dt

∫
I

v2t dx+

∫
I

µ(u)v2xt
u

dx

=

∫
I

(
(µ(u)−µ′(u)u)v2x

u2
+
θt
u
− θvx
u2

)
vxtdx

≤1

2

∫
I

µ(u)v2xt
u

dx+C

∫
I

(
v4x+θ2t +v2xθ

2
)
dx

≤1

2

∫
I

µ(u)v2xt
u

dx+C

∫
I

θbθ2t dx+Cmax
[0,1]

v2x

∫
I

(θ2 +v2x)dx.

we integrate the above inequality in time and use (2.19) and (2.26) to obtain

sup
0≤t≤T

∫
I

v2t dx+

∫
QT

v2xtdxdt≤C
(

1+ZC(b)
)

+CZ
3
4

∫
QT

(θ2 +v2x)dxdt

≤C
(

1+ZC(b)
)
.

We rewrite the momentum equation (1.7)2 as

µ(u)vxx
u

=vt+

(
θ

u

)
x

+
µ(u)vxux

u2
− µ

′(u)vxux
u

, (2.44)

which implies that

Z≤ sup
0≤t≤T

(∫
I

v2t dx+

∫
I

v2xu
2
xdx+

∫
I

θ2xdx+

∫
I

θ2u2xdx

)
≤C

(
1+ZC(b) +max

QT
(v2x+θ2)

∫
I

u2xdx+

∫
I

θ2bθ2xdx

)
≤C

(
1+ZC(b)

)
+C

(
Y

2
2b+3 +Z

3
4

)
≤C

(
1+ZC(b)

)
+CY ≤C

(
1+ZC(b)

)
.
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Since 0<C(b)<1, with the help of Young’s inequality, we obtain

Z≤C.

The proof of Lemma 2.10 is completed.

From a sequence of estimates which are stated in above lemmas, we easily obtain
the following corollary.

Corollary 2.1. There exists a constant C such that
maxQT θ≤C, maxQT |vx|≤C,

sup0≤t≤T
∫
I
v2t dx+

∫
QT

v2xt≤C,

sup0≤t≤T
∫
I
θ2xdx+

∫
QT

θ2t dxdt≤C.

(2.45)

Lemma 2.11. There exists a constant C such that

sup
0≤t≤T

∫
I

θ2t +θ2xxdx+

∫
QT

θ2xtdxdt≤C. (2.46)

Proof. Differentiating the temperature Equation (2.16) with respect to t, then
multiplying the resultant by θt, and integrating it over I, we have

1

2

d

dt

∫
θ2t dx+

∫
θbθ2xt
u

dx=−
∫
bθb−1θtu−utθb

u2
θxθxt+

∫
µ′(u)uut−utµ(u)

u2
v2xθtdx

+

∫
µ(u)2vxvxtθt

u
dx−

∫
θ2t uvx−utθθtvx+uvxtθθt

u2
dx

≤ε
∫
θbθ2xt
u

dx+C
(
‖θtθxu+vxθx+θt+vxt+θutvx‖2L2

)
≤ε
∫
θbθ2xt
u

dx+C
(
‖θt‖2L∞+1+‖θt‖2L2 +‖vxt‖2L2

)
≤ε
∫
θbθ2xt
u

dx+C
(
‖θt‖2L2 +‖vxt‖2L2 +1

)
, (2.47)

where we have used the Hölder inequality and the following fact

‖θt‖L∞ ≤C(‖θt‖L2 +‖θt‖
1
2

L2‖θxt‖
1
2

L2)

≤ε‖
√
θbθxt√
u
‖L2 +C‖θt‖L2 . (2.48)

Then by the (2.45) and the Grönwall inequality, we have∫
θ2t dx+

∫
QT

θbθ2xt
u

dxdt≤C.

Furthermore, the Equation (2.16) can be rewritten as

θt=
θbθxx
u

+
bθb−1θxu−uxθb

u2
θx+

µ(u)v2x
u
− θvx

u
,
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hence, we have

‖θxx‖L2 ≤
(
‖θt+θ2xu+uxθ

bθx+v2x+θvx‖L2

)
≤C

(
‖θt‖L2 +‖θx‖

3
2

L2‖θxx‖
1
2

L2 +‖θx‖
1
2

L2‖θxx‖
1
2

L2‖ux‖L2 +1+‖vx‖L2

)
≤ε‖θxx‖L2 +C, (2.49)

which implies

‖θxx‖L∞(L2)≤C.

The proof of Lemma 2.11 is completed.

3. Proof of Theorem 1.1 and Theorem 1.2
The proof of Theorem 1.1 are standard and similar to Theorem 1.1 in [14]. Here

we present them for completeness.

