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ON STATIONARY SOLUTIONS TO NORMAL, COPLANAR
DISCRETE BOLTZMANN EQUATION MODELS∗

LEIF ARKERYD† AND ANNE NOURI‡

Abstract. The paper proves existence of renormalized solutions for a class of velocity-discrete
coplanar stationary Boltzmann equations with given indata. The proof is based on the construction of
a sequence of approximations with L1 compactness for the integrated collision frequency and gain term.
L1 compactness of a sequence of approximations is obtained using the Kolmogorov-Riesz theorem and
replaces the L1 compactness of velocity averages in the continuous velocity case, not available when
the velocities are discrete.
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1. Introduction
The Boltzmann equation is the fundamental mathematical model in the kinetic

theory of gases. Replacing its continuum of velocities with a discrete set of velocites is a
simplification preserving the essential features of free flow and quadratic collision term.
It can approximate the Boltzmann equation with any given accuracy [4], and is thereby
useful for approximation studies. In the quantum realm it can also be more directly
connected to microscopic particles and quasiparticle models. A discrete-velocity model
of a kinetic gas, is a system of partial differential equations having the form,

∂fi
∂t

(t,z)+vi ·∇zfi(t,z) =Qi(f)(t,z), t>0, z∈Ω, 1≤ i≤p,

where fi, 1≤ i≤p, are phase space densities at time t, position z, velocity vi, Ω⊂Rd,
and vi∈Rd, 1≤ i≤p, are given discrete velocities. The collision operator Q= (Qi)1≤i≤p
with gain part Q+, loss part Q−, and collision frequency ν, is given by

Qi(f) =

p∑
j,k,l=1

Γklij (fkfl−fifj)

=Q+
i (f)−Q−i (f), Q−i (f) =fiνi(f), i= 1,...,p.

The collision coefficients satisfy

Γklij = Γklji = Γijkl≥0. (1.1)

If a collision coefficient Γklij is non-zero, then the conservation laws for momentum and
energy,

vi+vj =vk+vl, |vi|2 + |vj |2 = |vk|2 + |vl|2, (1.2)
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are satisfied. The discrete-velocity model (DVM) is called normal (see [5]) if any solution
of the equations

Ψ(vi)+Ψ(vj) = Ψ(vk)+Ψ(vl),

where the indices (i,j;k,l) take all possible values satisfying Γklij >0, is given by

Ψ(v) =a+b ·v+c|v|2,

for some constants a,c∈R and b∈Rd. This paper studies stationary solutions to copla-
nar models, i.e. with vi∈R2, 1≤ i≤p, in a strictly convex bounded open subset Ω⊂R2,
with C1 boundary ∂Ω and given indata. We consider the generic situation of normal
coplanar velocities with

no pair of velocities vi,vj ,1≤ i,j≤p, parallel, (1.3)

and additionally that for some direction n0∈R2, vi ·n0>0, 1≤ i≤p. (1.4)

Example 1.1. Let a model with velocities vi∈R2 satisfying (1.2), c0>|vi |, 1≤ i≤p,
and n0∈R2 such that

c0n0 /∈
⋃

1≤i 6=j≤p

−vj+R(vi−vj).

Then the model with velocities vi+c0n0, 1≤ i≤p satisfies (1.2)-(1.4).

Such a model based on the Broadwell model in the plane is

(1,0)+(2,2), (−1,0)+(2,2), (0,1)+(2,2), (0,−1)+(2,2).

Example 1.2. Discrete-velocity models satisfying (1.2)-(1.4) can also be constructed
as follows. Choose a direction n0∈R2. In the plane with origin O, denote by P+ the
half plane

P+ ={M ∈R2; n0 ·
−−→
OM >0}.

Choose (Ai,Aj)∈P 2
+, Ai 6=Aj, and (Al,Am) /∈{(Ai,Aj),(Aj ,Ai)} diametrically opposed

on the circle of diameter [Ai,Aj ]. The quadrivector (vi,vj ,vk,vl) defined by

vi=
−−→
OAi, vj =

−−→
OAj , vl=

−−→
OAl, vm=

−−−→
OAm,

with a corresponding Γklij 6= 0, satisfies (1.2)-(1.4).

Notice that one velocity can belong to different circles.

For stationary solutions to the Broadwell model, that does not belong to this class,
see [2, 6].
Denote by n(Z) the inward normal to Z ∈∂Ω. Denote the vi-ingoing (resp. vi-outgoing)
part of the boundary by

∂Ω+
i ={Z ∈∂Ω; vi ·n(Z)>0}, (resp. ∂Ω−i ={Z ∈∂Ω; vi ·n(Z)<0}).

Let

s+
i (z) = inf{s>0; z−svi∈∂Ω+

i }, s−i (z) = inf{s>0; z+svi∈∂Ω−i }, z∈Ω.
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Write

z+
i (z) =z−s+

i (z)vi (resp. z−i (z) =z+s−i (z)vi) (1.5)

for the ingoing (resp. outgoing) point on ∂Ω of the characteristics through z in direction
vi. The boundary value problem

vi ·∇fi(z) =Qi(f)(z), z∈Ω, (1.6)

fi(z) =fbi(z), z∈∂Ω+
i , 1≤ i≤p, (1.7)

is considered in L1 in one of the following equivalent forms [7]; the exponential multiplier
form,

fi(z) =fbi(z
+
i (z))e−

∫ s+
i

(z)

0 νi(f)(z+i (z)+svi)ds

+

∫ s+i (z)

0

Q+
i (f)(z+

i (z)+svi)e
−
∫ s+
i

(z)
s νi(f)(z+i (z)+rvi)drds, a.a. z∈Ω, 1≤ i≤p,

(1.8)

the mild form,

fi(z) =fbi(z
+
i (z))+

∫ s+i (z)

0

Qi(f)(z+
i (z)+svi)ds, a.a. z∈Ω, 1≤ i≤p, (1.9)

the renormalized form,

vi ·∇ ln(1+fi)(z) =
Qi(f)

1+fi
(z), z∈Ω, fi(z) =fbi(z), z∈∂Ω+

i , 1≤ i≤p, (1.10)

in the sense of distributions. Denote by L1
+(Ω) the set of non-negative integrable func-

tions on Ω. Let ∑
(i,j,l,m)

Γlmij

∫
Ω

(flfm−fifj)ln
flfm
fifj

(z)dz (1.11)

be the entropy dissipation of a distribution function f . The main result of the present
paper is:

Theorem 1.1. Consider a coplanar collision operator in the generic case of (1.3)
additionally satisfying (1.4), and non-negative ingoing boundary values fbi, 1≤ i≤p,
with mass and entropy bounded,∫

∂Ω+
i

vi ·n(z)fbi(1+lnfbi)(z)dσ(z)<+∞, 1≤ i≤p.

There exists a stationary renormalized solution in
(
L1

+(Ω)
)p

to the boundary value prob-
lem (1.6)-(1.7) with finite mass, entropy and entropy-dissipation.

