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NONLINEAR STABILITY OF THE BOUNDARY LAYER AND
RAREFACTION WAVE FOR THE INFLOW PROBLEM GOVERNED
BY THE HEAT-CONDUCTIVE IDEAL GAS WITHOUT VISCOSITY∗

MEICHEN HOU† AND LILI FAN‡

Abstract. This paper is devoted to studying the inflow problem for an ideal polytropic model
with non-viscous gas in one-dimensional half space. We show the existence of the boundary layer in
different areas. By employing the energy method, we also prove the unique global-in-time existence
of the solution and the asymptotic stability of both the boundary layers, the 3−rarefaction wave and
their superposition wave under some smallness conditions. Series of simple but tricky operations on
boundary need to be carefully done by taking good advantage of construction on the system and domain
properties.
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1. Introduction
In this paper, we consider the system of heat-conductive ideal gas without viscosity

in one dimension under Euler coordinates:
ρt+(ρu)x= 0,

(ρu)t+(ρu2 +p)x= 0,

(ρ(e+
u2

2
))t+(ρu(e+

u2

2
)+pu)x=κθxx,

(1.1)

where x∈R+,t>0 and ρ(t,x)>0,u(t,x),θ(t,x)>0,e(t,x)>0 and p(t,x)>0 are density,
fluid velocity, absolute temperature, internal energy, and pressure respectively, while
κ>0 is the coefficient of the heat conduction. Here we study ideal and polytropic fluids
so that p and e are given by the state equations

p=Rρθ=Aργ exp(
γ−1

R
s), e=Cvθ (Cv =

R

γ−1
), (1.2)

where s is the entropy, γ>1 is the adiabatic exponent and A,R are both positive con-
stants. The solution of (1.1) satisfies the following initial data and the far field states
that {

(ρ,u,θ)(0,x) = (ρ0,u0,θ0)(x)→ (ρ+,u+,θ+) =:z+, x→+∞,
inf
x∈R+

(ρ0,θ0)(x)>0, (1.3)

where ρ+>0,u+,θ+>0 are given constants.
As far as we know, there are very few results on the well-posed problem for (1.1)

due to the complexity and nonlinearity. Almost all the results are related to the analysis
of the global-in-time stability of the viscous Riemann solutions. More precisely, if the
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heat effect is also neglected, the Riemann solution consists of elementary waves such as
shock waves, rarefaction waves and contact discontinuities, which are dilation-invariant
solutions of the Riemann problem (Euler system):

ρt+(ρu)x= 0,

(ρu)t+(ρu2 +p)x= 0,

{ρ(e+
u2

2
)}t+{ρu(e+

u2

2
)+pu}x= 0.

(1.4)

Let us introduce the sound speed and Mach number

cs(θ) :=

√
γp

ρ
=
√
γRθ, M(ρ,u,θ) :=

|u|
cs(θ)

. (1.5)

Then the inviscid Euler system (1.4) has three characteristic speeds, they are

λ1 =u−cs(θ), λ2 =u, λ3 =u+cs(θ). (1.6)

The system (1.4) is a typical example of the hyperbolic conservation laws. It is of
great importance to study the corresponding viscous system, such as isentropic or non-
isentropic case. There are many works on the large-time behavior of the solutions to
the Cauchy problem of the compressible gas dynamic equations. We refer to ( [2, 5, 6,
10,12,18,28,34]) and some references therein.

Due to the appearance of the boundary layer in the initial boundary value problem
of the gas dynamic equations, people pay more attention to this kind of problem, and
the hottest equations studied are the Navier-Stokes equations:

ρt+(ρu)x= 0,

(ρu)t+(ρu2 +p)x=µuxx,

(ρ(e+
u2

2
))t+(ρu(e+

u2

2
)+pu)x=κθxx+(µuux)x,

(1.7)

where µ>0 stands for the coefficient of viscosity. For the system (1.7), we divide the
phase space into following regions to study the initial and boundary value problem:

Ω+
sub :={(ρ,u,θ); 0<u<cs(θ)} , Ω−sub :={(ρ,u,θ); −cs(θ)<u<0} ,

Ω+
supper :={(ρ,u,θ); u>cs(θ)}, Ω−supper :={(ρ,u,θ); u<−cs(θ)} ,

Γ±trans :={(ρ,u,θ); |u|= cs(θ)}, Γ0
sub :={(ρ,u,θ); u= 0}.

For the inflow problem of (1.7), Huang-Li-Shi [4] studied the asymptotic stability of
boundary layer and its superposition with 3−rarefaction wave. Nakamura-Nishibata [23]
proved the existence and stability of boundary layer solution of (1.7) in half space. Qin-
Wang ( [30,31]) proved the stability of the combination of BL-solution, rarefaction wave
and viscous contact wave. For other interesting works, we refer to ( [1,3,7–9,11,13,15,
16,20–22,27,29,33]).

Therefore, a natural question arises that what are the large-time behaviors of the
solutions for the initial boundary value problem of the non-viscous system (1.1)? Espe-
cially, how about the asymptotic stability of the boundary layer, 3−rarefaction wave or
their composite wave? We will give a positive answer in this paper. To do so, we should
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firstly define some proper boundary conditions. Thus, changing the system (1.1) in an
equivalent form as 

ρt+uρx+ρux= 0,

ut+uux+
p

ρ2
ρx=−Rθx,

Cvθt−
κ

ρ
θxx=−Cvuθx−Rθux.

(1.8)

This is a hyperbolic-parabolic system, there are two eigenvalues of the hyperbolic part

λ̃1 =u− c̃s(θ), λ̃2 =u+ c̃s(θ), (1.9)

where

c̃s(θ) :=

√
p

ρ
=
√
Rθ. (1.10)

Here we denote

M+ =
|u+|√
γRθ+

, M̃(ρ,u,θ) =
|u|√
Rθ

, M̃+ =
|u+|√
Rθ+

(1.11)

for clear expression later.
By [19], the boundary conditions of (1.1) depend closely on the sign of two eigen-

values λ̃1 and λ̃2. Thus the global solution of (1.1) is considered in a small neighbor-

hood Ω(z+) of z+, such that λ̃i(i= 1,2) at the boundary x= 0 keeps the same sign as

λ̃i(i= 1,2) at the far field x= +∞, which are determined by the right state z+. Hence,
we divide the phase space into new sonic regions

Ω̃+
sub :={(ρ,u,θ); 0<u<c̃s(θ)} , Ω̃−sub :={(ρ,u,θ); −c̃s(θ)<u<0} ;

Ω̃+
supper :={(ρ,u,θ); u> c̃s(θ)}, Ω̃−supper :={(ρ,u,θ); u<−c̃s(θ)} ;

Γ̃+
trans :={(ρ,u,θ); u= c̃s(θ)}, Γ̃−trans :={(ρ,u,θ); u=−c̃s(θ)} ,

Γ̃0
sub :={(ρ,u,θ); u= 0}.

In different domain, the boundary conditions are listed as follows: (Figure 1.1 shows
the division of the phase space)

Case (1): If z+ = (ρ+,u+,θ+)∈ Ω̃−supper, in the neighborhood of U(z+), λ̃1<0, λ̃2<0,
the boundary condition of (1.1) should be

θ(t,0) =θ−. (1.12)

Case (2): If z+ = (ρ+,u+,θ+)∈ Ω̃−sub
⋃

Ω̃+
sub

⋃
Γ̃0
sub, in the neighborhood of U(z+), λ̃1<0,

λ̃2>0, the boundary condition of (1.1) should be

u(t,0) =u−, θ(t,0) =θ−. (1.13)

Case (3): If z+ = (ρ+,u+,θ+)∈ Ω̃+
supper, in the neighborhood of U(z+), λ̃1>0, λ̃2>0,

the boundary condition of (1.1) should be

ρ(t,0) =ρ−, u(t,0) =u−, θ(t,0) =θ−. (1.14)
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Fig. 1.1. The division of the phase space

Motivated by ( [4, 23, 30, 31]), here we take our attention to the inflow problem of
(1.1), (1.3) and (1.14). We firstly discuss the existence of boundary layer solution to

system (1.1) for u+>0. Precisely speaking, if (ρ+,u+,θ+)∈ Ω̃+
supper

⋂
Ω+
sub, the bound-

ary layer solution is non-degenerate; if (ρ+,u+,θ+)∈Γ+
trans, the boundary layer solu-

tion is degenerate. Then we prove the unique global-in-time existence of the solution
and the asymptotic stability of both the boundary layer and its superposition with the
3−rarefaction wave in supersonic case, that is, u+>

√
Rθ+, under some smallness condi-

tions. It should be mentioned that Nishibata and his group recently proved the existence
and stability of boundary layer solution for a class of symmetric hyperbolic-parabolic
systems, see [17]. There are also other interesting works for symmetric hyperbolic-
parabolic system, see ( [24–26]).

Our analysis is based on the energy method. Since the fact that system (1.1) is less
dissipative, we need more subtle estimates to recover the regularity and dissipativity
for the hyperbolic part. Precisely to say, similar as Cauchy problem of (1.1) in [2], we
should ask the perturbed solution to be at least in C(H2).

