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ON STATIONARY SOLUTIONS TO NORMAL, COPLANAR
DISCRETE BOLTZMANN EQUATION MODELS*

LEIF ARKERYD' AND ANNE NOURI?

Abstract. The paper proves existence of renormalized solutions for a class of velocity-discrete
coplanar stationary Boltzmann equations with given indata. The proof is based on the construction of
a sequence of approximations with L' compactness for the integrated collision frequency and gain term.
L' compactness of a sequence of approximations is obtained using the Kolmogorov-Riesz theorem and
replaces the L' compactness of velocity averages in the continuous velocity case, not available when
the velocities are discrete.
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1. Introduction

The Boltzmann equation is the fundamental mathematical model in the kinetic
theory of gases. Replacing its continuum of velocities with a discrete set of velocites is a
simplification preserving the essential features of free flow and quadratic collision term.
It can approximate the Boltzmann equation with any given accuracy [4], and is thereby
useful for approximation studies. In the quantum realm it can also be more directly
connected to microscopic particles and quasiparticle models. A discrete-velocity model
of a kinetic gas, is a system of partial differential equations having the form,

ofi
ot

(t,Z)—F’UZvzfz(t,Z):Ql(f)(t,Z), t>03 ZEQ, ISZSP,

where f;, 1<i<p, are phase space densities at time ¢, position z, velocity v;, Q C R,
and v; € R?, 1 <i<p, are given discrete velocities. The collision operator QQ = (Qi)1<i<p
with gain part QT, loss part @, and collision frequency v, is given by

Q)= > TH(hi=1ify)

J,k,l=1

:Qj(f)_Q;(f)» Q; (f)=rfivi(f), i=1,...p.
The collision coefficients satisfy
I =T5=I};20. (1.1)

If a collision coefficient Ffjl is non-zero, then the conservation laws for momentum and
energy,

vitvj=vitu, vl P = ok + vl (1.2)
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are satisfied. The discrete-velocity model (DVM) is called normal (see [5]) if any solution
of the equations

W (vi) + ¥ (v;) =V (vg) + ¥ (1),

where the indices (4,5;k,1) take all possible values satisfying I‘f

} >0, is given by

T(v)=a+b-v+clv)?,

for some constants a,c€R and b€ R?%. This paper studies stationary solutions to copla-
nar models, i.e. with v; €R?, 1<i<p, in a strictly convex bounded open subset Q C R?,
with C' boundary 9Q and given indata. We consider the generic situation of normal
coplanar velocities with

no pair of velocities v;,v;,1<4,j <p, parallel, (1.3)

and additionally that for some direction ng €R?, w;-ng>0, 1<i<p.

EXAMPLE 1.1.  Let a model with velocities v; € R? satisfying (1.2), co>|v;|, 1<i<p,
and ng € R? such that

Cono ¢ U 7Uj+R(’Uz'f’Uj).
1<i#j<p
Then the model with velocities v; +cong, 1 <i<p satisfies (1.2)-(1.4).

Such a model based on the Broadwell model in the plane is

(1,0)+(2,2), (=1,0)+(2,2), (0,1)+(2,2), (0,—1)+(2,2).

EXAMPLE 1.2.  Discrete-velocity models satisfying (1.2)-(1.4) can also be constructed
as follows. Choose a direction ng €R?. In the plane with origin O, denote by P, the
half plane

P.={MER? ng-OM>0}.
Choose (A;,A;) € P2, A;#+ Aj, and (A1, Am) € {(Ai, Aj),(4;,A4;)} diametrically opposed
on the circle of diameter [A;,A;]. The quadrivector (v;,v;,vk,v;) defined by
vi=0A;, v;=04;, v=041, vm=04,,
with a corresponding Ff]l #0, satisfies (1.2)-(1.4).
Notice that one velocity can belong to different circles.

For stationary solutions to the Broadwell model, that does not belong to this class,
see [2,6].
Denote by n(Z) the inward normal to Z € 99Q). Denote the v;-ingoing (resp. v;-outgoing)
part of the boundary by

o0 ={Z€0Q; wv;i-n(Z)>0}, (resp. 0Q; ={Z€0Q; wv;-n(Z)<0}).
Let

si(z)=inf{s>0; 2—sv; €00}, s (2)=inf{s>0; 2450, €00}, z€Q.
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Write
2 (2)=2z—s7(2)v; (resp. z; (2)=2+s; (2)v;) (1.5)

for the ingoing (resp. outgoing) point on 9 of the characteristics through z in direction
v;. The boundary value problem

vi-Vi(2)=Qi(f)(2), ze,
fi(2)=fui(2), 2z€0Qf, 1<i<p,

is considered in L! in one of the following equivalent forms [7]; the exponential multiplier
form,

s (=)
file)=fuule (2))efo" i DE G rords

s (2) ()
+/ Q;r(f)(z;r(z)—i-svi)e_fsl ”"(f)(zj(z)"’"”i)d’“ds, a.a. €8, 1<i<p,
0

(1.8)

the mild form,

ST (2)
fl(z):sz(z:r(z))—i—/ Qi(f)(z;r(z)—i—svi)ds, aa. z€Q, 1<i<p, (1.9)
0
the renormalized form,

vi-Vln(l—&-fi)(z):?jr(?(z), z€, fi(2)=fri(2), 2€0Qf, 1<i<p, (1.10)

in the sense of distributions. Denote by Ll+ () the set of non-negative integrable func-
tions on 2. Let

(L;m)rign/g(flfm—fifj)ln ?ﬁ: (2)dz (1.11)

be the entropy dissipation of a distribution function f. The main result of the present
paper is:

THEOREM 1.1.  Consider a coplanar collision operator in the generic case of (1.3)
additionally satisfying (1.4), and non-negative ingoing boundary values fp;, 1<i<p,
with mass and entropy bounded,

/ ;- n(2) foi (1410 f;) (2)do(2) <+oo, 1<i<p.
ot

There exists a stationary renormalized solution in (Li_(Q))p to the boundary value prob-
lem (1.6)-(1.7) with finite mass, entropy and entropy-dissipation.