Most mathematical results for stationary discrete-velocity models of the Boltzmann
equation have been obtained in one space dimension. An overview is given in [8].
In two dimensions, special classes of solutions to the Broadwell model are given in
[3, 6], and [9]. The Broadwell model is a four-velocity model, with v1 +v2 =v3 +v4 =
0 and v1, v2 orthogonal. Reference [6] contains a detailed study of the stationary
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Broadwell equation in a rectangle with comparison to a Carleman-like system, and
a discussion of (in)compressibility aspects. The main result in [6] is the existence of
continuous solutions to the two-dimensional stationary Broadwell model with continuous
boundary data for a rectangle. The proof starts by solving the problem with a given gain
term, and uses the compactness of the corresponding twice-iterated solution operator
to conclude by Schaeffer’s fixed-point theorem. The paper [2] studies that problem
in an L1-setting, with the proof broadly within the frame of the present paper. In
both those papers of ours, there is a priori control of mass and entropy dissipation.
Denoting by fi(t, ·), 1≤ i≤4, the density of the particles moving with velocity vi at
time t, the proof in [2] in an essential way uses the constancy of the sums f1 +f2 and
f3 +f4 along characteristics, which no longer holds in this paper. It is here replaced
by a compactness property for the collision frequency and gain parts in the exponential
form of the approximations employed. The compactness is based on Assumption (1.3)
and the simultaneous presence of space integrals in two velocity directions. The proof
starts from bounded approximations with damping and convolution added, written in
exponential multiplier form, and solved by a fixed-point argument. Then the damping
and convolutions are removed by taking limits using L1-compactness of the integrated
collision frequency and gain term. The compactness is proven by the Kolmogorov-Riesz
theorem (see [10, 11]). The limit of the remaining approximations is obtained by using
again the Kolmogorov-Riesz theorem.

2. Approximations

The construction of the primary approximated boundary value problem with damp-
ing and convolutions is similar to the Broadwell case [2] and given in the following
lemma. Denote by a∧b the minimum of two real numbers a and b. Take α>0 and set

cα=
1

α

p∑
i=1

∫
∂Ω+

i

(n(z) ·vi)fbi(z)dσ(z), Kα={f ∈
(
L1

+(Ω)
)p

;

p∑
i=1

∫
Ω

fi(z)dz≤ cα}. (2.1)

Let µα be a smooth mollifier in R2 with support in the ball centered at the origin of
radius α. Outside the boundary the function to be convolved with µα is continued in
the normal direction by its boundary value. Let µ̃k be a smooth mollifier on ∂Ω. Denote
by

fkbi=
(
fbi(·)∧

k

2

)
∗ µ̃k, 1≤ i≤p.

Lemma 2.1. There is a solution F ∈ (L1
+(Ω))p to

αFi+vi ·∇Fi=
p∑

j,l,m=1

Γlmij

( Fl

1+ Fl
k

Fm ∗µα
1+ Fm∗µα

k

− Fi

1+ Fi
k

Fj ∗µα
1+

Fj∗µα
k

)
, (2.2)

Fi(z
+
i (z)) =fkbi(z

+
i (z)), 1≤ i≤p. (2.3)

Proof. Let T be the map defined on Kα by T (f) =F , where F = (Fi)1≤i≤p is the
solution of

αFi+vi ·∇Fi=
p∑

j,l,m=1

Γlmij

( Fl

1+ Fl
k

fm ∗µα
1+ fm∗µα

k

− Fi

1+ Fi
k

fj ∗µα
1+

fj∗µα
k

)
, (2.4)

Fi(z
+
i (z)) =fkbi(z

+
i (z)). (2.5)
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F =T (f) can be obtained as the limit in (L1
+(Ω))p of the sequence (F q)q∈N defined by

F 0 = 0 and

αF q+1
i +vi ·∇F q+1

i =

p∑
j,l,m=1

Γlmij

( F ql

1+
F ql
k

fm ∗µα
1+ fm∗µα

k

− F q+1
i

1+
F qi
k

fj ∗µα
1+

fj∗µα
k

)
, (2.6)

F q+1
i (z+

i (z)) =fkbi(z
+
i (z)) , q∈N. (2.7)

F q+1 can be written in the following exponential form,

F q+1
i (z) =fkbi(z

+
i (z))e

−αs+i (z)−
∑
j,l,mΓlmij

∫ 0

−s+
i

(z)

fj∗µα

(1+
F
q
i
k

)(1+
fj∗µα
k

)

(z+svi)ds

+

p∑
j,l,m=1

Γlmij

∫ 0

−s+i (z)

F ql

1+
F ql
k

fm ∗µα
1+ fm∗µα

k

(z+svi)

e
αs−

∑
j,l,mΓlmij

∫ 0
s

fj∗µα

(1+
F
q
i
k

)(1+
fj∗µα
k

)

(z+rvi)dr

ds, 1≤ i≤p. (2.8)

The sequence (F q)q∈N is monotone. Indeed,

F 0
i ≤F 1

i , 1≤ i≤n,

by the exponential form of F 1
i . If F qi ≤F

q+1
i , 1≤ i≤p, then it follows from the expo-

nential form that F q+1
i ≤F q+2

i . Moreover,

α

p∑
i=1

F q+1
i +

p∑
i=1

vi ·∇F q+1
i =

p∑
i,j,l,m=1

Γlmij
(F ql −F

q+1
l )

1+
F ql
k

fm ∗µα
1+ fm∗µα

k

≤0,

so that

p∑
i=1

∫
Ω

F q+1
i (z)dz≤ cα. (2.9)

By the monotone convergence theorem, (F q)q∈N converges in L1(Ω) to a solution F of
(2.4)-(2.5). The solution of (2.4)-(2.5) is unique in the set of non-negative functions. In-
deed, let G= (Gi)1≤i≤p be a non-negative solution of (2.4)-(2.5). It follows by induction
that

∀q∈N, F qi ≤Gi, 1≤ i≤p. (2.10)

Indeed, (2.10) holds for q= 0, since Gi≥0, 1≤ i≤p. Assume (2.10) holds for q. Using
the exponential form of F q+1

i implies F q+1
i ≤Gi. Consequently,

Fi≤Gi, 1≤ i≤p. (2.11)

Moreover, subtracting the partial differential equations satisfied by Gi from the partial
differential equations satisfied by Fi, 1≤ i≤p, and integrating the resulting equation on
Ω, it results

α

p∑
i=1

∫
Ω

(Gi−Fi)(z)dz+

p∑
i=1

∫
∂Ω−i

|n(z) ·vi|(Gi−Fi)(z)dσ(z) = 0. (2.12)
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It results from (2.11)-(2.12) that G=F . The map T is continuous in the L1-norm
topology (see [1], pages 124-5). Namely, let a sequence (fq)q∈N in Kα converge in
(L1(Ω))p to f ∈Kα. Set F q =T (fq). Because of the uniqueness of the solution to (2.4)-
(2.5), it is enough to prove that there is a subsequence of (F q) converging to F =T (f).
Now there is a subsequence of (fq), still denoted (fq), such that decreasingly (resp.
increasingly) (Gq) = (supr≥q f

r) (resp. (gq) = (infr≥q f
r)) converges to f in L1. Let

(Sq) (resp. (sq)) be the sequence of solutions to

αSqi +vi ·∇Sqi =

p∑
j,l,m=1

Γlmij

( Sql

1+
Sql
k

Gqm ∗µα
1+ Gqm∗µα

k

− Sqi

1+
Sqi
k

gqj ∗µα

1+
gqj ∗µα
k

)
,

Sqi (z+
i (z)) =fkbi(z

+
i (z)),

αsqi +vi ·∇xsqi =

p∑
j,l,m=1

Γlmij

( sql

1+
sql
k

gqm ∗µα
1+ gqm∗µα

k

− sqi

1+
sqi
k

Gqj ∗µα

1+
Gqj∗µα
k

)
,

sqi (z
+
i (z)) =fkbi(z

+
i (z)) .

