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STABILITY OF A COMPOSITE WAVE OF VISCOUS CONTACT
WAVE AND RAREFACTION WAVES FOR RADIATIVE AND

REACTIVE GAS WITHOUT VISCOSITY∗

GUIQIONG GONG† AND LIN HE‡

Abstract. The Cauchy problem of the 1D compressible radiative and reactive gas without viscosity
is studied in this paper. When the radiation effect is under consideration, the equations present high
nonlinearity, together with the lack of viscosity, which result in many more difficulties. When the
solution to the corresponding Riemann problem of the Euler equation consists of a contact discontinuity
and rarefaction waves, we proved that there exists a unique global-in-time solution and which tends
to the combination of a viscous contact wave and rarefaction waves asymptotically with small initial
data. The proof is given by the elementary energy method.
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1. Introduction
In this article, we investigate the Cauchy problem of a 1D compressible radiative

and reactive gas without viscosity:

vt−ux= 0,

ut+px= 0,(
e+

u2

2

)
t

+(up)x=

(
κ(v,θ)θx

v

)
x

+λϕz, (1.1)

zt=

(
dzx
v2

)
x

−ϕz,

in which, the unknowns are the specific volume v=v (t,x), the velocityu=u(t,x), the ab-
solute temperature θ=θ(t,x), and the mass fraction of the reactant z=z (t,x). While
the specific internal energy e and the pressure p are the functions of v and θ. The
constants d>0 and λ>0 are the species diffusion and the heat release coefficient, re-
spectively. And the heat conduction coefficient takes the form (cf. [1])

κ(v,θ) =κ1 +κ2vθ
b,

for some positive constants κ1,κ2 and b. The reaction rate function ϕ=ϕ(θ) is defined,
from the Arrhenius law [28], by

ϕ(θ) =Kθβ exp

(
−A
θ

)
, (1.2)

where the constants K>0 and A>0 are the coefficients of the rates of the reactant and
the activation energy, respectively, and β is a non-negative number.
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We treat the radiation as a continuous field and study both the wave and photonic
effect, and assume that the high-temperature radiation is at thermal equilibrium with
the fluid (cf. [3]). Then the pressure p and the internal energy e consist of a linear term
in θ corresponding to the perfect polytropic contribution and a fourth-order radiative
part due to the Stefan-Boltzmann radiative law [22,28]:

p(v,θ) =
Rθ

v
+
aθ4

3
, e(v,θ) =Cvθ+avθ4, (1.3)

where the constants R>0 and Cv>0 are the perfect gas constant and the specific heat,
respectively. a>0 is the radiation constant which measures the amount of heat that is
emitted by a black body, which absorbs all of the radiant energy that hits it, and will
emit all the radiant energy. It is defined as (cf. [22])

a=
4σ

c
=

8π5k4

15c3h3
, (1.4)

where σ is the Stefan-Boltzmann constant, c is the speed of light, k is Boltzmann
constant, and h is Planck’s constant. Numerically, a= 7.5657×10−16Jm−3K−4. In
general, the radiation constant a is much smaller than the perfect gas constant R and
the specific heat Cv.

In this article, we concern the system (1.1) with the following initial data and
far-field condition: {

(v,u,θ,z)(x,0) = (v0,u0,θ0,z0)(x), x∈R,

(v,u,θ,z)(±∞,t) = (v±,u±,θ±,z±), t>0,
(1.5)

where v±(>0), θ±(>0), u±(∈R) and z±(∈R) are given constants and the initial
data (v0(x),u0(x),θ0(x),z0(x)) are assumed to satisfy inf

x∈R
v0(x)>0, inf

x∈R
θ0(x)>0 and

(v0,u0,θ0,z0)(±∞) = (v±,u±,θ±,z±) as compatibility conditions.
If the viscosity of the fluid is under consideration, the system (1.1) is written as:

vt−ux= 0,

ut+px=µ
(ux
v

)
x
,(

e+
u2

2

)
t

+(up)x=

(
κ(v,θ)θx

v

)
x

+µ
(uux
v

)
x

+λϕz, (1.6)

zt=

(
dzx
v2

)
x

−ϕz.

This model was established to describe the dynamic combustion of a radiative-
reaction gas, which is closely related to the combustion theory (cf. [29]) and also the
evolution of a stellar (cf. [2]). Recently, the problem on the global solvability of com-
pressible viscous radiative reaction system (1.6) is a hot and interesting topic in the
field of nonlinear partial differential equations, which has attracted many mathemati-
cians and hobbyists to study this model and many results have been obtained. We
will only focus on the Cauchy problem in 1D case, for the initial-boundary value prob-
lem please refer to [1, 3, 16, 17, 24, 27, 28] and references therein, and [19, 25, 27, 30] and
references therein for the multidimensional case.

For the Cauchy problem to the compressible viscous radiative reaction gas model
(1.6), (1.5), if (v±,u±,θ±,z±), the far-field of initial data (v0(x),u0(x),θ0(x),z0(x)), is
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assumed to be (1,0,1,0), Liao and Zhao [20] established the time-asymptotic nonlinear
stability of the solution, if the far fields (v±,u±,θ±) are unequal, but z−=z+, Gong,
He and Liao [7] proved the nonlinear stability of rarefaction waves, while recently, the
time-asymptotic stability of viscous contact discontinuity was proved by Gong, Xu and
Zhao [8]. Besides, He, Liao, Wang and Zhao [9] studied the compressible Navier-Stokes
system for the viscous radiative gas. The proof is based on some analysis on uniform
positive lower and upper bounds of the specific volume and absolute temperature.

For the non-viscous case (i.e. µ= 0), if a= 0,z= 0 (i.e. a compressible heat conduc-
tive gas without viscosity), Fan and Matsumura [6] established the nonlinear stability
of the composition of viscous shock waves to this problem, while the nonlinear stability
of viscous contact waves was obtained by Ma and Wang [21]. Very recently, Fan, Gong
and Tang [5] constructed the stability of the composite of a viscous contact wave and
rarefaction waves.

Based on the above results, to the best of our knowledge, no result has been obtained
for the nonlinear stability of solutions to the non-viscous radiative and reactive gas so far.
So, in this paper, we will devote ourselves to this problem, precisely, we are concerned
with the stability of a composite wave of viscous contact wave and rarefaction waves for
the Cauchy problem (1.1)-(1.5) when the far-field states of the initial data are different.

Motivated by [5,7,8,11–15,20] and so on, we expect that the large-time asymptotic
profiles of solutions to the Cauchy problem (1.1)-(1.5) are the same as the compressible
Navier-Stokes system in the case of z+ =z−= 0. More precisely, we will show that the
large-time behavior of the solution to the Cauchy problem (1.1)-(1.5) can be described
by the corresponding compressible Euler system:

vt−ux= 0,

ut+px= 0,(
e+

u2

2

)
t

+(up)x= 0, (1.7)

zt= 0,

with Riemann initial data

(v(0,x),u(0,x),θ(0,x),z(0,x)) =

{
(v−,u−,θ−,0), x<0,

(v+,u+,θ+,0), x>0.
(1.8)

The rest of this paper is arranged as follows. In Section 2, we will first construct
the viscous contact wave and the rarefaction waves, and then some properties of the
viscous contact wave and rarefaction wave will be stated, at last we will present the
main results. Finally, in Section 3, we will focus on the main theorem, some a priori
estimates will be proved which leads to the main theorem immediately.

Notations: Throughout this paper, the notation C denotes a generic positive
constant, which may change from line to line. For two quantities A and B, A.B means
that there exists a constant C independent of δ, t and x such that A≤CB, while A∼B
means A.B and B.A. And Lp, Hs denote the usual Lebesgue space and Sobolev
space on R with norms ‖·‖Lp and ‖·‖s, respectively. For simplicity, we take ‖·‖ :=‖·‖L2

and ‖·‖L∞ :=‖·‖∞.