Most mathematical results for stationary discrete-velocity models of the Boltzmann
equation have been obtained in one space dimension. An overview is given in [8].
In two dimensions, special classes of solutions to the Broadwell model are given in
[3,6], and [9]. The Broadwell model is a four-velocity model, with vy +ve=v3+v4=
0 and vy, vy orthogonal. Reference [6] contains a detailed study of the stationary
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Broadwell equation in a rectangle with comparison to a Carleman-like system, and
a discussion of (in)compressibility aspects. The main result in [6] is the existence of
continuous solutions to the two-dimensional stationary Broadwell model with continuous
boundary data for a rectangle. The proof starts by solving the problem with a given gain
term, and uses the compactness of the corresponding twice-iterated solution operator
to conclude by Schaeffer’s fixed-point theorem. The paper [2] studies that problem
in an L'-setting, with the proof broadly within the frame of the present paper. In
both those papers of ours, there is a priori control of mass and entropy dissipation.
Denoting by f;(t,-), 1<i<4, the density of the particles moving with velocity v; at
time ¢, the proof in [2] in an essential way uses the constancy of the sums f; + f> and
f3+ f1 along characteristics, which no longer holds in this paper. It is here replaced
by a compactness property for the collision frequency and gain parts in the exponential
form of the approximations employed. The compactness is based on Assumption (1.3)
and the simultaneous presence of space integrals in two velocity directions. The proof
starts from bounded approximations with damping and convolution added, written in
exponential multiplier form, and solved by a fixed-point argument. Then the damping
and convolutions are removed by taking limits using L!-compactness of the integrated
collision frequency and gain term. The compactness is proven by the Kolmogorov-Riesz
theorem (see [10,11]). The limit of the remaining approximations is obtained by using
again the Kolmogorov-Riesz theorem.

2. Approximations

The construction of the primary approximated boundary value problem with damp-
ing and convolutions is similar to the Broadwell case [2] and given in the following
lemma. Denote by aAb the minimum of two real numbers a and b. Take >0 and set

Z/ﬁm ) fuldo(z), Ka={fe(LL(O Z/fz s <ca}. (2.)

Let jto, be a smooth mollifier in R? with support in the ball centered at the origin of
radius «. Outside the boundary the function to be convolved with pu, is continued in
the normal direction by its boundary value. Let jix be a smooth mollifier on 0€2. Denote
by

= (fbi(~)A§) sfin, 1<i<p.

LEMMA 2.1.  There is a solution F € (L} (2))P to

p
F FnL*/-La F; F*,U'(x
aF+v;-VF= 3 Tin( ! - —ibe ) (2.2)
jJ%:l 1+Fl 1+Fm Ha 1+%1_~_ij/‘«<1
Fi(zf (2) = fi( (2)), 1<i<p. (2.3)

Proof. Let T be the map defined on K, by T(f)=F, where F = (F;)1<i<p is the
solution of

- ﬂ fm*ﬂa Fi fj*/‘a ) (24)

OLF1+’UZVFZZ Flm( * ) %
j’l;_l 1+Fl 1+fm Mo 1+% 1+fjkﬂa

Fi(2 (2) = fri(= (2)). (2.5)
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F=T(f) can be obtained as the limit in (L (2))? of the sequence (F9)4cn defined by

=0 and
p +1
Jas m ¥ ey Fq * ey
aFf ™ o VE = ) Fi;n( zqu 1f fm/iua fi /j%), (2.6)
Jlm=1 1+ 1+
1
Fq+ ( ( )) sz( ( ))7 QEN. (27)
Fa+! can be written in the following exponential form,
—asf ()=, T fos*(z) %(Hsvi)ds
FI ) ~fh(el () A
Fq m (03
I Z Flm/ L) f/“:u (z+ sv;)
j,l,m=1 S (=) 1+ l 1 Smpie
O‘S_ZJ 1 ‘"LFI;ZH 30 %(z-&-rvi)dr
e 1+ a+-1—=) dS) 1§i§p. (2.8)

The sequence (F'7),en is monotone. Indeed,
F)<F!, 1<i<n,

by the exponential form of F}. If F?<F*"' 1<i<p, then it follows from the expo-
nential form that Ft" < F4%2. Moreover,

aiFiq+l+ivi'VFiq+1: Z F Fq+1) fm*:u(x SO,

fm*pa
i,7,l,m=1 1+Tl 1+ k

so that
p
Z/Fiqﬂ(z)dzgca. (2.9)
Q

By the monotone convergence theorem, (F'7),en converges in L'(Q) to a solution F of
(2.4)-(2.5). The solution of (2.4)-(2.5) is unique in the set of non-negative functions. In-
deed, let G=(G;)1<i<p be a non-negative solution of (2.4)-(2.5). It follows by induction
that

VgeN, F!<@G,;, 1<i<p. (2.10)

Indeed, (2.10) holds for ¢=0, since G; >0, 1 <i<p. Assume (2.10) holds for ¢. Using
the exponential form of F/™" implies F/*' <@;. Consequently,

