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ON THE EXISTENCE OF WEAK SOLUTIONS TO
NON-LOCAL CAHN-HILLIARD/NAVIER-STOKES EQUATIONS AND

ITS LOCAL ASYMPTOTICS∗

ZHILEI LIANG†

Abstract. Cahn-Hilliard/Navier-Stokes system is the combination of the Cahn-Hilliard equation
with the Navier-Stokes equations. It describes the motion of unsteady mixing fluids and has a wide
range of applications ranging from turbulent two-phase flows to microfluidics. In this paper we consider
the non-local Cahn-Hilliard equation (the gradient term of the order parameter in the free energy is
replaced with its spatial convolution) coupled with the Navier-Stokes equations. Assuming that the
densities of the incompressible fluids are constant and the double-well potential is singular, we establish
the existence of global weak solutions to the non-local system in three dimensional torus. In addition,
we show that, under suitable initial assumptions, the solutions are asymptotic to those of the local
Cahn-Hilliard/Navier-Stokes equations.
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1. Introduction
Cahn-Hilliard/Navier-Stokes (CH/NS) system is a diffuse-interface model (cf. [3,8])

describing the evolution of mixing fluids. The mixture is assumed to be macroscopically
immiscible, but a partial mixing in a small interfacial region, in which the sharp inter-
face is replaced by the Cahn-Hilliard (CH) equation in terms of the order parameter
(the difference between two concentrations). CH equation is for modeling the loss of
mixture homogeneity and the formation of pure phase regions. The Navier-Stokes (NS)
equations are for the hydrodynamics of the mixing fluids, and it is influenced by the
order parameter, due to the surface tension and its variations, through an extra capil-
larity force term. In the case of incompressible fluids with matched constant-densities
(i.e.,ρ= 1), we have the following CH/NS equations

divu= 0,

∂tu+div(u⊗u)+∇π= div(ν∇u)+µ∇c,
∂tc+div(uc) = div(m∇µ),

µ=κ−1Φ′(c)+κ

∫
Ω

J(x,y)(c(x,t)−c(y,t))dy,

(1.1)

where Ω⊂R3, the unknown functions u, π, c, µ are the average velocity, the pressure,
the order parameter, the chemical potential, respectively. The viscosity ν, the mobility
m, and the interface thickness κ are assumed to be positive constants. The Φ(s) is
a double-well potential function, and J(x,y) is a positive and symmetric convolution
kernel.

System (1.1) is called a non-local CN/NS equations. The total free energy is the
sum of the kinetic energy 1

2‖u‖
2
L2(Ω) and the free energy functional of the form

E [c] =
κ

4

∫
Ω

∫
Ω

J(x,y)|c(x,t)−c(y,t)|2dydx+κ−1

∫
Ω

Φ(c)dx, (1.2)
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where (1.2) is originally proposed in the papers [26, 27] by Giacomin-Lebowitz, where
the authors considered the hydrodynamic limit of a microscopic model describing a
multi-dimensional lattice gas evolving via a Poisson nearest-neighbor process. In this
connection, E [c] is a non-local free energy functional, and the chemical potential function
µ is defined as the functional derivative, namely, µ= δE

δc .
As a counterpart of (1.2), we have the standard local free energy functional of CH

equation

Eloc[c] =
κ

2

∫
Ω

|∇c|2dx+κ−1

∫
Ω

Φ(c)dx, (1.3)

where the free energy density Φ drives the system towards the segregation of the two
phases, and the square of the gradient energetically penalizes the formations of the
interface and restrains the segregation. The corresponding CH/NS equations are the
local version 

divu= 0,

∂tu+div(u⊗u)+∇π= div(ν∇u)+µ∇c,
∂tc+div(uc) = div(m∇µ),

µ=κ−1Φ′(c)−κ4c.

(1.4)

The existence of weak solutions of (1.4) (with suitable boundary information) has been
established by Abels [1]. The uniqueness and regularity, as well as existence of strong
solution, in both two and three dimensions are surveyed by Giorgini-Miranville-Temam
[28]. There is abundant other literature about the local CH/NS equations such as
[2, 7, 9, 23,25,30,34,41,43], and the references therein.

The interest in the non-local diffusion model lies not only in the fundamental phys-
ical relevance (cf. [18, 40]) but also its rigorous justification as a macroscopic limit of
microscopic phase segregation and the generality (cf. [10, 26]). Particularly, when the
convolution kernel J(x,y) is symmetrical and concentrates around the origin, the behav-
ior of the non-local interface evolution problem approaches to, at least formally, that
of the standard local CH equation. Therefore, there is a close connection between the
local and non-local energy functionals.

Roughly speaking, if there exists a sequence Jλ(x,y) =Jλ(|x−y|) that approximates
Dirac delta as λ goes to zero, the following asymptotic is valid, upon to a constant-
multiplicator, ∫

Ω

∫
Ω

Jλ(x,y)|c(x,t)−c(y,t)|2dydx→
∫

Ω

|∇c|2dx (λ↓0).

This can be rigorously justified and deeply understood from the seminal papers by
Bourgain-Brezis-Mironescu [5,6] and by Ponce in [37,38] respectively. From the mathe-
matical standpoint, although the local CH equation in (1.4) is a fourth order differential
equation, and the non-local one in (1.1) is an integro-differential second order parabolic
equation, they share a lot of fundamental features such as the gradient flow structure
(in H−1 metric) and the lack of comparison principles.

Let us briefly review some previous results in this direction. We first focus on the
single CH equation with non-local diffusion. For the existence, uniqueness, regularity,
strict separation property, long-time behavior, and stationary state of the solutions,
we refer to [4, 22, 24, 29], etc. Assume that the mobility is a positive constant, and
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the double-well potential is regular with bounded concavity from below, Melchionna-
Ranetbauer [35] surveyed the nonlocal-to-local convergence of the solutions, as the con-
volution kernel J tends to a standard Dirac delta, by exploiting the Γ-convergence anal-
ysis. In case of periodic domain, Davoli-Ranetbauer-Scarpa-Trussardi [13] established
the existence, uniqueness and regularity of solutions with degenerate potential, and
showed the local asymptotics from non-local model in a stronger topology. Moreover,
they [13] relaxed the restriction imposed in [35] and decompose the potential function as
two parts: one is a proper, convex and lower semi-continuous function, another is an in-
tegral of Lipschitz-continuous function. Less restrictions allow more physically relevant
double-well potentials (including the singular logarithmic and double-obstacle types).
Later, Davoli-Scarpa-Trussardi [14] considered similar questions in a general bounded
domain with reasonable boundary conditions. For other related analytical results, we
refer readers to the papers [12,16,31,35,39], and so on.

The coupled system of the NS equations with the non-local CH equation has recently
been an active research subject. If the potential function is regular enough which
allows any polynomial growth, Colli-Frigeri-Grasselli [11] proved the global existence of
a weak solution to (1.1), and discussed the energy identity and dissipative estimates
in dimension two. In case when the potential function is singular, Frigeri-Grasselli
[20] obtained the existence of global weak solution in a general bounded domain, by
using delicate approximations and limit process, additionally, the existence of the global
attractor for the generalized semi-flow is surveyed in dimension two. Frigeri-Grasselli-
Rocca [21] prove the existence of a global weak solution for both degenerate mobility
and non-degenerate mobility cases. Recently, Frigeri [19] obtained the global dissipative
weak solutions for unmatched-densities fluids, but the mobility is required to be non-
degenerate. See also the papers [15, 17] for the relevant research. We remark that all
the aforementioned results on coupled CH/NS system require that the spatial kernel
function J belongs to a regular class W 1,1, which are usually met by checking the
following condition(cf. [35]):

J(x,y)∼|x−y|−α, α∈ (0,3/2).

In this paper, we want to establish existence theory of global weak solutions for
the non-local CH/NS Equations (1.1) under some structural assumptions. Built upon
this we show that the weak solution of (1.1) converges to that of the corresponding
local model. Our approach is to adopt and modify some ideas developed in the papers
[13, 14, 35] for single non-local CH equations, and in the papers [11, 19, 20] for coupled
CH/NS equations.

The rest of this paper is arranged as follows: Section 2 collects some known results
and useful lemmas. Our main results are stated in Section 3, and in the final Sections
4-5 we are devoted to proving the Theorem 3.1 and Theorem 3.2 respectively.

2. Preliminaries
First, we denote by L2

σ(Ω) and H1
σ(Ω) the completion in L2(Ω) and H1(Ω) of the

space {v∈C∞(Ω;R3) : divv= 0} respectively. We refer to [42] and introduce the Stokes
operator with null-mean condition. Let

A=−P4 : H2(Ω)∩L2
σ(Ω) 7→ L2

σ(Ω),

where P :L2(Ω) 7→L2
σ(Ω) is the Leray projector. The operator A−1 : L2

σ(Ω) 7→L2
σ(Ω) is

self-adjoint and compact, and therefore, there exists an increasing sequence of eigenval-
ues {λi}i≥1 and corresponding eigenfunctions {wi}i≥1 in H2(Ω)∩L2

σ(Ω) which produce
an orthonormal basis in L2

σ(Ω).
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Next introduce the operator with null mean

B=−4+I : H2(Ω) 7→ L2(Ω).