2. Preliminaries and main results
In this section, at first, we will construct the viscous contact wave and the com-

bination of viscous contact wave with two rarefaction waves for the Cauchy problem
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(1.1)-(1.5). Then the main results will be presented. For each (v−,u−,θ−,0), we denote
the neighborhood of (v−,u−,θ−,0) by Ω− defined as the following:

Ω−={(v,u,θ,z) : |(v−v−,u−u−,θ−θ−)|≤ δ̄,z= 0},

here δ̄ is a positive constant depending only on v−, u− and θ−. We can see our situation
takes place provided (v+,u+,θ+,0) is located on a quarter of a curved surface in a small
neighborhood of (v−,u−,θ−,0).

2.1. Viscous contact wave. As in [13, 14], we firstly construct the viscous

contact wave (ṽ, ũ, θ̃, z̃) for the system (1.1). For the Riemann problem (1.7), (1.8), it is

known that the contact discontinuity solution (Ṽ ,Ũ ,Θ̃,Z̃)(x,t) takes the form (cf. [26])

(Ṽ ,Ũ ,Θ̃,Z̃)(x,t) =

{
(v−,u−,θ−,0), x<0, t>0.

(v+,u+,θ+,0), x>0, t>0.
(2.1)

provided that

u−=u+, p−=
Rθ−
v−

+
aθ4
−

3
=p+ =

Rθ+

v+
+
aθ4

+

3
. (2.2)

In the setting of the system (1.1), the smooth approximate wave (ṽ, ũ, θ̃, z̃) to the contact
wave behaves as a diffusion wave due to the dissipation effect and we call this wave
“viscous contact wave”. Hence, we can construct viscous contact wave (ṽ, ũ, θ̃, z̃) as
follows (cf. [8, 13,14]).

Since the pressure for the profile (ṽ, ũ, θ̃, z̃) is expected to be constant asymptotically,
we set

p+ =
Rθ̃

ṽ
+
aθ̃4

3
, (2.3)

from (2.3) we can deduce that

ṽ=
Rθ̃

p+− 1
3aθ̃

4
, if p+−

1

3
aθ̃4>0. (2.4)

Besides, (2.3) indicates that the leading part of the energy equation (1.1)3 is

ẽt+p+ũx=
(
κ(ṽ, θ̃) θ̃xṽ

)
x
, (2.5)

where ẽ=Cv θ̃+aṽθ̃4.
By the equation ṽt= ũx, (2.4) and (2.5), one can obtain that[

∂ẽ

∂θ̃
+

(
∂ẽ

∂ṽ
+p+

)
∂ṽ(θ̃)

∂θ̃

]
∂θ̃

∂t
=

(
κ(ṽ, θ̃)

p+− 1
3aθ̃

4

Rθ̃
θ̃x

)
x

. (2.6)

If we note that

A(θ̃) =
∂ẽ

∂θ̃
+

(
∂ẽ

∂ṽ
+p+

)
∂ṽ(θ̃)

∂θ̃
, B(θ̃) =κ

(
ṽ(θ̃), θ̃

) p+− 1
3aθ̃

4

Rθ̃
,
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and notice that κ(ṽ, θ̃) =κ1 +κ2ṽθ̃
b>0, then (2.6) can be written as

A(θ̃)θ̃t=
(
B(θ̃)θ̃x

)
x
,

furthermore, if we take

Λ =H(θ̃),
dH(θ̃)

dθ̃
=A(θ̃),

by virtue of the fact that

∂ẽ

∂θ̃
=Cv+4aṽθ̃3>0,

∂ẽ

∂ṽ
=aθ̃4>0,

∂ṽ(θ̃)

∂θ̃
=
Rṽ+ 4

3aṽ
2θ̃3

Rθ̃
>0,

which implies H ′(θ̃)>0, thus (2.5) leads to a nonlinear diffusion equation

Λt=

(
B
(
H−1(Λ)

)
H ′(H−1(Λ))

Λx

)
x

, Λ(±∞,t) =H(θ±). (2.7)

If (2.4) holds true, we can deduce that B(θ̃)>0. Together with H ′(θ̃)>0, accord-
ing to [4, 10], the two-point boundary problem (2.7) has a unique self-similiar solution
Λ(x,t) = Λ(ζ),ζ= x√

1+t
. Furthermore, Λ(ζ) is monotone, increasing if H(θ+)>H(θ−)

and decreasing if H(θ−)>H(θ+). The monotonicity of Λ(ξ) and H ′(θ̃)>0 implies the

monotonicity of θ̃, thus with the help of (2.2) one has

p+−
1

3
aθ̃4≥min

{
Rθ−
v−

,
Rθ+

v+

}
, (2.8)

which means that (2.4) is always true.
Moreover, there exists some positive constant δ, such that for δ= |θ+−θ−|, Λ sat-

isfies

(1+ t)

∣∣∣∣Λxx( x√
1+ t

)∣∣∣∣+(1+ t)
1
2

∣∣∣∣Λx( x√
1+ t

)∣∣∣∣+ ∣∣∣∣Λ( x√
1+ t

)
−H(θ±)

∣∣∣∣. δe−C1x
2

1+t ,

(2.9)

where C1>0 is constant and depends only on θ±. Since θ̃ has positive upper bound

and lower bound and H ′(θ̃) is continuous, (2.9) leads to

(1+ t)

∣∣∣∣θ̃xx( x√
1+ t

)∣∣∣∣+(1+ t)
1
2

∣∣∣∣θ̃x( x√
1+ t

)∣∣∣∣+ ∣∣∣∣θ̃( x√
1+ t

)
−θ±

∣∣∣∣. δe−C2x
2

1+t , (2.10)

where C2>0 is constant and depends only on θ±. Once θ̃ is determined, the contact
wave profile (V c,U c,Θc,Zc)(x,t) is defined as follows:

V c=
R

p+− aθ̃4

3

θ̃, Θc= θ̃, U cx =V ct , Zc= 0. (2.11)

It’s easy to check that the contact wave (V c,U c,Θc,Zc)(x,t) solves the viscous
radiative and reactive gas system (1.1) time asymptotically, that is

V ct −U cx = 0,

U ct +P (V c,Θc)x=U ct ,

Ect +P (V c,Θc)U cx =

(
κ(V c,Θc)Θc

x

V c

)
x

,

Zc= 0,

(2.12)
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where

Ec=CvΘ
c+aV c(Θc)4. (2.13)

Now we can present our first main result as follows:

Theorem 2.1. For any given left state (v−,u−,θ−,0), suppose that the right state
(v+,u+,θ+,0)∈Ω− satisfies (2.2), let (V c,U c,Θc,Zc)(x,t) is the viscous contact wave
defined in (2.11) with strength δ= |θ+−θ−|. There exist two positive constants ε1 and δ1
which are only depend on (v−,u−,θ−,0), such that if δ<δ1 and the initial data satisfying

‖(v0(·)−V c(·,0),u0(·)−U c(·,0),θ0(·)−Θc(·,0),z0(·))‖2≤ ε1, (2.14)

then the Cauchy problem (1.1), (1.2) admits a unique global solution (v,u,θ,z)(t,x)
satisfies

(v−V c,u−U c,θ−Θc,z)(t,x)∈X ([0,+∞)),

and

lim
t→∞

sup
x∈R
|(v−V c,u−U c,θ−Θc,z)(x,t)|= 0, (2.15)

here the solution space X(I) will be defined later in (3.5).