The second main difficulty is how to control the higher order derivatives of boundary
terms. For the first-order derivatives as in (4.19), we use the interior relations between
functions and the character of the domain itself, that’s very helpful. Moreover, for the
second-order derivatives of boundary terms, estimates on the diameter direction besides
the normal direction must be introduced. We take the advantages of the boundary
condition adequately (as in Lemma 4.5-4.7) and avoid emerging the second normal
derivatives on the boundary. As far as we know, few works use estimates on derivative
of the diameter direction to study the asymptotic stability of the elementary waves.
This method here maybe also helpful to other related problems with similar analytical
difficulties. Just because of this, we must require the initial perturbed data (φ0,ψ0)(ξ)∈
H3(R+), ζ0(ξ)∈H4(R+) to let the computations make sense.

This manuscript is organized as follows. In Section 2, we obtain the existence of
the boundary layer and list some properties of the boundary layer and rarefaction wave,
then the main theorems are stated, see Theorems 2.1-2.3. In Section 3, we give the local
existence of perturbed solution in proper function space and introduce a priori estimates
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to get the global solution, see Propositions 3.1-3.2. In Section 4, series of estimates are
established and the main theorem is proved.

Notations. Throughout this paper, c and C denote some positive constants (generally
large). A.B means that there is a generic constant C>0 such that A≤CB and A∼B
means A.B and B.A. For function spaces, Lp(R+)(1≤p≤∞) denotes the usual
Lebesgue space on R+ with norm ‖·‖Lp and Hk(R+) the usual Sobolev space in the L2

sense with norm ‖·‖k. We note ‖·‖=‖·‖L2 for simplicity and Ck(I;Hp) is the space
of k-times continuously differentiable functions on the interval I with values in Hp(R+)
and L2(I;Hp) is the space of L2-functions on I with values in Hp(R+).

2. Boundary layer, rarefaction wave and main results
Because of the coordinate transformation in Sections 2.2 and 2.3, the solution

(ρ,u,θ) turns to (v,u,θ) and z+ becomes (v+,u+,θ+). So here we introduce new symbol
for clearer clarification later, the solution (in Lagrange coordinates) we considered here
is located in a small neighborhood Ω+ of the right state z+ as

Ω+ ={(v,u,θ)|(v−v+,u−u+,θ−θ+)|≤ δ}⊆Ω+
sub∩ Ω̃+

supper, (2.1)

where δ is a positive constant depending only on z+.

2.1. The existence of boundary layer. At first, we discuss the existence
of boundary layer solution to system (1.1) for u+>0. The boundary layer solution
(ρ̄, ū, θ̄)(x) to (1.1) should satisfy

(ρ̄ū)x= 0, x>0,

(ρ̄ū2 + p̄)x= 0,

(ρ̄ū(ē+
ū2

2
)+ p̄ū)x=κθ̄xx,

(2.2)

and

θ̄(0) =θ−, lim
x→+∞

(ρ̄, ū, θ̄)(x) = (ρ+,u+,θ+) =z+, inf
x∈R+

(ρ̄, θ̄)(x)>0. (2.3)

Integrating (2.2) over [x,+∞), we have
ρ̄ū=ρ+u+,

ρ̄ū2 + p̄=ρ+u
2
+ +p+,

[ρ̄ū(Cv θ̄+
ū2

2
)−ρ+u+(Cvθ+ +

u2+
2

)]+(p̄ū−p+u+) =κθ̄x,

(2.4)

From (2.4)1, we see that

ū(0) =
ρ+u+
ρ̄(0)

>0

is a necessary condition. Dividing both sides of (2.4)2 by ρ̄ū(ρ+u+), we get

(u+ū−Rθ+)(ū−u+) =Ru+(θ+− θ̄). (2.5)

In order to analyze the relationship between ū and θ̄ in (2.5) precisely, we introduce

w̃1(x) =
ū(x)

u+
=

ρ+
ρ̄(x)

>0, w̃2(x) =
θ̄(x)

θ+
>0,
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then (2.5) turns to

u2+w̃
2
1(x)−(Rθ+ +u2+)w̃1(x)+Rθ+w̃2(x) = 0. (2.6)

With the help of the boundary conditions in (2.3), i.e.,

lim
x→+∞

w̃1(x) = lim
x→+∞

w̃2(x) = 1,

and (2.6), we deduce that

w̃1 =
(Rθ+ +u2+)−

√
(Rθ+ +u2+)2−4Rθ+u2+w̃2

2u2+
0<u+<

√
Rθ+,

w̃1 =
(Rθ+ +u2+)+

√
(Rθ+ +u2+)2−4Rθ+u2+w̃2

2u2+

√
Rθ+<u+,

w̃1 = 1±
√

1− w̃2, u+ =
√
Rθ+.

(2.7)

Equation (2.7) also implies that w̃2(x) should satisfy

w̃2(x)≤
(Rθ+ +u2+)2

4Rθ+u2+
= w̃2sup, (2.8)

where w̃2sup≥1, and w̃2sup = 1 if and only if u2+ =Rθ+.
Remembering the definition of w̃1,w̃2, (2.3)-(2.4) could be rearranged as

w̃2x=
ρ+u+
κ

[
Rγ

(γ−1)
(w̃2−1)+

u2+
2θ+

(w̃1 +1)(w̃1−1)

]
,

w̃2(0) =
θ−
θ+
, w̃2(+∞) = 1, inf

x∈R+

w̃2(x)>0,

(2.9)

where the relationship between w̃1 and w̃2 has been stated in (2.7).
Hence the existence of solution to (2.3)-(2.4) is equivalent to the existence of solution

to (2.9). Now we mainly study the latter. Obviously, the range of w̃2(x) for which the
boundary layer solution may exist should be (0,w̃2sup] and we seek for the nontrivial
solution to (2.9), that is, w̃2(0) 6= 1. All the cases we considered below are under this
premise.

We have following discussion:
(1) If z+∈ Ω̃+

sub, that is 0<u+<
√
Rθ+(M̃+<1). In this case, substituting (2.7)1 into

(2.9), it becomes 
w̃2x=L1(w̃2)(1− w̃2) =g1(w̃2),

w̃2(0) =
θ−
θ+
, w̃2(+∞) = 1, inf

x∈R+

w̃2(x)>0,
(2.10)

where

L1(w̃2) =:
Rρ+u+

2κ

( Rθ+ +3u2+−
√

(Rθ+ +u2+)2−4Rθ+u2+w̃2

(u2+−Rθ+)−
√

(Rθ+ +u2+)2−4Rθ+u2+w̃2

− 2γ

γ−1

)
. (2.11)
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Fig. 2.1. The graph of g1(w̃2) in case (1) Fig. 2.2. The graph of g2(w̃2) in case {2.1}

After tedious computation, the property of g1(w̃2) is listed as follows
g1(w̃2 = 1) = 0,

dg1(w̃2)

dw̃2

∣∣∣∣
w̃2=1

>0,

d2g1(w̃2)

dw̃2
2

>0, for w̃2∈ (0,w̃2sup).

(2.12)

Then (2.12) implies that there exists a small positive constant σ such that the
following is true. If w̃2(x)∈ [1−σ,1],g1(w̃2)≤0, i.e., w̃2x≤0. Thus, w̃2(x) is de-
creasing in [1−σ,1]. So when w̃2(0)<1, w̃2(x) can not approach to 1 as x→+∞.
If w̃2(x)∈ [1,1+σ],g1(w̃2)≥0, i.e., w̃2x≥0. Thus, w̃2(x) is increasing in [1,1+σ].
Therefore when w̃2(0)>1, w̃2(x) can not approach to 1 as x→+∞. Consequently,
there does not exist a solution to (2.10) in this case. The graph of g1(w̃2) is shown
in Figure 2.1.

(2) If z+∈ Ω̃+
supper

⋂
Ω+
sub, that is

√
Rθ+<u+<

√
γRθ+(M̃+>1 and M+<1). Using

(2.7)2, (2.9) becomes
w̃2x=L2(w̃2)(1− w̃2) =g2(w̃2),

w̃2(0) =
θ−
θ+
, w̃2(+∞) = 1, inf

x∈R+

w̃2(x)>0,
(2.13)

where

L2(w̃2) =:
Rρ+u+

2κ

( Rθ+ +3u2+ +
√

(Rθ+ +u2+)2−4Rθ+u2+w̃2

(u2+−Rθ+)+
√

(Rθ+ +u2+)2−4Rθ+u2+w̃2

− 2γ

γ−1

)
. (2.14)

After tedious computation, the property of g2(w̃2) in this situation is listed as follows



g2(w̃2 = 1) = 0,
dg2(w̃2)

dw̃2

∣∣∣∣
w̃2=1

<0,

d2g2(w̃2)

dw̃2
2

<0, for w̃2∈ (0,w̃2sup),

lim
w̃2→0

g2(w̃2) =
Rρ+

2κ(γ−1)

(γ−1)Rθ+−2u2+
u+

.