(Sq) is a non-increasing sequence, since that holds for the successive iterates defining the
sequence. Then (Sq) decreasingly converges in L1 to some S. Similarly (sq) increasingly
converges in L1 to some s. The limits S and s satisfy (2.4)-(2.5). It follows by uniqueness
that s=F =S, hence that (F q) converges in L1 to F . The map T is also compact in the
L1-norm topology. Indeed, let (fq)q∈N be a sequence in Kα and (F q)q∈N = (T (fq))q∈N.
The boundedness by k2 of the terms in the collision operator, induces uniform L1 equi-
continuity of (F qi )q∈N with respect to the vi-direction, as follows from the mild form
of the equations. For the uniform L1 equi-continuity with respect to the vj-direction,
j 6= i, consider for each q and with f :=fq the sequence (Gq,r)r∈N defined by Gq,0 = 0
and for r∈N∗

αGq,ri +vi ·∇Gq,ri =

p∑
j,l,m=1

Γlmij

( Gq,rl

1+
Gq,rl
k

fm ∗µα
1+ fm∗µα

k

− Gq,ri

1+
Gq,r−1
i

k

fj ∗µα
1+

fj∗µα
k

)
, (2.13)

Gq,ri (z+
i (z)) =fkbi(z

+
i (z)), 1≤ i≤p. (2.14)

The existence of a unique solution for each r follows as for the problem (2.4)-(2.5). By
induction on r, prove that (Gq,r)q∈N is uniformly equicontinuous in the vj-direction. It
holds for r= 0. Assume it holds for r−1∈N∗ and prove it for r. Writing Gq,r(z) in
exponential form and using the uniform equicontinuity in the vj-direction of (Gq,r−1)q∈N
and the compactness of (fq ∗µα), it comes back to prove the uniform equicontinuity in
the vj-direction of

z→
∫ si(z

−
i (z))

0

Gq,rl

1+
Gq,rl
k

(z−i (z)+svi)ds.

First,

z−i (z+hvj) =z−i (z)+avi+bvl, with lim
h→0

a(h) = lim
h→0

b(h) = 0,

uniformly with respect to z∈Ω. Consequently,∫
|
∫ si(z

−
i (z))

0

Gq,rl

1+
Gq,rl
k

(z−i (z+hvj)+svi)−
Gq,rl

1+
Gq,rl
k

(z−i (z)+svi)ds |dz
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≤
∫ ∫ si(z

−
i (z))

0

|
Gq,rl

1+
Gq,rl
k

(z−i (z)+(a+s)vi+bvl)−
Gq,rl

1+
Gq,rl
k

(z−i (z)+(a+s)vi) |dsdz

(2.15)

+

∫
|
∫ si(z

−
i (z))

0

Gq,rl

1+
Gq,rl
k

(z−i (z)+(a+s)vi)−
Gq,rl

1+
Gq,rl
k

(z−i (z)+svi)ds |dz. (2.16)

The limit when h→0 of (2.15) is zero, by the uniform L1 equicontinuity of (Gq,rl )q∈N
with respect to the vl-direction. With the change of variables s→a+s in its first
integral, (2.16) equals∫

|
∫ si(z

−
i (z))+a

si(z
−
i (z))

Gq,rl

1+
Gq,rl
k

(z−i (z)+svi)ds−
∫ a

0

Gq,rl

1+
Gq,rl
k

(z−i (z)+svi)ds |dz,

which tends to zero when h tends to zero since both integrands are bounded by k.
This proves the L1 compactness of (Gq,ri )q∈N. For q fixed, the sequence (Gq,ri )r∈N is
increasing, and its limit satisfies (2.4)-(2.5) with f =fq, so the limit equals F qi . Take
a subsequence of q still denoted by q, with (fq ∗µα) convergent in L1 to some f∞

when q→∞, and a further subsequence so that (Gq,1) converges to some F∞,1 in
L1. Continue by diagonalization to convergence of (Gq,r)q to F∞,r for all r∈N. The
limits satisfy (2.13)-(2.14) with f ∗µα replaced with f∞, and Gq,r with F∞,r giving an
increasing sequence, with limit satisfying (2.4)-(2.5), where f ∗µα is replaced with f∞.
So given a sequence in Kα, there is a subsequence with converging image under T . The
compactness of T is thus proved. Hence by the Schauder fixed-point theorem, there is
a fixed point for T , i.e. a solution F to (2.2)-(2.3).

3. Removal of the damping and convolutions
Let k>1 be fixed. Denote by Fα,k the solution to (2.2)-(2.3) obtained in the previ-

ous section. Each component of Fα,k being bounded by a multiple of k2, (Fα,k)α∈]0,1[ is

weakly compact in (L1(Ω))p. Denote by F k the limit for the weak topology in (L1(Ω))p

of a converging subsequence when α→0. Let us prove that for a subsequence, the
convergence is strong in (L1(Ω))p.

Lemma 3.1. There is a sequence (αq)q∈N tending to zero when q→+∞, such that
(Fαq,k)q∈N strongly converges to F k in (L1(Ω))p when q→+∞.

Proof. Consider the approximation scheme (fα,ρ)ρ∈N of Fα,k,

fα,0i = 0, (3.1)

αfα,ρ+1
i +vi ·∇fα,ρ+1

i =

p∑
j,l,m=1

Γlmij

( Fα,kl

1+
Fα,kl

k

Fα,km ∗µα
1+ Fα,km ∗µα

k

− fα,ρ+1
i

1+
fα,ρ+1
i

k

fα,ρj ∗µα

1+
fα,ρj ∗µα

k

)
,

(3.2)

fα,ρ+1
i (z+

i (z)) =fkbi(z
+
i (z)), 1≤ i≤p, ρ∈N. (3.3)

fα,1 is obviously given in terms of Fα,k. It follows from the exponential form that

Fα,ki ≤fα,1i , α∈]0,1[.

Denote by S the map from Rp×Rp mapping (X,Z) into W =S(X,Z)∈Rp solution to

αWi+vi ·∇Wi=

p∑
j,l,m=1

Γlmij

( Fα,kl

1+
Fα,kl

k

Fα,km ∗µα
1+ Fα,km ∗µα

k

− Wi

1+ Xi
k

Zj ∗µα
1+

Zj∗µα
k

)
,
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Wi(z
+
i (z)) =fkbi(z

+
i (z)), 1≤ i≤p.

Denote by

fα,1,0 =S(0,fα,1), fα,1,r =S(fα,1,r−1,fα,1),

Fα,k,0 =S(0,Fα,k), Fα,k,r =S(Fα,k,r−1,Fα,k), r∈N∗.