2.2. Composition waves. When the relation (2.2) fails, the basic theory of
conservation laws (cf. [26]) shows that for any given constant state (v−,u−,θ−,0), if
(v+,u+,θ+,0)∈Ω− and δ is suitably small, the Riemann problem (1.5), (1.7) has a
unique solution. Hence, our next aim is to study the stability of superposition of a
viscous contact wave with rarefaction waves. Precisely, we suppose that

(v+,u+,θ+,0)∈R1CR3(v−,u−,θ−,0)⊆Ω−, (2.16)

where

R1CR3(v−,u−,θ−,0) :=

{
(v,u,θ,z)∈Ω−

∣∣∣∣s 6=s−,z= 0,

u≥u−−
∫ ec(s−−s)v

v−

λ1(η,s−)dη, u≥u−−
∫ v−

ec(s−s−)v

λ3(η,s)dη

}
,

(2.17)

in which λ1(v,s) =−
√
−p̂v(v,s), λ3(v,s) =−λ1(v,s) and p̂(v,s) =p(v,θ(v,s)), where s is

entropy which is defined as follows:

s=Cv lnθ+4av
θ3

3
+R lnv, s±=Cv lnθ±+4av±

θ3
±
3

+R lnv±. (2.18)

It is known that if some sufficiently small δ1>0 such that for

|θ−−θ+|≤ δ1,

then there exists a unique pair of points (vm− ,u
m,θm− ,0) and (vm+ ,u

m,θm+ ,0) in Ω− such
that

Rθm−
vm−

+
a(θm− )4

3
=
Rθm+
vm+

+
a(θm+ )4

3
:=pm, (2.19)
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and

|vm± −v±|+ |um−u±|+ |θm± −θ±|. |θ+−θ−|. (2.20)

Moreover, the states (vm− ,u
m,θm− ,0) and (vm+ ,u

m,θm+ ,0) belong to the 1-rarefaction wave
curve R−(v−,u−,θ−,0) and the 3-rarefaction wave curve R+(v+,u+,θ+,0) respectively,
where

R−(v−,u−,θ−,0) =

{
(v,u,θ,z)

∣∣∣∣∣u=u−−
∫ v

v−

λ1(η,s−)dη,v>v−,s=s−,z= 0

}
,

R+(v+,u+,θ+,0) =

{
(v,u,θ,z)

∣∣∣∣∣u=u+−
∫ v

v+

λ3(η,s+)dη,v>v+,s=s+,z= 0

}
,

which means the state (v−,u−,θ−,0) connects with (vm− ,u
m,θm− ,0) by the 1-rarefaction

wave r1 := (vr1,u
r
1,θ

r
1,0)(xt ), and (vm+ ,u

m,θm+ ,0) connects with (v+,u+,θ+,0) by the 3-
rarefaction wave r3 := (vr3,u

r
3,θ

r
3,0)(xt ). In other words, the 1-rarefaction wave is the

weak solution of Riemann problem of the Euler system (1.7)-(1.8) with the following
Riemann data

r1(x,0) =

{
(v−,u−,θ−,0), x<0,

(vm− ,u
m,θm− ,0), x>0,

and the 3-rarefaction wave with Riemann data as

r3(x,0) =

{
(vm+ ,u

m,θm+ ,0), x<0,

(v+,u+,θ+,0), x>0.

To study the stability problem, we need to construct the smooth approximations of
the rarefaction waves. Motivated by [18], we begin to recall the problem of the Burgers
equation: {

wrt +wrwrx= 0, x∈R, t>0,

wr(0,x) =wr0(x) := 1
2

(
wr+wl

)
+ 1

2

(
wr−wl

)
tanh(x).

(2.21)

Let wl=λ1(v−,s−),wr =λ1(vm− ,s−) and w(x,t) be the unique global solution of (2.21),
then the smooth approximation of the 1-rarefaction wave can be defined by Rr1(x,t) :=
(V r1 ,U

r
1 ,Θ

r
1,0)(x,t) as 

λ1(V r1 ,s−) =w(x,t),

Ur1 =u−−
∫ V r1
v−

λ1(η,s−)dη,

Θr
1 = θ̂(V r1 ,s−),

Zr1 = 0.

(2.22)

Meanwhile, if we take wl=λ3(vm+ ,s+),wr =λ3(v+,s+), the smooth approximation of the
3-rarefaction wave is given by Rr3(x,t) := (V r3 ,U

r
3 ,Θ

r
3,0)(x,t) constructed by the same

way as (2.22) 
λ3(V r3 ,s+) =w(x,t),

Ur3 =u+−
∫ V r3
v+

λ3(η,s+)dη,

Θr
3 = θ̂(V r3 ,s+),

Zr3 = 0.

(2.23)
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Due to the conditions (2.19), (2.20), (vm− ,u
m,θm− ,0) is connected to (vm+ ,u

m,θm+ ,0)
by the viscous contact wave (V c,U c,Θc,0)(x,t) constructed in (2.11). Motivated by [11],
we divide R× [0,t] into three parts R× [0,t] = Ω1∪Ωc∪Ω3 with

Ω1 =
{

(x,t)|2x<λ1(vm− ,s−)t
}
,

Ω3 =
{

(x,t)|2x>λ3(vm+ ,s+)t
}
,

Ωc=
{

(x,t)|λ1(vm− ,s−)t≤2x≤λ3(vm+ ,s+)t
}
.

(2.24)

Then, we show some properties of the rarefaction waves Rri (x,t)(i= 1,3) and viscous
contact wave (V c,U c,Θc,0)(x,t) as follows:

Lemma 2.1 (cf. [5, 11]). For any given left state (v−,u−,θ−,0), assume that the right
state (v+,u+,θ+,0)∈R1CR3(v−,u−,θ−,0)⊂Ω−, then we have the smooth rarefaction
wave (V ri ,U

r
i ,Θ

r
i ,0)(i= 1,3) and (V c,U c,Θc,0)(t,x) satisfying:

(1) (Uri )x>0(i= 1,3) for all x∈R, t>0.

(2) For 1≤p≤∞, it holds that

‖(V ri ,Uri ,Θr
i )x (t)‖

Lp
.min

{
δ,δ

1
p (1+ t)−1+ 1

p

}
, i= 1,3,

‖(V ri ,Uri ,Θr
i )xx(t)‖Lp .min

{
δ,(1+ t)−1

}
, i= 1,3.

(3) In Ωc, we have

|(V ri ,Uri ,Θr
i )x|+ |V ri −vmi |+ |Θr

i −θmi |. δe−c(|x|+t), i= 1,3,

and in Ωi we have

|V cx |+ |Θc
x|+ |V c−vm− |+ |U cx|+ |Θc−θm− |. δe−c(|x|+t), i= 1,

|V cx |+ |Θc
x|+ |V c−vm+ |+ |U cx|+ |Θc−θm+ |. δe−c(|x|+t), i= 3,

|(V r3 )x+(Ur3 )x|+ |V r3 −vm+ |+ |(Θr
3)x|+ |Θr

3−θm+ |. δe−c(|x|+t), i= 1,

|(V r1 )x+(Ur1 )x|+ |V r1 −vm− |+ |(Θr
1)x|+ |Θr

1−θm− |. δe−c(|x|+t), i= 3.

(4) For the rarefaction wave (vri ,u
r
i ,θ

r
i )
(
x
t

)
(i= 1,3), it holds

lim
t→∞

sup
x∈R

∣∣(V ri ,Uri ,Θr
i )(x,t)−(vri ,u

r
i ,θ

r
i )
(
x
t

)∣∣= 0, i= 1,3.

Set (V,U,Θ,Z)(x,t) as
V (x,t) =V r1 (x,t)+V c(x,t)+V r3 (x,t)−vm− −vm+ ,
U(x,t) =Ur1 (x,t)+U c(x,t)+Ur3 (x,t)−2um,

Θ(x,t) = Θr
1(x,t)+Θc(x,t)+Θr

3(x,t)−θm− −θm+ ,
Z(x,t) = 0.