(2.15)

There are two subcases.
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Fig. 2.3. The graph of g2(w̃2) in case (2.2) Fig. 2.4. The graph of g2(w̃2) in case (3)

(2.1) When (1<γ≤3 and
√
Rθ+<u+<

√
γRθ+) or (γ >3 and

√
γ−1
2 Rθ+<u+<√

γRθ+), (2.15) implies that

lim
w̃2→0

g2(w̃2)<0. (2.16)

Equations (2.15), (2.16) tell us that g2(w̃2) has two positive zero points, one
is 1, the other we denoted by w̃2∗ satisfies L2(w̃2∗) = 0. Moreover, w̃2∗ is
between 0 and 1. If w̃2(x)≤ w̃2∗, then g2(w̃2)≤0, i.e., w̃2x≤0. That is, w̃2(x)
is decreasing. So when w̃2(0)≤ w̃2∗, w̃2(x) can not approach to 1 as x→+∞.
If w̃2∗<w̃2(x)<1, then g2(w̃2)>0, i.e., w̃2x>0. That is, w̃2(x) is increasing.
Hence, when w̃2∗<w̃2(0)<1, there exists a monotonically increasing solution
w̃2(x) to (2.13). Lastly, if 1<w̃2(x)<w̃2sup, then g2(w̃2)<0, i.e., w̃2x<0.
That is ,w̃2(x) is decreasing. Therefore when 1<w̃2(0)<w̃2sup, there exists a
monotonically decreasing solution w̃2(x) to (2.13). When w̃2(0) = w̃2sup, the

solution w̃2(x) is not smooth (both dg2(w̃2)
dw̃2

and d2g2(w̃2)
dw̃2

2
are infinity at this

endpoint, then w̃2(x) is second-order non-differentiable at this endpoint), so
we don’t consider those types of solutions in following discussion for similar
reasons. Thus, smooth solution w̃2(x) to (2.13) exists if and only if w̃2(0)∈
(w̃2∗,1)∪(1,w̃2sup) and the decay estimates of the solution are obtained from
(2.13),

| d
n

dxn
(w̃2(x)−1)|.|w̃2(0)−1|e−c0x

for n= 1,2,3,..., c0 =L2(w̃2 = 1),
(2.17)

and the graph of g2(w̃2) in this situation is shown in Figure 2.2.

(2.2) When (γ>3 and
√
Rθ+<u+≤

√
γ−1
2 Rθ+), (2.15) implies that

lim
w̃2→0

g2(w̃2)>0, when
√
Rθ+<u+<

√
γ−1

2
Rθ+,

lim
w̃2→0

g2(w̃2) = 0, when u+ =

√
γ−1

2
Rθ+.

(2.18)

Combining (2.15) and (2.18), g2(w̃2) has only one positive zero point 1. If
0<w̃2(x)<1, then g2(w̃2)>0, i.e., w̃2x>0. Therefore, when 0<w̃2(0)<1,
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Fig. 2.5. The graph of g2(w̃2) in case (4)

there exists a monotonically increasing solution w̃2(x) to (2.13). If 1<w̃2(x)<
w̃2sup, then g2(w̃2)<0, i.e., w̃2x<0. So when 1<w̃2(0)<w̃2sup, there exists
a monotonically decreasing solution w̃2(x) to (2.13). Hence smooth solution
w̃2(x) to (2.13) exists if and only if w̃2(0)∈ (0,1)∪(1,w̃2sup). Moreover, the
decay estimates of the solution are same as (2.17). The graph of g2(w̃2) in
this situation is shown in Figure 2.3.

(3) If z+∈Γ+
trans, that is u+ =

√
γRθ+(M+ = 1). In this case, (2.9) still becomes (2.13).

Moreover, the property of g2(w̃2) under this situation is
g2(w̃2 = 1) = 0,

dg2(w̃2)

dw̃2

∣∣∣∣
w̃2=1

= 0,

d2g2(w̃2)

dw̃2
2

<0, for w̃2∈ (0,w̃2sup).

(2.19)

Using (2.19), g2(w̃2) only has one zero point 1. Furthermore, g2(w̃2)<0, i.e, w̃2x<0
whatever 0<w̃2(x)<1 or 1<w̃2(x)<w̃2sup. Similar to the above discussion, smooth
solution w̃2(x) to (2.13) exists if and only if w̃2(0)∈ (1,w̃2sup). The decay estimates
of the solution are obtained by (2.13) and (2.19)

| d
n

dxn
(w̃2(x)−1)|. (w̃2(0)−1)n+1

(1+ c̃0(w̃2(0)−1)x)n+1
for n= 1,2,3,..., (2.20)

where

c̃0 =−

d2g2(w̃2)
dw̃2

2

∣∣∣∣
w̃2=1

2
>0. (2.21)

The graph of g2(w̃2) in this situation is shown in Figure 2.4.

(4) If z+∈Ω+
supper, that is u+>

√
γRθ+(M+>1). In this case, (2.9) still becomes (2.13).

Moreover, the property of g2(w̃2) under this situation is
g2(w̃2 = 1) = 0,

dg2(w̃2)

dw̃2

∣∣∣∣
w̃2=1

>0,

d2g2(w̃2)

dw̃2
2

<0, for w̃2∈ (0,w̃2sup).

(2.22)
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Similar as (1), there exists a small positive constant σ such that when w̃2(x)∈
[1−σ,1],w̃2x≤0, when w̃2(x)∈ [1,1+σ],w̃2x≥0. Therefore, there does not exist a
solution to (2.13) in this case. The graph of g2(w̃2) in this situation is shown in
Figure 2.5.

(5) If z+∈ Γ̃+
trans, that is u+ =

√
Rθ+(M̃+ = 1). In this case, w̃2sup= 1 = w̃2(+∞). After

verification, the solution is second-order non-differentiable at w̃2sup= 1 even if it
exists. So we don’t consider those types of solutions.

Summarizing (1)−(5), we have the following existence theorem of BL solution.

Proposition 2.1. For γ∈ (1,+∞), the boundary value problem (2.9) has a unique
smooth solution w̃2(x) if and only if M̃+>1 and M+≤1. Precisely to say,

(1) For M̃+>1 and M+<1, there are two subcases: (w̃2sup=
(Rθ++u2

+)2

4Rθ+u2
+

)

(i) If 1<γ≤3 and
√
Rθ+<u+<

√
γRθ+ or γ>3 and

√
γ−1
2 Rθ+<u+<√

γRθ+, there exists a unique smooth solution to (2.13) when w̃2(0)∈
(w̃2∗,1)∪(1,w̃2sup), where w̃2∗∈ (0,1) satisfies L2(w̃2∗) = 0. Moreover, if
w̃2(0)≶1, then w̃2x≷0.

(ii) If (γ>3 and
√
Rθ+<u+≤

√
γ−1
2 Rθ+), there exists a unique smooth so-

lution to (2.13) when w̃2∈ (0,1)∪(1,w̃2sup). Moreover, if w̃2(0)≶1, then
w̃2x≷0.
The decay estimates of the solution to both (i) and (ii) satisfy (2.17).

(2) For M+ = 1, that is u+ =
√
γRθ+, there exists a unique decreasing solution to

(2.13) when w̃2(0)∈ (1,w̃2sup). And the decay estimates of this solution satisfy
(2.20).

2.2. The properties of boundary layer solution and the stability. In
this subsection, we construct the boundary layer for the initial boundary value problem
(1.1),(1.3) and (1.14) and then state our first main result. At first, we reform the system
(1.1), (1.3) and (1.14) in Lagrange coordinates as

vt−s−vξ−uξ = 0, ξ >0, t>0,

ut−s−uξ+pξ = 0,

(Cvθ+
u2

2
)t−s−(Cvθ+

u2

2
)ξ+(pu)ξ =k(

θξ
v

)ξ,

(v,u,θ)(t,0) = (v−,u−,θ−) =:z−,

(v,u,θ)(0,ξ) = (v0,u0,θ0)(ξ)→ (v+,u+,θ+) =z+(ξ→+∞).

(2.23)

where v= 1
ρ is the specific volume of gas, the pressure p= Rθ

v and the new variable

ξ=x−s−t containing the moving boundary speed s−=−u−v− . In this new coordinates,

the boundary layer solution z̄ := (v̄, ū, θ̄)(ξ) satisfies

−s−v̄ξ− ūξ = 0, ξ >0,

−s−ūξ+ p̄ξ = 0,

−s−(Cv θ̄+
ū2

2
)ξ+(p̄ū)ξ =k(

θ̄ξ
v̄

)ξ,

(v̄, ū, θ̄)(0) = (v−,u−,θ−), u−>0,

(v̄, ū, θ̄)(+∞) = (v+,u+,θ+).

(2.24)
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Denote the strength of boundary layer solution as

δ̄ := |θ+−θ−|, (2.25)

by the analysis in Section 2.1, we get the following lemma.