It is clear that B is linear and unbounded, the inverse B−1 : L2(Ω) 7→ L2(Ω) is self-adjoint
and compact. Therefore, there is a sequence of eigenvalues and associated eigenfunctions
{ψi}i≥1 which form an orthonormal basis in L2(Ω).

The following various estimates on the integral quantities are collected from the
papers [5, 6, 37,38].

Lemma 2.1 ( [5, Theorem 1]). Let the domain Ω⊂RN is bounded and Lipschitz
continuous. Assume that 0≤Kλ⊂L1(RN ) for fixed constant λ>0. Then, there is some
constant C which depends on Ω, p,N such that the inequality∫

Ω

∫
Ω

Kλ(|x−y|) |f(x)−f(y)|p

|x−y|p
dydx≤C‖∇f‖pLp(Ω) (2.1)

holds true for every f ∈W 1,p(Ω) with p∈ [1,∞).

Lemma 2.2 ( [37, Theorem 1.1]). Let p∈ [1,∞), N ≥2, and let Kλ⊂L1(RN ) be a
sequence of radial functions satisfying

Kλ(|x|)≥0, suppKλ⊂Ω,∫
RN
Kλdx= 1,

lim
λ↓0

∫ ∞
δ

Kλ(r)r2dr= 0, ∀ δ>0.

(2.2)

Then, for all f ∈Lp(Ω),

‖f−(f)Ω‖pLp(Ω)≤C
∫

Ω

∫
Ω

Kλ(|x−y|) |f(x)−f(y)|p

|x−y|p
dydx, (2.3)

where (f)Ω is the average of f(x) in Ω, and the constant C may depend on Ω, p,N .

We remake that inequality (2.3) improves the standard Poincaré inequality. How-
ever, the following lemma shows that the quantities on the right-hand side of (2.3) and
(2.1) are in fact identical, as λ tends to zero.

Lemma 2.3 ( [6,38]). Under the same assumption made in Lemma 2.2. The following
inequality holds true

lim
λ↓0

∫
Ω

∫
Ω

Kλ(|x−y|) |f(x)−f(y)|p

|x−y|p
dydx=kN,p

∫
Ω

|∇f |pdx, (2.4)

where kN,p=π−
1
2 Γ(N2 )Γ( 1+p

2 )Γ−1(N+p
2 ), and Γ is the Euler-Gamma function.

Next, we define

Eλ[f ] =
1

4

∫
Ω

Jλ(x,y)|f(x)−f(y)|2dy and Jλ(x,y) =
Kλ(|x−y|)
|x−y|2

, (2.5)

where Kλ satisfies all hypotheses listed in Lemma 2.2. By scaling Kλ, we deduce from
(2.5) and Lemmas 2.2-2.3 that

lim
λ↓0

∫
Ω

Eλ[f ]dx=
1

2

∫
Ω

|∇f |2dx. (2.6)
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By Lemma 2.1, Eλ[f ] is convex and well defined in H1(Ω). The variation formula
implies that the sub-differential Eλ[f ] takes

∂Eλ[f ] =Bλ[f ] :=

∫
Ω

Jλ(x,y)(f(x)−f(y))dy. (2.7)

We remark that Bλ[f ] is linear and meaningful provided that f is regular. In fact, the
definition of Bλ[f ] can be extended to H1(Ω). We have the following lemma

Lemma 2.1. The linear operator Bλ from H1(Ω) to H−1(Ω) is bounded, that is,

‖Bλ[f ]‖H−1(Ω)≤C‖f‖H1(Ω), ∀ f ∈H1(Ω), (2.8)

where the constant C is independent of λ.
In addition, for some sequence {fn} uniformly bounded in H1(Ω), there exists re-

spectively a function f ∈H1(Ω) and a linear operator B in H−1(Ω), such that

lim
n↑∞
〈Bλ[fn], g〉H−1(Ω)×H1(Ω) = 〈Bλ[f ], g〉H−1(Ω)×H1(Ω) (2.9)

and

lim
λ↓0
〈Bλ[f ], g〉H−1(Ω)×H1(Ω) = 〈B[f ], g〉H−1(Ω)×H1(Ω) (2.10)

are fulfilled for all g∈H1(Ω).

Proof. The proof of (2.8) and (2.10) follows directly from [13, Lemma 2]. By (2.8)
and the compactness theory of weak topology, there is some f belonging to H1(Ω) such
that fn converges weakly to f in H1(Ω). Then, (2.9) follows because the operator B is
linear.

Corollary 2.1. In (2.10), we claim that the operator B=−4. Indeed, it follows
from (2.7) and the convexity of Eλ that

Eλ[f ]≥〈Bλ[g], f−g〉H−1(Ω)×H1(Ω) +Eλ[g], ∀ f, g∈H1(Ω). (2.11)

Thanks to (2.6) and (2.10), one deduces by passing λ↓0 in (2.11)

1

2

∫
Ω

|∇f |2≥〈B[g], f−g〉H−1(Ω)×H1(Ω) +

∫
Ω

|∇g|2, ∀ f, g∈H1(Ω).

This implies that (see, e.g., [2,13]) B∈∂ 1
2‖∇f‖

2
L2(Ω)⊂H

−1(Ω), and hence B=−4 in

H−1(Ω).

The final lemma is for the compactness inequalities involving the family of operators
Bλ. It can be regarded as a variant of interpolation inequalities.

Lemma 2.4. Let λ>0 and Eλ be taken from (2.5). For any fixed ζ >0, there is some
constant C which depends on ζ but not on λ, such that the following two inequalities

‖f‖2L2(Ω)≤ ζ‖Eλ[f ]‖L1(Ω) +C‖f‖2H−1(Ω), ∀ f ∈L
2(Ω)

and

‖∇f‖2L2(Ω)≤ ζ‖Eλ[∇f ]‖L1(Ω) +C‖f‖2L2(Ω), ∀ f ∈H
1(Ω)

are fulfilled.

Proof. The proof can be done by contradiction argument. The detailed process is
available in [13,35].
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3. Main results

In this paper we assume that Ω is a bounded domain with periodic boundary condi-
tions in R3, namely Ω =T3. Equations (1.1) are supplemented with the initial functions

(u, c)(x,t= 0) = (u0, c0). (3.1)

We will first develop an existence result of global weak solution to the non-local CH/NS
Equations (1.1) with given initial data (3.1), and then study the asymptotic of the
solution (1.1) to that of the local system (1.4) as the interaction kernel Jλ(x,y) concen-
trates near the origin. Before stating the main results, we need some restriction on the
potential function.

Hypothesis 3.1. The potential function Φ(s) has the form

Φ(s) =F (s)+Π(s), ∀ s∈ (−1,1),

where the functions F and Π satisfy the following properties:

(1) The derivative of Π(s) is Lipschitz continuous over [−1,1]. Thus, the following
growth conditions holds true

|Π′(s)|≤C(1+ |s|) |Π(s)|≤C(1+s2), ∀ s∈ [−1,1].

(2) F ∈C2((−1,1)) is nonnegative and satisfies
•

lim
|s|→1

F (s) = +∞,

•

lim
s→−1

F ′(s) =−∞ and lim
s→1

F ′(s) = +∞,

•

lim
|s|→1

F ′′(s) = +∞ and F ′′(s)≥0.

Finally, the definition of Φ(s) is extended to be +∞ outside of (−1,1).

Hypothesis 3.1 is motivated by the physically interesting logarithmic potential sug-
gested by Cahn-Hilliard [8]:

Φlog(s) =


θ

2
((1+s)ln(1+s)+(1−s)ln(1−s))− θc

2
s2, s∈ (−1,1),

+∞, s /∈ (−1,1),

where the constants satisfy 0<θ<θc. Besides, we include in our analysis other typical
examples such as the polynomial potential of degree four and the double-obstacle type.

We state the definition of the weak solutions as follows.

Definition 3.1. Let J(x,y) =Jλ(x,y) be as defined in (2.5), and T <∞ be arbitrarily
given. The function pair (u, c) is called a weak solution to (1.1) and (3.1) over (0,T ),
if the following properties hold true:
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•

u∈L∞(0,T ;L2
σ(Ω))∩L2(0,T ;H1

σ(Ω)),

µ∈L2(0,T ;H1(Ω)),

c∈L∞(0,T ;L2(Ω))∩L2(0,T ;H1(Ω)),

∂tu∈L
4
3 (0,T ;H−1

σ (Ω)); ∂tc∈L2(0,T ;H−1(Ω)).

• For every ψ∈H1
σ(Ω), φ∈H1(Ω), it holds for a.e. 0≤ t≤T,

〈u′,ψ〉−(u⊗u,∇ψ) =−(ν∇u,∇ψ)+(µ∇c,ψ) (′=
d

dt
)

〈c′,φ〉−(cu,∇ψ) =−(m∇µ,∇φ)

and

µ=Bλ[c]+Φ′(c) a.e. Ω×(0,T ).

