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THE UNIQUE GLOBAL SOLVABILITY OF MULTI-DIMENSIONAL
COMPRESSIBLE NAVIER-STOKES-POISSON-KORTEWEG MODEL*

FUYI XU? AND YEPING LIf

Abstract. The present paper is dedicated to the study of the Cauchy problem for compressible
Navier-Stokes-Poisson-Korteweg model in any dimension d > 2, which simultaneously involves the lower
order potential term and the higher order capillarity term. The unique global solvability of the system
is obtained when the initial data are close to a stable equilibrium state in a functional setting invariant
by the scaling of the associated equations. In particular, one may construct the unique global solution
for a class of large highly oscillating initial velocities in physical dimensions d=2,3.
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1. Introduction and main results
In this paper, we consider the following multi-dimensional compressible Navier-
Stokes-Poisson-Korteweg model in R%(d > 2):

Orp+div(pu) =0,

O(pu) +div(pu@u) —div(2u(p) Du) — V(A(p)divu) + VP(p) = —pVe+divk, (1.1)

- A¢ =p—p,
where p=p(t,x), u=u(t,z) and ¢ =¢(¢,x) are the unknown functions, representing the
density, the velocity and the potential force, respectively. P = P(p) is pressure satisfying
P’(p) >0 and for all p>0. The coefficients A= \(p) and p= u(p) designate the bulk and

shear viscosities, respectively, and are assumed to satisfy in the neighborhood of some
reference constant density p> 0 the conditions

u>0 and vEXN+2u>0. (1.2)

o

D(u) :ef%(Du—i—TDu) is the deformation tensor and the capillarity tensor is given by

K £ pdiv(r(p)Vp)Iga + % ((p)=pK'(p)) |V pI* Tra — K(p)VpR V.

The density-dependent capillarity function x is assumed to be positive. Note that for
smooth enough density and x, we have (see [3])

aivK =¥ (5(p) Ao+ 5 (D) Vol (1.3)

Here, we are concerned with the Cauchy problem of the system (1.1) in R, x R? subject
to the initial data

(p,u,9)|t=0= (po,uo,Po) (1.4)
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satisfying compatibility condition
—Apo=po—p.

System (1.1) can be used to describe physical phenomena in plasmas and semicon-
ductors, see the pioneering work by Dunn and Serrin [15] and also Anderson et al. [1] and
Cahn and Hilliard [5]. We would like to point out that System (1.1) includes several im-
portant models as special cases. When =0, (1.1) reduces to the compressible Navier-
Stokes-Poisson model. As for classical solutions, Li-Matsumura-Zhang [22] proved the
global existence and time decay estimates in the three-dimensional case under the as-
sumption that data are close to the constant equilibrium state. In 2009, Hao-Li [16]
proved the global existence and uniqueness of strong solutions in the framework of hy-
brid Besov spaces in three and higher dimensions. Recently, still in dimension d > 3,
by adapting the works by Charve-Danchin [6] and Chen-Miao-Zhang [11], Zheng [30]
removed the extra-assumption on the velocity from [16] and extended the global exis-
tence result to the LP critical framework. In 2017, Chikami and Danchin [12] further
improved the known result in [30] and established the unique global solvability and
time decay estimates in any dimension d > 2 for small perturbations of a linearly stable
constant state. It is a remarkable fact that the results mentioned above were obtained
under the condition of constant viscosity coefficients. When there is no potential force
@, (1.1) becomes the compressible Navier-Stokes-Korteweg model, which attracted the
attention of many researchers during the recent decades. Hattori and Li [20,21] estab-
lished the local existence of smooth solutions with large initial data and global existence
of smooth solutions around constant states of the compressible Navier-Stokes-Korteweg
model for small initial data (po,uo) in Sobolev spaces H*(R?) x H*~!(R?) with s > 2 +4
and d=2,3, respectively. Recently, researchers in [27, 28] proved the global existence
and decay rate of strong solutions for small initial data in some Sobolev spaces which
have lower regularity than that of [21] in three dimensional case. In 2016, Li and
Yong [23] investigated the zero Mach number limit for the three-dimensional model in
the regime of smooth solutions. In L?-critical Besov spaces, Danchin and Desjardins [14]
and Haspot [18,19] obtained the global well-posedness of strong solutions close to a sta-
ble equilibrium state. In 2018, Charve et al. [7] established the global existence, Gevrey
analytic and algebraic time-decay estimates of strong solutions when the initial data are
close to a stable equilibrium state in LP-critical framework. When one simultaneously
considers the effects of the electrostatic potential and the capillarity, that is, System
(1.1), Wang and Yang [29] studied the quasi-neutral limit of global weak solutions in the
torus T3. Li and Yong [24] presented the local-in-time existence of smooth solutions and
studied the quasi-neutral limit. Later, Li et al. [25] showed the global-in-time existence
of smooth solutions with small initial data and discussed some limit analysis. Here, it
should be pointed out that the functional spaces with high Sobolev regularity is not the
lowest index in the sense of the scaling invariant of the associated System (1.1) and the
dimension of space is only limited to d=3.