Moreover, subtracting the partial differential equations satisfied by G; from the partial
differential equations satisfied by F;, 1 <i<p, and integrating the resulting equation on
Q, it results

aZ/Q(Gi—Fi)(z)dz—&—Z/am In(2)-wi](Gi— F))(2)do(2) =0.  (2.12)
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It results from (2.11)-(2.12) that G=F. The map T is continuous in the L!'-norm
topology (see [1], pages 124-5). Namely, let a sequence (f?)4en in K, converge in
(LY (Q))P to f € K,. Set F1=T(f4). Because of the uniqueness of the solution to (2.4)-
(2.5), it is enough to prove that there is a subsequence of (F'?) converging to FF =T (f).
Now there is a subsequence of (f7), still denoted (f9), such that decreasingly (resp.
increasingly) (G9)=(sup,,f") (vesp. (g9)=(inf,>,f")) converges to f in L'. Let
(S7) (resp. (s7)) be the sequence of solutions to

p q
ST Glkpe ST glepa
aSI+v; VSI = E: ]_"Z_n( l */f i 9g; qfi )7
14 50 14 Gote 14 50y | divbe

7l,m=1

S{(f (2) = fi(= (2)),
P q
as!+0;-Vosl= Y Flm( S| G *Ha s? G * fia )
e 1+ sz 1+ Qm*,ua 1+ k 1+ G *Mu

s{(# (2)) = Fri(# (2) -

(57) is a non-increasing sequence, since that holds for the successive iterates defining the
sequence. Then (S7) decreasingly converges in L! to some S. Similarly (s?) increasingly
converges in L' to some s. The limits S and s satisfy (2.4)-(2.5). It follows by uniqueness
that s= F =S, hence that (F9) converges in L' to F. The map T is also compact in the
L'-norm topology. Indeed, let (f9),en be a sequence in K, and (F9)en= (T (f9))qen-
The boundedness by k2 of the terms in the collision operator, induces uniform L' equi-
continuity of (F{),en with respect to the v;-direction, as follows from the mild form
of the equatlons For the uniform L' equi-continuity with respect to the v;-direction,
j #1, consider for each ¢ and with f:= f¢ the sequence (G%"),cy defined by G4°=0
and for r € N*

q7r m* (e} qur * «
aGP" +v; VG = Z rim ( le,r / f’,f,t T fjf’iu ) (2.13)
jlm=1 L L T 14 G0 14 gk
LT (o (2)) = fE (2 (2 , <i:<p. .
GP (% f(z 1<i 2.14

The existence of a unique solution for each r follows as for the problem (2.4)-(2.5). By
induction on 7, prove that (G?")4en is uniformly equicontinuous in the v;-direction. It
holds for =0. Assume it holds for r—1€N* and prove it for . Writing G?"(2) in
exponential form and using the uniform equicontinuity in the vj-direction of (G%" 1) en
and the compactness of (f?x*pu,), it comes back to prove the uniform equicontinuity in
the v;-direction of

(z; (2)) Gq,
z—>/ qu( T (2) 4 sv;)ds.
k:

First,

z; (z+hvj) =z (2)+av;+by, with lima(h)=limb(h)=0,
h—0 h—0

uniformly with respect to z € ). Consequently,

si(z; (2)) Gq ,T G‘LT’
/ / qu (z;(z—i—hvj)—&—svi)—%(z;(z)—&—svi)dﬂdz
R 1+
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(z; (2)) Gq7 Gq7
7“(2 (2)+ (a+8)vi +bv) — —Ls (27 (2) + (a+5)v;) | dsdz
0 G 1+ G

(2.15)

1+

si(z; (2)) q,r q,r
/ / GGM (z; (2)+(a+s)vs) — %( T (2)+sv;)ds|dz.  (2.16)
z

The limit when h— 0 of (2.15) is zero, by the uniform L1 equicontinuity of (G7'")gen
with respect to the v;-direction. With the change of variables s—a+s in its first
integral, (2.16) equals

si(z; (2))+a qu - " qu i
/ / (7 () qu(zi (2)+sm)ds—/0 W( T (2)+sv;)ds | dz,

) 1+ 1+

which tends to zero when h tends to zero since both mtegrands are bounded by k.
This proves the L' compactness of (GI"),en. For ¢ fixed, the sequence (GI'") ey is
increasing, and its limit satisfies (2.4)-(2.5) with f= f?, so the limit equals F}. Take
a subsequence of ¢ still denoted by ¢, with (f9%u,) convergent in L' to some f>
when ¢— oo, and a further subsequence so that (G%!) converges to some F°>! in
L'. Continue by diagonalization to convergence of (G%"), to F>" for all r€ N. The
limits satisfy (2.13)-(2.14) with f*u, replaced with f°° and G%" with F°" giving an
increasing sequence, with limit satisfying (2.4)-(2.5), where f#pu, is replaced with f°°.
So given a sequence in K, there is a subsequence with converging image under 7. The
compactness of 7 is thus proved. Hence by the Schauder fixed-point theorem, there is
a fixed point for T, i.e. a solution F' to (2.2)-(2.3). 0

3. Removal of the damping and convolutions

Let k> 1 be fixed. Denote by F** the solution to (2.2)-(2.3) obtained in the previ-
ous section. Each component of F®* being bounded by a multiple of k2, (Fa’k)ae]o,l[ is
weakly compact in (L(£2))?. Denote by F* the limit for the weak topology in (L(£2))?
of a converging subsequence when o— 0. Let us prove that for a subsequence, the
convergence is strong in (L(£2))?.

LEmMmA 3.1. There is a sequence (aq)qen tending to zero when q— +oo, such that
(Foak) en  strongly converges to F* in (L*(Q))P when q— +o0.

Proof. Consider the approximation scheme (f**),en of Fook,

fq70 207

?