• The initial data (3.1) are meaningful in the sense of weak topologies.

Theorem 3.1 (Existence of weak solutions). Let Eλ and Bλ be as defined in (2.5) and
(2.7) with fixed constant λ>0, and let the potential Φ satisfy Hypothesis 3.1. Assume
that the initial functions in (3.1) satisfy

u0∈L2
σ(Ω), Eλ[c0]∈L1(Ω), Φ(c0)∈L1(Ω). (3.2)

Then the problem (1.1) and (3.1) admits a weak solution in the sense of Definition
3.1, satisfying 

c∈L∞(0,T ;H1(Ω))∩L2(0,T ;H2(Ω)),

Eλ[c],Φ(c)∈L∞(0,T ;L1(Ω)),

Eλ[∇c]∈L1(Ω×(0,T )),

Bλ[c],Φ′(c)∈L2(0,T ;L2(Ω)),

−1<c(x,t)<1, a.e. Ω×(0,T ).

(3.3)

Additionally, the following energy inequality holds true∫
Ω

E[c](x,t)dx+

∫ t

0

∫
Ω

(
|∇u|2 + |∇µ|2

)
dxds≤

∫
Ω

E[c0](x)dx, a.e. t∈ (0,T ), (3.4)

where

E[c] =Eλ[c]+Φ(c)+
1

2
|u|2. (3.5)

Remark 3.1. By Hypothesis 3.1, the L1(Ω) bound of Φ implies, for constants C and
C1,

C≥
∫

Ω

Φ(c0(x))dx=

(∫
{|c0|<1}

+

∫
{|c0|≥1}

)
Φ(c0(x))dx≥

∫
{|c0|≥1}

Φ(c0(x))dx−C1.
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Thus, c0∈ (−1,1) a.e. in Ω since Φ = +∞ outside of (−1,1). Consequently, the mean
value of c0 lies in (−1,1), that is,

1

|Ω|

∫
Ω

c0(x)dx= (c0)Ω∈ (−1,1).

Remark 3.2. We remark that, in case of regular potentials, the lack of maximum
principle makes the bound of c(x,t) out of reach, even if the initial c0(x) is bounded.

Remark 3.3. Theorem 3.1 relaxed the restriction imposed on Jλ in [11,19,20], where
Jλ(x,y)∈W 1,1(Ω) is required to guarantee the validity of gradient operation ∇(Jλ ∗cλ).

Remark 3.4. We compare the regularity c∈L∞(0,T ;H1(Ω)) in (3.3) with that
in [11,20]. In case of either the regular potentials with polynominal growth (cf. [11]), or
the singular potentials with additional c0∈L∞ (cf. [20]), it has c∈L∞(0,T ;L2+2q) for
some integer q>0.

The second theorem shows that, as λ↓0, the weak solution in Theorem 3.1 converges
to that of the corresponding local CH/NS Equations (1.4).

Theorem 3.2 (Local asymptotics). For given small λ0>0, assume that the functions
(u0λ, c0λ) are uniformly bounded, i.e.,

sup
λ∈(0,λ0)

(
‖u0λ‖L2

σ(Ω) +‖Eλ[c0λ]‖L1(Ω) +‖Φ(c0λ)‖L1(Ω)

)
≤C, (3.6)

and additionally, for some (u0, c0)∈L2
σ(Ω)×H1(Ω),

u0λ⇀u0∈L2
σ(Ω), c0λ⇀c0∈H1(Ω). (3.7)

If (uλ, cλ) is a weak solution to Equations (1.1) associated to the initial (u0λ, c0λ),
as stated in Theorem 3.1. Then (uλ, cλ) converges to limit functions (u, c) such that

u∈L∞(0,T ;L2
σ(Ω))∩L2(0,T ;H1

σ(Ω)),

µ∈L2(0,T ;H1(Ω)),

c∈L∞(0,T ;H1(Ω))∩L2(0,T ;H2(Ω)),

∂tu∈L
4
3 (0,T ;H−1

σ (Ω)), ∂tc∈L2(0,T ;H−1(Ω)).

(3.8)

Furthermore, (u, c) solves Equations (1.4) in distributional sense, and agrees with
(u0, c0) at initial time. The following energy inequality∫

Ω

Eloc[c](x,t)dx+

∫ t

s

∫
Ω

(
|∇u|2 + |∇µ|2

)
dxdτ ≤

∫
Ω

Eloc[c](x,s)dx (3.9)

is fulfilled for a.e. 0<s<t<T , and

Eloc[c] =
1

2
|u|2 +

1

2
|∇c|2 +Φ(c).

Remark 3.5. The assumption of c0∈H1(Ω) imposed in (3.7) is reasonable. In fact,
the uniform bound of ‖Eλ[c0λ]‖L1(Ω) in (3.6) guarantees that, by [37, Theorem 1.2],
the sequence {c0λ}λ is relatively compact in L2(Ω), and hence c0∈H1(Ω) if c0λ→ c0 in
L2(Ω).
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We comment on the analysis in the following two paragraphs.
The proof of Theorem 3.1 adopts and borrows some ideas developed in [5,11,13,19–

21, 32]. Our main contribution lies in the following several aspects. First, in the light
of [5], we relaxed the regularity assumption on the J through transfer of the singular of
J to c by partial integrations. Precisely, instead of analyzing the isolated term Jλ ∗cλ,
we treat Jλcλ−Jλ ∗cλ as a whole so that less restriction is required on Jλ, by means
of integration by parts (because the domain is periodic) and higher regularity on cλ.
With the advantage of J, our initial assumptions (especially on c0) are from a different
angle of view, and hence, a higher regularity on c is achieved, see Remark 3.4. Next,
following the ideas in [20], we construct a family of approximating potentials which
are regular and defined on the whole of R, and then pass to a limit once the uniform
estimates on the approximations are obtained. Another difficulty comes from the weaker
compactness caused by the non-local chemical potential. This could be solved by adding
an artificial perturbation δ4c, like in [13, 19]. The proof of Theorem 3.1 is via three-
fold approximation: (i) We begin with the Equations (4.4), in which the potential is
assumed to be regular and an extra artificial diffusion term δ4c is introduced. The
existence of solution to (4.4) is based on the Faedo-Galerkin method. (ii) Adopting
some ideas in [19–21], we build the uniform estimates on the approximations of (4.4)
such that the singular potential is allowed by a limit procedure. (iii) By constructing
appropriate initial approximations, utilizing the ideas developed in [13,32], we disappear
the artificial diffusion to derive the weak solutions to our original problem.

The proof of Theorem 3.2 is in the spirit of the papers [13, 35] concerning the
CH equation, as well as the integral estimates developed in [5, 37] (i.e., Γ-convergence
analysis). On the basis of results in Theorem 3.1, we show that the solutions of non-
local Equations (1.1) converge to those of corresponding local model. However, the
coupled Navier-Stokes equations make the regularity wilder, and hence the analysis is
much more complicated than the single CH equation case. To our best knowledge, it is
the first local asymptotics result from the non-local CH/NS Equations (1.1).

The proof of Theorem 3.1 and Theorem 3.2 will be carried out in the next Section
4 and Section 5, respectively. In what follows, the parameters ν, κ,m in Equations (1.1)
are taken to be unity for simplicity reasons, i.e., ν=κ=m= 1.

4. Proof of Theorem 3.1
Without causing the confusion, we will drop the subscript in (2.5), (2.7), and use

E=Eλ,B=Bλ for simplicity.

4.1. Faedo-Galerkin approximation. Introduce the regular version of the
potential and consider the function of the form

Fε(s) =


F (1−ε)+F ′(1−ε)(s+ε−1)+

1

2
F ′′(1−ε)(s+ε−1)2, s≥1−ε,

F (s), |s|≤1−ε,
F (ε−1)+F ′(ε−1)(s+1−ε)+

1

2
F ′′(ε−1)(s+1−ε)2, s≤ ε−1.

(4.1)

By Hypothesis 3.1, there is a small constant ε0>0 such that for all ε∈ (0,ε0],

|F ′ε(s)|2≤C1(1+s2), C2s
2−C3≤Fε(s)≤C4s

2 +C5, ∀ s∈R, (4.2)

where the constants may depend on ε.
In addition, we assume that the function Πε is a C1 extension of Π to R, with Π′ε

being uniform in ε bounded in R.
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Lemma 4.1. For fixed constant ε>0 and δ>0, assume that the initial functions

u0∈L2
σ(Ω) and c0∈H1(Ω). (4.3)

Then the following equations admit a weak solution in distributional sense
divu= 0,

∂tu+div(u⊗u)+∇π=4u+µ∇c,
∂tc+div(uc) =4µ,
µ=−δ4c+F ′ε(c)+Π′ε(c)+B[c],

(4.4)

where B[c] =Bλ[c], Fε(s), and Πε are the same as mentioned earlier.