Lemma 2.1 (Property of boundary layer). (v̄, ū, θ̄)(ξ) satisfies

(1) If z+∈ Ω̃+
supper

⋂
Ω+
sub, that is

√
Rθ+<u+<

√
γRθ+, ∃δ̄0>0, such that if 0<

δ̄≤ δ̄0, there exists a unique solution (v̄ξ≶0,ūξ≶0, θ̄ξ≷0) for (2.24) which is
non-degenerate and satisfies

| d
n

dξn
(v̄−v+,ū−u+, θ̄−θ+)(ξ)|. δ̄e−c0ξ, n= 1,2,3,.... (2.26)

(2) If z+∈Γ+
trans, that is u+ =

√
γRθ+, ∃δ̄1>0 such that if 0<δ̄≤ δ̄1, there exists a

unique solution (v̄ξ>0,ūξ>0, θ̄ξ<0) for (2.24) which is degenerate and satisfies

| d
n

dξn
(v̄−v+,ū−u+, θ̄−θ+)(ξ)|. δ̄n+1

1+(δ̄ξ)n+1
. n= 1,2,3,.... (2.27)

This Lemma could be obtained immediately from our analysis in Proposition 2.1,
we omit the proof for short. In order to express our theorems more convenient, the
solution space is defined as:

Xm1,m2,M (0,t) ={(φ,ψ,ζ)|(φ,ψ,ζ)∈C([0,t];H2(R+)),(φ,ψ,ζ)t∈C([0,t];H1(R+)),

(φ,ψ,ζ)tt∈C([0,t];L2(R+)),(φ,ψ)ξ ∈L2(0,t;H1(R+)),

(ζξ,ζt)∈L2(0,t;H2(R+)),ζtt∈L2(0,t;H1(R+)),

inf
[0,t]×R+

v(t,ξ)≥m1, inf
[0,t]×R+

θ(t,ξ)≥m2,

N(t) := sup
[0,t]×R+

(
‖(φ,ψ,ζ)‖2 +‖(φt,ψt,ζt)‖1 +‖(φtt,ψtt,ζtt)‖

)
≤M}.

(2.28)

Then our first main result is as follows:

Theorem 2.1. Assume that z+∈Ω+
sub∩ Ω̃+

supper and z−∈BL(z+)∩Ω+, that is, z−,z+
satisfy (2.24) and Rθ−<u

2
−<γRθ−(γ>1), then there exist some small positive con-

stants δ1 and η1 such that if δ̄≤ δ1 and

‖(v0−v,u0−u)‖3 +‖(θ0−θ)‖4≤η1, (2.29)

then the inflow problem (2.23) has a unique solution (v,u,θ)(t,ξ) satisfying

(v−v,u−u,θ−θ)(t,ξ)∈Xm1
2 ,

m2
2 ,η1(0,+∞). (2.30)

Furthermore, it holds

sup
ξ≥0
|(v,u,θ)(t,ξ)−(v,u,θ)(ξ)|→0, as t→+∞. (2.31)
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2.3. The properties of rarefaction wave and the stability. As in [4], if
z+∈R3(z−), that is, the 3-rarefaction wave (vr,ur,θr)(xt ) connecting z− and z+ is the
unique weak solution globally in time to the following Riemann problem:

vrt −urx= 0,

urt +prx= 0,

(er+
ur

2

2
)t+(prur)x= 0,

(vr,ur,θr)(0,x) =

{
(v−,u−,θ−), x<0,

(v+,u+,θ+), x>0.

(2.32)

Here θ−<θ+ and 0<u−<u+, pr = Rθr

vr ,e
r =Cvθ

r. It is well known that the character-
istic speeds of (2.32) are (see [4]),

λ1(vr,ur,θr) =−
√
−prv(v,s), λ2(vr,ur,θr) = 0, λ3(vr,ur,θr) =

√
prv(v,s). (2.33)

To give the details of the large-time behavior of the solutions to the inflow prob-
lem (2.23), it is necessary to construct a smooth approximation z̃ := (ṽ, ũ, θ̃)(t,x) of
(vr,ur,θr)(xt ). Let us consider the solution to the following Cauchy problem:

wt+wwx= 0, (t,x)∈ (0,+∞)×R,

w(0,x) =

{
w−, x<0,

w−+Cq δ̃
∫ εx
0
yqe−ydy, x≥0.

(2.34)

Here δ̃=w+−w−>0, q >16 are two constants, Cq is a constant such that

Cq
∫ +∞
0

yqe−ydy= 1, 0<ε<1 is a small constant which will be determined later. Let
w±=λ3(v±,u±,θ±), we construct the approximated function z̃(t,x) by

Sr(ṽ, ũ, θ̃)(t,x) =Sr(v+,u+,θ+),

λ3(ṽ, ũ, θ̃)(t,x) =w(t,x),

ũ=u+−
∫ ṽ

v+

λ3(s,Sr)ds.

(2.35)

Remind that ξ=x−s−t, z̃(t,ξ) satisfy

ṽt−s−ṽξ− ũξ = 0,

ũt−s−ũξ+ p̃ξ = 0,

(ẽ+
ũ2

2
)t−s−(ẽ+

ũ2

2
)ξ+(p̃ũ)ξ = 0,

(ṽ, ũ, θ̃)(t,0) = (v−,u−,θ−), u−>0,

(ṽ, ũ, θ̃)(0,ξ) = (ṽ0,ũ0, θ̃0)(ξ)→ (v+,u+,θ+)(ξ→+∞).

(2.36)

For the smooth rarefaction wave z̃(t,ξ), we have the following lemma (see [4], Lemma
3.6).

Lemma 2.2. Smooth rarefaction wave z̃(t,ξ) obtained via (2.36) satisfies
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(1) ũξ≥0, for ξ >0, t>0.

(2) For any p (1≤p≤+∞), there exists a constant Cpq such that∥∥∥(ṽξ,ũξ, θ̃ξ)(t)
∥∥∥
Lp
≤Cpqmin

{
δ̃ε1−

1
p , δ̃

1
p (1+ t)−1+

1
p

}
,∥∥∥(ṽξξ,ũξξ, θ̃ξξ)(t)

∥∥∥
Lp
≤Cpqmin

{
δ̃ε2−

1
p , δ̃

1
p (1+ t)−1+

1
q

}
, t≥0. (2.37)

(3) limt→+∞ supξ∈R+

∣∣∣(ṽ, ũ, θ̃)(t,ξ)−(vr,ur,θr)(t,ξ)
∣∣∣= 0.

Then our second main result is stated as follows:

Theorem 2.2. Assume that z+∈Ω+
sub∩ Ω̃+

supper and z−∈R3(z+)∩Ω+, that is, z−,z+
satisfy (2.36) and Rθ−<u

2
−<γRθ−(γ>1), there exist some small positive constants δ2

and η2 such that if ε≤ δ2 and

‖(v0− ṽ0,u0− ũ0)‖3 +‖(θ0− θ̃0)‖4≤η2, (2.38)

then the inflow problem (2.23) has a unique solution (v,u,θ)(t,ξ) satisfying

(v− ṽ,u− ũ,θ− θ̃)(t,ξ)∈Xm1
2 ,

m2
2 ,η2(0,+∞) (2.39)

Furthermore, it holds

sup
ξ≥0
|(v,u,θ)(t,ξ)−(ṽ, ũ, θ̃)(t,ξ)|→0, as t→+∞. (2.40)

Remark 2.1. Note that the strength of 3−rarefaction wave does not need be small
in this situation.

2.4. Composition waves and the stability. If left state z−∈BLR3(z+)∩Ω+,
we see that, there exists a unique intermediate state zm := (vm,um,θm)∈R3(z+) such
that zm,z+ are connected by the 3−rarefaction wave and zm,z− are connected by the
BL-solution. Precisely, replacing z− by zm in (2.36), it holds that

Sr(vm,um,θm) =Sr(v+,u+,θ+), um=u+−
∫ vm

v+

λ3(η,Sr)dη. (2.41)

For this zm, instead z+ by zm in (2.24), we expect that the superposition of this bound-
ary layer and this 3−rarefaction wave is stable. To do this, let

(v̂, û, θ̂)(t,ξ) = (v̄, ū, θ̄)(ξ)+(ṽ, ũ, θ̃)(t,ξ)−(vm,um,θm), (2.42)

and it satisfies 

v̂t−s−v̂ξ− ûξ = 0, ξ >0, t>0

ût−s−ûξ+ p̂ξ =G1,

Cv θ̂t−s−Cv θ̂ξ+ p̂ûξ =k(
θ̂ξ
v̂

)ξ+G2,

(v̂, û, θ̂)(t,0) = (v−,u−,θ−), u−>0,

(v̂, û, θ̂)(0,ξ) = (v̂0,û0, θ̂0)(ξ)→ (v+,u+,θ+), ξ→+∞.