First,

fα,1,0i ≤Fα,k,0i .

Then the sequence (fα,1,ri )r∈N (resp. (Fα,k,ri )r∈N) is increasing with limit fα,2i (resp.

Fα,ki ). It follows from fα,1,ri ≤Fα,k,ri , r∈N, that

fα,2i ≤Fα,ki , 1≤ i≤p. (3.4)

Let

fα,2,0 :=S(0,fα,2), fα,2,r :=S(fα,r−1,fα,2), r∈N∗.

It follows from (3.4) that

fα,2,0i ≥Fα,k,0i , 1≤ i≤p.

The sequence (fα,2,ri )r∈N is also increasing with limit fα,3i and with fα,2,ri ≥Fα,k,ri .
Hence

fα,3i ≥Fα,ki .

From here by induction on ρ, it holds that

fα,2ρi ≤fα,2ρ+2
i ≤Fα,ki ≤fα,2ρ+3

i ≤fα,2ρ+1
i , α∈]0,1[, ρ∈N. (3.5)

By induction on r, for each r the sequence (fα,1,r)α∈]0,1[ is translationally equicontinuous
in α. The limit sequence (fα,2)α∈]0,1[ is also translationally equicontinuous. This is so,
since given ε>0, r and then h0 can be taken so that∫

(fα,2−fα,1,r)(z)dz<ε and

∫
|fα,1,r(z+h)−fα,1,r(z)|dz<ε, |h|<h0.

It can analogously be proven that for each ρ∈N, (fα,ρ)α∈]0,1[ is translationally equicon-
tinuous in α. Let (αq)q∈N be a sequence tending to zero. Take a subsequence in
(αq)q∈N, still denoted by (αq)q∈N, such that (fαq,2)q∈N converges in L1 to some f0,2

when q→+∞. Continuing by induction gives a sequence (f0,ρ)ρ∈N satisfying

f0,2ρ
i ≤f0,2ρ+2

i ≤F ki ≤f
0,2ρ+3
i ≤f0,2ρ+1

i , ρ∈N,

vi ·∇f0,ρ+1
i =Gi−

p∑
j,l,m=1

Γlmij
f0,ρ+1
i

1+
f0,ρ+1
i

k

f0,ρ
j

1+
f0ρ
j

k

,

f0,ρ+1
i (z+

i (z)) =fkbi(z
+
i (z)).
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Here, Gki is the weak L1 limit when α→0 of the gain term

p∑
j,l,m=1

Γlmij
Fα,kl

1+
Fα,kl

k

Fα,km ∗µα
1+ Fα,km ∗µα

k

.

In particular, (f0,2ρ
i )ρ∈N (resp. (f0,2ρ+1

i )ρ∈N) non-decreasingly (resp. non-increasingly)
converges in L1 to some gi (resp. hi) when ρ→+∞. The limits satisfy

0≤gi≤F ki ≤hi,

vi ·∇hi=Gi−
p∑

j,l,m=1

Γlmij
hi

1+ hi
k

gj
1+

gj
k

, (3.6)

vi ·∇gi=Gi−
p∑

j,l,m=1

Γlmij
gi

1+ gi
k

hj

1+
hj
k

, (3.7)

(hi−gi)(z+
i (z)) = 0.

Integrating and summing gives that

p∑
i=1

∫
∂Ω−i

|vi ·n(Z) | (hi−gi)(Z)dσ(Z) = 0,

i.e. that gi=hi also on ∂Ω−i . Integrating the equation satisfied by hi−gi over the part
of Ω on one side of a line orthogonal to n0, summing over i and using (1.4) implies that
g=h on that line, hence in all of Ω, and is equal to F ki . (Fαq,k)q∈N converges to F k in
(L1(Ω))p when q→+∞. Indeed, given η>0, choose ρ0 big enough so that

‖f0,2ρ0+1
i −f0,2ρ0

i ‖L1<η and ‖f0,2ρ0
i −F ki ‖L1<η, 1≤ i≤p,

then q0 big enough, so that

‖fαq,2ρ0+1
i −f0,2ρ0+1

i ‖L1≤η and ‖fαq,2ρ0i −f0,2ρ0
i ‖L1≤η, q≥ q0.

Then split ‖Fαq,ki −F ki ‖L1 as follows,

‖Fαq,ki −F ki ‖L1

≤‖Fαq,ki −fα,2ρ0i ‖L1 +‖fα,2ρ0i −f0,2ρ0
i ‖L1 +‖f0,2ρ0

i −F ki ‖L1

≤‖fα,2ρ0+1
i −fα,2ρ0i ‖L1 +2η by (3.5)

≤‖fα,2ρ0+1
i −f0,2ρ0+1

i ‖L1 +‖f0,2ρ0+1
i −f0,2ρ0

i ‖L1 +‖f0,2ρ0
i −fα,2ρ0i ‖L1 +2η

≤5η, q≥ q0.

Lemma 3.2. For any k∈N∗, F k is a nonnegative continuous solution to

vi ·∇F ki =Q+k
i −F

k
i ν

k
i , (3.8)

F ki (z+
i (z)) =fkbi(z

+
i (z)), 1≤ i≤p, (3.9)

where

Q+k
i =

p∑
j,l,m=1

Γlmij
F kl

1+
Fkl
k

F km

1+
Fkm
k

, νki =

p∑
j,l,m=1

Γlmij
F kj

(1+
Fki
k )(1+

Fkj
k )

.
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Proof. Passing to the limit when q→+∞ in (2.2)-(2.3) written for Fαq,k, implies
that F k is a solution in (L1

+(Ω))p to (3.8)-(3.9). It remains to prove its continuity.
Using twice its exponential form and the continuity of fkb , it comes back to prove the
continuity of ∫ s+i (z)

0

∫ s+j (z+i (z)+svi)

0

Gk(z+
j (z+

i (z)+svi)+σvj)dσds, i 6= j, (3.10)

for given measurable bounded functions Gk. The mapping

(s,σ)∈ [0,s+
i (z)]× [0,s+

j (z+
i (z)+svi)]→Z=z+

j (z+
i (z)+svi)+σvj , (3.11)

is a change of variables. Indeed, the strict convexity of Ω and the C1 regularity of
∂Ω imply that z→z+

i (z) is well-defined and C1 for any i∈{1, · · ·,p}. Hence the map
(s,σ)→Z is one to one and C1. Its Jacobian equals one since Z=Zivi+Zjvj , with
Zi=s−s+

i (z) linear in s and independent of σ, and Zj =σ−s+
j

(
z+(s−s+

i (z))vi
)

linear
in σ. Using this change of variable leads to the continuity of the map defined in (3.10).

Lemma 3.3. Solutions (F k)k∈N∗ to (3.8)-(3.9) have mass and entropy dissipation
bounded from above uniformly with respect to k.

Proof. Choose an orthonormal basis (ex,ey) of R2 so that neither the x-direction
nor the y-direction is parallel to any of v1, ..., vp. Observe that integrating (3.8)-(3.9)
over Ω and summing over i, shows that outflow of mass equals inflow. We shall first
obtain uniformly in k, an upper bound for the energy

p∑
i=1

v2
i

∫
Ω

F ki (z)dz.