(2.25)

Our second main result can be stated as follows:

Theorem 2.2. For any given left state (v−,u−,θ−,0), assume that the right state
(v+,u+,θ+,0)∈R1CR3(v−,u−,θ−,0)⊆Ω− with |θ+−θ−|≤ δ1. There exist three positive
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constants ε2, a0 and δ2(≤min{δ,δ1}), such that 0<a<a0 and δ<δ2 and the initial data
satisfying

‖(v0(·)−V (·,0),u0(·)−U(·,0),θ0(·)−Θ(·,0),z0(·))‖2≤ ε2, (2.26)

then the Cauchy problem (1.1), (1.2) admits a unique global solution (v,u,θ,z)(x,t)
satisfies

(v−V,u−U,θ−Θ,z−Z)∈X([0,+∞)),

and

lim
t→∞

sup
x∈R
|(v−V,u−U,θ−Θ,z)(x,t)|= 0, (2.27)

here the solution space X(I) is defined in (3.5).

Remark 2.1. Some remarks to the Theorem 2.2 can be listed as below:

• Compared to Theorem 2.1, there is a smallness condition imposed on the radi-
ation constant a in Theorem 2.2, due to the appearance of the rarefaction wave
(for details please refer to (3.20)). It’s worth to point out that this condition
is not needed in the stability analysis of the single contact wave (cf. [8]). That
would be an interesting problem to consider the stability of rarefaction wave
without the smallness of the radiative constant a.

• If z= 0,a= 0 and κ2 = 0, our results degenerate to the results obtained in [5].

• This is the first result considering the stability of 1D compressible Navier-
Stokes-type system for a radiative and reactive gas without viscosity, while the
corresponding stability of viscous shock profile is still open. Another interesting
problem is to study the case that z− 6=z+, however, this is still an open problem
for both viscous and non-viscous cases.

We now introduce some difficulties we encountered and some main strategies we used
in this paper. The first difficulty is that the absence of viscosity leads to the system
(1.1) being less dissipative than the viscous ones considered in the literature before. In
the case that µ>0, Gong, He and Liao [7] observe some cancellations between the flux
terms and viscosity terms for a viscous radiative and reactive gas. Then, by elementary
energy method, they derive the dissipative mechanisms induced by the viscosity and
conductivity which contribute to prove the nonlinear stability of rarefaction waves for
a viscous radiative and reactive gas with large initial perturbation. However, if we
neglect the viscosity, for compressible Navier-Stokes-type system for a compressible,
radiative and reactive gas, we do not have a good estimate for the derivatives of u.
Hence, the above argument can not be used anymore. This difficulty was first solved
by Fan and Matsumura in [6], which shows that if the strengths of the viscous waves
and the initial perturbation are suitably small, there exists a unique global-in-time
solution and asymptotically tends toward the corresponding viscous contact wave or the
composition of a viscous contact wave with rarefaction waves. Our result generalizes
the corresponding results of the compressible Navier-Stokes obtained by Huang, Li and
Matsumura in [11] for the case that the viscous coefficient µ>0 and the heat conduction
coefficient κ>0 and also the results obtained by Fan, Gong and Tang [5] for the case
that µ= 0,κ>0, and extends the result of Ma and Wang [21] for the nonlinear stability
of the viscous contact waves.

And the second difficulty is how to control the possible growth of its solutions
caused by the nonlinearity and the interaction of waves from different families in the
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stability of composite waves. Motivated by Huang, Li and Masumura [11], similar to
Gong, He and Liao [7], we make full use of the properties of the rarefaction wave that
(Ur1 )x>0, (Ur3 )x>0, and furthermore we need the term ((Ur−)x+(Ur+)x)Q1 (see (3.17),
(3.18), (3.19)) to be positive to control the possible growth of the solution, it’s where
the condition that the radiative constant a is small, is imposed.

3. Stability analysis

In this section, we show the asymptotic behavior of the solution for non-viscous
compressible Navier-Stokes-type system for a radiative and reactive gas (1.1)-(1.5). If
(vm± ,u

m,θm± ,0) = (v±,u±,θ±,0), Theorem 2.2 will coincide with the result of Theorem
2.1, therefore we omit the proof of the Theorem 2.1 for brevity, and we will prove the
stability of the composition wave only.

3.1. Reform the system. Note that the composition wave (V,U,Θ,Z)(x,t)
defined in (2.25) satisfies 

Vt−Ux= 0,

Ut+Px=−R1,

Et+PUx= (κ(V,Θ)Θx
V )x−R2,

Z= 0,

(3.1)

where

E :=CvΘ+aVΘ4,

P :=
RΘ

V
+
aΘ4

3
, Pi=

RΘr
i

V ri
+
a(Θr

i )
4

3
(i= 1,3),

R1 :=−(P −P1−P3−pm)x+U ct :=R1
1 +U ct , (3.2)

R2 :={(pm−P )U cx+(P1−P )Ur1x+(P3−P )Ur3x}

+

{(
κ(V,Θ)Θx

V

)
x

−
(
κ(V c,Θc)Θc

x

V c

)
x

}
:=R1

2 +R2
2.

Let the perturbation is

(φ,ψ,ξ,z) := (v,u,θ,z)−(V,U,Θ,0),

then the reformed equations are

φt−ψx= 0,

ψt+(p−P )x=R1,

Cvξt+a(vθ4−VΘ4)t+pψx+(p−P )Ux

=
(
κ(v,θ)ξx

v − κ(v,θ)Θxφ
vV + κ(v,θ)−κ(V,Θ)

V Θx

)
x

+λϕz+R2,

zt=
(
dzx
v2

)
x
−ϕz,

(3.3)

with the initial data

(φ,ψ,ξ,z)(x,0) = (φ0,ψ0,ξ0,z0)(x)

= (v0(x)−V (x,0),u0(x)−U(x,0),θ0(x)−Θ(x,0),z0(x)).
(3.4)
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The solution space is defined as

X([0,T ]) :=


(φ,ψ,ξ,z)(x,t)

∣∣∣∣∣∣∣∣∣∣∣∣∣

(φ,ψ,ξ)(x,t)∈C([0,T ],H1(R)),

(φx,ψx)(x,t)∈L2([0,t),H1(R)),

ξx∈L2([0,T ],H2(R)),

z(x,t)∈C([0,T ],H1(R)∩L1(R)),

0≤z(x,t)≤1, (x,t)∈R× [0,T ],

z∈L2([0,T ],H3(R)).


(3.5)

The local existence is known in [23].

Proposition 3.1 (Local existence). Under the assumptions stated in Theorem
2.1, the Cauchy problem (3.3), (3.4) admits a unique smooth solution (φ,ψ,ξ,z)(x,t)∈
X([0,t1]) for some sufficiently small t1>0, and (φ,ψ,ξ,z)(x,t) satisfies

sup
0≤t≤t1

‖(φ,ψ,ξ,z)(t)‖22≤2‖(φ0,ψ0,ξ0,z0)‖22. (3.6)

Suppose that (φ,ψ,ξ,z)(x,t) has been extended to the time T >t1, we need to derive
the following a priori estimates to get a global solution.

Proposition 3.2 (A prior estimates). Under the assumptions listed in Theorem 2.2,
there exist positive constants ε2≤1, δ2≤min{δ1,δ,1}, a2 and C, such that if (φ,ψ,ξ,z)∈
X([0,T ]) for some T >0 is a solution of (3.3), (3.4) and satisfying

N(T ) = sup
0≤τ≤T

‖(φ,ψ,ξ,z)(τ)‖2≤ ε2, δ= |θ−−θ+|<δ2, a<a2, (3.7)

then we have the following estimate

sup
0≤τ≤T

‖(φ,ψ,ξ,z)(τ)‖22 +

∫ T

0

(
‖(φx,ψx)(τ)‖21 +‖ξx(τ)‖22 +‖z(τ)‖23

)
dτ

.‖(φ0,ψ0,ξ0,z0)‖22 +δ
1
8 . (3.8)

Once Proposition 3.2 is proved, we can use the standard continuation argument
to extend the unique local solution (φ,ψ,ξ,z)(x,t) obtained in Proposition 3.1 to be a
global solution, that is T =∞. Moreover, the estimate (3.8) implies that∫ ∞

0

(
‖(φx,ψx,ξx,zx)(t)‖2 +

∣∣∣∣ ddt ‖(φx,ψx,ξx,zx)(t)‖2
∣∣∣∣)dτ .+∞, (3.9)

which together with Sobolev inequality leads to the asymptotic behavior (2.27), this
concludes the proof of Theorem 2.1. Therefore, in the rest of this section, our main
work is to prove these a prior estimates.