A natural question follows then, that is, whether the global well-posedness in the
lowest index functional spaces can be shown for the Cauchy problem (1.1)-(1.4). The
main motivation of this paper is to give a positive answer to this question and es-
tablish the global solvability of strong solutions when the initial data are close to
a stable equilibrium state in more general critical Besov spaces related to the LP
spaces for any dimension d>2. At this stage, let us recall that, by definition, criti-
cal spaces for System (1.1) are norm invariant for all >0 by the scaling transforma-
tions 17 : (p(t,2),u(t,z),¢(t,x)) — (p(1%t, 1), lu(l?t,lz),?¢(I?t,lz)), in accordance with
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the fact that (p,u,®) is a solution to System (1.1) if and only if so does T;(p,u,d), corre-
sponding to the dilated initial data (po(lz),lug(lx),l>¢o(lx)), provided that the pressure
P has been changed into I2P. Due to the similarity of the compressible Navier-Stokes-
Poisson-Korteweg model to the compressible Navier-Stokes equations, we can apply
some ideas developed in proving the existence of solutions to the compressible Navier-
Stokes equations to deal with System (1.1). We refer the readers to [6,11,17]. However,
it is non-trivial to apply directly the ideas from [6,11,17] to System (1.1) which simulta-
neously involves the lower order electrostatic potential term V(—A)~!p and the higher
order capillarity term VAp, which makes it rather difficult to get the desired global
a priori estimates. Now, let us explain some of the main difficulties and techniques
involved in the process. In fact, System (1.1) is a hyperbolic-parabolic system with a
non-local term V(—A)~!p arising from the lower order electrostatic potential ¢. The
symbol of this non-local term is singular in the low frequencies of the Fourier transform
G (z,t) of Green’s matrix G;(z,t) (see Proposition 4.1), which plays a bad role in our
analysis. In order to overcome the difficulty, we introduce a new unknown a=A"lc
which transfers the system (4.1) into (4.8) without the pseudo-differential operator of
order —1 in the linear part of the momentum equation. Here, for the new System (4.8),
we do not directly study the hyperbolic-parabolic linear system with convection terms
as in [16] but present an explicit derivation of the Fourier transform of Green’s ma-
trix G(z,t) corresponding to the linearized system by the Fourier transform and then
perform its spectral analysis. In particular, we exhibit that gA(ﬁ,t) behaves like the
heat kernel in the low frequencies. Based on the important property, we further exploit
the smoothing effects of (a,u) in the low frequencies, which naturally implies the same
property of (p—1,u). In contrast, in the high frequencies, we notice that the non-local
term V(—A)~!p can be treated as the harmless perturbation term. Therefore, we only
focus on the hyperbolic-parabolic system with the higher order capillarity term VAp.
As in Haspot [17] for the standard compressible barotropic Navier-Stokes equations, we
introduce some suitable effective velocity field w= Qu+v~1(—A)~"!Ve (named viscous
effective flux in Hoff’s work [10]) and observe a suitable linear combination of w and Ve
satisfying a heat equation involving some harmless lower-order terms. Taking advantage
of the smoothing effects from the heat equation, we then fully show the parabolic prop-
erties for the density and velocity in the high frequencies. In fact, the important feature
stems from the presence of the Korteweg tensor and enables us to apply fixed-point
argument, which is different from the barotropic compressible Navier-Stokes equations.
With these analysis tools in hand, employing contraction mapping principle, we even-
tually obtain the unique global solvability of strong solutions to the Cauchy problem
(1.1)-(1.4). Finally, let us emphasize that the result allows us to construct global strong
solutions for some highly oscillating initial velocity data.
Now we state our main results as follows:

THEOREM 1.1.  Let d>2, pe[2,min(4,2d/(d—2))] with, additionally, p#4 if d=2,
. d
and denote co:=po—p. There exists a small enough constant 1 such that if c} €B;,

h .d_q . . ) .d_g ) .d_q X
and ug € By with besides co € By~ and ug € B3 1~ satisfy

def
Xp0 = lleoll” 4 o +lluoll® 4, +llcoll” & +lluol™ 4, <, (1.5)
32 32 BP

a
3P
2,1 2,1 Bp,l p,1

then (1.1)-(1.4) has a unique global-in-time solution (p,u) in the space X, defined by

.d__ . d .d_ d
L eC(Ry; B NI R 3 B,), u'eC(Ry;Bi, )NLYRy;B2 ),
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h * 1 o pt2 h 21\ A7l gt
c EC(R+7Bp,1)ﬂL <R+;Bp,1 )7 u €C<R+;Bp,1 )QL <R+;Bp,1 )
(1.6)
REMARK 1.2. Compared with [24,25], we establish the global well-posedness of strong

solutions in the so-called critical Besov spaces in any dimension d > 2 and the dimension
of space is more extensive and is not limited to d=3.

REMARK 1.3. In Theorem 1.1, the regularity index for the high frequency part of ug
may be negative. Especially, this allows us to obtain the global well-posedness of the
system (1.1) for the highly oscillating initial velocity ug. For example, let

uolw) =sin()p(x),  Hlx) € S(RY).
Thus for any € >0

||U0||.% 1§C€17% for p>d.
B

p,1

Hence such data with small enough e generate global unique solutions in dimension
d=2,3.

The rest of the paper unfolds as follows. In the next section, we recall some basic
facts about Littlewood-Paley decomposition, Besov spaces and some useful lemmas.
Then, in Section 3, to make it more convenient to study, we reformulate the original
system (1.1)-(1.4). Section 4 is devoted to the proof of the global well-posedness for
initial data near equilibrium in critical Besov spaces.

Notations. We assume C' be a positive generic constant throughout this paper that
may vary at different places and denote A<CB by A< B. We shall also need the
notations

def A def .
P Z Ajz and "= 2-2%  for some jo.
J<ko

L def Js||A . h def FsiA .
||z\B;1 = 22 |Ajz||» and |z ., = 22 |Ajz|| e, for some jo.