(2.43)

where

G1 : = (p̂− p̄− p̃+pm)ξ,
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=O(1)(|z̄ξ||z̃−zm|+ |z̃ξ||z̄−zm|)
=O(1)δ̄e−c(|ξ|+t),

G2 : = (p̂ûξ− p̄ūξ− p̃ũξ)−k(
θ̂ξ
v̂
− θ̄ξ
v̄

)ξ

=O(1)(|z̄ξ||z̃−zm|+ |z̃ξ||z̄−zm|)+O(1)(|θ̃ξξ|+ |θ̃ξ|2)

=O(1)δ̄e−c(|ξ|+t) +O(1)(|θ̃ξξ|+ |θ̃ξ|2). (2.44)

The third main result is given below:

Theorem 2.3. Assume that z+∈Ω+
sub∩ Ω̃+

supper, and z−∈BLR3(z+)∩Ω+, that is,
there exists zm= (vm,um,θm) such that zm∈R3(z+),z−∈BL(zm), and z−,zm satisfy
(2.24) just replace z+ with zm, zm,z+ satisfy (2.41), Rθ−<u

2
−<γRθ−(γ>1). There

exist some small positive constants δ3 and η3, such that if δ̄+ε≤ δ3 and

‖(v0− v̂0,u0− û0)‖3 +‖(θ0− θ̂0)‖4≤η3, (2.45)

then the inflow problem (2.23) has a unique solution (v,u,θ)(t,ξ) satisfying

(v− v̂,u− û,θ− θ̂)(t,ξ)∈Xm1
2 ,

m2
2 ,η3(0,+∞), (2.46)

Furthermore, it holds

sup
ξ≥0
|(v,u,θ)(t,ξ)−(v̂, û, θ̂)(t,ξ)|→0, as t→+∞. (2.47)

3. Local existence and stability analysis
In this section, we give the proofs of the main theorems. Since the result of Theorem

2.3 covers that of Theorem 2.1 and Theorem 2.2 if (v±,u±,θ±) = (vm,um,θm), we only
show the asymptotic stability of the composition wave, that is, Theorem 2.3.

Define the perturbation function

(φ,ψ,ζ)(t,ξ) = (v,u,θ)(t,ξ)−(v̂, û, θ̂)(t,ξ), (3.1)

then the reformed equation is

φt−s−φξ−ψξ = 0, ξ >0, t>0,

ψt−s−ψξ+(
Rζ

v
)ξ−(

p̂φ

v
)ξ =−G1,

Cvζt−s−Cvζξ+pψξ+ ûξ(p− p̂) =κ(
ζξ
v
− θ̂ξφ
vv̂

)ξ−G2,

(φ,ψ,ζ)(t,0) = (0,0,0),

(φ,ψ,ζ)(0,ξ) = (φ0,ψ0,ζ0)(ξ)→ (0,0,0), as ξ→+∞,

(3.2)

and we order that the initial data satisfies the compatible condition

(φj ,ψj ,ζj)(0) = (0,0,0), j= 0,1, (3.3)

where (φj ,ψj ,ζj) := (∂jtφ,∂
j
tψ,∂

j
t ζ) |t=0 (j= 1,2) are defined by the iterated sequence

from (3.2),

∂jtφ |t=0=∂j−1t (s−φξ+ψξ) |t=0,

∂jtψ |t=0=∂j−1t (s−ψξ−(
Rζ

v
)ξ+(

p̂φ

v
)ξ−G1) |t=0,

∂jt ζ |t=0=∂j−1t (s−ζξ+
1

Cv
[κ(

ζξ
v
− θ̂ξφ
vv̂

)ξ−G2−pψξ− ûξ(p− p̂)]) |t=0 .

(3.4)
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The local existence of the solution to system (3.2) is stated as follows :

Proposition 3.1 (Local existence). There exist positive constants δ1, η̄3 and C
such that the following statements hold. Under the assumption δ̄+ε≤ δ1, there exists
a positive constant t0 = t0(M) such that if ‖(φ0,ψ0)‖3 +‖ζ0‖4≤M(CM ≤ η̄3), then the
problem (3.2) has a unique solution (φ,ψ,ζ)(t,ξ)∈Xm1

2 ,
m2
2 ,CM (0,t0).

Proof. At first, similar to [14], we rewrite system (3.2) into the following form
A0(U,V )Ut+A1(U,V )Uξ =F1(U,V,Vξ),

Vt−(B(U,V )Vξ)ξ =F2(U,V,Uξ,Vξ),

(UT ,V )(t,0) = (0,0,0), (UT ,V )(0,ξ) = (φ0,ψ0,ζ0)(ξ).

(3.5)

where U = (φ,ψ)T ,V = ζ, and

A0 =

(
R

(v̂+φ)2 0

0 1
θ̂+ζ

)
, A1 =

( −s−R
(v̂+φ)2 −

R
(v̂+φ)2

− R
(v̂+φ)2 − s−

θ̂+ζ

)
,

F1 =

(
0

f1(U,V,Vξ)

)
, B=

(
κ

Cv(v̂+φ)

)
,

(3.6)

and 
f1 =

ζ

θθ̂
(ût−s−ûξ)− v̂ξ

R(v+ v̂)φ

(vv̂)2
+ θ̂ξ(

Rvζ+Rθ̂φ

vθv̂θ̂
)− 1

θ̂
G1−

R

vθ
ζξ,

F2 =s−ζξ−
1

Cv
[pψξ+ ûξ(p− p̂)−κ(

θ̂ξφ

vv̂
)ξ−G2].

(3.7)

For U0 = (φ0,ψ0)T ,V 0 = ζ0, we define the iterated sequence (Uk
T
,V k) = (φk,ψk,ζk),k≥

1 as follows:{
A0(Uk−1,V k−1)Ukt +A1(Uk−1,V k−1)Ukξ =F1(Uk−1,V k−1,V k−1ξ ),

Uk
T

(t,0) = (0,0), Uk
T

(0,ξ) = (φ0,ψ0)(ξ),
(3.8)

and {
V kt −(B(Uk−1,V k−1)V kξ )ξ =F2(Uk−1,V k−1,Uk−1ξ ,V k−1ξ ),

V k(t,0) = 0, V k(0,ξ) = ζ0(ξ).
(3.9)

Following the standard steps in [32], for each k, we could show that for the linear
hyperbolic problem (3.8) there exists a unique solution Uk such that it satisfies

||Uk(t)||22 + ||Ukt (t)||21 + ||Uktt(t)||2

≤CeCMt{Σ2
i=0‖∂itUk(0)‖22−i+ tΣ2

i=0

∫ t

0

||∂itf1(τ)||22−idτ}, (3.10)

and for linear parabolic problem (3.9), by the standard energy estimates, there exists a
unique solution V k for each k such that it satisfies

||V k(t)||22 + ||V kt (t)||21 + ||V ktt(t)||2 +

∫ t

0

(‖V kξ (τ)‖22 +‖V kt (τ)‖22 +‖V ktt(τ)‖21)dτ
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≤CeCMt{Σ2
i=0‖∂itV k(0)‖22−i+Mt}. (3.11)

Here from system (3.5), we see that

Σ2
i=0‖∂itUk(0)‖22−i+Σ2

i=0‖∂itV k(0)‖22−i
.Σ2

j=0‖(φj ,ψj ,ζj)‖2.‖(φ0,ψ0)‖23 +‖ζ0‖24. (3.12)

That’s why we order that our initial data (φ0,ψ0) belong to H3 and ζ0 belongs
to H4. Combining results (3.10)-(3.11), choosing M and t(≤ t0) suitably small, we

can show that the iterated sequence {(UkT ,V k),k≥0}={(φk,ψk,ζk),k≥0} is uni-

formly bounded in Xm1
2 ,

m2
2 ,CM (0,t0). Moreover, {(UkT ,V k),k≥0} is a Cauchy

sequence in C([0,t0];H1)∩C1([0,t0];L2)×C([0,t0];H2)∩C1([0,t0];L2)∩L2([0,t0];H3)
and limk→+∞(φk,ψk,ζk) = (φ,ψ,ζ). Finally, (φ,ψ,ζ) is the unique solution which be-
longs to Xm1

2 ,
m2
2 ,CM (0,t0). Thus the local solution has been constructed.

Suppose that (φ,ψ,ζ)(t,ξ) obtained in Proposition 3.1 has been extended to some
time T >t, we want to obtain the following priori estimates to get a global solution.

Proposition 3.2 (A priori estimates). Under the conditions listed in Theorem 2.3,
(φ,ψ,ζ)(t,ξ)∈Xm1

2 ,
m2
2 ,η3(0,T )(η3≤ η̄3) obtained in Proposition 3.1 is the solution of the

problem (3.2) which has been extended to some T >0, then it holds that for t∈ [0,T ],

||(φ,ψ,ζ)(t)||22 + ||(φt,ψt,ζt)(t)||21 + ||(φtt,ψtt,ζtt)(t)||2

+

∫ t

0

(
‖(φξ,ψξ,ζξ,ζξξ)(τ)‖21 +‖(φt,ψt,ζt,ζtt)(τ)‖21

)
dτ

.‖(φ0,ψ0)‖23 +‖ζ0‖24 + δ̄+ε
1
8 . (3.13)

Once Proposition 3.2 is proved, we can extend the unique local solution (φ,ψ,ζ)(t,ξ)
obtained in Proposition 3.1 to t=∞, moreover, estimate (3.13) implies that∫ ∞

0

(
‖(φξ,ψξ,ζξ)(t)‖2 +

∣∣ d
dt
‖(φξ,ψξ,ζξ)(t)‖2

∣∣)dτ <+∞ , (3.14)

which together with Sobolev inequality easily leads to the asymptotic behavior (2.47),
this concludes the proof of Theorem 2.3. In the rest of this section, our main task is to
show the priori estimates.