(3.1)
P o,k k a,p+1
F Fook s .
af® T po vt = 3T FZH( ! M N | ;i )
(3.
(3.

iy M g Eatee g S )

2)

@) = e (2), 1<i<p, peN. 3)

f! is obviously given in terms of F®*. It follows from the exponential form that
Fok< el a€)o1].

Denote by S the map from R? x R? mapping (X,Z) into W =8(X,Z) € RP solution to

P o,k a,k
F, EF2Pxp Wi  Zj*xp
lm
aW;+v; - VIW; = E L5 ( ok *a 5 b Z; *Za) )
P B iy B e R B oS B
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Wiz (2) = fi(# (2), 1<i<p.
Denote by

fa71,0 :S(O,fa’l), fa’l’T:S(fa’l’T_l,fa’l),
Fa,k:,O :S(O,Fa’k), Fa,k,'r‘ :S(F(x,k,7'—1’F(x,k)7 reN*.

First,

f_a,l,O < Fia,k:,O'

K3

Then the sequence (f*"").en (resp. (Fio"k’T)TeN) is increasing with limit f* (resp.

ank) It follows from fia’l’r SFia’k’ra r €N, that
fEP<EMR 1<i<p. (3.4)
Let
frRO=S(0,£72),  frEn=S(fO ), ren”.
It follows from (3.4) that

f_(x,Q,O > Fia,k,O

K3

1<:<p.

)

(e}

The sequence (f{"*"),ex is also increasing with limit f** and with fio"Q’TzFf"k’T.

Hence
fia,B > Fia,k.
From here by induction on p, it holds that

FERP < BT <Rt < fB T < % a€]0,1], peN. (3.5)
By induction on r, for each r the sequence (f*"),¢)o,1[ is translationally equicontinuous
in «. The limit sequence ( fa’Z)ae]OJ[ is also translationally equicontinuous. This is so,
since given € >0, r and then Ay can be taken so that

/(fa’foa’l’r)(z)dz<e and /|fa’1’r(z+h)ffa’l’r(z)|dz<e, |h| < ho.

It can analogously be proven that for each p €N, (f**),¢j0,1[ is translationally equicon-
tinuous in «. Let (a4)qen be a sequence tending to zero. Take a subsequence in
(aq)qen, still denoted by (ay)qen, such that (f%?),en converges in L' to some f02
when g — +o0. Continuing by induction gives a sequence (%), ey satisfying

0,2 0,2p+2 k 0,2p+3 0,2p+1
f‘ pgfz s SFi sz ’ Sfl r , peN,

1
D fO,p+1 fO,p
0,p+1 l i J
v VT =G - Y T o
J

ij FOpF1
2

7lm=1 1+ % 1+ ==

k
FrNE (@) = A= (),
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Here, G¥ is the weak L! limit when o — 0 of the gain term

P a,k o,k

§ I\l"r‘n Fl Fm * o
(¥ Fa,k FgL,k* *

Jyl,m=1 1+ 7Lk: 1+TM

In particular, (f?’2p)peN (resp. (f?’2p+1)peN) non-decreasingly (resp. non-increasingly)
converges in L' to some g; (resp. h;) when p— +o00. The limits satisfy

0<g;i <FF<h,,

p
h; 9;
i Vhi=Gi— Y Thr—— S (3.6)
jlm=1 1+ 1+
P g .
v;-Vgi=G;— Fém - i . ) (3.7)
j,z;1 TlH R

(hi —g2) (= (2)) =0.

Integrating and summing gives that
P
S [ lven(@) (=) (2)do(2)=0,
i=170%;

i.e. that g; =h; also on 012, . Integrating the equation satisfied by h; —g; over the part
of Q on one side of a line orthogonal to ng, summing over ¢ and using (1.4) implies that
g=nh on that line, hence in all of Q, and is equal to FF. (F®*),cy converges to F* in
(LY(Q))? when q¢— +o0. Indeed, given 1> 0, choose py big enough so that

| f20ott — (220 | i<y and || £ —FF|p<n, 1<i<p,

K2

then gy big enough, so that

2p0-+1 i
| fre2o T — 220 % i<y and D <n, g>qo.

H qu,on _fQ,2po
3

Then split || Fiaq’k —FF||1: as follows,
e
| B = B
7k k) k) k) k)
SPET = FR0 g | F2200 = £ LS = FE |
S| fRet = | 2 by (3.5)
SIS = T LR R LS = SR 20

<5, q=>qo-

LEMMA 3.2.  For any k€ N*, F* is a nonnegative continuous solution to
Ui'VFik:Q;rk_Fika ) (3:8)
Ff((2)) = fa(zF (2)), 1<i<p,
where
z FF  Fk & FF

Qff= D T —ter T vi= ) T
Ghm=1 14 1T gmet  (L+55)(1+ )
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Proof. Passing to the limit when g — +o00 in (2.2)-(2.3) written for F®* implies
that F* is a solution in (L} (Q2))? to (3.8)-(3.9). It remains to prove its continuity.
Using twice its exponential form and the continuity of f,f , it comes back to prove the
continuity of

J

sj’(z) sj’(z?’(z)«#s’ui)
/ / G* (21 (2] (2) +svi) +ov;)dods, i# ], (3.10)
0 0

for given measurable bounded functions G*. The mapping
(s,0) €0, (2)] x [O,s;r(zf(z) +sv;)]| = Z= zj(zf(z) +5v;) + 005, (3.11)

is a change of variables. Indeed, the strict convexity of Q and the C' regularity of
00 imply that z— z(2) is well-defined and C* for any i€ {1,---,p}. Hence the map
(s,0)— Z is one to one and C'. Its Jacobian equals one since Z = Z;v;+ Z;v;, with
Z;=s—s] (z) linear in s and independent of o, and Z; =0 — sj' (z+(s—s; (2))v;) linear
in 0. Using this change of variable leads to the continuity of the map defined in (3.10).