J<ko Jj>ko

Noting the small overlap between low and high frequencies, we have

105, SHelly,  and (125 S

£ h
B;,l B;’l

2. Littlewood-Paley theory and some useful lemmas
Let us introduce the Littlewood-Paley decomposition. Choose a radial function
¢ €S(R?) supported in C={{eR?, 2 <|¢| < §} such that

Z¢(2_q§) =1 for all£#£0.

q€EZ

The homogeneous frequency localization operators Aq and Sq are defined by

A f=9(279D)f, S,f= Z Apf for qeZ.

k<q—1
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With our choice of ¢, one can easily verify that
AALf=0 if |g—k|>2 and
Ag(Se-1fALF)=0 if |qg—k|>5.
We denote the space Z/(R?) by the dual space of Z(R%)={f e S(R%); D*f(0)=0;Ya €

N¢multi-index}, it also can be identified by the quotient space of S’(R?)/P with the
polynomial space P. The formal equality

f:ZAqf

qEZ

holds true for f€ Z’(R%) and is called the homogeneous Littlewood-Paley decomposi-
tion.

The basic tool of the paradifferential calculus is Bony’s decomposition [4]. Formally,
the product of two tempered distributions fu and g may be decomposed into

f9=Trg+R(f,9)+Tyf
with
Trg destq 1fAgg and R(£,.9)%ST 3 A fAug.
7 lg'—ql<1

The usual product is continuous in many Besov spaces. The following proposition, the
proof of which may be found in [26] Section 4.4 (see in particular inequality (28) page
174), will be very useful.

PROPOSITION 2.1.  For all 1 <7,p,p1,p2 <-+00, there exists a positive universal con-
stant such that

1ol SIflellgls, +lalle=lflls, . if s>0;

||f9||B;}+3277 SIfls

. d
&1 Hg| ‘52 ’ Zf 81782<57 (]/I’Ld 31+82>07

, d
s gl i fsl< =
p

d
Bp ocNL>

||fg|B;,I5||f||B;/12||g||B;l, if s (~d/2,d/2).

The following Bernstein’s inequalities will be frequently used.
LeEMMA 2.2 ( [8]). Let 1<p; <ps<-+oco. Assume that f € LP*(R?), then for any
€ (NU{0})?, there exist constants Cy, Cy independent of f, q such that
. 11
suppf C {[€] < 4027} = 07 fllp, < Co2" T2 £,
suppf C {4127 < |€] < A227} = || fll, < C227%1 sup Haﬁfﬂpl
|8

|=|
Let us recall the definition of homogeneous Besov spaces (see [2,13]).

DEFINITION 2.3. Let seR, 1<p,r<+400. The homogeneous Besov space B;‘)T 18
defined by

Hs d
By ={feZ'®): |fll5, <+oo},
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where

d SI A
105, 22180 )1

o

REMARK 2.4. Some properties about the Besov spaces are as follows

e Derivation:

/]

Bj, ~|Vf]

By1Y
e Algebraic properties: for s> 0, B;ﬁl N L is an algebra;
e Interpolation: for si,s2 € R and 0 €10,1], we have

£

(1-0)
By

0
||f||B§f11+(1—e)s2 <|Ifl B,

DEFINITION 2.5.  Let s€R, 1<p,p,r <+oc. The homogeneous space-time Besov space
LE.(B3,) is defined by

p,T
L4 (B, ) = {f Ry x 2Rz fll g iy, < +o0 .
where

def .
1Al gy 2120514 £1120

el e
L

We next introduce the Besov-Chemin-Lerner space z%(Bfm) which is initiated in [9].

DEFINITION 2.6. Let seR, 1<p,q,r <400, 0<T <400. The space ZqT(B;’T) 18
defined by

L3.(B;,) = { F Ry x Z/RD: I g, <+00},

where

def
I£1lzg 5.,) =

2quAqf(t)||LLI(O,T;LP)

o

Obviously, E%(B;l) :L}(B;l). By a direct application of Minkowski’s inequality, we
have the following relations between these spaces

LA.(By )= LA.(By,),if 1>,

Lh(B3,) = LB, ),if p>r.
For the composition of functions, we have the following estimates.
PropoSITION 2.7 ( [13]). Let s>0, 1<p<oco and uGB;,lﬁLOO. If Fe
W[SHQ’OO(Rd) with F(0)=0, then F(u)EBg,l. Moreover, there exists a function of

loc
one variable Cy depending only on s and F', and such that

IF @5, , <Collullz=)llull
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PROPOSITION 2.8 ( [2,7]). Let o €R,(p,r)€[1,00]? and 1<py<p;<oo. Let u
satisfy

Ou— pAu=f,
tU— [ f (2.1)
u|t:0:u0.
For all T>0, (i) if n>0, we have
1 L
°1||u o2 Slluollpe +prz o 2 . 2.2
W e St + A o (22)
(i) if p€C and Rep >0, we have
1 1 _q
Rep)rrflull oz Slluollgg +®Rep)?2 I fIl - a2 (2.3)
L;I (Bpn"pl ) por Lg?(Bp,r o2 )

3. Reformulation of the original system (1.1)-(1.4)

To make it more convenient to study, we reformulate the original system (1.1)-(1.4)
into a different form. Without loss of generality, we will assume that p=1, P'(1)=1, and
denote that c=p—1. Then, in terms of the new variables (c,u), the system (1.1)-(1.4)
rewrites

Oyc+divu=f,
O — Au+Ve+V(=A)te—kVAc=yg, (3.1)
(¢, u)|t=0 = (co, uo),
where
f = Fleyu) = —div(cu),
g=g(c,u)=—u-Vu—Li(c)Au+ Ly(c)Vc+ Lz(c) (div (20(c)D(u)) + V(X(c))divu))

+V<R(C)Ac+ %VR(C) : vc)

with
def ~ def ¢ defp'(1+¢)
Au = pAu+ (A +p)Vdivy, Li(c) = T La(c) = e ,
def 1 def def
L = — = A(1 = u(1
3(8) C—‘rl’ A >\( )7 w :u( )7
i(e) < 1+ 0) (1), Me) EA(1T+¢) - A1), w2 k(1)
def

R(c) = k(14c)—r(1).