3.2. A Priori estimates. Firstly, we prove the basic estimates.

Lemma 3.1. Under the assumptions in Proposition 3.2, then

‖z(t)‖L1 +

∫ t

0

∫
R
ϕzdxdτ .‖z0‖L1 ,

‖z(t)‖2 +

∫ t

0

∫
R

(
d

v2
z2
x+ϕz2

)
dxdτ .‖z0‖2,

(3.10)
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R
η(t,x)dx+

∫ t

0

∫
R

[
(Ur1x+Ur3x)(φ2 +ξ2)+ξ2

x

]
dxdτ

.
∫
R
η0dx+‖z0‖L1 +δ

1
8 +δ

1
8

∫ t

0

‖(φx,ψx)(τ)‖2dτ

+δ

∫ t

0

1

1+τ

∫
R

(φ2 +ξ2)e
−cx2
1+τ dxdτ. (3.11)

Proof. Inequalities (3.10)1 and (3.10)2 follows directly from (3.3)4 and integration
by parts, the specific proof process is omitted. Now we devote our efforts to the last
inequality. Firstly, multiplying (3.3)1 by −RΘ

(
1
v −

1
V

)
, (3.3)2 by ψ and (3.3)3 by ξ

θ ,
respectively, and noticing that

−RΘ
(1

v
− 1

V

)
φt=

{
RΘΦ

( v
V

)}
t

+
RΘUx
vV 2

φ2−RΘtΦ
( v
V

)
,

Cv
ξ

θ
ξt=

{
CvΦ

( θ
Θ

)}
t

+Cv
Θt

Θθ
ξ2−CvΘtΦ

( θ
Θ

)
,

(3.12)

then adding the resultant equations together, by a tedious calculation, we can get that

ηt+Q+N =H1x+ψR1 +
ξ

θ
R2 +

λϕzξ

θ
, (3.13)

here

η=
1

2
ψ2 +RΘΦ

( v
V

)
+CvΘΦ

(
θ

Θ

)
+
a

3
vξ2
(
3θ2 +2θΘ+Θ2

)
, (3.14)

in which Φ(y) =y−1− lny, and

Q=−RΘtΦ
( v
V

)
+
RΘ

V 2v
Uxφ

2 +Cv
Θt

Θθ
ξ2−CvΘtΦ

(
θ

Θ

)
+
ξ

θ

(
Rθ

v
− RΘ

V

)
Ux+

a

3θ
(4Θ3 +3Θ2θ+2Θθ2 +θ3)Uxξ

2

+
4aV

3θ
Θtξ

2(3Θ2 +2θ+θ2)+
4aΘt

3
(θ2 +θΘ+Θ2)φξ+

κ(v,θ)Θ

vθ2
ξ2
x,

N =
κ(v,θ)Θ2

x

vθ2V
ξφ− κ(v,θ)ΘΘx

vV
φξx−

κ(v,θ)Θx

vθ2
ξξx

+
Θx(Θxξ−Θξx)(κ(v,θ)−κ(V,Θ))

V θ2
,

H1 =
ξ

θ

(
κ(v,θ)θx

v
− κ(V,Θ)Θx

V

)
−(p−P )ψ,

(3.15)

From (3.1), making use of the relation that Ux=Ur1x+U cx+Ur3x, we can deduce that

−Θt=
1

Cv+4aVΘ3

[(
aΘ4 +P

)
Ux−

(
κ(V,Θ)Θx

V

)
x

+R2

]
=

aΘ4 +P

Cv+4aVΘ3
(Ur1x+Ur3x)

+
1

Cv+4aVΘ3

[(
aΘ4 +P

)
U cx−

(
κ(V,Θ)Θx

V

)
x

+R2

]
:=D(V,Θ)(Ur1x+Ur3x)+F (V,U,Θ).
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A further calculation shows that

F (V,U,Θ)

=
1

Cv+4aVΘ3

[(
aΘ4 +P

)
U cx−

(
κ(V,Θ)Θx

V

)
x

+R2

]
=

1

Cv+4aVΘ3

[(
aΘ4 +P

)
U cx−

(
κ(V c,Θc)Θc

x

V c

)
x

−(pm−P )U cx

]
− 1

Cv+4aVΘ3

[
(P1−P )(Ur1 )x+(P3−P )(Ur3 )x

]
.|(U cx,V cx ,Θc

x,Θ
c
xx)|+δ|(Ur1x,Ur3x)|.

Thus the term Q can be rewritten as

Q= (Ur1x+Ur3x)Q1 +Q2 +
κ(v,θ)Θ

vθ2
ξ2
x, (3.16)

where

Q1 =CvD(V,Θ)

{
R

Cv
Φ
( v
V

)
−Φ

(
Θ

θ

)
+
φ2

V v
+

V ξ

RΘθ

(
Rθ

v
− RΘ

v

)}
+

(
1− V CvD(V,Θ)

RΘ

)(
R

θv
ξ2− RΘ

V vθ
ξφ+

RΘ

V 2v
φ2

)
≥CvD(V,Θ)

{
Φ
( v
V

)
+Φ

(
θV

Θv

)}
+

(
1− V CvD(V,Θ)

RΘ

)(
R

θv
ξ2− RΘ

V vθ
ξφ+

RΘ

V 2v
φ2

)
, (3.17)

Q2 =F (V,U,Θ)

(
RΦ

( v
V

)
−CvΦ

(
Θ

θ

))
+
RΘUc

x

V 2v
φ2 +

ξ

θ

(
Rθ

v
− RΘ

V

)
Uc

x

+
a

3θ
(4Θ3 +3Θ2θ+2Θθ2 +θ3)Uxξ

2 +
4aV

3θ
Θtξ

2(3Θ2 +2θ+θ2)+
4aΘt

3
(θ2 +θΘ+Θ2)φξ.

For Q1, we observe that∣∣∣∣1− V CvD(V,Θ)

RΘ

∣∣∣∣= ∣∣∣∣ 4aVΘ2(3R−Cv)
3R2(Cv+4aVΘ3)

∣∣∣∣∼a, (3.18)

and

Φ
( v
V

)
+Φ

(
θV

Θv

)
& ξ2 +φ2,

R

θv
ξ2− RΘ

V vθ
ξφ+

RΘ

V 2v
φ2 . ξ2 +φ2, (3.19)

so, if we assume a<a1 small enough, then we have that

Q1 &φ
2 +ξ2. (3.20)

For Q2, its easy to check that

Q2 . |(U cx,V cx ,Θc
x,Θ

c
xx)|(φ2 +ξ2)+(δ+a)|(Ur1x,Ur3x)|(φ2 +ξ2).