O

LEMMA 3.3.  Solutions (F*)gen+ to (3.8)-(3.9) have mass and entropy dissipation
bounded from above uniformly with respect to k.

Proof.  Choose an orthonormal basis (es,e,) of R? so that neither the z-direction
nor the y-direction is parallel to any of vy, ..., v,. Observe that integrating (3.8)-(3.9)
over €} and summing over ¢, shows that outflow of mass equals inflow. We shall first
obtain uniformly in k, an upper bound for the energy

P
ZU?/ FF(2)dz.
i=1 70

Recalling that the genericity condition (1.3) implies that all velocities are different from
zero, the energy bound implies an upper estimate for the mass. Write v; =§;e, 4 (iey.
Multiply the equation for F} with &; and integrate over 2, =QN{(z,y);x <a}. Set

S, =0n{(z,y);x=a} and 0Q,=02NQ,.
From (3.8)-(3.9) follows

s ' = y i v k o
;& /SaFi (a,y)dy—;&/m (vi-n(2))F¥(Z)do(Z). (3.12)

a

For any (z,y) € Q let the line-segment through (z,y) in the z-direction (resp. y-direction)
intersect the boundary 9 at = (y) <a™(y) (resp. y~ (z) <y™(x)). Denote by

7o := min {2~ (y)}, ay = Joax {7 (y)}- (3.13)

Integrating (3.12) on a € [z ,x7 | gives uniformly in k,

ig?AFik(z)dz:ifiAxg (/39 (Ui'n(Z))Fik(Z)dU(Z))dagCb7

a
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where ¢, only depends on the given inflow. Analogously >7_, ¢? fQ FF(2)dz<cp. The
boundedness of energy and with it mass, follows. The entropy dlss1pat10n estimate is
proved as follows. Denote by D* the entropy dissipation for the approximation F*,

i F/f F}“ FF FE F’“F’“(l ><1+ )
gm 9 1+ L T e < B+ 5 ErE,

Multiply (3.8) by In
on 2. It leads to

Fk , add the equations in i, and integrate the resulting equation
14— k

Moreover,

EF
> / Ffin——2(Z)|vi-n(Z)|do(Z)+ D" <c. (3.14)
007

i=1 i 1 + &
The uniform entropy dissipation bound holds, since x — zln? k is bounded from above
on ]0,+o0]. O

The following lemma replaces an entropy control of (F*)jen-, under the condition
(1.4).

LEMMA 3.4.  Assuming (1.4), it holds that

FF(2)dz<cy, keN*,

b p
/ Ff]an(z)dz—&—lnkZ/
i—1 7 2ELEF(2)<k i=1 7 2E€EQFF(2) >k

where ¢, only depends on the given inflow.

Proof. The entropy flow of (F¥) is first controlled as follows. It holds that

FF
/ _Fikln(l—k?l)(Z)|vi'n(Z)|dU(Z)
o0

IN

Fk
[ Eme @) een(2)|do(2)
00" FF<k

k

ol
—|—/ Fikln(l—&——z WZ) |vi-n(Z)|do(Z)
0] FF>k k

2FF

gm/ Fi’“(Z)|vi-n(Z)|da(Z)+/ FFin=(Z)|v; - n(Z) | do(2)
oQ; oQ; ,FF>k k

Scb-l-/ FiklnFik(Z)\vi~n(Z)|dU(Z)—lnﬁ/ Fik(Z)|vi-n(Z)|da(Z).
00 FF>k 2 Js

Q7 FF>k
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Together with (3.14), this implies that

p
k
Z/ FiklnFik(Z)|vZ--n(Z)\da(Z)—i—lnf/ FFlvi-n(2)|do(Z)<c.
=1/ 09; FF<k 2 Joa- FE>k
Set

er:=n0, Qa=00{(z,y);z<a}, S.=Qn{(z,y);xr=a}, 00 =02NQ,.

k
F;
Fk
i

Multiplying the equation for F by In 1< <p, summing the resulting equations

and integrating over €),, implies that
p k k
r Jal
Sovemo [ (FFEF -1+ S0 (155 ) (a)dy
i=1 Sa

p k k

(Ff I — k(14 25 In(1+ Q)) (Z)(vi-n(Z))do(Z)
=1 eje k k

An integration on [z ,z]] defined in (3.13) implies that

P k k
Zvi.no/ (Fiklan-kfk(1+%)ln(l+%)>(z)dz§cb.
i=1 Q

Moreover,
Fk
k/ln(l—k—’)(z)dzg/Fi’“(z)dzgcm 1<i<p,
Q k Q
and
Fk
/Ffln(l—i——’)(z)dz
Q k
FF Fk
g/ Ff1n(1+—1)(z)dz+/ FFln(14—1)(z)dz
2E€QFE(2)<k k ZE€QFE(2) >k k
k ko 2FF
<In2 | Fj(z)dz+ F7ln (z)dz
Q 2€Q,FF(2) >k k
k
gcb—i—/ FiklnFik(z)dz—ln—/ FF(2)dz.
2€0FF (2)>k z€GFF(2)>k
And so,

P
k
ZW%O(/ FiklnFik(Z)dZ‘Hn*/ Fik(Z)dz) < cp.
i=1 2€Q,FF(z)<k 2

2ELFF(2)>k

The use of assumption (1.4) gives

k
/ FiklnFZ-k(z)dz—i—lnf/ FF(2)dz<cy,, 1<i<p, k>2.
2€Q,FF(2)<k 2EQFF(2)>k
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4. The passage to the limit in the approximations

This section contains the proof of Theorem 1.1. The main part is a proof of strong
L' compactness of (F*);cn+, based on two compactness lemmas for integrated collision
frequency and gain term. Recall the exponential multiplier form for the approximations
(F*)ene,

s (=
FE(2) =fl (e (2))e~Jo' vl @vovds

) o
+/ QF (2 (2) +svi)e —J TG @rodr g aa 2eQ, 1<i<p,
0
(4.1)

where ¥ and Q;"k are defined by

Fk FF FF
2 Tim +k Tim
Vf_ ij —j Fk7 Qq, - i] lFlk — F‘/y]ycl
jlm (1+ )(1+ ) jlm 1 k 1 k

An i-characteristic denotes a segment of points [Z — s; (Z)v;, Z], where Z € 09); .