Proof. (Proof of Theorem 1.1.) Then the proof of Theorem 1.1 follows from
Lemma 1.1 which signifies the local existence of the strong solution and the global
(in time) a priori estimates in Section 2. In fact, by Lemma 1.1, there exists a local
strong solution (u,v,θ) on the time interval (0,T∗] with T∗>0. Now let T ∗>0 be the
maximal existing time of the strong solution (u,v,θ) in Lemma 1.1. Then obviously one
has T ∗≥T∗. Now we claim that T ∗≥T with T >0 being any fixed positive constant
given in Theorem 1.1. Otherwise, if T ∗<T , then all the a priori estimates in Section
2 hold with T being replaced by T ∗. Therefore, it follows from a priori estimates in
Section 2 that (u,v,θ)(x,T ∗) satisfy assumptions in Theorem 1.1, By using Lemma 1.1
again, there exists a T ∗1 >0 such that the strong solution (u,v,θ) in Lemma 1.1 exists on
(0,T ∗+T ∗1 ], which contradicts with T ∗ being the maximal existing time of the strong
solution (u,v,θ). Thus it holds that T ∗>T .

For (1.13) in Theorem 1.1: Equations (2.3) and (2.45) give the pointwise upper
and lower bounds of u and θ. The H1 estimates in (1.13) are given by Lemma 2.6-
Lemma 2.8, Lemma 2.9. The H2 estimates are given by Lemma 2.11, (2.45) and the
boundedness of Z. The proof of Theorem 1.1 is completed.

Proof. (Proof of Theorem 1.2.) To prove the Theorem 1.2, it is convenient to
consider the free boundary problem in the Eulerian coordinates. First, let (ρ,v,θ) be
any strong solution of (1.1), (1.2) and (1.3), we define an energy functional as follows

H(t) =

∫ a(t)

0

(y−(1+ t)v)
2
ρdy+

2

γ−1
(1+ t)2

∫ a(t)

0

Pdy

=

∫ a(t)

0

ρy2dy−2(1+ t)

∫ a(t)

0

ρvydy+(1+ t)2
∫ a(t)

0

(
ρv2 +

2

γ−1
P

)
dy. (3.1)

A direct calculation and using Equations (1.1) gives

H ′(t) =

∫ a(t)

0

(ρty
2−2ρvy)dy+(1+ t)2

∫ a(t)

0

(
(ρv2)t+

2

γ−1
Pt

)
dy

+2(1+ t)

∫ a(t)

0

(
ρv2−(ρv)ty+

2

γ−1
P

)
dy

+

(
ρvy2−2(1+ t)ρv2y+(1+ t)2ρv3 +

2

γ−1
(1+ t)2Pv

)∣∣∣
y=a(t)
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.
= I1 +I2 +I3 +IBD, (3.2)

where we have used the boundary conditions (1.3) and (1.5).
Now we estimate the terms I1−I3 as follows:
First, by (1.1)1 and the boundary condition (1.3), we have

I1 =

∫ a(t)

0

(
ρty

2−2ρvy
)
dy=−

∫ a(t)

0

(ρvy2)ydy=−ρvy2|y=a(t). (3.3)

Then by (1.1)3, constitution relations (1.4) and (1.3), we have

I2 = (1+ t)2
∫ a(t)

0

(
(ρv2)t+

2

γ−1
Pt

)
dy= 2(1+ t)2

∫ a(t)

0

(
ρ

(
v2

2
+e

))
t

dy

= 2(1+ t)2
∫ a(t)

0

(
(µvvy)y+(κey)y−(ρ(e+

1

2
v2)v)y−(Pv)y

)
dy

= 2(1+ t)2
(

(µvvy+κey−Pv)− 1

γ−1
Pv− 1

2
ρv3
)∣∣∣y=a(t)

y=0

= 2(1+ t)2
(
− 1

γ−1
Pv− 1

2
ρv3
)∣∣∣

y=a(t)
. (3.4)

By (1.1)2, we can obtain

I3 = 2(1+ t)

∫ a(t)

0

(
−(ρv)ty+ρv2 +

2

γ−1
P

)
dy

= 2(1+ t)

∫ a(t)

0

(
(ρv2 +P −µvy)yy+ρv2 +

2

γ−1
P

)
dy

= 2(1+ t)

∫ a(t)

0

(
[(ρv2 +P −µvy)y]y+

3−γ
γ−1

P +µvy

)
dy

= 2(1+ t)ρv2y
∣∣∣
y=a(t)

+2(1+ t)

∫ a(t)

0

(
3−γ
γ−1

P +µvy

)
dy. (3.5)

Substituting (3.3),(3.4) and (3.5) into (3.2), we have

H ′(t) = 2(1+ t)

∫ a(t)

0

(
3−γ
γ−1

P +µvy

)
dy

=
3−γ
1+ t

2

γ−1
(1+ t)2

∫ a(t)

0

Pdy+2µ(1+ t)(v(a(t),t)−v(0,t))

=
3−γ
1+ t

2

γ−1
(1+ t)2

∫ a(t)

0

Pdy+2µ(1+ t)a′(t) (3.6)

Case 1: If γ≥3. By (3.6), we have

H ′(t)≤2µ(1+ t)a′(t),

which yields

H(t)≤H(0)+2µ

∫ t

0

(1+s)a′(s)ds
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=H(0)+2µ(1+ t)a(t)−2µa−2µ

∫ t

0

a(s)ds

≤C (1+(1+ t)M(t)), (3.7)

where M(t) = max0≤s≤t |a(s)−0|≥a>0.