Proof. The proof is in the framework of Faedo-Galerkin approximation scheme.
As mentioned in Section 2, let the family {wi}i≥1 of the eigenfunctions of the Stokes
operator A be a Galerkin base in L2

σ(Ω), and the family {ψi}i≥1 of the eigenfunctions
of the operator B=−4+I be a Galerkin base in H1(Ω), respectively. Consider the
approximation (u0n, c0n) of the initial data in (4.3)

n∑
i=1

ani (0)wi(x) =u0n→u0 inL2
σ(Ω),

n∑
i=1

bni (0)ψi(x) = c0n→ c0 inH1(Ω). (4.5)

We want to look for functions of the form

un :=

n∑
i=1

ani (t)wi(x) and cn :=

n∑
i=1

bni (t)ψi(x), (4.6)

which satisfy, for each k= 1,2...n,

∫
Ω

u′nwk+

∫
Ω

∇un∇wk =

∫
Ω

un⊗un ·∇wk+

∫
Ω

wk∇cnµn,∫
Ω

c′nψk+

∫
Ω

∇µn∇ψk =

∫
Ω

un ·∇ψkcn,

µn=Pn (B[cn]+F ′ε(cn)+Π′ε(cn)−δ4cn) :=

n∑
i=1

dni (t)ψi(x),

(4.7)

where Pn denotes the orthogonal projector of element in H1(Ω) in the sub-space gen-
erated by {ψ1,ψ2,......,ψn}. Thus, for each k= 1,2,...,n,∫

Ω

µnψk =

∫
Ω

Pn (B[cn]+F ′ε(cn)+Π′ε(cn)−δ4cn)ψk

=

∫
Ω

(B[cn]+F ′ε(cn)+Π′ε(cn)−δ4cn)ψk. (4.8)

The solvability of system (4.7) can be transformed into the ordinary differential
equations in terms of an= (an1 ,a

n
2 , · · ·,ann) and bn= (bn1 ,b

n
2 ,· · ·,bnn) with initial values given

in (4.5). By Cauchy-Lipschitz theorem, it has a unique continuous solution over [0,Tn)
for some Tn>0. We prove that

Tn=T =∞. (4.9)
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Multiply (4.7)1 by un, (4.7)2 by µn, utilize the fact that un is divergence-free, to deduce

d

dt

(
1

2

∫
Ω

|un|2
)

+

∫
Ω

(cn)′µn+

∫
Ω

|∇un|2 +

∫
Ω

|∇µn|2 = 0.

Observe from (2.7) and (4.8) that∫
Ω

(cn)′µn=

∫
Ω

(cn)′ (B[cn]+F ′ε(cn)+Π′ε(cn)−δ4cn)

=
d

dt

∫
Ω

(
E[cn]+Fε(cn)+Πε(cn)+

δ

2
|∇cn|2

)
,

we obtain

d

dt

∫
Ω

En,ε(x,t)+

∫
Ω

(
|un|2 + |∇µn|2

)
= 0, (4.10)

where

En,ε :=

(
E[cn]+Fε(cn)+Πε(cn)+

δ

2
|∇cn|2 +

1

2
|un|2

)
. (4.11)

Thanks to (4.2)-(4.3), (4.5), and the fact ‖E[c0n]‖L1 ≤‖∇c0n‖2L2 (see (2.1) and (2.5)),
we have ∫

Ω

En,ε(x,0)≤C,

where, during this subsection, the generic constant C depends on ε, δ but is uniform in
n; additionally, the dependence on a specific parameter of C will be marked through a
subscript. Therefore, integrating (4.10) over (0,Tn) gives

‖un‖L∞(0,Tn;L2
σ(Ω))∩L2(0,Tn;H1

σ(Ω))≤C,
‖∇µn‖L2(0,Tn;L2(Ω))≤C,
‖cn‖L∞(0,Tn;H1(Ω))≤C,
‖Fε(cn)‖L∞(0,Tn;L1(Ω)) +‖Πε(cn)‖L∞(0,Tn;L1(Ω))≤C.

(4.12)

Suppose (4.9) is false and assume the opposite: Tn<∞, then the uniform bounds in
(4.12) enable us to define (ûn, ĉn)(x,T ∗n) = limsupt↑Tn(un, cn)(x,t). Taking T ∗n as a new
initial time, we can extend the existence of (un,cn) beyond T ∗n . A contradiction arises.
Thus, (4.9) follows.

Observe that −4cn still lies in the sub-space generated by {ψi}ni=1, we multiply
(4.7)3 by −4cn, to receive

‖∇cn‖2L2 +C‖∇µn‖2L2 ≥
∫

Ω

∇µn∇cn

=

∫
Ω

(∇B[cn]+F ′′ε (cn)∇cn)∇cn+

∫
Ω

Π′ε(cn)4cn+δ

∫
Ω

|4cn|2

≥
∫

Ω

Π′ε(cn)4cn+δ

∫
Ω

|4cn|2

≥ δ
2
‖4cn‖2L2−Cδ, (4.13)
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where in the last two inequalities we have used F ′′≥0, as well as∫
Ω

Π′ε(cn)4cn≥−C‖4cn‖L2 ≥−δ
2
‖4cn‖2L2−Cδ, (4.14)

and ∫
Ω

∇B[cn]∇cn=
1

2

∫
Ω

∫
Ω

Jλ(x,y)|∇cn(x,t)−∇cn(y,t)|2dydx≥0,

which comes from (2.5), (2.7), and the integrations by parts. Inequalities (4.13) and
(4.12) yield

‖cn‖L2(0,T ;H2(Ω))≤CT . (4.15)

Next, it gives from (4.2) that∫
Ω

|F ′ε(cn)|≤C+

∫
Ω

|F ′ε(cn)|2≤C+C

∫
Ω

|Fε(cn)|,

which, along with (4.12) and the fact
∫

Ω
B[cn]dx= 0, implies∫

Ω

µn=

∫
Ω

(B[cn]+F ′ε(cn)+Π′ε(cn)−δ4cn)≤C.

By this and (4.12), we use Pioncaré inequality and deduce

µn∈L2(0,T ;H1(Ω)). (4.16)

We next derive the estimates on the time derivatives for un and cn such that weak
limits could be taken from the sequences of (un, cn). Taking C23h(x)←hj(x) =∑j
k=1e

j
kwk(x) and φ∈C1([0,T )), one deduces from (4.7)1 that∫

Ω

u′nhnφ=−
∫

Ω

∇un∇(hnφ)+

∫
Ω

un⊗un ·∇(hnφ)+

∫
Ω

hnφ∇cnµn. (4.17)

By virtue of (4.12), (4.16), direct computation shows∣∣∣∣−∫
Ω

∇un∇(hnφ)

∣∣∣∣≤‖∇un‖L2
σ
‖hφ‖H1

σ
,

∣∣∣∣∫
Ω

un⊗un ·∇(hnφ)

∣∣∣∣≤‖un‖ 1
2

L2
σ
‖∇un‖

3
2

H1
σ
‖∇(hφ)‖L2

σ
≤C‖∇un‖

3
2

H1
σ
‖hφ‖H1

σ

and ∣∣∣∣∫
Ω

hnφ∇cnµn
∣∣∣∣≤‖µn‖ 1

2

L2‖∇µn‖
1
2

L2‖∇cn‖L2‖hφ‖L6
σ
≤C‖µn‖H1‖hφ‖H1

σ
.

With the above estimates, integrating (4.17) in time yields

∂tun∈L
4
3 (0,T ;H−1

σ (Ω)). (4.18)
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In a similar method, we select C23 h̃(x)← h̃j(x) =
∑j
k=1 ẽ

j
kψk(x), and deduce from

(4.7)2 that ∫
Ω

c′nh̃nφ=−
∫

Ω

∇µn∇(h̃nφ)+

∫
Ω

un ·∇(h̃nφ)cn.

Owing to (4.12), one has∣∣∣∣−∫
Ω

∇µn∇(h̃nφ)

∣∣∣∣≤‖∇µn‖L2‖h̃φ‖H1 ,

∣∣∣∣−∫
Ω

uncn∇(h̃nφ)

∣∣∣∣≤‖un‖H1
σ
‖cn‖H1‖∇(h̃φ)‖L2 ≤C‖un‖H1

σ
‖h̃φ‖H1 ,

and whence,

∂tcn∈L2(0,T ;H−1(Ω)). (4.19)

Therefore, by (4.12), (4.15)-(4.16), (4.18)-(4.19), and Aubin-Lions lemma, we deduce

un⇀u, L∞(0,T ;L2
σ(Ω))∩L2(0,T ;H1

σ(Ω));

µn⇀µ, L2(0,T ;H1(Ω));

cn⇀c, L∞(0,T ;H1(Ω))∩L2(0,T ;H2(Ω));

un→u, L2(0,T ;Lqσ(Ω)) (q<6);

un is compact in Cw([0,T ];L2
σ(Ω));

cn is compact in Cw([0,T ];H1(Ω)).