Recalling that the genericity condition (1.3) implies that all velocities are different from
zero, the energy bound implies an upper estimate for the mass. Write vi= ξiex+ζiey.
Multiply the equation for F ki with ξi and integrate over Ωa= Ω∩{(x,y);x≤a}. Set

Sa= Ω∩{(x,y);x=a} and ∂Ωa=∂Ω∩ Ω̄a.

From (3.8)-(3.9) follows

p∑
i=1

ξ2
i

∫
Sa

F ki (a,y)dy=

p∑
i=1

ξi

∫
∂Ωa

(vi ·n(Z))F ki (Z)dσ(Z). (3.12)

For any (x,y)∈Ω let the line-segment through (x,y) in the x-direction (resp. y-direction)
intersect the boundary ∂Ω at x−(y)<x+(y) (resp. y−(x)<y+(x)). Denote by

x−0 := min
(x,y)∈Ω

{x−(y)}, x+
0 := max

(x,y)∈Ω
{x+(y)}. (3.13)

Integrating (3.12) on a∈ [x−0 ,x
+
0 ] gives uniformly in k,

p∑
i=1

ξ2
i

∫
Ω

F ki (z)dz=

p∑
i=1

ξi

∫ x+
0

x−0

(∫
∂Ωa

(vi ·n(Z))F ki (Z)dσ(Z)
)
da≤ cb,
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where cb only depends on the given inflow. Analogously
∑p
i=1 ζ

2
i

∫
Ω
F ki (z)dz≤ cb. The

boundedness of energy and with it mass, follows. The entropy dissipation estimate is
proved as follows. Denote by Dk the entropy dissipation for the approximation F k,

Dk =
∑
ijlm

Γlmij

∫
Ω

(
F ki

1+
Fki
k

F kj

1+
Fkj
k

− F kl

1+
Fkl
k

F km

1+
Fkm
k

)ln
F ki F

k
j (1+

Fkl
k )(1+

Fkm
k )

(1+
Fki
k )(1+

Fkj
k )F kl F

k
m

(z)dz.

Multiply (3.8) by ln
Fki

1+
Fk
i
k

, add the equations in i, and integrate the resulting equation

on Ω. It leads to

p∑
i=1

∫
∂Ω−i

(
F ki lnF ki −k(1+

F ki
k

)ln(1+
F ki
k

)
)

(Z) |vi ·n(Z) |dσ(Z)+Dk≤ cb.

Moreover,

k

∫
∂Ω−i

ln(1+
F ki
k

)(Z) |vi ·n(Z) |dσ(Z)≤
∫
∂Ω−i

F ki (Z) |vi ·n(Z) |dσ(Z)≤ cb.

Hence

p∑
i=1

∫
∂Ω−i

F ki ln
F ki

1+
Fki
k

(Z) |vi ·n(Z) |dσ(Z)+Dk≤ cb. (3.14)

The uniform entropy dissipation bound holds, since x→x ln
1+ x

k

x is bounded from above
on ]0,+∞[.

The following lemma replaces an entropy control of (F k)k∈N∗ , under the condition
(1.4).

Lemma 3.4. Assuming (1.4), it holds that

p∑
i=1

∫
z∈Ω;Fki (z)<k

F ki lnF ki (z)dz+lnk

p∑
i=1

∫
z∈Ω;Fki (z)≥k

F ki (z)dz<cb, k∈N∗,

where cb only depends on the given inflow.

Proof. The entropy flow of (F ki ) is first controlled as follows. It holds that∫
∂Ω−i

F ki ln(1+
F ki
k

)(Z) |vi ·n(Z) |dσ(Z)

≤
∫
∂Ω−i ,F

k
i ≤k

F ki ln(1+
F ki
k

)(Z) |vi ·n(Z) |dσ(Z)

+

∫
∂Ω−i ,F

k
i ≥k

F ki ln(1+
F ki
k

)(Z) |vi ·n(Z) |dσ(Z)

≤ln2

∫
∂Ω−i

F ki (Z) |vi ·n(Z) |dσ(Z)+

∫
∂Ω−i ,F

k
i ≥k

F ki ln
2F ki
k

(Z) |vi ·n(Z) |dσ(Z)

≤cb+

∫
∂Ω−i ,F

k
i ≥k

F ki lnF ki (Z) |vi ·n(Z) |dσ(Z)− ln
k

2

∫
∂Ω−i ,F

k
i ≥k

F ki (Z) |vi ·n(Z) |dσ(Z).
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Together with (3.14), this implies that

p∑
i=1

∫
∂Ω−i ,F

k
i ≤k

F ki lnF ki (Z) |vi ·n(Z) |dσ(Z)+ln
k

2

∫
∂Ω−,Fki ≥k

F ki |vi ·n(Z) |dσ(Z)≤ cb.

Set

ex :=n0, Ωa= Ω∩{(x,y);x≤a}, Sa= Ω∩{(x,y);x=a}, ∂Ωa=∂Ω∩ Ω̄a.

Multiplying the equation for F ki by ln
Fki

1+
Fk
i
k

, 1≤ i≤p, summing the resulting equations

and integrating over Ωa, implies that

p∑
i=1

vi ·n0

∫
Sa

(
F ki lnF ki −k(1+

F ki
k

)ln(1+
F ki
k

)
)

(a,y)dy

≤−Dk+

p∑
i=1

∫
∂Ωa

(
F ki lnF ki −k(1+

F ki
k

)ln(1+
F ki
k

)
)

(Z)(vi ·n(Z))dσ(Z)

≤ cb.

An integration on [x−0 ,x
+
0 ] defined in (3.13) implies that

p∑
i=1

vi ·n0

∫
Ω

(
F ki lnF ki −k(1+

F ki
k

)ln(1+
F ki
k

)
)

(z)dz≤ cb.

Moreover,

k

∫
Ω

ln(1+
F ki
k

)(z)dz≤
∫

Ω

F ki (z)dz≤ cb, 1≤ i≤p,

and ∫
Ω

F ki ln(1+
F ki
k

)(z)dz

≤
∫
z∈Ω;Fki (z)≤k

F ki ln(1+
F ki
k

)(z)dz+

∫
z∈Ω;Fki (z)≥k

F ki ln(1+
F ki
k

)(z)dz

≤ ln2

∫
Ω

F ki (z)dz+

∫
z∈Ω,Fki (z)≥k

F ki ln
2F ki
k

(z)dz

≤ cb+

∫
z∈∂Ω;Fki (z)≥k

F ki lnF ki (z)dz− ln
k

2

∫
z∈Ω;Fki (z)≥k

F ki (z)dz.

And so,

p∑
i=1

vi ·n0

(∫
z∈Ω,Fki (z)<k

F ki lnF ki (z)dz+ln
k

2

∫
z∈Ω;Fki (z)≥k

F ki (z)dz
)
<cb.