By the strict convexity of €2, there are for every i € {1,---p} two points of I, denoted
by Z; and Z; such that

5 (Z)=27(Z) and 21 (Z) =z (Z).

Denote by Q52 (resp. QF3) the set of points between Z; (resp. Z;) and the i-
characteristics in  at distance e from Z; (resp. Z;). Such subsets of Q are introduced in
order that all i-characteristics from Z € (ij’uﬂfﬁ)c are segments of length uniformly
bounded from below in terms of e.

LEMMA 4.1.  Fork€Nx, i€ {1,....,p} and € >0, there is a subset QX of i-characteristics
of Q with measure smaller than cye, containing QkZ or QOF3 defined above, and such that
for any € Q\ QF,

1 1 s; (=) 1
FF(2) < =exp(-), / vE (24 sv;)ds < =. (4.2)
AT ¢

Proof. Tt follows from the exponential form of FF that

s; (2)
i vE (z4rv;)dr
FF(2) <EF(z+s7(2)v)e - @ , z€C. (4.3)

The boundedness of the mass flow of (FF)en+ across 99 is
[ 12| P22 <
o0y

Consequently, the measure of the set {Z € 9Q; ;F(Z) > 1} is smaller than cye.
The boundedness of the mass of ( ) ken+ 1<j<p can be written

/QF;C(Z)dZZ/GQi |v;-n(Z)| (/:j(z)Ff(Z—&-Tvi)dr)da(Z)gcb.



2228 COPLANAR DISCRETE BOLTZMANN EQUATION

Hence the measure of the set

0 p21"
{ZE@Q_'/ ij(Z+rvi)dr>7},
75'."(Z) €
where F:maxi,ﬁk’lFﬁT, is smaller than cye. Hence the measure of the set of Z €0
outside of which F¥(Z)<1 and E _  FE(Z4rv)dr < pQ—F, is bounded by cpe. To-
i € s, (Z)7J €

gether with (4.3), this implies that the measure of the complement of the set of Z € 0Q);",
such that

1 1 s; (2) 1

Ff(z)<—exp(-) and / vE(z4rvg)dr < =
€ € +(2) €

for z=27—sv;, 0<s<s;(Z), is bounded by 2cye. With it 2cye is a bound for the

measure of the complement, denoted by QF! of the set of i-characteristics in € such

that for all points z on the i-characteristics,

—S

11 5 (%) 1
F.k(z)gfexp(f) and / vF(z4rvg)dr < = .

i
€ € —s;r(z) €

The sets of points Q42 and Q3 have measure of magnitude ¢, and are also included in
Q.
k 3 Ok
Qie = Up:lgiep'
This ends the proof of the lemma. 0

Given i€ {1,...,p} and € in Lemma 4.1, let x* denote the characteristic function of
the complement of QF . The following lemma proves the compactness of the k-sequence
of integrated collision frequencies.

LEMMA 4.2. The sequences

(/OS?(Z) Vf(Zj(Z)—i—SUl)dS)

are strongly compact in L*(9).

T

Proof. Let 1<i<p. The uniform bound for the mass of (F k) proven in Lemma,

3.3, implies that
7 (2)
/ (/ Vf(zj(z)—ﬁ—svi)ds) dz
a Mo

is uniformly bounded with respect to k. By the Kolmogorov-Riesz theorem ( [10], [11]),

the compactness will follow from the translational equi-continuity in L (£2). The transla-

-+
tional equi-continuity in the v;-direction of ( 05 (=) vE (2 (2) —l—svi)ds) follows from

keN

N
the previous uniform bound on |, ( o (=) vE (2 (2) —&—svi)ds) dz. Let us prove the trans-

lational equi-continuity in the v;-direction of each of its terms,

; s (2) FFE
iy [ e () s

)+ 5)
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It follows from the weak L'- compactness of (F*)en- that

s Fh
/Q(/o ((1_X§€)(H_%(H_?)(Zj(z)*'svi))ds)dz

can be made arbitrarily small for e small enough. Consider the remaining term in which

k
X?eFf is bounded by %exp(%). Noticing that the translational difference of FTJ tends
to zero, when k tends to infinity, there remains to study the translational difference in
the v;-direction of

s (2)
[ () G ) v,
0

Write Ff(z;r (z) + sv;) in exponential multiplier form,

5T (2)
[ GhER G )+ suds = b (2)+ B, 2),
0

st(z)
A (2) = / b (5 (2) 4 s) s (2 (27 (2) -502)

st () 4swy

; )
e_foj VJ’.“(,z].*(z;r(z)—i—svi)—i-m;j)dads7

. si(2) L sT (2 (2)+svi) .
Bi,j(z):/o Xje(zj(z)-FSUi)/o QT (2] (2 (2) +sv:) +ovy)

sT G @)+sv)

e_f"

k(o , )
vi(z] (2 (Z)+SU7’)+TU’)deO'dS.