(4.20)

Additionally, from (2.9), (4.20), the continuity of F ′ε and Π′ε, one has∫ T

0

∫
Ω

h̃φµ←
∫ T

0

∫
Ω

h̃φµn=

∫ T

0

∫
Ω

h̃φ(B[cn]+F ′ε(cn)+Π′ε(cn)−δ4cn)

→
∫ T

0

∫
Ω

h̃φ(B[c]+F ′ε(c)+Π′ε(c)−δ4c) ,

and thus,

µ=B[c]+F ′ε(c)+Π′ε(c)−δ4c, a.e. Ω×(0,T ). (4.21)

In terms of (4.20), we are allowed to take limits in (4.7) in weak sense such that the
first three equations in (4.4) are satisfied by the limit functions, moreover, the initial
conditions (4.3) are meaningful in the sense of weak topology. This together with (4.21)
complete the proof of Lemma 4.1.

4.2. Limit for singular potential. We want to pass ε↓0 in (uε, cε), the
solution sequence obtained in Lemma 4.1, so that the singular potential function is
permitted.

Lemma 4.2. For fixed δ>0, assume that the initial functions (u0, c0) satisfy the
assumptions made in Lemma 4.1. Assume in addition that

F (c0)∈L1(Ω). (4.22)
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Then, the approximating solutions (uε, cε) obtained in Lemma 4.1 converge to some
limit function (u, c) which solves the following equations in distributional sense

divu= 0,

∂tu+div(u⊗u)+∇π=4u+µ∇c,
∂tc+div(uc) =4µ,
µ=−δ4c+F ′(c)+Π′(c)+B[c].

(4.23)

Furthermore,

−1<c(x,t)<1 a.e. Ω×(0,T ), (4.24)

and the following inequality holds true∫
Ω

Eδ(x,t)dx+

∫ t

0

∫
Ω

(
|∇u|2 + |∇µ|2

)
dxdt≤

∫
Ω

Eδ(x,0)dx, a.e. t∈ (0,T ) (4.25)

with

Eδ =

(
E[c]+Φ(c)+

δ

2
|∇c|2 +

1

2
|u|2

)
. (4.26)

Remark 4.1. Inequality (2.1), Hypothesis 3.1, the initial assumption (4.3) in Lemma
4.1 guarantee that

E(c0)∈L1(Ω) and Π(c0)∈L1(Ω). (4.27)

Proof. Multiplying (4.10) by a non-increasing 0≤φ∈C1
0 ([0,T )), integrating it in

time, we get∫ T

0

∫
Ω

φ′En,ε(x,t)+

∫ T

0

∫
Ω

φ
(
|∇un|2 + |∇µn|2

)
=

∫
Ω

En,ε(x,0), (4.28)

where En,ε is defined in (4.11). Straightforward calculation shows

E[cn]−E[c]

=

∫
Ω

Jλ
(
|cn(x,t)−cn(y,t)|2−|c(x,t)−c(y,t)|2

)
dy

=

∫
Ω

Jλ((cn−c)(x,t)−(cn−c)(y,t))((cn+c)(x,t)−(cn+c)(y,t))dy

≤
(∫

Ω

Jλ|(cn−c)(x,t)−(cn−c)(y,t)|2dy
) 1

2
(∫

Ω

Jλ|(cn+c)(x,t)−(cn+c)(y,t)|2dy
) 1

2

,

which, along with (2.1), yields∣∣∣∣∣
∫ T

0

∫
Ω

φ′(t)E[cn]−
∫ T

0

∫
Ω

φ′(t)E[c]

∣∣∣∣∣≤C‖(cn−c)‖L2(0,T ;H1)‖(cn+c)‖L2(0,T ;H1).

(4.29)
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By (4.12) and (4.15), it satisfies cn∈H1(0,T ;H−1)∩L2(0,T ;H2) ↪→↪→L2(0,T ;H1).
Hence, (4.29) leads to

lim
n→∞

∫ T

0

∫
Ω

φ′(t)E[cn] =

∫ T

0

∫
Ω

φ′(t)E[c]. (4.30)

In terms of (4.5), (4.12), (4.30), the continuity of Πε, we are able to pass n→∞ in
(4.28) such that the limit function (uε, cε, µε) satisfies∫ T

0

φ′
∫

Ω

Eε,δ(x,t)+

∫ T

0

∫
Ω

φ
(
|∇uε|2 + |∇µε|2

)
≤
∫

Ω

Eε,δ(x,0), (4.31)

with

Eε,δ :=

(
E[cε]+Fε(cε)+Πε(cε)+

δ

2
|∇cε|2 +

1

2
|uε|2

)
.

For fixed t∈ (0,T ), define

φη(s) =


1, 0≤s≤ t,
t+η−s

η
, t≤s≤ t+η.

(4.32)

Inserting (4.32) into (4.31) and sending η ↓0, we obtain, for a.e. t∈ (0,T ),∫
Ω

Eε,δ(x,t)+

∫ t

0

∫
Ω

(
|∇uε|2 + |∇µε|2

)
≤
∫

Ω

Eε,δ(x,0). (4.33)

Next, by the definitions of Fε,Πε, and Hypothesis 3.1, we have

Fε(s)≤F (s), |F ′ε(s)|≤ |F ′(s)|, Πε(s) = Π(s), Π′ε(s) = Π′(s), s∈ (−1,1). (4.34)

Hence, (4.3), (4.22), (4.27), (4.34) and the fact |c0|<1 (see Remark 3.1) ensure that∫
Ω

Eε,δ(x,0) =

∫
Ω

(
E[c0]+Fε(c0)+Πε(c0)+

δ

2
|∇c0|2 +

1

2
|u0|2

)
≤
∫

Ω

(
E[c0]+F (c0)+Π(c0)+

δ

2
|∇c0|2 +

1

2
|u0|2

)
=

∫
Ω

Eδ(x,0)

≤C. (4.35)

Combining (4.35) with (4.33), we conclude

‖uε‖L∞(0,T ;L2
σ)∩L2(0,T ;H1

σ(Ω))≤C,
‖∇µε‖L2(0,T ;L2(Ω))≤C,
‖cε‖L∞(0,T ;H1(Ω))≤C,
‖Fε(cε)‖L∞(0,T ;L1(Ω))≤C.

(4.36)

In the rest of this subsection, the constant C is independent of ε.
With the aid of (4.36), similar method as (4.15) and (4.19) runs that

‖cε‖L2(0,T ;H2(Ω))≤CT , ∂tcε∈L2(0,T ;H−1(Ω)). (4.37)
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Now let us prove (4.24). By Hypothesis 3.1, there is a small constant η0>0 such that
both F (s) and Fε(s) are increasing in [1−η0,1). Then, it gives from (4.1) and (4.36)
that for any η∈ (0,η0]

meas{x(t) : cε(x,t)≥1−η}Fε(1−η)≤
∫
{x(t):cε(x,t)≥1−η}

Fε(cε)≤C. (4.38)

Thanks to (4.37), we see that cε→ c a.e. in Ω×(0,T ). So, by (4.38) and the convergence
of Fε(1−η) to F (1−η), we use Fatou’s lemma and deduce

meas{x(t) : c(x,t)≥1−η}≤ lim
ε↓0

meas{x(t) : cε(x,t)≥1−η}

≤ lim
ε↓0

C

Fε(1−η)

=
C

F (1−η)
.

By Hypothesis 3.1, it has lims→1F (s) =∞. Sending η→0 in above inequality yields

meas{x(t) : c(x,t)≥1}= 0, a.e. t∈ (0,T ).

Similarly,

meas{x(t) : c(x,t)≤−1}= 0, a.e. t∈ (0,T ).

Hence, the desired (4.24) follows from the last two inequalities.
As a result of (4.24), the uniform convergence of F ′ε(s) to F ′(s) on any compact

subset in (−1,1), it takes

F ′ε(cε)→F ′(c) a.e.Ω×(0,T ). (4.39)

Multiplying (4.4)2 by (−4)−1(cε−(c0)Ω), and (4.4)3 by (cε−(c0)Ω), we deduce (it has
(c0)Ω∈ (−1,1) owing to Remark 3.1 and (4.22))

−
〈
∂tcε+uε ·∇cε, (−4)−1 (cε−(c0)Ω)

〉
H−1×H1

=

∫
Ω

µε (cε−(c0)Ω)

=

∫
Ω

(B[cε]+F ′ε(cε)+Π′ε(cε)−δ4cε)(cε−(c0)Ω)

≥−C‖cε‖H1 +

∫
Ω

F ′ε(cε)(cε−(c0)Ω), (4.40)

where in the last inequality we have used∫
Ω

B[cε](cε−(c0)Ω) =

∫
Ω

B[cε]cε= 2

∫
Ω

E[cε]≥0,

∫
Ω

Π′ε(cε)(cε−(c0)Ω)≤C‖cε‖H1 ,

which come from (2.5), (2.7), and the assumption on Πε. Hence, (4.36)-(4.37), (4.40)
provide us∫

Ω

F ′ε(cε)(cε−(c0)Ω)≤C
(
1+‖cε‖H1 +‖∂tcε‖H−1‖(−4)−1 (cε−(c0)Ω)‖H1

)
+C‖uεcε‖L2‖∇(−4)−1 (cε−(c0)Ω)‖L2

≤C+C‖∂tcε‖H−1 +C‖uε‖H1
σ

∈L2(0,T ),
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which, along with (4.24) and the inequality F ′ε(cε)(cε−(c0)Ω)≥C1|F ′ε(cε)|−C2 (cf. [36,
Proposition A1]), leads to ∫

Ω

|F ′ε(cε)|dx∈L2(0,T ). (4.41)

Consequently,

1

|Ω|

∫
Ω

µε=
1

|Ω|

∫
Ω

(B[cε]+F ′ε(cε)+Π′ε(cε)−δ4cε)

=
1

|Ω|

∫
Ω

(F ′ε(cε)+Π′ε(cε))∈L2(0,T ).