The use of assumption (1.4) gives∫
z∈Ω,Fki (z)<k

F ki lnF ki (z)dz+ln
k

2

∫
z∈Ω;Fki (z)≥k

F ki (z)dz<cb, 1≤ i≤p, k>2.
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4. The passage to the limit in the approximations
This section contains the proof of Theorem 1.1. The main part is a proof of strong

L1 compactness of (F k)k∈N∗ , based on two compactness lemmas for integrated collision
frequency and gain term. Recall the exponential multiplier form for the approximations
(F k)k∈N∗ ,

F ki (z) =fkbi(z
+
i (z))e−

∫ s+
i

(z)

0 νki (z+i (z)+svi)ds

+

∫ s+i (z)

0

Q+k
i (z+

i (z)+svi)e
−
∫ s+
i

(z)
s νki (z+i (z)+rvi)drds, a.a. z∈Ω, 1≤ i≤p,

(4.1)

where νki and Q+k
i are defined by

νki =
∑
jlm

Γlmij
F kj

(1+
Fki
k )(1+

Fkj
k )

, Q+k
i =

∑
jlm

Γlmij
F kl

1+
Fkl
k

F km

1+
Fkm
k

.

An i-characteristic denotes a segment of points [Z−s+
i (Z)vi,Z], where Z ∈∂Ω−i .

By the strict convexity of Ω, there are for every i∈{1, · · ·p} two points of ∂Ω, denoted
by Z̃i and Z̄i such that

z+
i (Z̃i) =z−i (Z̃i) and z+

i (Z̄i) =z−i (Z̄i).

Denote by Ωk2
iε (resp. Ωk3

iε ) the set of points between Z̃i (resp. Z̄i) and the i-
characteristics in Ω at distance ε from Z̃i (resp. Z̄i). Such subsets of Ω are introduced in
order that all i-characteristics from Z ∈

(
Ωk2
iε ∪Ωk3

iε

)c
are segments of length uniformly

bounded from below in terms of ε.

Lemma 4.1. For k∈N∗, i∈{1,...,p} and ε>0, there is a subset Ωkiε of i-characteristics
of Ω with measure smaller than cbε, containing Ωk2

iε or Ωk3
iε defined above, and such that

for any z∈Ω\Ωkiε,

F ki (z)≤ 1

ε
exp(

1

ε
),

∫ s−i (z)

−s+i (z)

νki (z+svi)ds≤
1

ε
. (4.2)

Proof. It follows from the exponential form of F ki that

F ki (z)≤F ki (z+s−i (z)vi)e

∫ s−
i

(z)

−s+
i

(z)
νki (z+rvi)dr

, z∈Ω. (4.3)

The boundedness of the mass flow of (F ki )k∈N∗ across ∂Ω−i is∫
∂Ω−i

|vi ·n(Z) |F ki (Z)dσ(Z)≤ cb.

Consequently, the measure of the set {Z ∈∂Ω−i ;F ki (Z)> 1
ε } is smaller than cbε.

The boundedness of the mass of (F kj )k∈N∗,1≤j≤p can be written∫
Ω

F kj (z)dz=

∫
∂Ω−i

|vi ·n(Z) |
(∫ 0

−s+i (Z)

F kj (Z+rvi)dr
)
dσ(Z)≤ cb.
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Hence the measure of the set

{Z ∈∂Ω−i ;

∫ 0

−s+i (Z)

F kj (Z+rvi)dr>
p2Γ

ε
},

where Γ = maxi,j,k,lΓ
lm
ij , is smaller than cbε. Hence the measure of the set of Z ∈∂Ω−i

outside of which F ki (Z)≤ 1
ε and

∫ 0

−s−i (Z)
F kj (Z+rvi)dr≤ p2Γ

ε , is bounded by cbε. To-

gether with (4.3), this implies that the measure of the complement of the set of Z ∈∂Ω−i ,
such that

F ki (z)≤ 1

ε
exp

(1

ε

)
and

∫ s−i (z)

−s+i (z)

νki (z+rvi)dr≤
1

ε

for z=Z−svi, 0≤s≤s+
i (Z), is bounded by 2cbε. With it 2cbε is a bound for the

measure of the complement, denoted by Ωk1
iε , of the set of i-characteristics in Ω such

that for all points z on the i-characteristics,

F ki (z)≤ 1

ε
exp

(1

ε

)
and

∫ s−i (z)

−s+i (z)

νki (z+rvi)dr≤
1

ε
.

The sets of points Ωk2
iε and Ωk3

iε have measure of magnitude ε, and are also included in
Ωkiε,

Ωkiε=∪3
p=1Ωkpiε .

This ends the proof of the lemma.

Given i∈{1,...,p} and ε in Lemma 4.1, let χkiε denote the characteristic function of
the complement of Ωkiε. The following lemma proves the compactness of the k-sequence
of integrated collision frequencies.

Lemma 4.2. The sequences(∫ s+i (z)

0

νki (z+
i (z)+svi)ds

)
k∈N∗

, 1≤ i≤p,

are strongly compact in L1(Ω).

Proof. Let 1≤ i≤p. The uniform bound for the mass of (F k) proven in Lemma
3.3, implies that ∫

Ω

(∫ s+i (z)

0

νki (z+
i (z)+svi)ds

)
dz

is uniformly bounded with respect to k. By the Kolmogorov-Riesz theorem ( [10], [11]),
the compactness will follow from the translational equi-continuity in L1(Ω). The transla-

tional equi-continuity in the vi-direction of
(∫ s+i (z)

0
νki (z+

i (z)+svi)ds
)
k∈N∗

follows from

the previous uniform bound on
∫

Ω

(∫ s+i (z)

0
νki (z+

i (z)+svi)ds
)
dz. Let us prove the trans-

lational equi-continuity in the vj-direction of each of its terms,

Γlmij

∫ s+i (z)

0

F kj

(1+
Fki
k )(1+

Fkj
k )

(z+
i (z)+svi)ds.
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It follows from the weak L1- compactness of (F k)k∈N∗ that∫
Ω

(∫ s+i (z)

0

(
(1−χkjε)

F kj

(1+
Fki
k )(1+

Fkj
k )

(z+
i (z)+svi)

)
ds
)
dz

can be made arbitrarily small for ε small enough. Consider the remaining term in which

χkjεF
k
j is bounded by 1

ε exp( 1
ε ). Noticing that the translational difference of

Fkj
k tends

to zero, when k tends to infinity, there remains to study the translational difference in
the vj-direction of

∫ s+i (z)

0

(
χkjεF

k
j

)
(z+
i (z)+svi)ds.

Write F kj (z+
i (z)+svi) in exponential multiplier form,

∫ s+i (z)

0

(
χkjεF

k
j

)
(z+
i (z)+svi)ds=Aki,j(z)+Bki,j(z),

where

Aki,j(z) =

∫ s+i (z)

0

χkjε(z
+
i (z)+svi)f

k
bj(z

+
j (z+

i (z)+svi))

e−
∫ s+j (z

+
i

(z)+svi)

0 νkj (z+j (z+i (z)+svi)+σvj)dσds,

Bki,j(z) =

∫ s+i (z)

0

χkjε(z
+
i (z)+svi)

∫ s+j (z+i (z)+svi)

0

Q+k
j

(
z+
j (z+

i (z)+svi)+σvj
)

e−
∫ s+j (z

+
i

(z)+svi)

σ νkj (z+j (z+i (z)+svi)+τvj)dτdσds.