In order to prove the translational equicontinuity of (Aﬁj), it is sufficient to prove the
translational equicontinuity of

sj’(z) s; (Zj(z)«%svi)
([ @ [ (e )+ su) + ov)dods)
0 0 keN*

by the Li,n@)(am) compactness of (ffj (z;r(z;r(z)—i—svi)))keN*. It is so since, by the
change of variables (3.11), each of its terms is a linear combination of
Fk
/ —— - (2)dZ, 1<i<p,
ai5(2) (14 TJ)(l + Tl)
with domains a; ;(z) C Q, continuously depending on z €2, and such that

la; ;(2)\aij(z+h)|<ch, z€Q,

uniformly with respect to z. The integral where F, lk > A, tends to zero when A — oo. If
Flk > A in one but not the two other terms in the translation difference, then moving the
evaluation points closer, by continuity the larger value of Fl"”' can be changed to A. And
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SO we can assume Fk bounded at both evaluation points in the translation difference.
It follows that (A ) keN+ 18 translationally equi-continuous. Bﬁ ; 1s a sum of

. 57 (2) P 5T (= (2)+svi) Flka o
Fﬁ/ Xl (Z)+Svi)/ FF (Zj (27 (2) + 5v;) + ov;))
’ ’ (1+ 51+ 5)

syl @+ oy _ N
e’ Vi (2 (& (2)+svi)+rvg)dr g o

terms. Consider each one of these terms and split it into Fé’;ﬁ (CF+C% +CF), where, for
real numbers J; and Js to be fixed later,

. S:r(z) - s;(zz (2)+sv;) FlkFT]fL s
Ci(z)= A Xje(2i (2) +sv;) - (zj (2 (2) +sv;) + 0v;)

0 a+Ha+58
1 & Fkpk
Lﬁ”k( = (= @)+ rov; ) >0 ——F e (2 (2 () sv) o)
a+ 5 a+5m) a+—Ha+—5
+ Z+ z Sv;
e Ja? TG @ s ko dr g g
X $@ HCHOREY) F’fF’f ot
Cha= [ e s [ — (5 (21 (2) # 500) +00y)
0 0 (1+ )( +En )

sF G (o+sv

B
Lyx(o,s)e” I vy (=

+(z+(z)+va)+TvJ)deO_ds

where
Fka
X3 ={(09); — (2 (2 (2) + 50;) + ov;)
(1+ 25y (14 )
Fka
<Ji (z;f(zf(z)—l—svi)—i—avj)7 Ff, (z;r(z;r(z)—i—svi)—i—auj) > Ja},
1+ 50+ 5

. st (2) (25 (2)+svi) Flka o
Cs (z):/ xr (2 (= )+svl)/ T (2 (7 (2) + svi) +ov;)
0 0 (1451 + =)
sT G @+sv) E

1X§(O',S)€ f“ (=) (2 (Z)+9U7)+Tv,)d~rda_ds

where
Fka
X5 ={(0,9); 5 — (2 (2 (2) + s0) +00;)
(1+10 )(1+ o )
F}Fj: (7t k(o (ot
<J (zj (27 (2) 4 svi) +0v;), Fj/(zj (2 (2) +5v;) +ov;) < Jo}.

a+Ha+)

Using the uniform boundedness of the entropy production terms (D*),en- and choosing
Ji large enough, C¥ can be made arbitrarily small, uniformly with respect to k. For
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such a Ji, notice that

Jie st(z) s_;-" (2 (2)+svs) Flc/
/ ch((zj'(z)+svl)/ JFk (Zj(z;'(z)+5vi)+avj)
0 0 1 + T]/

1
€

ci <

+ .t k
sT (2 (2)+sv;) Fh
AR ¢ Fé.’].'ﬁ%(zj(z?(z)-{-svi)ﬁ-TUj)dT

lxx(o,s)e L dods.

By the continuity of F*, the integral with respect to o is a sum of integrals over disjoint
intervals where F f, > Jo. The total integral is bounded by an integral of F f/ over a

set where Ff, > Jo. Using the entropy control, ka>J2 Ff, —0 when J; —o00. And so
j/

choosing .J large enough, C¥ can be made arbitrarily small, uniformly with respect to
k. It follows from the boundedness of (F}FX) on its domain of integration in C¥, that
the closing argument in the proof of translational equi-continuity for (AiC ;) above, can
be used to conclude that (C§)ren+ and with it (Bf;) are translationally equi-continuous.
This ends the proof of the lemma. ]

For any i € {1,---,p}, the following lemma proves the compactness of the integrated
gain terms times xfe in the exponential multiplier form of the (Fik)—sequence, again by
the Kolmogorov-Riesz theorem.

LEMMA 4.3. Take €>0. The sequences

s;r(z) Fk:Fk st 4 +
(o | () e T Grerings)
0 (I+55)A+)

keN+’
i=1,...,p, (4.4)
are strongly compact in L*(Q).