By this, (4.36), Poincaré inequality, we find

µε∈L2(0,T ;H1(Ω)). (4.42)

The same deduction as that in (4.18) gives

∂tuε∈L
4
3 (0,T ;H−1

σ (Ω)). (4.43)

We claim that (4.41) can be improved to

F ′ε(cε)∈L2(0,T ;L2(Ω)). (4.44)

In fact, if we multiply (4.4) by F ′ε(cε), we obtain

‖µε‖2L2 +
1

4
‖F ′ε(cε)‖2L2 ≥

∫
Ω

µεF
′
ε(cε)

=

∫
Ω

(B[cε]+F ′ε(cε)+Π′ε(cε)−δ4cε)F ′ε(cε)

≥ 1

2
‖F ′ε(cε)‖2L2−C, (4.45)

where the last inequality owes to F ′′≥0, as well as the following two inequalities∫
Ω

Π′ε(cε)F
′
ε(cε)≥−

1

4
‖F ′ε(cε)‖2L2−C

and ∫
Ω

B[cε]F
′
ε(cε) =

1

2

∫
Ω

∫
Ω

Jλ(cε(x,t)−cε(x,t))(F ′ε(cε(x,t))−F ′ε(cε(y,t)))

≥ 1

2

∫
Ω

∫
Ω

Jλ|cε(x,t)−cε(y,t)|2F ′′ε ≥0.

Hence, (4.44) follows directly from (4.45) and (4.42).
In conclusion, thanks to (2.9), (4.37), (4.39), (4.42), (4.44), the definition of Π′ε,

Hypothesis 3.1, we arrive at∫ T

0

∫
Ω

hφµ←
∫ T

0

∫
Ω

h̃φµε=

∫ T

0

∫
Ω

h̃φ(B[cε]+F ′ε(cε)+Π′ε(cε)−δ4cε)

→
∫ T

0

∫
Ω

h̃φ(B[c]+F ′(c)+Π′(c)−δ4c) ,
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that is,

µ=B[c]+F ′(c)+Π′(c)−δ4c, a.e. Ω×(0,T ). (4.46)

In addition, the estimates (4.36)-(4.37) and (4.42)-(4.43) ensure that the approximations
(uε, cε) converge weakly to some limit functions which satisfy Equations (4.23), and
agree initially to (u0, c0) by taking limit in weak topologies.

The remaining task is to prove inequality (4.25). By (4.37), cε is relatively compact
in L2(0,T ;H1(Ω)). The argument in (4.30) tells that

lim
ε↓0

∫ T

0

∫
Ω

φ′(t)E[cε] =

∫ T

0

∫
Ω

φ′(t)E[c]. (4.47)

By the continuity assumption on Πε, one easily deduces

lim
ε↓0

∫ T

0

∫
Ω

φ′(t)Πε(cε) =

∫ T

0

∫
Ω

φ′(t)Π(c). (4.48)

Next, we adopt the strategy in [19,20] to verify

lim
ε↓0

∫ T

0

∫
Ω

φ′(t)Fε(cε) =

∫ T

0

∫
Ω

φ′(t)F (c). (4.49)

Indeed, Hypothesis 3.1 and (4.1) guarantee that, for small ε, Fε(s) is convex and satisfies
Fε(cε)≤Fε(c)+F ′ε(cε)(cε−c). Then,∫ T

0

∫
Ω

φ′(t)Fε(cε)≥
∫ T

0

∫
Ω

φ′(t)Fε(c)+φ′(t)F ′ε(cε)(cε−c)

≥
∫ T

0

∫
Ω

φ′(t)Fε(c)−C‖F ′ε(cε)‖L2(0,T ;L2)‖cε−c‖L2(0,T ;L2)

≥
∫ T

0

∫
Ω

φ′(t)Fε(c)−C‖cε−c‖L2(0,T ;L2), (4.50)

where we have used (4.44) and the fact φ′≤0 as φ is non-increasing. By the convergence
of Fε(c)↑F (c) and (4.24), we take limit in (4.50) to receive

lim
ε↓0

∫ ∫
φ′(t)Fε(cε)≥ lim

ε↓0

∫ ∫
φ′(t)Fε(c) =

∫ ∫
φ′(t)F (c).

On the other hand, similar analysis as (4.39) yields Fε(cε)→F (c) a.e. Ω×(0,T ). Hence,
by the Fatou’s Lemma,∫ ∫

φ′(t)F (c) =

∫ ∫
lim
ε↓0

φ′(t)Fε(cε)≥ limsup
ε↓0

∫ ∫
φ′(t)Fε(cε).

The last two inequalities give birth to the desired (4.49).
Having (4.47)-(4.49) obtained, as well as (4.36) and the lower semi-continuity of L2

norm, we take ε↓0 in (4.31) and conclude that the limit functions (uδ, µδ) satisfy

−
∫ T

0

∫
Ω

φ′Eδ(x,t)+

∫ T

0

∫
Ω

φ
(
|∇uδ|2 + |∇µδ|2

)
≤
∫

Ω

Eδ(x,0). (4.51)

Finally, choosing φ as in (4.32), we get (4.25) from (4.51) after sending η to zero.
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4.3. Vanishing artificial diffusion term. In this subsection we take the limit
δ ↓0 to vanish the artificial diffusion δ4c in problem (4.23), and complete the proof of
Theorem 3.1. During this subsection, the generic constant C is assumed to be uniform in
δ. Let us denote by (uδ, cδ) the solutions in Lemma 4.2 associated with initial (u0δ, c0δ).
Furthermore, we assume that

u0δ→u0 in L2
σ(Ω), H1(Ω)3 c0δ→ c0 in L2(Ω),

‖c0δ‖2L2(Ω) +δ‖∇c0δ‖2L2(Ω)≤‖c0‖
2
L2(Ω),

‖E[c0δ]‖L1(Ω)≤‖E[c0]‖L1(Ω), ‖F (c0δ)‖L1(Ω)≤‖F (c0)‖L1(Ω).

(4.52)

Here, the initial functions (u0, c0) satisfy the condition (3.2).

Remark 4.2. The initial functions (u0δ, c0δ) satisfying (4.52) match all the require-
ments listed in Lemma 4.2. In other words, the conditions (4.3), (4.22), (4.27) are
fulfilled.

We can construct the functions (u0δ, c0δ) in (4.52) as follows: For given c0, let c0δ
solve

c0δ−δ4c0δ = c0. (4.53)

If we multiply (4.53) by cδ0 and F ′(c0δ) respectively, we find

‖c0δ‖2L2 +2δ‖∇c0δ‖2L2 ≤‖c0‖2L2 (4.54)

and ∫
Ω

c0δF
′(c0δ)+δ

∫
Ω

|∇c0δ|2F ′′(c0δ) =

∫
Ω

c0F
′(c0δ). (4.55)

The strong convergence of c0δ in L2 follows immediately from (4.54) and

‖c0‖2L2 ≤ liminf
δ↓0

‖c0δ‖2L2 ≤ limsup
δ↓0

(
‖c0δ‖2L2 +2δ‖∇c0δ‖2L2

)
≤‖c0‖2L2 .

Since F ′′≥0, (4.55) implies
∫

Ω
F ′(c0δ)(c0δ−c0)≤0. Thus, by the Taylor expansion for-

mula, ∫
Ω

F (c0δ)≤
∫

Ω

F (c0)+

∫
Ω

F ′(c0δ)(c0δ−c0)≤
∫

Ω

F (c0). (4.56)

If we multiply (4.53) by B[c0δ], we infer∫
Ω

∫
Ω

Jλ|c0δ(x)−cδ0(y)|2 +δ

∫
Ω

∫
Ω

Jλ|∇c0δ(x)−∇c0δ(y)|2

=

∫
Ω

∫
Ω

Jλ(c0δ(x)−c0δ(y))(c0(x)−c0(y))

≤ 1

2

∫
Ω

∫
Ω

Jλ|c0δ(x)−cδ0(y)|2 +
1

2

∫
Ω

∫
Ω

Jλ|c0(x)−c0(y)|2,

which, along with (2.5) and (3.2), implies∫
Ω

E[c0δ]+2δ

∫
Ω

E[∇c0δ]≤
∫

Ω

E[c0]. (4.57)



2140 WEAK SOLUTION FOR NON-LOCAL CH-NS AND ITS LOCAL ASYMPTOTICS

Therefore, (4.52) follows from (4.54) and (4.56)-(4.57).
In view of (4.52), (3.2), and Hypothesis 3.1, the inequality (4.25) in Lemma 4.2

guarantees the following uniform estimates

‖uδ‖L∞(0,Tn;L2
σ(Ω))∩L2(0,T ;H1

σ(Ω))≤C,
‖∇µδ‖L2(0,T ;L2(Ω))≤C,√
δ‖∇cδ‖L∞(0,T ;L2(Ω))≤C,
‖E[cδ]‖L∞(0,T ;L1(Ω)) +‖F (cδ)‖L∞(0,T ;L1(Ω))≤C.