Meanwhile, for the term N

|N |. 1

8
ξ2
x+Θ2

x

(
φ2 +ξ2

)
, (3.21)
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where

Θ2
x.(Θr

1x)2 +(Θr
3x)2 +(Θc

x)2

.(Θr
1x)2 +(Θr

3x)2 +
δ

1+ t
e
−cx2
1+t . (3.22)

Lastly, we need to get some estimates on R1 and R2, which are defined in (3.2), by

using Lemma 2.1. Since pm= RΘc

V c + a(Θc)4

3 , direct calculation yields that

R1
1 =(P1 +P3 +pm−P )x

=R

(
Θr

1

V r1
+

Θr
3

V r3
+

Θc

V c
− Θ

V

)
x

+
a

3

(
(Θr

1)4 +(Θr
3)4 +(Θc)4−Θ4

)
x

:=R11
1 +R12

1 , (3.23)

where

R11
1 =R

(
Θr

1

V r1
+

Θr
3

V r3
+

Θc

V c
− Θ

V

)
x

=RΘr
1x

(
(V r1 )−1−V −1

)
+RΘr

3x

(
(V r3 )−1−V −1

)
+RΘc

x((V c)−1−V −1)+RV r1x

(
Θ

V 2
− Θr

1

(V r1 )2

)
+RV r3x

(
Θ

V 2
− Θr

3

(V r3 )2

)
+RV cx

(
Θ

V 2
− Θc

(V c)2

)
. (3.24)

By virtue of Lemma 2.1 (3), it is easy to compute∣∣Θr
1x((V r1 )−1−V −1)

∣∣. |Θr
1x|
(
|V r3 −vm+ |+ |V c−vm− |

)
. δe−c(|x|+t),

and we can treat the other terms on the right-hand side of (3.24) in the same way to
obtain

|R11
1 |. δe−c(|x|+t), (3.25)

and similarly, for R12 we have

R12
1 =

a

3

(
(Θr

1)4 +(Θr
3)4 +(Θc)4−Θ4

)
x

=
4a

3

[
(Θr

1)3Θr
1x+(Θr

3)3Θr
3x+(Θc)3Θc

x−Θ3Θx

]
=

4a

3

[
Θr

1x((Θr
1)3−Θ3)+Θr

3x((Θr
3)3−Θ3) + Θc

x((Θc)3−Θ3)+Θ3(θm− +θm+ )
]

=
4a

3
Θr

1x(Θr
1−Θ)

[
(Θr

1)2 +Θr
1Θ+Θ2

]
+

4a

3
Θr

3x(Θr
3−Θ)

[
(Θr

3)2 +Θr
3Θ+Θ2

]
+

4a

3
Θc
x(Θc−Θ)

[
(Θc)2 +ΘcΘ+Θ2

]
:=R121

1 +R122
1 +R123

1 , (3.26)

where ∣∣R121
1

∣∣.|Θr
1x|(|Θr

3−θm+ |+ |Θc−θm− |)

.|Θr
1x|Ω3

⋃
Ωc +(|Θr

3−θm+ |+ |Θc−θm− |)Ω1

.δe−c(|x|+t),
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same to R121
1 , we have ∣∣R122

1

∣∣. δe−c(|x|+t), ∣∣R123
1

∣∣. δe−c(|x|+t),
consequently, ∣∣R12

1

∣∣= |R121
1 |+ |R122

1 |+ |R123
1 |. δe−c(|x|+t),

then, we can obtain ∣∣R1
1

∣∣= ∣∣R11
1

∣∣+ |R12
1 |. δe−c(|x|+t).

So, it holds that

|R1|. |R1
1|+ |U ct |. δe−c(|x|+t) +δ(1+ t)−

3
2 e
−cx2
1+t . (3.27)

Similarly, we derive from (3.2) and Lemma 2.1 that∣∣R1
2

∣∣. δe−c(|x|+t).
Since

R2
2 =
(
κ(V,Θ)

Θx

V
−κ(V c,Θc)

Θc
x

V c

)
x

=κ(V,Θ)

(
Θx

V
−Θc

x

V c

)
x

+κx(V,Θ)

(
Θx

V
−Θc

x

V c

)
+(κ(V,Θ)−κ(V c,Θc))

(
Θc
x

V c

)
x

+(κx(V,Θ)−κx(V c,Θc))

(
Θc
x

V c

)
:=R21

2 +R22
2 +R23

2 +R24
2 ,

where

R21
2 +R22

2 =κ(V,Θ)

(
Θx

V
−Θc

x

V c

)
x

+κx(V,Θ)

(
Θx

V
−Θc

x

V c

)
=κ(V,Θ)

(
(Θr

1)x
V

+
(Θr

3)x
V

)
x

+κ(V,Θ)

(
Θc
x

V
−Θc

x

V c

)
x

+κx(V,Θ)

(
Θx

V
−Θc

x

V c

)
:=R211

2 +R212
2 +R213

2 .

For R211
2 , a direct calculation shows

R211
2 .(|(Θr

1)xx|+ |(Θr
3)xx|+ |(Θr

1)x(V r1 )x|+ |(Θr
3)x(V r3 )x|)

+ |(Θr
1)x|(|(V r3 )x|+ |V cx |)+ |(Θr

3)x(V r1 )x|+ |V cx |) ,

it follows from (2.10) and Lemma 2.1 that

|R211
2 |. δ

1
8 (1+ t)−

7
8 ,

similarly, for R212
2 and R213

2 we have

|R212
2 |.

(
|Θc
xx|+ |Θc

x||V cx |
)(
|V r+−vm+ |+ |V r−−vm− |

)
+ |Θc

x|
(
|(V r−)x|+ |(V r+)x|

)
.δe−c(|x|+t),

|R213
2 |.(|Vx|+ |Θx|)

(
|Θx−Θc

x|
V

+ |Θc
x|
)
. δ

1
8 (1+ t)−

7
8 .
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Thus we derive that

|R21
2 +R22

2 |. δ
1
8 (1+ t)−

7
8 .

By the same way, it holds that

|R23
2 |. δe−c(|x|+t), |R24

2 |. δe−c(|x|+t),

therefore, we obtain

|R2|. δ
1
8 (1+ t)−

7
8 . (3.28)

Similarly, we can also have

|(R1x,R1xx)(x,t)|. δe−c(|x|+t) +
δ

(1+ t)
3
2

e
−cx2
1+t ,

|(R2x,R2xx)(x,t)|. δ 1
8 (1+ t)−

7
8 .

(3.29)

Then integrating (3.13) on [0,t]×R and using the Lemma 2.1 and the above estimates,
and taking a and δ small enough, we have∫

R
η(t,x)dx+

∫ t

0

∫
R

[
(|Ur1x|+ |Ur3x|)(φ2 +ξ2)+ξ2

x

]
dxdτ

.
∫
R
η0dx+‖z0‖L1 +δ

∫ t

0

1

1+τ

∫
R
(φ2 +ξ2)e

−cx2
1+τ dxdτ

+

∫ t

0

∫
R

[
(Θr

1x)2 +(Θr
3x)2

]
(φ2 +ξ2)dxdτ+

∫ t

0

∫
R

(|ψ||R1|+ |ξ||R2|)dxdτ. (3.30)

Noticing that |(Θr
1x,Θ

r
3x)|. δ 1

8 (1+ t)−
7
8 , one can easily get∫ t

0

∫
R

((Θr
1x)2 +(Θr

3x)2)(φ2 +ξ2)dxdτ

.δ
1
4

∫ t

0

‖(φ,ξ)‖2∞(1+τ)−
7
4 dτ . δ

1
4 ‖(φ,ξ)‖21

∫ t

0

(1+τ)−
7
4 dτ

.N(T ) ·δ 1
4 . (3.31)

For the last term in (3.30), we can derive the following estimate∫ t

0

∫
R

(|ψ||R1|+ |ξ||R2|)dxdτ

. δ
∫ t

0

‖ψ‖∞
(∫

R
e−c(|x|+τ)dx+

∫
R

δ

(1+τ)
3
2

e
−cx2
1+τ dx

)
dτ+δ

1
8

∫ t

0

‖ξ‖∞(1+τ)−
7
8 dτ

. δ
∫ t

0

‖ψ‖ 1
2 ‖ψx‖

1
2 (1+τ)−1dτ+δ

1
8

∫ t

0

‖ξ‖ 1
2 ‖ξx‖

1
2 (1+τ)−

7
8 dτ

. δ
1
8

∫ t

0

‖(ψx,ξx)‖2dτ+δ
1
8

∫ t

0

‖(ψ,ξ)‖ 2
3 (1+τ)−

7
6 dτ

. δ
1
8

∫ t

0

‖(ψx,ξx)‖2dτ+δ
1
8 . (3.32)
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Inserting (3.31) and (3.32) into (3.30), then we can derive (3.11) and complete the proof
of Lemma 3.1.