4. A priori estimates
In the following part of this section, we mainly prove Proposition 3.2.

4.1. Basic energy estimates. At first, we show the basic energy estimates.

Lemma 4.1. Under the same assumptions listed in Proposition 3.2, if δ̄,ε,N(t) are
suitably small, it holds that

‖(φ,ψ,ζ)(t)‖2 +

∫ t

0

(‖
√
ũξ(φ,ζ)(τ)‖2 +‖ζξ(τ)‖2)dτ

.‖(φ0,ψ0,ζ0)‖2 +(δ+ε
1
8 )
(∫ t

0

‖(φξ,ψξ)(τ)‖2dτ+1
)
. (4.1)
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Proof. Define the energy form

E=Rθ̂Φ(
v

v̂
)+

ψ2

2
+Cv θ̂Φ(

θ

θ̂
), (4.2)

where Φ(s) =s−1− lns. Obviously, there exists a positive constant C(s) such that

C(s)−1s2≤Φ(s)≤C(s)s2,

we can get the following estimate

Et−s−Eξ+κ
θ̂ζ2ξ
vθ2

+ p̂ũξ(Φ(
θv̂

vθ̂
)+γΦ(

v

v̂
))

+
{

(p− p̂)ψ−κ(
ζξ
v
− θ̂ξφ
vv̂

)
ζ

θ

}
ξ

=G3−G1ψ−G2
ζ

θ
, (4.3)

where

G3 =− p̂ūξ(Φ(
θv̂

vθ̂
)+γΦ(

v

v̂
))+[κ(

θ̂ξ
v̂

)ξ+G2][(γ−1)Φ(
v

v̂
)+Φ(

θ

θ̂
)− ζ

2

θθ̂
]

+κ
θ̂ξζξζ

vθ2
+κ(

1

v
− 1

v̂
)
ζθ̂2ξ
θ2
−κ(

1

v
− 1

v̂
)
θ̂θ̂ξζξ
θ2

. (4.4)

It is easy to see that

|G3|.
1

4

κθ̂ζ2ξ
vθ2

+ |(ūξ,(θ̄−θm)θ̃ξ+ θ̄ξ(θ̃−θm), θ̃ξξ+ θ̃2ξ)|(φ2 +ζ2), (4.5)

Since

|f(ξ)|= |f(0)+

∫ ξ

0

fydy|≤ |f(0)|+
√
ξ‖fξ‖, (4.6)

and by the fact that (φ,ψ,ζ)(t,0) = (0,0,0), we get∫ t

0

∫
R+

|ūξ|(φ2 +ζ2)dξdτ

.δ̄
∫ t

0

∫
R+

e−cξ(φ2 +ζ2)(t,ξ)dξdτ

.δ̄
∫ t

0

‖(φξ,ζξ)(τ)‖2
∫
R+

ξe−cξdξdτ

.δ̄
∫ t

0

‖(φξ,ζξ)(τ)‖2dτ. (4.7)

By the properties of rarefaction wave as

‖(ṽξ,ũξ, θ̃ξ)(t)‖2. ε
1
8 (1+ t)−

7
8 ,

‖(ṽξξ,ũξξ, θ̃ξξ)(t)‖L1 . ε
1
8 (1+ t)−

13
16 , (4.8)
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we have ∫ t

0

∫
R+

(|θ̃ξξ|+ |θ̃ξ|2)(φ2 +ζ2)(τ,ξ)dξdτ

.
∫ t

0

(‖φ(τ)‖‖φξ(τ)‖+‖ζ(τ)‖‖ζξ(τ)‖)(‖θ̃ξ(τ)‖2 +‖θ̃ξξ(τ)‖L1)dτ

.ε
1
8

∫ t

0

(1+τ)−
13
8 ‖(φ,ζ)(τ)‖2 +‖(φξ,ζξ)(τ)‖2dτ

.ε
1
8 {1+

∫ t

0

‖(φξ,ζξ)(τ)‖2dτ}. (4.9)

And the remaining terms satisfy∫ t

0

∫
R+

((θ̄−θm)θ̃ξ+ θ̄ξ(θ̃−θm))(φ2 +ζ2)dξdτ

.δ̄
∫ t

0

∫
R+

e−c(ξ+τ)(φ2 +ζ2)(τ,ξ)dξdτ

.δ̄
∫ t

0

(‖φ(τ)‖‖φξ(τ)‖+‖ζ(τ)‖‖ζξ(τ)‖)e−cτdτ

.δ̄{1+

∫ t

0

‖(φξ,ζξ)(τ)‖2dτ}. (4.10)

Integrating (4.3) over [0,t]×R+ and making use of the estimates (4.5)-(4.10), it holds

‖(φ,ψ,ζ)(t)‖2 +

∫ t

0

(‖ζξ(τ)‖2 +‖
√
ũξ(φ,ζ)(τ)‖2)dτ

.‖(φ0,ψ0,ζ0)‖2 +(δ̄+ε
1
8 ){1+

∫ t

0

‖(φξ,ζξ)(τ)‖2dτ}+

∫ t

0

∫
R+

(
|G1ψ|+ |G2ζ|

)
dξdτ,

(4.11)

where∫ t

0

∫
R+

(
|G1ψ|+ |G2ζ|

)
dξdτ

.
∫ t

0

∫
R+

δ̄e−c(ξ+τ)(‖ψ‖
1
2 ‖ψξ‖

1
2 +‖ζ‖

1
2 ‖ζξ‖

1
2 )dξdτ

+

∫ t

0

(‖ζ‖
1
2 ‖ζξ‖

1
2 (‖θ̃ξ‖2 +‖θ̃ξξ‖L1)dτ

.δ̄
∫ t

0

e−cτ‖(ψ,ζ)(τ)‖
2
3 +‖(ψξ,ζξ)(τ)‖2dτ

+

∫ t

0

‖ζ(τ)‖
1
2 ‖ζξ(τ)‖

1
2 [ε

1
8 (1+τ)−

7
8 +ε

1
8 (1+τ)−

13
16 ]dτ

.δ̄
∫ t

0

e−cτ (‖(ψ,ζ)(τ)‖2 +1)dτ+(δ̄+ε
1
8 )

∫ t

0

‖(ψξ,ζξ)(τ)‖2dτ+ε
1
8

∫ t

0

(1+τ)−
13
12 ‖ζ(τ)‖

2
3 dτ

.(δ̄+ε
1
8 ){1+

∫ t

0

‖(ψξ,ζξ)(τ)‖2dτ}. (4.12)

Inserting (4.12) into (4.11), we can get the estimate (4.1) and complete the proof of
Lemma 4.1.
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Lemma 4.2. Under the same assumptions listed in Proposition 3.2, if δ̄,ε,N(t) are
suitably small, then it holds that

‖(φξ,ψξ,ζξ)(t)‖2 +

∫ t

0

(
|(φξ,ψξ,ζξ)|2(τ,0)+‖ζξξ(τ)‖2

)
dτ

.‖(φ0,ψ0,ζ0)‖21 + δ̄+ε
1
8 +(δ̄+ε

1
8 +N(t))

∫ t

0

‖(φξ,ψξ)(τ)‖21dτ. (4.13)

Proof. Multiplying (3.2)1 by − pvφξξ and (3.2)2 by −ψξξ, (3.2)3 by − ζξξθ and adding
the results, we can get

1

2
(
p

v
φ2ξ+ψ2

ξ +Cv
ζ2ξ
θ

)t+κ
ζ2ξξ
vθ

+
s−
2

(
p

v
φ2ξ+ψ2

ξ +Cv
ζ2ξ
θ

)ξ

+(
p

v
φξψξ−

R

v
ζξψξ)ξ−(

p

v
φξφt+ψξψt+Cv

ζξ
θ
ζt)ξ =F3. (4.14)

where

F3 =
1

2
[(
p

v
)t+s−(

p

v
)ξ]φ

2
ξ+

Cv
2

[(
1

θ
)t+s−(

1

θ
)ξ]ζ

2
ξ

−(
p

v
)ξφtφξ−Cv(

1

θ
)ξζtζξ+ ûξ(p− p̂)

ζξξ
θ

−κ(
1

v
)ξζξ

ζξξ
θ

+κ(
θ̂ξφ

vv̂
)ξ
ζξξ
θ

+G1ψξξ+G2
ζξξ
θ

+(
p

v
)ξφξψξ−(

R

v
)ξψξζξ+[(

p− p̂
v

)v̂ξ−(
p̂ξ
v

)φ]ψξξ. (4.15)

It is easy to see that

|F3|.(|v̄ξ|+ |ṽξ|+N(T ))(φ2ξ+ψ2
ξ +ζ2ξ +ψ2

ξξ+ζ2ξξ)

+(|ũξ|+ |ūξ|)(φ2 +ζ2)+ |v̂ξG2
2|+ |G2ζξξ|+ |G1ψξξ|, (4.16)

and ∫ t

0

∫
R+

|v̂ξ|G2
2dξdτ .