For seR, we denote Ash:]-"*l(|§|sﬁ). Let us decompose u into u="Pu+ Qu, where P
and Q are the projectors onto divergence-free and potential vector-fields, respectively
(hence P=Id+V(—A)"'div). Set v:=A"'divu=A"'divQu with A=(—A)z. Thus,
(c,v,Pu) satisfies

Oic+Av=f,

Ow—vAv—Ac—A"te—kA3c=yg, (3.2)

0yPu— puAPu="Pyg,

where g; = —A"ldivyg.
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4. Global well-posedness for initial data near equilibrium
In this section, we will prove global existence and uniqueness of strong solutions to
the system (3.1) in LP-type critical regularity framework.

4.1. Global a prior: estimates. The subsection is devoted to exploiting
important global a priori estimates for the system (3.1). It is divided into two steps as
follows.

Step 1: Low frequencies. From (3.2), we find that the interaction between the
velocity and the density only involves the compressible part of the velocity, namely
v. The incompressible part Pu satisfies a mere heat equation. The coupling system
including ¢ and v in (3.2) reads

Oic+Av=f,
Ov—vAv—Ac—Ate—kANc=g, (4.1)
(¢,v)|t=0= (co,v0)-
To better study properties of (¢,v) in the low frequencies, we make some analysis for
Green’s matrix G;(x,t) of the following linearized system without outer forces, namely
Oic+Av=0,
Ov—vAv—Ac—A"te—kA3c=0, (4.2)

(¢,0)]t=0= (co,v0)-

PROPOSITION 4.1. Let G; be the Green matriz of the system (4.2). Then we have the
following explicit expression for Gy:

% _ (P‘Af‘ik’t)lﬁ\
+=A- A

gl(fat): At Aye Nt At ) (43)

(S e ) M
where
1 1
A =—ov[E £ 5V (2 — 4Rl — 41+ [¢]).
Proof. Taking Fourier transforms to the linearized system (4.2) yields that
b +v[Eo— (1€ + €] +klE[*)e=0.

Differentiating with respect to the time variable ¢ in the second equation of (4.4) gives
Det +VIE[* 00 — ([€] + €17 +w[EP) e =0.
Combining it with the first equation of (4.4), we get
{ Oy +vIE]P0+ (1+[€]* +K[€[H) 0 =0, (45)
0(€,0)=10(€),  0:(£,0)=—v[€[*00(&) + (Ig]+ €]~ + KIE[)co (8).-
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It is easy to check that Ay are two roots of the corresponding indicial equation of (4.5).
Thus, we may assume that the solution of (4.5) has the form

(€D =A()er O+ B(§eM (O,
Using the initial conditions, we obtain

Ay Fv[E[*)o0 — (J€]+ €]~ +KlE]% ) éo

(
A:
A — A ’

—(A_+v[EP) oo+ ([€]+ €]~ + k[P )éo
A —A_ ’

B=

which imply

e)\ft_eA+ >\+€)\+t_)\7€A7t

o0 =— (S )l rleyan(e) + (253 Yol (46)

This determines G2! and G32.

On the other hand, from the first equation of (4.4), we have

t
o) =2(6.0)-1¢] [ ol ryar.
0
Plugging (4.6) into the above equality and using the following relations
Ae+vlef =2z, AAp =1+ +al¢l’,

we finally get

alet) = (T Yol - (S e, (4

which determines G{! and G{2. O

—

From (4.3), we observe that |£|+ (&7 +k[€]2 ~ €| 7! when [£] =0 in GZ!, which is
different from the Fourier transform of Grgail’s matrix for compressible Navier-Stokes
equations. Obviously, the term |¢|7! in G?! of a(f,t) is singular and causes some
difficulty in low frequencies. Thus, it is impossible to obtain decay estimates of a(f ,t)
like the heat kernel. In fact, the term |£|~! comes from the symbol of the nonlocal term
A~!c in the system (4.2). To overcome the difficulty, we notice that A~'c should have
the same regularity as vAwv in low frequencies, which induces us to introduce a new
unknown a=A~"!c. Thus, the system (4.1) is equivalent to the following form

ata+v:f17
oo —vAv—a—Aa—rAa=g, (4.8)

(a,v)e=0=(A""co,v0)

with fi =A"1f.
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Similar to Proposition 4.1, we also show an explicit derivation of the Fourier trans-
form of Green’s matrix G(x,t) corresponding to the linearized system (4.8) without outer
forces.

PROPOSITION 4.2.  Let G be the Green matriz of the system (4.8). Then we have the
following explicit expression for G:

)\+e)\_1,7)\76>\+t et _ At
R B Vi W _(7A+—)\, )
G(&t) = N o | (4.9)
et —t—e " € —A—€
(Bt Jarigreniy M
where
1 1
A =—ov[€ oV (2 —4R)[E[ =41+ [¢]). (4.10)

Based on Proposition 4.2, we exhibit that G (£,t) behaves like the heat kernel in the
low frequencies.