(4.58)

In addition, the uniform bound of ‖E[cδ]‖L∞(0,T ;L1(Ω)) in (4.58) tells that cδ is relatively
compact in L2(Ω)(cf. [37, Theorem 1.2]). Particularly, for a.e. t∈ (0,T ),

cδ→ c in L2(Ω), c∈L∞(0,T ;H1(Ω)). (4.59)

With (4.58)-(4.59), the same argument as in (4.18)-(4.19), (4.42), (4.44) yields

∂tcδ ∈L2(0,T ;H−1(Ω)), F ′(cδ)∈L2(0,T ;L2(Ω)),

µδ ∈L2(0,T ;H1(Ω)), ∂tuδ ∈L
4
3 (0,T ;H−1

σ (Ω)).
(4.60)

Next, multiplying the last equality in (4.23) by −4cδ, utilizing (4.14) and the fact
F ′′≥0, we have

1

2
‖∇cδ‖2L2 +

1

2
‖∇µδ‖2L2

≥
∫

Ω

∇µδ∇cδ

=−
∫

Ω

(B[cδ]+F ′(cδ)+Π′(cδ)−δ4cδ)4cδ

≥
∫

Ω

(
2E[∇cδ]+F ′′(cδ)|∇cδ|2 +Π′(cδ)4cδ

)
+δ‖4cn‖2L2

≥
∫

Ω

2E[∇cδ]+
δ

2
‖4cδ‖2L2−Cδ. (4.61)

Recalling Lemma 2.4, one has

‖∇cδ‖2L2 ≤ ζ‖E[∇cδ]‖L1(Ω×(0,T )) +Cζ‖cδ‖2L2 . (4.62)

Substituting (4.62) into (4.61) and choosing ζ >0 so small such that

‖cδ‖L2(0,T ;H1) +
√
δ‖4cδ‖L2(0,T ;L2) +‖E[∇cδ]‖L1(Ω×(0,T ))

≤C
(
‖cδ‖L2(Ω×(0,T ) +‖∇µδ‖L2(0,T ;L2)

)
≤C. (4.63)

Similar to (4.59), the uniform bound ‖E[∇cδ]‖L1(Ω×(0,T )) together with (4.60) provide
that

cδ→ c in L2(0,T ;H1(Ω)), c∈L2(0,T ;H2(Ω)). (4.64)

Remark 4.3. Alternatively, the strong convergence in (4.64) could be achieved as
follows: by (4.62) and (4.63),

‖cδi−cδj‖2L2(0,T ;H1)≤ ζ‖E[∇(cδi−cδj )]‖L1(Ω×(0,T ) +Cζ‖cδi−cδj‖2L2(0,T ;L2)

≤ ζC+Cζ‖cδi−cδj‖2L2(0,T ;L2).
(4.65)
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Also, (4.60) implies limδi,δj↓0‖cδi−cδj‖2L2(0,T ;L2) = 0. Hence, we are done because ζ >0

can be arbitrarily small. See, also, the paper [13]. Based on the estimates (4.58)-(4.60),
(4.64), we conclude 

uδ⇀u, L2(0,T ;H1
σ(Ω));

µδ⇀µ, L2(0,T ;H1(Ω));

cδ→ c, L2(0,T ;H1(Ω));

uδ→u, L2(0,T ;Lqσ) (q<6);

uδ is compact in Cw([0,T ];L2
σ(Ω));

cδ is compact in Cw([0,T ];H1(Ω)).

(4.66)

Moreover, a similar but simpler method as that in (4.24) shows

−1<cδ(x,t)<1 a.e. Ω×(0,T ). (4.67)

This and the continuity of F ′(s) in (−1,1) implies F ′(cδ)→F ′(c) a.e. in Ω×(0,T ), and
whence, by (4.60),

F ′(cδ)⇀F ′(c) L2(0,T ;L2(Ω)). (4.68)

From (4.63) we have∫ T

0

∫
Ω

h̃φδ4c≤Cδ‖4cδ‖L2(0,T ;L2)≤C
√
δ→0 as δ→0. (4.69)

Finally, it follows from (2.9) and (4.66) that B[cδ]⇀B[c] in L2(0,T ;H−1). However,
(4.60), (4.63) and Lipschitz continuity of Π′ guarantee

B[cδ] =µδ+δ4cδ−F ′(cδ)−Π′(cδ)∈L2(0,T ;L2(Ω)). (4.70)

So,

B[cδ]⇀B[c] in L2(0,T ;L2(Ω)). (4.71)

In terms of (4.66), (4.68)-(4.69), (4.71), the uniform continuity of Π′, it takes

µ=B[c]+F ′(c)+Π′(c), a.e. Ω×(0,T ).

In conclusion, we have proved the existence of weak solutions to (1.1) and (3.1) in the
sense of Definition 3.1. Moreover, the (3.3) is fulfilled due to (4.58)-(4.60), (4.64), (4.67),
(4.70).

The only thing left is to take limit in (4.51) to justify the energy inequality (3.4).
We compute the right-hand side of (4.51) as

lim
δ↓0

∫
Ω

Eδ(x,0) = lim
δ↓0

∫
Ω

(
E[c0δ]+F (c0δ)+Π(c0δ)+

δ

2
|∇c0δ|2 +

1

2
|u0δ|2

)
(x,t)

≤ lim
δ↓0

∫
Ω

(
E[c0]+F (c0)+Π(c0δ)+

δ

2
|∇c0δ|2 +

1

2
|u0δ|2

)
(x,t)

=

∫
Ω

(
E[c0]+F (c0)+Π(c0)+

1

2
|u0|2

)
(x,t)
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=

∫
Ω

E[c0](x), (4.72)

where we have used the uniform continuity of Π and the following

0≤ lim
δ↓0

δ‖∇c0δ‖2L2 ≤ lim
δ↓0

(‖c0‖2L2−‖c0δ‖2L2) = 0,

owing to (4.52).

Next to deal with the term on the left-hand side of (4.51). By Hypothesis 3.1, the
convexity of F (s) implies F (cδ)≤F (c)+F ′(cδ)(cδ−c). This together with (4.60) and
(4.66) guarantee that

lim
δ↓0

∫ T

0

∫
Ω

φ′(t)F (cδ)≥
∫ T

0

∫
Ω

φ′(t)F (c)+lim
δ↓0

∫ T

0

∫
Ω

φ′(t)F ′(cδ)(cδ−c)

=

∫ T

0

∫
Ω

φ′(t)F (c). (4.73)

On the other hand, since F (cδ) converges to F (c) a.e. Ω×(0,T ), the Fatou’s Lemma
gives ∫ T

0

∫
Ω

φ′(t)F (c) =

∫ T

0

∫
Ω

lim
δ↓0

φ′(t)F (cδ)≥ limsup
δ↓0

∫ T

0

∫
Ω

φ′(t)F (cδ). (4.74)

Inequalities (4.73) and (4.74) yield

lim
δ↓0

∫ T

0

∫
Ω

φ′(t)F (cδ) =

∫ T

0

∫
Ω

φ′(t)F (c). (4.75)

Next, the same calculation as (4.29) gives∣∣∣∣∣
∫ T

0

∫
Ω

φ′(t)E[cδ]−
∫ T

0

∫
Ω

φ′(t)E[c]

∣∣∣∣∣
≤C‖(cδ−c)‖L2(0,T ;H1)‖(cδ+c)‖L2(0,T ;H1),

which, along with (4.64), implies

lim
δ↓0

∫ T

0

∫
Ω

φ′(t)E[cδ] =

∫ T

0

∫
Ω

φ′(t)E[c]. (4.76)

Therefore, with the help of (4.66), (4.72), (4.75)-(4.76), Hypothesis 3.1, we are allowed
to pass δ to zero in (4.51), to deduce

−
∫ T

0

φ′
∫

Ω

E[c](x,t)+

∫ T

0

φ

∫
Ω

(
|∇u|2 + |∇µ|2

)
≤
∫

Ω

E[c0](x), (4.77)

where the functional E is defined in (3.5). Choosing φ as in (4.32), we conclude (3.4)
from (4.77). The proof of Theorem 3.1 is completed.
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5. Proof of Theorem 3.2
Assume that the initial functions (u0λ, c0λ) satisfy (3.6). Then, the basic energy

inequality (3.4) obtained in Theorem 3.1 shows that the solutions (uλ, cλ) satisfy

‖uλ‖L∞(0,T ;L2
σ(Ω))∩L2(0,T ;H1

σ(Ω))≤C,
‖∇µλ‖L2(0,T ;L2(Ω))≤C,
‖Eλ[cλ]‖L∞(0,T ;L1(Ω)) +‖F (cλ)‖L∞(0,T ;L1(Ω))≤C.