∫ t

0

∫
R+

|(ṽξ+ v̄ξ)|(δ̄e−c(ξ+t) + |θ̃ξξ|2 + |θ̃ξ|4)dξdτ

.δ̄+

∫ t

0

(‖θ̃ξξ‖2L∞+‖θ̃ξ‖4L∞)(‖v̄ξ‖L1 +‖ṽξ‖L1)dτ

.δ̄+ε
1
8

∫ t

0

(1+τ)−
39
28 dτ

.δ̄+ε
1
8 , (4.17)

∫ t

0

∫
R+

(
|G2ζξξ|+ |G1ψξξ|

)
dξdτ

.δ̄
∫ t

0

∫
R+

e−c(ξ+t)(ζξξ+ψξξ)dξdτ+

∫ t

0

∫
R+

(|θ̃ξξ|+ |θ̃ξ|2)ζξξdξdτ

.δ̄(1+

∫ t

0

‖(ζξξ,ψξξ)(τ)‖2dτ)+

∫ t

0

(‖θ̃ξξ‖+‖θ̃ξ‖2L4)‖ζξξ(τ)‖dτ
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.δ̄(1+

∫ t

0

‖(ζξξ,ψξξ)(τ)‖2dτ)+

∫ t

0

ε
1
8 (1+τ)−

3
4 ‖ζξξ(τ)‖dτ

.δ̄(1+

∫ t

0

‖(ζξξ,ψξξ)(τ)‖2dτ)+ε
1
8

∫ t

0

[(1+τ)−
3
2 +‖ζξξ(τ)‖2]dτ

.(δ̄+ε
1
8 )
(
1+

∫ t

0

‖(ζξξ,ψξξ)(τ)‖2dτ
)
. (4.18)

Integrating (4.14) over [0,t]×R+, and making use of (4.1), (4.7), (4.16)-(4.18), we get

‖(φξ,ψξ,ζξ)(t)‖2 +

∫ t

0

‖ ζξξ√
vθ

(τ)‖2dτ

+

∫ t

0

{
|s−|

2
(
p−
v−
φ2ξ+ψ2

ξ +Cv
ζ2ξ
θ−

)− p−
v−
φξψξ+

R

v−
ζξψξ

}
(τ,0)dτ

.‖(φ0,ψ0,ζ0)‖21 + δ̄+ε
1
8 +(ε

1
8 + δ̄+N(t))

∫ t

0

‖(φξ,ψξ)(τ)‖21dτ. (4.19)

Then we should deal with the boundary terms. Since z−∈Ω+, see (2.1), that is, Rθ−<
u2−<γRθ−, the discriminant of the quadratic form

|s−|
2

(
p−
v−
φ2ξ+ψ2

ξ )− p−
v−
φξψξ

is less than zero, i.e.

D= (
p−
v−

)2−4× |s−|
2

p−
v−
× |s−|

2

= (
p−
v−

)(
p−
v−
−|s−|2) = (

p−
v−

)(
Rθ−
v2−
−
u2−
v2−

)<0. (4.20)

Thus, the binomial expression is positive, we get for some constant c1>0 such that∫ t

0

{
|s−|

2
(
p−
v−
φ2ξ+ψ2

ξ +Cv
ζ2ξ
θ−

)− p−
v−
φξψξ

}
(τ,0)dτ

≥c1
∫ t

0

(φ2ξ+ψ2
ξ +ζ2ξ )(τ,0)dτ. (4.21)

Secondly, by the Sobolev inequality, it holds that∫ t

0

R

v−
(ζξψξ)(τ,0)dτ

.
c1
4

∫ t

0

ψ2
ξ (τ,0)dτ+

∫ t

0

‖ζξ(τ)‖2∞dτ

.
c1
4

∫ t

0

ψ2
ξ (τ,0)dτ+

1

4

∫ t

0

‖ ζξξ√
vθ

(τ)‖2dτ+

∫ t

0

‖ζξ(τ)‖2dτ. (4.22)

Inserting (4.21), (4.22) into (4.19) and using the result of (4.1), we get the estimate of
(4.13) and complete the proof of Lemma 4.2.

As for
∫ t
0
‖(φξ,ψξ)(τ)‖2dτ , we have the following Lemma.
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Lemma 4.3. Under the same assumptions listed in Proposition 3.2, if δ̄,ε,N(t) are
suitably small, it holds that∫ t

0

‖(φξ,ψξ)(τ)‖2dτ

.‖(φ0,ψ0,ζ0)‖21 + δ̄+ε
1
8 +(δ̄+ε

1
8 +N(t))

∫ t

0

‖(φξξ,ψξξ)(τ)‖2dτ. (4.23)

Proof. Multiplying (3.2)2 by −p2φξ, it holds that

−(
p

2
φξψ)t+(

p

2
)tψφξ+(

p

2
φtψ)ξ−

pξ
2
ψ(s−φξ+ψξ)−

p

2
ψ2
ξ

+
p2

2v
φ2ξ−

R

v
ζξ
p

2
φξ = (G1−

p̂ξφ

v
+

(p̂−p)
v

v̂ξ)
p

2
φξ. (4.24)

Multiplying (3.2)3 by ψξ, it holds that

(Cvζψξ)t−(Cvζψt)ξ−Cvζξ((p− p̂)ξ+G1)+pψ2
ξ

=κ(
ζξ
v
− θ̂ξφ
v̂v

)ξψξ−(p− p̂)ûξψξ−G2ψξ. (4.25)

Combining together, we get

(Cvζψξ−
p

2
φξψ)t−(Cvζψt−

p

2
φtψ)ξ+

p

2
ψ2
ξ +

p2

2v
φ2ξ

=
pξ
2
ψ(s−φξ+ψξ)−(

p

2
)tψφξ+

R

v
ζξ
p

2
φξ+Cvζξ((p− p̂)ξ+G1)

+(G1−
p̂ξφ

v
+

(p̂−p)
v

v̂ξ)
p

2
φξ+κ(

ζξ
v
− θ̂ξφ
v̂v

)ξψξ−(p− p̂)ûξψξ−G2ψξ

.O(1)|ûξ||(φ,ψ,ξ)||(φξ,ψξ,ζξ)|+O(1)(δ+ε
1
8 +N(t))|(φ2ξ ,ψ2

ξ ,ζ
2
ξ )|

+ |φξζξ|+ |ψξζξξ|+ |G1φξ|+ |G2ψξ|+ |G1ζξ|+ |ζξ|2. (4.26)

Integrating above equation over [0,t]×R+, we obtain that∫ t

0

∫
R+

(φ2ξ+ψ2
ξ )dξdτ

.‖(φξ,ψξ,ψ,ζ)(t)‖2 +‖(φ0ξ,ψ0ξ,ψ0,ζ0)(t)‖2 + δ̄+ε
1
8

+

∫ t

0

‖(ζξ,ζξξ)(τ)‖2dτ+

∫ t

0

∫
R+

|ûξ||(φ,ξ)|2dξdt

+(
1

4
+δ+ε

1
8 +N(t))

∫ t

0

∫
R+

(φ2ξ+ψ2
ξ )dξdτ. (4.27)

Using the result of (4.1), (4.7) and (4.13) into (4.27), if δ̄,ε,N(t) are suitably small, we
could get (4.23) and complete the proof of Lemma 4.3.