LEMMA 4.3. Let G be the Green matrixz of Lemma 4.2. Given R>0, there is a positive
number O such that for |§| <R

IG(&,1)| < Ce Il (4.11)

where C=C(R).
Proof. Here, we will prove it in the following two cases.

Case 1. For v? <4k, in this case, A+ are complex numbers for any fixed £&. We
denote b=4+/4(1+[[?) — (12 —4k)[€[%, thus b>0 and Ay =—3v|¢[*+bi. Employing
Euler’s formula, we have

6)\+t 76>\_t _ Sln(bt) 67%V|§|2t’

A
Ayedto ) ert 1 sin(bt
+6)\+7)\7€ Z[COS(bt)-‘ril/Lné )|£‘2:|6_%V‘£|2t,
A+t )t 1 sin(bt

For [¢| <R, noticing that b=0O(1), one can easily find that
IG(¢.1)| < Ce2vIElt,

where C'=C(R).
Case 2. For v >4k, in this case, if we define h=v —+/v2 —4k, then h>0 and

Re()\i)gfg|§|2, VEeRY. (4.12)
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On the other hand, for || < R, since |A4|, A+ —A_|=0O(1), we derive from the expres-
sion (4.9) and (4.12) that

G(€,1)] < CemHhiER,

where C'=C(R). The proof of Lemma 4.3 is complete. 0
We have the following smoothing effects of Green’s matrix G in the low frequencies.

LEMMA 4.4. Let C be a ring centered at 0 in R? . Then there exist positive constants
Ry,C\c such that, if suppu C A\C, A< Ry, then we have

|G *ull 2 < Ce™ Nt |u)| . (4.13)

Proof. Thanks to the Plancherel theorem, we get
IG *ull 2 = [G() @)l 2 < Clle™ 1 a(€) |2 < Ce™X*Julls,

where we have used (4.11) and the support property of 4(&). O

The following Lemma states some optimal a priori estimates for the solution to the
system (4.8), and exhibits the smoothing properties of a and v in the low frequencies,
assuming that f; and g; are given.

LEMMA 4.5. Let (a,v) be a solution of the system (4.8). Let mqo be any integer
number. There exists a positive constant C' depending only on v and mg, such that the
following inequality holds for all t>0 and 1 <r<oo

el ez <O (aoswolly 109y o) (4.14)

Proof. 1In terms of Green’s matrix and Duhamel’s principle, the solution of (4.8)
can be expressed as

(Z)=Q(x,t)*<zz>+/otg(x,t—r)*<§1>d7’. (4.15)

Applying homogeneous frequency localization operators Aj on both sides of (4.15), we

get
S N
Ajv Ajg
From Lemma 4.4 and Young’s inequality, we infer that
145a(0)]lz2 + 145002 < Ce™* (1 Ajagll 2 + 1400l 2)
+C / e (8 £ () s+ VA ()

Taking L™ norm with respect to t gives

1A allyze + 1 A0l yre <C27F (1A aoll 2 + |Ajvoll e + 1A fill 2z + 1A g1 2 22).
(4.16)
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Multiplying 2% on both sides of (4.16), and then summing for j <mg, we get (4.14).
The proof of Lemma 4.5 is complete. O

Taking advantage of Proposition 2.8 for the following heat equation
O¢Pu— pAPu="Pg,

we have

1Pull’ g +1Pull’ g <C(IPul g Pl g0 ). (am)
L;’c(B2 (B

2,1 Ly 2,1) B3, L} 2,1)

Combining with (4.14) and (4.17) yields

@l 4o +llau )HZ

a
Le(B3y ) L{(BS

<C(Iao,u0) 1 4, +NAT Fg0lE 4, )-
B2 L1(B2

+
1) 2,1 (B3 )

Noticing that a = A~'c, the above inequality is actually equivalent to

[ +lle IIZ Hlulll g+l IIZ

Ltoo(BZ,l 251) L (321 ) t(BQ,l )

<c(||couf,,2+||uoué,,+||f||f I, g ) (4.18)

. d_ . d_
B2 B2, )
21 21

Next, we bound the terms ||fHE

s and ||g|| ., asfollows. For [[f|® ., .,
12" ) 1 Bf_
2 1 t (D3 t(Ps3y
it suffices to bound |[cull® , - Employing Bony’s decomposition, we have
1 2
t(Ps3

(cu) = (Tou)" + (R(c,u))e +(Tye)".

L d_q . 4 . d_
Recall that T:BY, x B!, — B3, ' for 2<p<min(4, 2%). Hence, we have

Tucz a_, <Cllu d c
I )”L1<B§1 3 | || i (Bgll)ll HLl(B”l)
<C(Jlu)” 4 +||U||h , )(IICIIZ o el )
L (B, ) Lge Ly(By 1) L{(By,)
<C(llull® 4 +|IU|| 4, )(lle IIZ +llel* 4
( LB (B7; )( B4)) Lt<B;if2>)
2
<Cll(c, )X, 1)
T.u ¢ a_, <Ce 4 u
[[(Teuw) ||L1(Bzgll) el (Bgll)ll [ Bk
<C(||CH€ 4 +|\C||h _ )(HUIV o Al )
(Bpl ) L( L ( 5 2(B5,1)
<C(||CH€ 4o +|\C||h d+1)( +lull* 4 )
le L2( 71) 2(35,1)

<Cll(e.w)%, t):

where we have used the following interpolation inequalities,

()

[N

lell, g2 < (el
L}(B2, ) Lf"(B

2,1
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1

2 2

el a < (el ) (el )
1) Ly (B 1) Li(By, )

< (4 ) (hl 1)