In order to prove the translational equicontinuity of (Aki,j), it is sufficient to prove the
translational equicontinuity of

(∫ s+i (z)

0

χkjε(z
+
i (z)+svi)

∫ s+j (z+i (z)+svi)

0

νkj (z+
j (z+

i (z)+svi)+σvj)dσds
)
k∈N∗

,

by the L1
vi·n(Z)(∂Ω+) compactness of (fkbj(z

+
j (z+

i (z)+svi)))k∈N∗ . It is so since, by the

change of variables (3.11), each of its terms is a linear combination of∫
ai,j(z)

F kl

(1+
Fkj
k )(1+

Fkl
k )

(Z)dZ, 1≤ l≤p,

with domains ai,j(z)⊂Ω, continuously depending on z∈Ω, and such that

|ai,j(z)\ai,j(z+h) |≤ ch, z∈Ω,

uniformly with respect to z. The integral where F kl >Λ, tends to zero when Λ→∞. If
F kl >Λ in one but not the two other terms in the translation difference, then moving the
evaluation points closer, by continuity the larger value of F kl can be changed to Λ. And
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so we can assume F kl bounded at both evaluation points in the translation difference.
It follows that (Aki,j)k∈N∗ is translationally equi-continuous. Bki,j is a sum of

Γlmjj′

∫ s+i (z)

0

χkjε(z
+
i (z)+svi)

∫ s+j (z+i (z)+svi)

0

F kl F
k
m

(1+
Fkl
k )(1+

Fkm
k )

(
z+
j (z+

i (z)+svi)+σvj
)

e−
∫ s+j (z

+
i

(z)+svi)

σ νkj (z+j (z+i (z)+svi)+τvj)dτdσds

terms. Consider each one of these terms and split it into Γlmjj′(C
k
1 +Ck2 +Ck3 ), where, for

real numbers J1 and J2 to be fixed later,

Ck1 (z) =

∫ s+i (z)

0

χkjε(z
+
i (z)+svi)

∫ s+j (z+i (z)+svi)

0

F kl F
k
m

(1+
Fkl
k )(1+

Fkm
k )

(
z+
j (z+

i (z)+svi)+σvj
)

1
Fk
l
Fkm

(1+
Fk
l
k

)(1+
Fkm
k

)

(
z+j (z+i (z)+svi)+σvj

)
>J1

Fk
j
Fk
j′

(1+
Fk
j
k

)(1+
Fk
j′
k

)

(
z+j (z+i (z)+svi)+σvj

)
e−

∫ s+j (z
+
i

(z)+svi)

σ νkj (z+j (z+i (z)+svi)+τvj)dτdσds,

Ck2 (z) =

∫ s+i (z)

0

χkjε(z
+
i (z)+svi)

∫ s+j (z+i (z)+svi)

0

F kl F
k
m

(1+
Fkl
k )(1+

Fkm
k )

(
z+
j (z+

i (z)+svi)+σvj
)

1Xk2 (σ,s)e−
∫ s+j (z

+
i

(z)+svi)

σ νkj (z+j (z+i (z)+svi)+τvj)dτdσds,

where

Xk
2 ={(σ,s); F kl F

k
m

(1+
Fkl
k )(1+

Fkm
k )

(
z+
j (z+

i (z)+svi)+σvj
)

<J1

F kj F
k
j′

(1+
Fkj
k )(1+

Fk
j′

k )

(
z+
j (z+

i (z)+svi)+σvj
)
, F kj′

(
z+
j (z+

i (z)+svi)+σvj
)
>J2},

Ck3 (z) =

∫ s+i (z)

0

χkjε(z
+
i (z)+svi)

∫ sj(z
+
i (z)+svi)

0

F kl F
k
m

(1+
Fkl
k )(1+

Fkm
k )

(
z+
j (z+

i (z)+svi)+σvj
)

1Xk3 (σ,s)e−
∫ s+j (z

+
i

(z)+svi)

σ νkj (z+j (z−i (z)+svi)+τvj)dτdσds,

where

Xk
3 ={(σ,s); F kl F

k
m

(1+
Fkl
k )(1+

Fkm
k )

(
z+
j (z+

i (z)+svi)+σvj
)

<J1

F kj F
k
j′

(1+
Fkj
k )(1+

Fk
j′

k )

(
z+
j (z+

i (z)+svi)+σvj
)
, F kj′

(
z+
j (z+

i (z)+svi)+σvj
)
<J2}.

Using the uniform boundedness of the entropy production terms (Dk)k∈N∗ and choosing
J1 large enough, Ck1 can be made arbitrarily small, uniformly with respect to k. For
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such a J1, notice that

Ck2 ≤
J1e

1
ε

ε

∫ s+i (z)

0

χkjε(z
+
i (z)+svi)

∫ s+j (z+i (z)+svi)

0

F kj′

1+
Fk
j′

k

(
z+
j (z+

i (z)+svi)+σvj
)

1Xk2 (σ,s)e

−
∫ s+j (z

+
i

(z)+svi)

σ Γlm
jj′

Fk
j′

1+
Fk
j′
k

(z+j (z+i (z)+svi)+τvj)dτ

dσds.

By the continuity of F k, the integral with respect to σ is a sum of integrals over disjoint
intervals where F kj′ >J2. The total integral is bounded by an integral of F kj′ over a

set where F kj′ >J2. Using the entropy control,
∫
Fk
j′>J2

F kj′→0 when J2→∞. And so

choosing J2 large enough, Ck2 can be made arbitrarily small, uniformly with respect to
k. It follows from the boundedness of (F kl F

k
m) on its domain of integration in Ck3 , that

the closing argument in the proof of translational equi-continuity for (Aki,j) above, can

be used to conclude that (Ck3 )k∈N∗ and with it (Bki,j) are translationally equi-continuous.
This ends the proof of the lemma.

For any i∈{1, · · ·,p}, the following lemma proves the compactness of the integrated
gain terms times χkiε in the exponential multiplier form of the (F ki )-sequence, again by
the Kolmogorov-Riesz theorem.

Lemma 4.3. Take ε>0. The sequences(
χkiε(z)

∫ s+i (z)

0

F kl F
k
m

(1+
Fkl
k )(1+

Fkm
k )

(z+
i (z)+svi)e

−
∫ s+
i

(z)
s νki (z+i (z)+rvi)drds

)
k∈N∗

,

i= 1,...,p, (4.4)

are strongly compact in L1(Ω).

Proof. The sequence (F ki )k∈N∗ being uniformly bounded in L1, the same holds
for (4.4). For proving its uniform L1 equi-continuity, split the domain of integration in
(z,s)∈Ω× [0,s+

i (z)] into the sets where

F kl F
k
m

(1+
Fkl
k )(1+

Fkm
k )

(z+
i (z)+svi)>J1

F ki F
k
j

(1+
Fki
k )(1+

Fkj
k )

(z+
i (z)+svi),

(
resp.