Lemma 3.2 (cf. [8, 11]). Under the assumptions in Proposition 3.2, we have∫ t

0

1

1+τ

∫
R

(φ2 +ψ2 +ξ2)e−
cx2

1+τ dxdτ

.1+

∫ t

0

‖(φx,ψx,ξx)‖2dτ+

∫ t

0

∫
R

(|(Ur1 )x|+ |(Ur3 )x|)(φ2 +ξ2)dxdτ. (3.33)

Same as in [11], for α>0, we define the important heat kernel ω(x,t) as follows

ω(x,t) = (1+ t)−
1
2 e−

αx2

1+t ,

if we take note that

F (x,t) =v2(p−P )2 +Pvψ2

=
[
Rξ+

a

3
(vθ4−VΘ4)−Pφ

]2
+Pvψ2,

G(x,t) =
[
Cvξ+a(vθ4−VΘ4)+Pφ

]2
,

and by a direct calculation, we have that

F (x,t)+G(x,t)& ξ2 +φ2 +ψ2.

Then the proof of (3.33) can be divided into two parts:∫ t

0

∫
R
ω2F (x,t)dxdτ .1+

∫ t

0

‖(φx,ψx,ξx)(τ)‖2dτ+δ

∫ t

0

∫
R
ω2(φ2 +ψ2 +ξ2)dxdτ

+

∫ t

0

∫
R

(|Ur1x|+ |Ur3x|)(φ2 +ξ2)dxdτ+

∫ t

0

∫
R
ϕzdxdτ, (3.34)

and for any η̃ >0,∫ t

0

∫
R
ω2G(x,t)dxdτ

.1+

∫ t

0

‖(φx,ψx,ξx)(τ)‖2dτ+(δ+ η̃)

∫ t

0

∫
R
ω2(φ2 +ψ2 +ξ2)dxdτ

+

∫ t

0

∫
R

(|Ur1x|+ |Ur3x|)(φ2 +ξ2)dxdτ+

∫ t

0

∫
R
ϕzdxdτ. (3.35)

The proof of (3.34) and (3.35) are same as that in [8,11] but more tedious, we will omit
the details for brevity. Now we turn to deal with the higher order estimates.

Lemma 3.3. Under the assumptions in Proposition 3.2, we derive that

‖(φx,ψx,ξx,zx)(t)‖2 +

∫ t

0

‖ξxx(τ)‖2 +‖zxx(τ)‖2dτ

.‖(φ0x,ψ0x,ξ0x,z0x)‖2 +δ+(δ+N(t))

∫ t

0

‖(φx,ψx)(τ)‖21dτ. (3.36)
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Proof. Multiplying (3.3)1x by P
v φx, (3.3)2x by ψx, (3.3)3x by ξx

θ and (3.3)4x by
zx, respectively, and adding the resulting equations together, then{

P

2v
φ2
x+

ψ2
x

2
+
Cvξ

2
x

2θ
+
z2
x

2

}
t

+
κ

vθ
ξ2
xx+

d

v2
z2
xx+ϕz2

x+H2x+J

=R1xψx+R2x
ξx
θ
, (3.37)

where

H2 =
ξx
θ

((κ(v,θ)ξx
v

− κ(v,θ)Θxφ

vV

)
x
−
[
(κ(v,θ)−κ(V,Θ))

Θx

V

]
x

)
+(

dzx
v2

)xzx

+
ξx
θ

(
(p−P )Ux+(avθ4−aVΘ4)t

)
+
(
(p−P )x+(avθ4−aVΘ4)x

)
ψx,

J =
(ξx
θ

)
x

((κ(v,θ)ξx
v

− κ(v,θ)Θxφ

vV

)
x

+

[
(κ(v,θ)−κ(V,Θ))

Θx

V

]
x

)
−
(ξx
θ

)
x

(
(p−P )Ux+(avθ4−aVΘ4)t

)
− κ(v,θ)

vθ
ξ2
xx−

( P
2v

)
t
φ2
x

− Cv
2

(1

θ

)
t
ξ2
x−
(R
v

)
x
ξψxx+

(P
v

)
x
φψxx+pxψx

ξx
θ

− d

v3
Vxzxzxx+ϕxzzx−

d

v3
φxzxzxx−

λϕzxξx
θ

=O(1)
(
N(t)+δ+η

)
|(φx,ξx,zx,ψxx,ξxx,zxx)|2 + |(Vx,Ux,Θxx)|2(φ2 +ξ2). (3.38)

Integrating (3.37) on [0,t]×R leads to

‖(φx,ψx,ξx,zx)(t)‖2 +

∫ t

0

‖ξxx(τ)‖2 +‖zxx(τ)‖2dτ

.‖(φ0x,ψ0x,ξ0x,z0x)‖2 +(δ+N(t)+ η̃)

∫ t

0

‖(φx,ψx,ξx,zx)(τ)‖21dxdτ

+

∫ t

0

∫
R

(|Θxx|+ |Θx|)2(φ2 +ξ2)dxdτ+

∫ t

0

∫
R

(|R1xψx|+ |R2xξx|)dxdτ, (3.39)

here η̃ >0 is a constant suitably small, and the last two terms on the right-hand side
of the last inequality can be treated similarly as (3.31) and (3.32), respectively. Then,
with the help of the results of Lemma 3.1 and Lemma 3.2 we can complete the proof of
Lemma 3.3.

Lemma 3.4. Under the assumption in Proposition 3.2, we derive that

‖(φxx,ψxx,ξxx,zxx)(t)‖2 +

∫ t

0

‖ξxxx(τ)‖2 +‖zxxx(τ)‖2dτ

.‖(φ0xx,ψ0xx,ξ0xx,z0xx)‖2 +δ+(δ+N(t))

∫ t

0

‖(φx,ψx)(τ)‖21dτ. (3.40)

Proof. Multiplying (3.3)1xx by P
v φxx, (3.3)2xx by ψxx, (3.3)3xx by ξxx

θ and (3.3)4xx

by zxx, respectively, and adding the results together, it is easy to obtain{
P

2v
φ2
xx +

ψ2
xx

2
+
Cvξ

2
xx

2θ
+
z2xx
2

}
t

+
κ(v,θ)

vθ
ξ2xxx +

d

v2
z2xxx +H3x +J3 =R1xxψxx +R2xx

ξxx
θ
,

(3.41)
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where

H3 =(p−P )xxψxx+
ξxx
θ

(
(p−P )Ux−

(κ(v,θ)ξx
v

− κ(v,θ)Θxφ

vV

)
x

)
x

−(
dzx
v2

)xx−(ϕz)xxzxx,

J3 =
(ξxx
θ

)
x

((κ(v,θ)ξx
v

− κ(v,θ)Θxφ

vV

)
x

+
(

(κ(v,θ)−κ(V,Θ))
Θx

V

)
x

)
x

− κ(v,θ)

vθ
ξ2
xxx−

(
(p−P )Ux+(avθ4−aVΘ4)t

)
x
−
( P

2v

)
t
φ2
xx−

(Cv
2θ

)
t
ξ2
xx

+(2pxψxx+pxxψx)
ξxx
θ

+3

{(R
v

)
x
ξx

}
x

ψxx−3

{(P
v

)
x
φx

}
x

ψxx

+(λϕz)xx ·
ξxx
θ

+2
d

v3
zxxvx+

d

v3
vxxzx+3

d

v4
zxv

2
x+2J1

3 +J2
3 . (3.42)

Here J1
3 , J2

3 are the following equations

J1
3 :=ψxxx

((
P

v

)
x

φx−
(
R

v

)
x

ξx

)
−zxxx(φz)x,

J2
3 :=ψxxx

((
P

v

)
xx

φ−
(
R

v

)
xx

ξ

)
.