N

hll, .
L3 (B3)) LB,
and
} }
bl < (el ) (el )
LBy ) LEBy, )

d

L3 (B,
d4_q .4 .d_q

For the remainder term, one can use that R: B, xBJ; — B3, for 2<p<4, thus

R(c,u))* a4, <C|lu i, |le
[[(R(c,u)) ”L;(B,?l 3 | IILt (Bpll)\l ||L1(Bp :
<C(llul® 4, +|IUI|h a, )(IICIIZ o el )
L (B, ) LBy, ) L{(B} 1)
<C(lll® 4oy +lul 4 IICIIZ g Flel”
( L (B2 1) L?,C(Bﬁl 1 )( 1(321 f(Bp :rQ))

t 2,1

d
Li(By,)

<C|l(e,;u)l%, 1)

In order to bound ||g[|* ., , we set
L% .22,1

—u-Vu—Li(c)Au+ La(c)Ve+ Ls(c) (div(?ﬁ(c)D(u))JrV( ( ))dlvu))

+V (R(C)Ac—i— %VR(C) : Vc)

def
=9'+*+ 9> +g'+ 4"
For g, we use Bony’s decomposition with the summation convention over repeated
1=1,2,--- ,d.

indices,
with

u-Vu' =Ty -u+ R(u',0;u’) + T, - Vu',
Similar to the bound of |lcull® , ., we have
L%(Bzrz,l )
WA i
(T -u+ R(u*,05u")) ||L§(B§;1) Cl vy -u+ R(u*,05u )||L1(B§;1)
<C||VU|| A ||UH

<Cllull® 4
L3 (B)

<Cll(e; )%, s

and
(T - Vu' )| e <C|Ty-Vu'| 4y

Lz(322,1 1( 21 )

<Cllull e [Vl
LE(BY, ) Ll(Bpl)
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<Cllufl ay flull i
L(By, ) LB, )
<Cll(e.u)lik, )
The second term g2 = Ly(c) Ve satisfies for some smooth function Ly vanishing at 0. For

bounding Ls(c), one cannot use directly Proposition 2.7 as it may happen that % —1<0.
Using the Taylor expansion, we have

Lo(c)=L5(0)c+cLy(c) with Ly(0)=0.
Combining Proposition 2.7 and product laws in Besov spaces, we get for 2<p<d,

120 a2 <C(L2(0)+llall a )lall s
B B

p;1 p 1 p,1

1d—2
for 2<p<4, Bernsteln S 1nequa11ty and the following decomp051t10n

.4 Ld_
Further, from T': B” ><B —>321 for 2<p<min(4, 2%), R: B XB;,1_>BZQ,11

(Lo(e)Ve) = (TgeLa(c) + R(Ve, Lo () + (Tryo V),

we have
YA
R(Ve,L <C||R(Ve,L
(Ve L)W, g 0, SCIRVELO] a0
<ClIVell o 122, o
L& (B, ) LY(BE,)
<0l lell , .2
L (B’H) LY(BE,)
<Cll(e.w)li, o),
l
To.L 4, <C|Ty.L 4,
[(TweLa(c))) ”Lg(BEI S 1T 2(¢))HL1(32§1 :
<Clvell , 4 1220l
L3 (B, ) LI (B},)
2
SC((HCHZ d ) +(||C||h d ))
L¥(B}) L3 (B})
<o((el, 4 VPl 4 )°)
( L%(Bﬁl)) ( Z(Bpl))
2
<c((lel® o)+ (el .
(( sl 7 it )))
<Cll(e,w)l1%, o)-
I(Tooo Vo)l al
2 LY B2, )
<C|La(0)] 196l
LgC(BP1 Ll(Bpl)
<C+lell  a Mell  ai el ap
Le(Br ) Lye(BY, ) Ll(Bpl )
<O(tlel o Jel® any lel® )% lell el )
L?(B;I Ly pl L ;]:.,1 % ;,1 tl 1]:1 )
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<C+lel o )(llel® 4 +H0||h g )% (el ayy Fllel” s

( :°B:1>)( LE(B2, ) Lge 3,5,11)) ( LHBE) L B;fl))
<C+lel a )(llel” g e ) x < (lell® 4 +||0Hh dis)
=(Br, =82 <(BY, Li(BE)) LB’

<Cll(e, )%, @) +Cll e W) %, )

To bound the third term ¢® = Ly (c).Au with L (c) = 1%, we use as for g* and omit it.
For the term ¢*: For the terms of nonconstant viscosity coefficients, it is only a

matter of checking that g* satisfies quadratic estimates. We write that

Ls(c)div (2(c)D(u)) =2 i) div (D(u)) +2‘7(C) D(u)-Ve,

1+c 1+¢
Ls(e)V ((a(c) + X(c))divu) = WV&VU + Wdivch.

Since ‘f(fz and M are two smooth functions vanishing at 0, then the terms

%dlv( (u)) and Mlevu may be handled exactly as ¢g3. On the other hand,

we observe that the fact “1_~(_Cc) Ve=V(Ly(c)) and 2 1+(’ 9Ve=V(Ls(c)), where Ly(c) and
Ls(c) are two smooth functions vanishing at 0. Thus, we introduce the following de-
composition:

(D()V(La(e)))" = (T (1(e D () + RD (), V(La(e)))) + (To V(La(e)))) "

From the aforementioned properties of maps 7" and R, Proposition 2.7, Bernstein’s
inequality and interpolation inequalities, we have

(T (1.4 ey D) + R(D(w), V(La(c)))) I,

HBETY
<C|Tv(Ls(e)yD(w) + R(D(u), V(L ()))H o
21
SCIV(La)l ay (V]|
LB LB
SCNLa(A)l o ful] a4y,
Ly Lisr
SCHCH K2