F kl F
k
m

(1+
Fkl
k )(1+

Fkm
k )

(z+
i (z)+svi)<J1

F ki F
k
j

(1+
Fki
k )(1+

Fkj
k )

(z+
i (z)+svi)

and F kj (z+
i (z)+svi)>J2

)
,

where the integrals are arbitrarily small for J1 (resp. J2) large enough, and the remain-
ing domain,

X :={(z,s)∈Ω× [0,s+
i (z)];F kj (z+

i (z)+svi)<J2,

and
F kl F

k
m

(1+
Fkl
k )(1+

Fkm
k )

(z+
i (z)+svi)<J1

F ki F
k
j

(1+
Fki
k )(1+

Fkj
k )

(z+
i (z)+svi)},

where (F kl F
k
m) is bounded uniformly with respect to k. Let us prove the L1 uniform

equi-continuity of(
χkiε(z)

∫ s+i (z)

0

F kl F
k
m

(1+
Fkl
k )(1+

Fkm
k )

(z+
i (z)+svi)ds

)
k∈N∗
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on this domain. We can also restrict to a domain where both F kl (z+
i (z)+svi) and

F km(z+
i (z)+svi) are bounded, since∫

(z,s)∈X;s∈[0,s+i (z)],Fkl (z+i (z)+svi)≥Λ

χkiε(z)
F kl F

k
m

(1+
Fkl
k )(1+

Fkm
k )

(z+
i (z)+svi)dsdz

≤ J1J2e
1
ε

ε
| {(z,s)∈X;s∈ [0,s+

i (z)],F kl (z+
i (z)+svi)≥Λ} |,

and the measure of the set where F kl >Λ tends to zero when Λ→+∞. And so, we have
reduced the problem to proving the L1 uniform equi-continuity of

(∫ s+i (z)

0

1Fkl (z+i (z)+svi)<Λ

F kl

1+
Fkl
k

(z+
i (z)+svi)ds

)
k∈N∗

,

which follows from the proof of Lemma 4.2.

Lemma 4.4. Up to a subsequence (F k)k∈N∗ strongly converges in L1(Ω). Its limit has
finite entropy.

Proof. Let F be a weak L1 limit of a subsequence of (F k)k∈N∗ . For every ε>0,
the sequence (χkiεF

k
i )k∈N∗ is compact in L1(Ω) by Lemmas 4.2-4.3. For a converging

subsequence of (χkiεF
k)k∈N∗ , the limit depends on ε. Choose a decreasing sequence (εq)

with lim
q→∞

εq = 0, and a diagonal subsequence in k with χkiεq converging in k for all q, and

increasing with q. Split F k−F into

χkiεq (F
k
i −Fi)+(1−χkiεq )F

k
i −(1−χkiεq )Fi, 1≤ i≤p.

Using that
∫

Ωkiεq
F ki and

∫
Ωkiεq

Fi are arbitrarily small for εq small enough, leads to the

convergence of F k to F in L1(Ω). Let us prove that F is of finite entropy. It follows
from Lemma 3.4 that∫

Fki (z)≤k
F ki lnF ki (z)dz≤ cb, k∈N∗, 1≤ i≤p.

Let i∈{1, · · ·,p} and ε>0 be given. Using Egoroff’s theorem, there is a subset Aε of Ω
such that (F ki/Aε)k∈N∗ uniformly converges to Fi/Aε . Fi being continuous is uniformly
bounded by some constant cε on Aε. For some k0≥2cε,

F ki (z)≤2cε, k≥k0, z∈Aε.

Consequently, ∫
Aε

F ki lnF ki (z)dz≤ cb, k≥k0.

And so, ∫
Aε

Fi lnFi(z)dz≤ cb.

This implies the boundedness of the entropy of F .
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Lemma 4.5. Under the assumptions of Theorem 1.1, F is a nonnegative renormalized
solution of the discrete-velocity coplanar Boltzmann boundary value problem (1.6)-(1.7).

Proof. Start from a renormalized formulation for χkiεF
k
i ,

−
∫
∂Ω−

ϕiχ
k
iε ln

(
1+F ki

)
(Z)vi ·n(Z)dσ(Z)−

∫
∂Ω+

ϕiχ
k
iε ln

(
1+fkbi

)
(Z)vi ·n(Z)dσ(Z)

−
∫

Ω

χkiε ln
(
1+F ki

)
vi ·∇ϕi(z)dz

=

∫
Ω

ϕiχ
k
iε

1+F ki

p∑
j,l,m=1

Γlmij

( F kl

1+
Fkl
k

F km

1+
Fkm
k

− F ki

1+
Fki
k

F kj

1+
Fkj
k

)
dz, (4.5)

for test functions ϕ∈ (C1(Ω))p. Use the strong L1 convergence given by Lemma 4.4 for
the sequence (F k)k∈N∗ , to pass to the limit in the left side of (4.5) when k→+∞. This
gives in the limit for the left side

−
∫
∂Ω−

ϕi ln
(
1+Fi

)
(Z)vi ·n(Z)dσ(Z)−

∫
∂Ω+

ϕi ln
(
1+fbi

)
(Z)vi ·n(Z)dσ(Z)

−
∫

Ω

ln
(
1+Fi

)
vi∇ϕi(z)dz.

For the passage to the limit when k→+∞ in the right side of (4.5), given η>0 there is a
subset Aη of Ω with |Acη|<η, such that up to a subsequence, (Fk) uniformly converges to
F on Aη and F ∈L∞(Aη). Passing to the limit when k→+∞ on Aη is straightforward.
Moreover,

lim
η→0

∫
Acη

ϕi
1+Fi

Q−i (F )(z)dz= 0 and lim
η→0

∫
Acη

ϕiχ
k
iεF

k
i ν

k
i (z)dz= 0,

uniformly with respect to k, since

Fi
1+Fi

≤1,
F ki

(1+F ki )(1+
Fki
k )(1+

Fkj
k )
≤1, and lim

η→0

∫
Acη

F kj = 0,

uniformly with respect to k. The passage to the limit in the loss term follows. The
passage to the limit in the gain term can be done as follows. The uniform boundedness
of the entropy production term of (F k) given by (3.14) in Lemma 3.3, implies that for
any γ >1,∫

Acη

|ϕi|
χki

1+F ki

p∑
j,l,m=1

Γlmij
F kl

1+
Fkl
k

F km

1+
Fkm
k

(z)dz ≤ c

lnγ
+cγ

∫
Acη

F ki ν
k
i (z)dz.

Take first γ large, then η small. It follows that the right side of (4.5) converges to∫
Ω

ϕi
Q+
i (F )

1+Fi
(z)dz−

∫
Ω

ϕi
Q−i (F )

1+Fi
(z)dz,

when k→+∞. Consequently, F satisfies (1.6)-(1.7) in renormalized form.

Remark 4.1. Strong L1 compactness and convergence to a renormalized solution
of the discrete-velocity coplanar Boltzmann boundary value problem (1.6)-(1.7), as ob-
tained in Section 4, would also hold without Assumption (1.4), for a sequence of ap-
proximations (F k)k∈N weakly compact in L1. This will be the frame of a following
paper.
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Remark 4.2. Some of the techniques of this paper are used in an ongoing study on
the evolutionary Boltzmann equation with coplanar discrete velocities.
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