(5.1)

Here and in what follows, the generic constant C is independent of λ.
With (5.1), the argument in (4.59) shows for a.e. t∈ (0,T )

cλ→ c in L2(Ω), c∈L∞(0,T ;H1(Ω)). (5.2)

Whence, similar to (4.19),

∂tcλ∈L2(0,T ;H−1(Ω)). (5.3)

Owing to (5.1)-(5.2), we multiply the last equality in (1.1) by −4cλ and use the same
deduction as (4.63), to deduce

‖cλ‖L2(0,T ;H1(Ω)) +‖Eλ[∇cλ]‖L1(Ω×(0,T ))

≤C
(
‖cλ‖L2(Ω×(0,T ) +‖∇µλ‖L2(0,T ;L2(Ω))

)
≤C+

(
‖Eλ[cλ]‖L1(Ω×(0,T )) +‖∇µλ‖L2(0,T ;L2(Ω))

)
≤C. (5.4)

As a result of (5.1), (5.3)-(5.4), Hypothesis 3.2, we have (see (4.64))

cλ→ c in L2(0,T ;H1(Ω)), c∈L2(0,T ;H2(Ω)). (5.5)

Moreover, the same deduction as in (4.18), (4.24), (4.42), (4.44) concludes that

cλ→ c∈ (−1,1), a.e. Ω×(0,T ) (5.6)

and

F ′(cλ)∈L2(0,T ;L2(Ω)), µλ∈L2(0,T ;L2(Ω)), ∂tuλ∈L
4
3 (0,T ;H−1(Ω)). (5.7)

So far, we are allowed to extract subsequence from {(uλ, cλ, µλ)}λ such that limit func-
tions (u, c, µ) satisfy the first three equalities in (1.4) in distributional sense. Next, let
us prove

µ=F ′(c)+Π′(c)−4c a.e.Ω×(0,T ). (5.8)

From (5.4), (5.6)-(5.7), Hypothesis 3.1, we see that

Π′(cλ)⇀Π′(c) and F ′(cλ)⇀F ′(c) in L2(0,T ;L2(Ω)) (5.9)

and

χ↼Bλ[cλ] =µλ−F ′(cλ)−Π′(cλ)∈L2(0,T ;L2(Ω)). (5.10)

Noting that Bλ[cλ] is the sub-differential of the convex functional Eλ[cλ], we have∫ T

0

∫
Ω

Eλ[cλ]+

∫ T

0

∫
Ω

Bλ[cλ](z−cλ)≤
∫ T

0

∫
Ω

Eλ[z], ∀ z∈L2(0,T ;H1(Ω)). (5.11)
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By (2.6), one has

lim
λ↓0

∫ T

0

∫
Ω

Eλ[z](x,t)dx=
1

2
‖∇z(·,t)‖L2(0,T ;L2(Ω)). (5.12)

In terms of (5.5) and (4.29),

lim
λ↓0

∣∣∣∣∣
∫ T

0

∫
Ω

Eλ[cλ]−
∫ T

0

∫
Ω

Eλ[c]

∣∣∣∣∣
≤C lim

λ↓0
‖(cλ−c)‖L2(0,T ;H1)‖(cλ+c)‖L2(0,T ;H1) = 0.

This and (5.12) bring us to

lim
λ↓0

∫ T

0

∫
Ω

Eλ[cλ] =
1

2
|∇c|2. (5.13)

Taking (5.12)-(5.13), and (5.10) into account, we take λ↓0 in (5.11) and conclude

1

2

∫ T

0

∫
Ω

|∇c|2 +

∫ T

0

∫
Ω

χ(z−c)≤ 1

2

∫ T

0

∫
Ω

|∇z|2, ∀ z∈L2(0,T ;H1(Ω)), (5.14)

which implies

−4c=χ∈L2(0,T ;L2(Ω)). (5.15)

Therefore, (5.8) comes directly from (5.9)-(5.10) and (5.15).

Remark 5.1. The regularity c∈L2(0,T ;H2(Ω)) could also be derived from the elliptic
equation (5.15) (cf. [33]).

In the final part, let us prove the validity of (3.9). In fact, by (4.77), the following
inequality is valid for every (uλ, cλ)

−
∫ T

0

φ̃′
∫

Ω

Eλ(x,t)+

∫ T

0

φ̃

∫
Ω

(
|∇uλ|2 + |∇µλ|2

)
≤0, (5.16)

where the cut-off 0≤ φ̃∈C1
0 ((0,T )) and Eλ=

(
Eλ[cλ]+Φ(cλ)+ 1

2 |uλ|
2
)
.

Thanks to (5.1), (5.5), (5.7), Hypothesis 3.1, we check

lim
λ↓0

∫ T

0

∫
Ω

φ̃′
(
Eλ[cλ]+Π(cλ)+

1

2
|uλ|2

)
=

∫ T

0

∫
Ω

φ̃′
(

1

2
|∇c|2 +Π(c)+

1

2
|u|2

)
. (5.17)

Since F (s) is convex, it has

F (c)+F ′(c)(cλ−c)≤F (cλ)≤F (c)+F ′(cλ)(cλ−c),

and thus,

lim
λ↓0

∫ T

0

∫
Ω

φ̃′(t)F (cλ)

= lim
λ↓0

(∫ T

0

∫
{φ̃′≥0}

+

∫ T

0

∫
{φ̃′<0}

)
φ̃′F (cλ)
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≤
∫ T

0

∫
Ω

φ̃′(t)F (c)+lim
λ↓0

(∫ T

0

∫
{φ̃′≥0}

φ̃F ′(cλ)(cλ−c)+

∫ T

0

∫
{φ̃′<0}

φ̃F ′(c)(cλ−c)

)

≤
∫ T

0

∫
Ω

φ′(t)F (c)+lim
λ↓0
‖|F ′(cλ)|+ |F ′(c)|‖L2(0,T ;L2)‖cλ−c‖L2(0,T ;L2)

=

∫ T

0

∫
Ω

φ′(t)F (c), (5.18)

where the last equality sign is due to (5.9) and (5.5).
In terms of (5.1), (5.17)-(5.18), we send λ↓0 in (5.16) and obtain

−
∫ T

0

φ̃′
∫

Ω

(
1

2
|∇c|2 +Φ(c)+

1

2
|u|2

)
+

∫ T

0

φ̃

∫
Ω

(
|∇u|2 + |∇µ|2

)
≤0. (5.19)

Finally, for fixed 0<s<t<T , let

φ̃η(τ) =



0, τ ≤s,
τ−s
η

, s≤ τ ≤s+η,

1, s+η≤ τ ≤ t,
(t+η−τ)

η
, t≤ τ ≤ t+η,

0, τ ≥ t+η.

Inserting it back into (5.19) and passing η to zero give rise to the desired (3.9). The
proof of Theorem 3.2 is finished.
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Ann. Inst. H. Poincaré Anal. Non Lineaire, 27:401–436, 2010. 1

[24] C.G. Gal and M. Grasselli, Longtime behavior of nonlocal Cahn-Hilliard equations, Discrete Con-
tin. Dyn. Syst., 34(1):145–179, 2014. 1

[25] C.G. Gal and M. Grasselli, Trajectory attractors for binary fluid mixtures in 3D, Chinese Ann.
Math. Ser. B, 31:655–678, 2010. 1

[26] G. Giacomin and J.L. Lebowitz, Phase segregation dynamics in particle systems with long range
interactions, I. Macroscopic limits, J. Statist. Phys., 87:37–61, 1997. 1, 1

[27] G. Giacomin and J.L. Lebowitz, Phase segregation dynamics in particle systems with long range
interactions. II. Phase motion, SIAM J. Appl. Math., 58:1707–1729, 1998. 1

[28] A. Giorgini, A. Miranville, and R. Temam, Uniqueness and regularity for the Navier-Stokes-Cahn-
Hilliard system, SIAM J. Math. Anal., 51(3):2535–2574, 2007. 1

[29] J. Han, The Cauchy problem and steady state solutions for a nonlocal Cahn-Hilliard equation,
Electron. J. Diff. Eqs., 113(9):1–9, 2004. 1

[30] M. Hintermüller, M. Hinze, and C. Kahle, An adaptive finite element Moreau-Yosida-based solver
for a coupled Cahn-Hilliard/Navier-Stokes system, J. Comp. Phys., 235:810–827, 2013. 1

[31] L.I. Ignat and J.D. Rossi, A nonlocal convection-diffusion equation, J. Funct. Anal., 251(2):399–
437, 2007. 1
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