Meanwhile, we can get

J1
3 =

{
ψxx

((P
v

)
x
φx−

(R
v

)
x
ξx

)}
x

−ψxx
((P

v

)
x
φx−

(R
v

)
x
ξx

)
x

−(zxx(ϕz)x)x+zxx(ϕz)xx

=

{
ψxx

((P
v

)
x
φx−

(R
v

)
x
ξx

)
−zxx(ϕz)x

}
x

+O(1)(N(T )+δ) |(φx,ξx,φxx,ψxx,ξxx,zxx)|2 , (3.43)

and

ψxxx

(P
v

)
xx
φ

=ψxxxφ

(
Pxx
v

+2Px

(1

v

)
x

+P
(2v2

x

v3
− Vxx
v2

))
− Pφ
v2
φxxψxxx

=− Pφ
v2
φxxφtxx+

{
ψxxφ

(
Pxx
v

+2Px

(1

v

)
x

+P
(2v2

x

v3
− Vxx
v2

))}
x

−ψxx
{
φ

(
Pxx
v

+2Px

(1

v

)
x

+P
(2v2

x

v3
− Vxx
v2

))}
x

=−
{
Pφ

v2

φ2
xx

2

}
t

+

{
ψxxφ

(
Pxx
v

+2Px

(1

v

)
x

+P
(2v2

x

v3
− Vxx
v2

))}
x

+O(1)(N(T )+δ)|(φx,ξx,φxx,ψxx,ξxx)|2 + |(Θx,Θxx)|2|(φ,ξ)|2. (3.44)
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Similar to the estimate (3.44), we have

ψxxx

(R
v

)
xx
ξ=

{
Rξ

v2

φ2
xx

2

}
t

+

{
Rψxxξ

(
Vxx
v2
− 2v2

x

v3

)}
x

+ |(Θx,Θxx)|2|(φ,ξ)|2

+O(1)(N(T )+δ)|(φx,ξx,φxx,ψxx,ξxx)|2.

By the same way, we have the estimate

−ψxxx
(
avθ4−aVΘ4

)
xx

=−
(
ψxx

(
avθ4−aVΘ4

)
xx

)
x

+ |(Θx,Θxx)|2|(φ,ξ)|2

+O(1)(N(T )+δ) |(φx,ξx,φxx,ψxx,ξxx)|2 .

Therefore, it holds

J3 =
{Rξ
v2

φ2
xx

2
− Pφ
v2

φ2
xx

2

}
t
+

{
ψxxφ

(
Pxx
v

+2Px

(1

v

)
x

+P
(2v2

x

v3
− Vxx
v2

))}
x

+

{
ψxxRξ

(Vxx
v2
− 2v2

x

v3

)}
x

+

{
ψxx

((P
v

)
x
φx−

(R
v

)
x
ξx

)}
x

−
{
zxx(ϕz)x−ψxx(avθ4−aVΘ4)xx

}
x

+O(1)(N(T )+δ)|(φx,ξx,φxx,ψxx,ξxx)|2 + |(Θx,Θxx)|2|(φ,ξ)|2. (3.45)

After integrating (3.41) on [0,t]×R, we get

‖(φxx,ψxx,ξxx,zxx)(t)‖2 +

∫ t

0

‖ξxxx(τ)‖2 +‖zxxx(τ)‖2dτ

.‖(φ0,ψ0,ξ0,z0)‖22 +(δ+N(t))

∫ t

0

‖(φx,ψx,ξx,zx)(τ)‖21dτ

+

∫ t

0

∫
R
(|Θxx|+ |Θx|)2|(φ,ξ)|2dxdτ+

∫ t

0

∫
R
|R1xxψxx+R2xxξxx|dxdτ. (3.46)

For the estimate of the last term in (3.46), we get∫ t

0

∫
R
|R1xxψxx|dxdτ

.δ
∫ t

0

∥∥ψxx(τ)
∥∥{(∫

R
e−2c|x|e−2cτdx

) 1
2

+

(∫
R

1

(1+τ)3
e
−2cx2

1+τ dx

) 1
2
}
dτ

.δ
∫ t

0

(1+τ)−
5
4 ‖ψxx(τ)‖dτ .N(T ) ·δ, (3.47)

and ∫ t

0

∫
R

|R2xxξxx|dxdτ .δ
1
8

∫ t

0

‖ξxx‖
1
2 ‖ξxxx‖

1
2 (1+τ)−

7
8 dτ

.δ
1
8

∫ t

0

‖ξxx‖2 +‖ξxxx‖2dτ+δ
1
8

∫ t

0

(1+τ)−
7
4 dτ

.δ
1
8

∫ t

0

‖ξxx‖2 +‖ξxxx‖2dτ+δ
1
8 ,
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then by virtue of Lemma 3.1-Lemma 3.3, we can complete the proof of Lemma 3.4.

Combining the results of Lemma 3.1-Lemma 3.4, we know that

‖(φ,ψ,ξ,z)(t)‖22 +

∫ t

0

‖ξx(τ)‖22 +

∫ t

0

‖z(τ)‖23dτ

.‖(φ0,ψ0,ξ0,z0)‖22 +δ+(δ+N(T )+η)

∫ t

0

‖(φx,ψx)(τ)‖21dτ. (3.48)

Based on the above analysis, we need to deal with the last term on the right-hand side
in (3.48).

Lemma 3.5. Under the assumption in Proposition 3.2, we derive that∫ t

0

‖(φx,ψx)(τ)‖21dτ .‖(φ0,ψ0,ξ0)‖22 +δ. (3.49)

Proof. Multiplying (3.3)2 by −P2 φx, and (3.3)3 by ψx, respectively, and adding all
the resultant equations yields that{

Cvξψx−
P

2
φxψ+(avθ4−aVΘ4)ψx

}
t

+
{P

2
φtψ−Cvξψt−(avθ4−aVΘ4)ψt−

(
κ(v,θ)−κ(V,Θ)

)Θx

V
ψx

}
x

=
Px
2
ψψx−

Pt
2
φxψ+

P

2
φx

((Rξ
v

)
x
−
(P
v

)
x
φ−R1

)
−(avθ4−aVΘ4)xψt

−Cvξxψt+(avθ4−aVΘ4)
Px
2
φx+(avθ4−aVΘ4)

Px
2
φxx

−
(
κ(v,θ)−κ(V,Θ)

)Θx

V
ψxx+

(
κ(v,θ)

ξx
v
−κ(v,θ)

Θxφ

vV

)
x
ψx

−(p−P )(Ux+ψx)ψx+R2ψx+λϕzψx. (3.50)

Integrating (3.50) on [0,t]×R and using the inequality (3.48), it holds that∫ t

0

∫
R

(φ2
x+ψ2

x)dxdτ

.‖(φ,ψ,ξ)‖21 +‖(φ0,ψ0,ξ0)‖21 +

∫ t

0

∫
R

(|Θxx|+ |Θx|)2(φ2 +ψ2)dxdτ

+

∫ t

0

‖ξx(τ)‖21dτ+
(

1
4 +δ+N(T )

)∫ t

0

∫
R

(φ2
x+ψ2

x)dxdτ

+

∫ t

0

∫
R
|R1φx+R2ψx|dxdτ. (3.51)

Similar to the estimates of (3.31) and (3.32), we can easily derive that∫ t

0

∫
R

(φ2
x+ψ2

x)dxdτ .‖(φ0,ψ0,ξ0)‖22 +δ+(δ+N(T ))

∫ t

0

‖(φx,ψx)(τ)‖21dτ. (3.52)

By the same way, multiplying (3.3)2x by −P2 φxx, (3.3)3x by ψxx, respectively, and
integrating the result on [0,t]×R, then by using (3.48), we can also obtain∫ t

0

∫
R

(φ2
xx+ψ2

xx)dxdτ .‖(φ0,ψ0,ξ0)‖22 +δ+(δ+N(T ))

∫ t

0

‖(φx,ψx)(τ)‖21dτ. (3.53)
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Then adding the results of (3.52) with (3.53) and taking δ small enough, we can complete
the proof of Lemma 3.5.

Inserting (3.49) into (3.48), then we can complete the proof of Proposition 3.2.
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