Case 2: If γ<3. By (3.6), we have

H ′(t)≤ 3−γ
1+ t

H(t)+2µ(1+ t)a′(t)

by Grönwall inequality and integration by parts, we have

H(t)≤ exp

(∫ t

0

3−γ
1+s

ds

)(
H(0)+

∫ t

0

exp

(
−
∫ s

0

3−γ
1+τ

dτ

)
2µ(1+s)a′(s)ds

)
= (1+ t)3−γ

(
H(0)+

∫ t

0

1

(1+s)2−γ
2µa′(s)ds

)
≤ (1+ t)3−γ

(
H(0)+2µ

a(t)

(1+ t)2−γ
−2µ(γ−2)

∫ t

0

(1+s)γ−3a(s)ds

)
. (3.8)

Case 2.1: When 2≤γ <3, (3.8) directly gives

H(t)≤ (1+ t)3−γ
(
H(0)+2µ

a(t)

(1+ t)2−γ

)
≤ (1+ t)3−γH(0)+2µ(1+ t)M(t). (3.9)

Case 2.2: When 1<γ<2, by integration in (3.8), we have

H(t)≤ (1+ t)3−γH(0)+2µ(1+ t)M(t)+2µ(2−γ)(1+ t)3−γM(t)

∫ t

0

(1+s)γ−3ds

≤ (1+ t)3−γH(0)+2µ(1+ t)M(t)+2µ(2−γ)(1+ t)3−γM(t)
[(1+ t)γ−2−1]

γ−2

≤ (1+ t)3−γH(0)+2µ(1+ t)M(t)+2µ(1+ t)3−γM(t). (3.10)

Thus, combining (3.7), (3.9) and (3.10), we have∫ a(t)

0

Pdy≤ γ−1

2(1+ t)2
H(t)

≤


C
(

1
(1+t)2 + 1

1+tM(t)
)
, 3≤γ

C
(

1
(1+t)γ−1 + 1

(1+t)M(t)
)
, 2≤γ<3,

C
(

1
(1+t)γ−1 + 1

(1+t)M(t)+(1+ t)1−γM(t)
)
, 1<γ<2.

≤


C
(

1
(1+t)2 + 1

1+t

)
M(t), 3≤γ

C
(

1
(1+t)γ−1 + 1

(1+t)

)
M(t), 2≤γ<3,

C
(

1
(1+t)γ−1 + 1

(1+t)

)
M(t), 1<γ<2.

≤

{
C 1

(1+t)M(t), γ≥2,

C 1
(1+t)γ−1M(t), 1<γ<2.

(3.11)
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On the other hand, from (1.4) and (1.1), we have the entropy form of the energy
equation:

(ρS)t+(ρvS)y =

(
κθy
θ

)
y

+
cνκθ

2
y

θ2
+
µ

θ
v2y.

Integrating it over (0,a(t)) and using the boundary condition (1.3), we have

d

dt

∫ a(t)

0

ρSdy=

∫ a(t)

0

(ρS)tdy+

∫ a(t)

0

(ρvS)ydy

=

∫ a(t)

0

(
κθy
θ

)
y

dy+

∫ a(t)

0

[
cνκθ

2
y

θ2
+
µ

θ
v2y

]
dy

≥
∫ a(t)

0

(
κθy
θ

)
y

dy= 0

Consequently, we have

d

dt

∫ a(t)

0

ρSdy≥0,

∫ a(t)

0

ρSdy≥
∫ a

0

ρ0S0dy
.
=k0>0.

Using Hölder inequality and the fact x<ex, we have

k0
γcv
≤
∫ a(t)

0

ρ
S

γcv
dy≤

∫ a(t)

0

ρe
S
γcv dy

≤

(∫ a(t)

0

ργe
S
cv dy

) 1
γ
(∫ a(t)

0

dy

) γ−1
γ

=

(∫ a(t)

0

Pdy

) 1
γ

M(t)
γ−1
γ ,

which together with (3.11) yields

M(t)1−γ≤
(
γcv
k0

)γ ∫ a(t)

0

Pdy

≤

{
C 1

(1+t)M(t), γ≥2,

C 1
(1+t)γ−1M(t), 1<γ<2.

Consequently, which implies

M(t)≥

{
C(1+ t)

1
γ , γ≥2,

C(1+ t)1−
1
γ , 1<γ<2.

Then the proof of Theorem 1.2 is completed.
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