Proof.  The sequence (Ff)keN* being uniformly bounded in L', the same holds
for (4.4). For proving its uniform L' equi-continuity, split the domain of integration in
(2,8) €Qx[0,5; (2)] into the sets where

FFkEk FFFE
e (2 (2) +svi) > i —— = (2 (2) + sw0),
1+ 5+ 1+ 5+ )
FFEk FFFEF
(resp. i m 2 (2) +sv;) < Jy J (2" (2) + sv;)

E rk & FF
1+ 501+ ) 1+ 50 +7)
and Ff(z;r(z)—i—svi) >.Jp),

where the integrals are arbitrarily small for J; (resp. J3) large enough, and the remain-
ing domain,
X i={(2,5) € QX [0, 57 ()] FE (=5 () +5v2) < Ja,
FFFEF
and F,f T (2 (2) +sv;) < Jy
(a+I)a+ k)

FFRE
t g
k Ff
1+ 51+ 7)

where (FFFE) is bounded uniformly with respect to k. Let us prove the L! uniform
equi-continuity of

s;r(z) Fka
(ko) [ Sl (2 (2) 4 svi)ds)
0 (1451 + =)

(=i (2) +sv:)},

keN*
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on this domain. We can also restrict to a domain where both Ff(z;"(2)+sv;) and
Fk (2 (2)+ sv;) are bounded, since

K FfEy
i€ Fk jals
(I+5)(1+7)

/ (2 (2) + sv;)dsdz
(z,s)GX;sG[O,si+ (z)],Fl’“ (z:r (2)+svi)>A

JyJsec
S%|{(z,s)eX;se[07S;F(Z)]’ﬂk(zi+(z)+svi)ZA}|’

and the measure of the set where Flk > A tends to zero when A — +o00. And so, we have
reduced the problem to proving the L' uniform equi-continuity of

st 2) Ff oy
(/0 lFlk(z;r(Z)+svi)<A@(zi (z)+svi)ds> ren+’

which follows from the proof of Lemma 4.2. 0

LEMMA 4.4. Up to a subsequence (F¥)pen- strongly converges in L'(Q). Its limit has
finite entropy.

Proof. Let F be a weak L' limit of a subsequence of (F'*)yen-. For every e>0,
the sequence (x¥ FF)ren- is compact in L'(2) by Lemmas 4.2-4.3. For a converging
subsequence of (% F¥)jen-, the limit depends on e. Choose a decreasing sequence (e,)

with lim €, =0, and a diagonal subsequence in k with Xfeq converging in k for all ¢, and
q—o0

increasing with ¢. Split F* — F into
Xfeq(Fik_Fi)+(1_X?eq)Fik_(1_X'Ii€sq)F’i 1<i<p.

Using that [,. FJ and [,. F; are arbitrarily small for ¢, small enough, leads to the

convergence of F¥ to F in L'(£). Let us prove that F is of finite entropy. It follows
from Lemma 3.4 that

/ FFInFF(z)dz<ep, keN*, 1<i<p.
FF(z)<k

i

Let i€{1,---,p} and € >0 be given. Using Egoroff’s theorem, there is a subset A, of {2
such that (Ff/ Ae) ken+ uniformly converges to Fj, 4 . Fj; being continuous is uniformly
bounded by some constant ¢, on A.. For some ko> 2c,,

FF(2)<2c, k>ko, z€A..

Consequently,
/A FFInFF(2)dz<cy,, k>k.
And so,
/A F;InF;(z)dz <cp.

This implies the boundedness of the entropy of F. ]
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LEMMA 4.5.  Under the assumptions of Theorem 1.1, F is a nonnegative renormalized
solution of the discrete-velocity coplanar Boltzmann boundary value problem (1.6)-(1.7).

Proof. Start from a renormalized formulation for x% FF,

—/ wixfeln(l—l—Fik)(Z)vi~n(Z)dU(Z)—/ gpixfﬁln(1—|—flfi)(Z)vi~n(Z)do(Z)
o0~ o+

—/ eI (14 F))vi - Vi(z)dz
Q

P k

— %Xfe Flm Flk F’r]:L _ sz Fj d 4.5

“ o1+ Fk Z j FF Fk Fk E )% (4.5)
N I iy Sy A S

for test functions ¢ € (C1(Q2))P. Use the strong L' convergence given by Lemma 4.4 for
the sequence (F*)pen+, to pass to the limit in the left side of (4.5) when k— +oo. This
gives in the limit for the left side

—/ <piln(1—|—Fi)(Z)vi-n(Z)da(Z)—/ oiln (14 f:) (Z2)v; -n(Z)do(Z)
oN— ont

,/ In (1 +F¢)vng07;(z)dz.
Q

For the passage to the limit when k — +o0 in the right side of (4.5), given 1> 0 there is a
subset A, of Q2 with |A7| <7, such that up to a subsequence, (F};) uniformly converges to
Fon A, and F € L*>(A,). Passing to the limit when k— 400 on A, is straightforward.
Moreover,

2 Q7 (F)(2)dz=0 and lim
n—

i k k. k
}]% A;1+FZ 0 AZQOleer Vi (Z)dZ:O,

uniformly with respect to k, since
F; FF

<1, d <1
1+Fz (1+Fik)(1+

and lim [ FF=0
ke Fk ’ J )
) O

uniformly with respect to k. The passage to the limit in the loss term follows. The
passage to the limit in the gain term can be done as follows. The uniform boundedness
of the entropy production term of (F'*) given by (3.14) in Lemma 3.3, implies that for
any v>1,

k p k k
G X Z m Fy, c k. k

voglm=1

c
n

Take first v large, then n small. Tt follows that the right side of (4.5) converges to

Qf (F) Q; (F)
it (2)dz— [ i (2)dz,
[ S e [ oS s
when k — +o00. Consequently, F' satisfies (1.6)-(1.7) in renormalized form. d
REMARK 4.1.  Strong L' compactness and convergence to a renormalized solution

of the discrete-velocity coplanar Boltzmann boundary value problem (1.6)-(1.7), as ob-
tained in Section 4, would also hold without Assumption (1.4), for a sequence of ap-
proximations (F¥)cy weakly compact in L'. This will be the frame of a following

paper.
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REMARK 4.2. Some of the techniques of this paper are used in an ongoing study on
the evolutionary Boltzmann equation with coplanar discrete velocities.
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