L? (Bppl) LIBF, )
<Cll(e; )%, s

<CI(Tpn V(L ¢
L%(Bﬁfl)_ ||( D(u) ( 4(6)))HL,{(B§1’)

§C||TD(u)v(L4(C))|| d_o

(T V(La(e)) |

LY(BZ, ")
<CIVull  ay IV(La(e)]  ay
L¥(By, ) L3 (B, )
<Clull . a [La()l . a
LY (BP) L}(BP)
<Cllul| llell

PICTRRIETS
<Cll(ewl%, -
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Similarly, we also obtain the estimate of the term V(Ls(c))divu.
Finally, we bound the last term ¢°. Indeed,

g°~ ¥ (#(0)Ac) + V(Vi()- Ve ) Lo + 472,
For g®!, using Bernstein’s inequality we have

V(&(c)Ac 4, <C Acll® .

9O, o <CIROACE,

Now, we only focus on the estimate of ||&(c)Ac]’ . and further using Bony’s

d_
L{(B3, )
decomposition, we have

(k(c)Ac)e = (T,-,Q(C)Ac—i-R(AqF@(c)))Z + (TACR(C))Z.
Employing the properties of maps T and R, we deduce that

(Tack(c)" H B <C||ACH R (O] I
B3 LBy, ) L (Byy)
<Cllell , _as llel

d

LEBF, ) Le(BE)
i +\|C||h el s el )
LBy, ) Ly(B), ) = (Byy Ly (B 1)

+le h Y4 ¢ h

B%Jrl H || (Bd+1 )(H || H || )
<C(llell® o Hlell™  ap, )(llel® 4 +||C|\h )
+(B31) L}(B:I ) L?(le ) L; (Bp1)

da
2,1 p,1 L3 ( 2, 1) I :1)
<Cllew)l, -

<C(IICIIZ

<CO(|le|l
<C(lel,

and

1

1(Tr(e)Ac+ R(Ac,i(c))) |l

.49
LI(B22,1 )

<Cl&I _  a- 1IIACH
L (BF

P Ll(Bpl)

g0(1+||c||w3§1)>llc\l T T

SC(1+”C||L;;C(B§1))(”CHELtm(B:l1 +HC||ht (,51_1))><(||C||;(B§1+2)+HC”}LL§ '51”))
<Ol _ g lelt_aos +Iel? g )x el gos I, g0 )
SCQHell_ g Yl goa #lell o )< (lell, g el g )

<Cll(e;u)l%, i) +Cll (e )5, )

where the bound of &(c) is similar to the La(c). For g°2, we also have similar estimates
and omit it.
Putting all the previous estimates together, we have proved the following inequality:

el ay + el Fllult g, Fllul
L?°<B§,12> L}(B2,) LeB2, ) LiBE? (4.19)

<CXpo+Cll(ew)lk, @ +Cllew)l, -

d
2
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Step 2: High frequencies. First, we bound Pu, we just use the fact that
0¢Pu— pAPu="Pg.

Hence, according to Proposition 2.8 (i) (restricted to high frequencies)

IPull ooy +ulPul” o, <CPul o, +IPgl" )
) EHEB Bla LB
<C(lluoll" a_, +lgll* 4, ) (4.20)
Blfl Lfl/ B;il )

Next, we consider the following system including ¢ and Qu,

{ Oyc+divQu=f, (4.21)

0;Qu—vAQu+Ve—kAVe=Qg—(—-A)"Ve.

As in [17], we introduce a new auxiliary function w e Qu+v~(—=A)"Ve, which sat-
isfies that

{ O Ve+rv~IVe+ Aw=V,

4.22
Ow—vAw—KkAVe=Qg— (1+v72)(=A) " 'Ve+rvlw+rv 1 (-A)" VS (4.22)

We now consider suitable linear combinations of w and V¢ in order to exploit the
property of parabolic behavior in the high frequencies similar to the heat equation.
Indeed, for all g€ C with § to be determined later, we have

Ot(w+PrVe)—(1-B)vAw—kAVe+ Ve
=Qg— (1+v)(-A) 'Vet+vlw+r H (-A) 'V +uVT. (4.23)

Therefore, if we set

a : e K
X=w+prVe withp satisfying Biiﬂ(l—ﬁ)’
then
dex — (1= B)vAx
=—BVe+Qg—(1+v ) (=A) 'Vetvlwt v  (-A) 'V f+ vV f. (4.24)
Here, a possible value of f is
1 V2 —4x 1 4k
=+ X2 """ guchthat 1—B==(1—y/1——).
15} 2—|— 57 such that B 2( 1/2)

Obviously, Re(1— /) is positive for any values of x and v. Therefore, Proposition 2.8
(i) and the fact that A='A is a homogeneous Fourier multiplier of degree —1 imply
that

h h
X a4,
Lz (Byy ) 1By

Pl H(By1 )

SC(||X0Hh,¢_1+||g||h o A s HIVel
By Li(Bg, ) LB, 1By

—1

p,1 1
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ol a M=) L)
Li(Byy Li(Byy )
h h h —2k h
<C(loll®a , +llgl" ay +IA" 4 27
B2, Li(Byy ) Li(By1) Li(Byy )
2ol g, 2 ). (4.25)
Ly(Bgy ) 1By

Furthermore, in order to bound w, from the definition of y and the second equation in
(4.22), we deduce that the following heat equation:

Bri—k K ) -1 -1 -1 -1
atw—TAw—@Ax—FQg—(l—H/ J(—A)""Ve+v w+r  (-A)"" V.
(4.26)
Noticing that
61/2—#9_ K
v v(1-8)

Since the real part of (1— ) is positive, we have Re(ﬁ”;;”) > 0. Thus, owing to the
high frequency cut-off, from Proposition 2.8 (ii) we have

ol ay el als

L (B, B
SC(HWoH’f@,HrHXIIh agy gl e A s Vel s
B, LB LB LB LB, )

el AT )
Li(Byy ) LBy, )

gl - a HIAR 4 27
) L ) LY(BP 1

h h
<C(llwol s, + X" u, |
By, Ly (B, +(Bya o LyBy )
Jr2—2lc0||WHh . Jr2—4ko”c“h L dio )’
+(Bpa LBy )

choosing kg large enough yields

ol ay el a,
(B t(Byy )

<O(lwoll" ay+ X" apy +llgl asy +IAIE o +IVEl
;il L% B;f,l ) Lfl( ;il ) L%(B;ﬁ Lfl,(B;il )
h — h
Pl a2 )
Li(Byy ) Li(By )
h h h h —2k h
<O(lwoll® a oy 41" ar +llgl® any +IAIE g 270l
B, LIBE, ) LEBE, ) LI(BY,) LIBE, )
r2 el ). (4.27)
Ly(BYy )

Putting (4.27) into (4.25) and taking kg large enough, we conclude that

p

”XHE L4 +HXHh .44
L?C(B;il % p,1
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(\|><o||h,_1+||g||h( oo HIA g 2 g £ 2 )

p1 pl t p,1 t\Bp1 Ll( p1 )
(4.28)
Further, using the fact Ve=2X-2 taking ko large enough, we obtain from (4.27) and

(4.28)

ITellt u FITel <ol +IAE g Hlelt ).
Ly (Byy ) Li(By, ) By Li(By, Ly(Byy )

(4.29)

p,1

Finally, keeping in mind that u=w — (—A)~'Ve+Pu, and employing (4.20) and (4.29),
we deduce that

Vel o +IM(Veul” 4,
LBy ) Li(Bg, )
<C(ITeowoll g, +UAI, g Hlall, oo ) (4:30)
P t p,1

Employing Proposition 2.7, for the last two terms on the right-hand side of (4.30), we
easily get for 1 <p<2d,

I o <0l , gl g HIV, el ).
LEBE)) ) LABEY) (BF))  LP(BE)
ol s <Ol o 90l ch g IVl e
LBy, ) L (Br, ) p,l) Ly (By B )
el g IVel L, aon +lel g ||c|| n ),

o i) L) Br

which implies that

||U||’£ - +||U\|h A +||C||'ioo 4 +HC||h ‘d+2)SCXp7o+CX§(f)- (4.31)

e B 1 pl e (Bpa p,1
Combining with (4.19) and (4.31), we finally conclude the following global a priori

estimates.

LEMMA 4.6. LetT>0,d>2, p€[2,min(4,2d/(d—2))] with, additionally, p#4 if d=2
and (c,u) be a solution to the system (3.1) on [0,T] x R%, that belongs to the space X,
defined in (1.6), we have

I, 0 < C (X0 + ek, o + ey, w), for YT, (432)

where
[(c;w)llx, ) = HCIIZ 4y Fllellf +IIUH‘i oyl
O e 212> LhBE) © (B2 LiBE?
+|ICH}1 d +||C||h 4o +Hu||h R 7
L& (BY, o1 Le(BY, ) Ly(BY,
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4.2. Global existence and uniqueness. In order to solve the system (3.1) by
fixed-point theorem, we define the following map

D (c,u) = (b,v) (4.33)
with (b,v) the solution to

Ob+dive = f(c,u),
0w — Av+Vb+V(—=A) b —kVAb=g(c,u), (4.34)
(b, v)]t=0 = (co, uo).

Obviously, to prove the existence part of the theorem, we just have to show that ® is a
contraction map in a ball of X,,. We define a ball B(O,R) centered at the origin by

B(0,R) = {(c,u) € X, :[l(eu)lx, ) gR}. (4.35)
Assuming R<1, from Lemma 4.6 we have

18w, < (Xp(0)+ ) B, o+ 1) %, 1))

§C<n+R2+R3)
<C(n+2R?). (4.36)
Choosing (R,n) such that
R<min{1,(4C)™'} and n<2R% (4.37)

Thus, from (4.36), we finally deduce that
(B(0,R)) C B(0, ).

In order to show ® is a contraction map, one chooses two elements (c1,u;) and (c2,uz)
in B(0,R). According to (4.34), (4.18) and (4.30), we have

[®(c1,u1) —P(ez,u2)l x, )

§C<||f(017U1)—f(027u2)||€ a oy Fllgler,un) —glezu)ll® 4,
Ly(B3, ) Ly(B3, )
1 f(er,ur) = fleau)* 0 +llglerur) —glezu)|” 4, ) (4.38)
Ly(B}) Ly(BY, )

Similar to the estimates (4.19) and (4.31), we get
[®(c1,u1) — P(ea,uz)| x, (1)
<CO[(e1 = e2,ur —ua) | x, ) (Il(ex,un) L, 1) + | (e2,u2) [ x, 1)) - (4.39)

From (4.37) we finally deduce that

1
[®(c1,u1) —P(ea,u2)llx, (1) < 5 ll(e1 —c2,ur —uz) | x, (1) (4.40)

|
and the proof of the existence part of Theorem 1.1 is achieved. Moreover, the uniqueness
part of Theorem 1.1 in B(0, R) naturally follows.
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