4.2. Higher order energy estimates. To get the higher order estimates, we
need to get the estimates on the diameter direction as follows.
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Lemma 4.4. Under the same assumptions listed in Proposition 3.2, if δ̄,ε,N(t) are
suitably small, it holds that

‖(φt,ψt,ζt)(t)‖2 +

∫ t

0

‖ζtξ(τ)‖2dτ

.‖(φ0,ψ0,ζ0)‖22 + δ̄+ε
1
8 +(δ̄+ε

1
8 +N(t))

∫ t

0

‖(φtξ,ψtξ)(τ)‖2dτ. (4.28)

Proof. Let (3.2)1t× p
vφt,(3.2)2t×ψt,(3.2)3t× ζt

θ , we get that

1

2
(
p

v
φ2t +ψ2

t +Cv
ζ2t
θ

)t−
s−
2

(
p

v
φ2t +ψ2

t +Cv
ζ2t
θ

)ξ

−
{p
v
φtψt−

R

v
ζtψt+κ((

ζξ
v
− θξφ
vv̂

)t
ζt
θ

)
}
ξ
+κ

ζ2tξ
vθ

=F4, (4.29)

where

|F4|.(|ṽξ|+ |v̄ξ|+N(t))(φ2t +φ2ξ+ψ2
t +ψ2

ξ +ζ2ξ +ζ2t +φ2tξ+ψ2
tξ+ζ2tξ)

+ |G1tψt|+ |G2tζt|+ |v̂ξ|(φ2 +ζ2)

.(|ṽξ|+ |v̄ξ|+N(t))(φ2ξ+ψ2
ξ +ζ2ξ +ζ2ξξ+φ2tξ+ψ2

tξ+ζ2tξ)

+ |G1tψt|+ |G2tζt|+ |v̂ξ|(φ2 +ζ2), (4.30)

Integrating (4.29) over [0,t]×R+, and noticing that (φt,ψt,ζt)(t,0) = (0,0,0), by the
results of Lemma 4.1-Lemma 4.3 and similar computations as before, we obtain

‖(φt,ψt,ζt)(t)‖2 +

∫ t

0

‖ζtξ(τ)‖2dτ

.‖(φ0,ψ0,ζ0)‖22 + δ̄+ε
1
8 +(δ̄+ε

1
8 +N(t))

∫ t

0

‖(φtξ,ψtξ,φξξ,ψξξ)(τ)‖2dτ. (4.31)

Taking the derivative of both sides of (3.2)1 and (3.2)2 with the variable ξ, we see
that

‖(φξξ,ψξξ)(t)‖2

.‖(φtξ,ψtξ,ζξξ)(t)‖2 +‖(φξ,ψξ,ζξ)(t)‖2 +‖
√
|ûξ|(φ,ζ)(t)‖2 +‖G1ξ(t)‖2. (4.32)

Using (4.32), we can get (4.28) and complete the proof of Lemma 4.4.

Lemma 4.5. Under the same assumptions listed in Proposition 3.2, if δ̄,ε,N(t) are
suitably small, it holds that

‖(φtt,ψtt,ζtt)(t)‖2 +

∫ t

0

‖ζttξ(τ)‖2dτ

.‖(φ0,ψ0)‖23 +‖ζ0‖24 + δ̄+ε
1
8 +(δ̄+ε

1
8 +N(t))

∫ t

0

‖(φtξ,ψtξ,ζtt)(τ)‖2dτ. (4.33)

Proof. Just let (3.2)1tt× p
vφtt,(3.2)2tt×ψtt,(3.2)3tt× ζtt

θ , we get that

1

2
(
p

v
φ2tt+ψ2

tt+Cv
ζ2tt
θ

)t−
s−
2

(
p

v
φ2tt+ψ2

tt+Cv
ζ2tt
θ

)ξ
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−
{

(
p

v
φttψtt−

R

v
ζttψtt+κ((

ζξ
v
− θ̂ξφ
vv̂

)tt
ζtt
θ

)
}
ξ
+κ

ζ2ttξ
vθ

=F5, (4.34)

where

F5 =(
R

v
)ξψttζtt−(

p

v
)ξφttψtt+(

1

2
(
p

v
)t−

s−
2

(
p

v
)ξ)φ

2
tt

− [(
R

v
)ttζξ+2(

R

v
)tζtξ−(

p

v
)ttφξ−2(

p

v
)tφtξ−G1tt+(

p̂ξφ

v
)tt]ψtt

+
Cv
2

[(
1

θ
)t−s−(

1

θ
)ξ]ζ

2
tt− [pttψξ+2ptψtξ+(ûξ(p− p̂))tt−G2tt]

ζtt
θ

+κ(
θ̂ξφ

vv̂
)tt(

ζtt
θ

)ξ+κ(2
ζtξvt
v2
−(

1

v
)ttζξ)(

ζtt
θ

)ξ+κ
ζttξ
v

ζttθξ
θ2

. (4.35)

Note that

|F5|.(|ṽξ|+ |v̄ξ|+N(t))(φ2tt+ψ2
tt+ζ2tt+ζ2tξ+φ2ξ+ψ2

ξ +ζ2ξ

+φ2ξξ+ψ2
ξξ+ζ2ξξ+ζ2ttξ)+ |G1ttψtt|+ |G2ttζtt|

+(|ṽξ|+ |v̄ξ|)(φ2 +ζ2). (4.36)

Integrating (4.34) over [0,t]×R+ and noticing that (φtt,ψtt,ζtt)(t,0) = (0,0,0), if
δ̄,ε,N(t) suitably small, it yields,

‖(φtt,ψtt,ζtt)(t)‖2 +

∫ t

0

‖ζttξ(τ)‖2dτ

.‖(φ0,ψ0)‖23 +‖ζ0‖24 + δ̄+ε
1
8

+(δ̄+ε
1
8 +N(t))

∫ t

0

‖(φtt,ψtt,ζtt,φtξ,ψtξ,φξξ,ψξξ)(τ)‖2dτ

.‖(φ0,ψ0)‖23 +‖ζ0‖24 + δ̄+ε
1
8 +(δ̄+ε

1
8 +N(t))

∫ t

0

‖(ζtt,φtξ,ψtξ)(τ)‖2dτ. (4.37)

where we have used (4.32). Taking the derivative of both sides of (3.2)1 and (3.2)2 with
the variable t,

‖(φtt,ψtt)(t)‖2

.‖(φtξ,ψtξ,ζtξ)(t)‖2 +‖(φξ,ψξ,ζξ)(t)‖21 +‖
√
|ûξ|(φ,ζ)(t)‖2 +‖G1t(t)‖2. (4.38)

Using (4.38), we obtain (4.37) and complete the proof of Lemma 4.5.

Lemma 4.6. Under the same assumptions listed in Proposition 3.2, if δ̄,ε,N(t) are
suitably small, it holds that

‖ζtξ(t)‖2 +

∫ t

0

‖ζtt(τ)‖2dτ

.‖(φ0,ψ0)‖23 +‖ζ0‖24 + δ̄+ε
1
8 +(δ̄+ε

1
8 +N(t))

∫ t

0

‖(φtξ,ψtξ)(τ)‖2dτ. (4.39)

Proof. Let (3.2)3t×ζtt, we have

Cvζ
2
tt+

κ

2
(
ζ2tξ
v

)t−s−Cv(ζtξζt)ξ+s−Cvζttξζt+(pψtζtt)ξ
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=κ((
ζξ
v
− θ̂ξφ
vv̂

)tζtt)ξ+pξψtζtt−ptψξζtt+pψtζttξ−G2tζtt

−(ûξ(p− p̂))tζtt+κ
vt
v2
ζξζttξ+κ(

θ̂ξφ

vv̂
)tζttξ−

κ

2v2
vtζ

2
tξ. (4.40)

Integrating (4.40) over [0,t]×R+ and noticing that (φt,ψt,ζt,ζtt)(t,0) = (0,0,0,0). Using
previous lemmas, we could get (4.39) and complete the proof of Lemma 4.6.

We remark that by using the relationship (4.32), (4.38) which is derived from system
(3.2) and

‖(φtξ,ψtξ)(t)‖2

.‖(φtt,ψtt,ζtξ,ζt)(t)‖2 +‖(φξ,ψξ,ζξ)(t)‖2 +‖
√
|ûξ|(φ,ζ)(t)‖2 +‖G1t(t)‖2,

‖ζξξ(t)‖2.‖(φ,ψ,ζ)(t)‖21 +‖ζt(t)‖2 +‖G2(t)‖2, (4.41)

then from the results of Lemma 4.1-Lemma 4.6, one can verify that

||(φ,ψ,ζ)||22 + ||(φt,ψt,ζt)||21 + ||(φtt,ψtt,ζtt)||2 +

∫ t

0

|(φξ,ψξ)|2(τ,0)dτ

+

∫ t

0

(
‖(φξ,ψξ)(τ)‖2 +‖ζξ(τ)‖21 +‖ζt(τ)‖21 +‖ζtt(τ)‖21

)
dτ

.‖(φ0,ψ0)‖23 +‖ζ0‖24 + δ̄+ε
1
8 +(δ̄+ε

1
8 +N(t))

∫ t

0

‖(φtξ,ψtξ)(τ)‖2. (4.42)

Therefore, we just need to estimate
∫ t
0
‖(φtξ,ψtξ)(τ)‖2dτ at last.

Lemma 4.7. Under the same assumptions listed in Proposition 3.2, if δ̄,ε,N(t) are
suitably small, it holds that∫ t

0

‖(φtξ,ψtξ)(τ)‖2dτ .‖(φ0,ψ0)‖23 +‖ζ0‖24 + δ̄+ε
1
8 (4.43)

Proof. Multiplying (3.2)2t by −p2φtξ, it holds that

−(
p

2
φtψtt)ξ+(

p

2
)ξψttφt+(

p

2
φtψtξ)t−(

p

2
)tψtξφt−

p

2
ψtξ(φtt−s−φtξ)

−(
R

v
ζξ)t

p

2
φtξ+

p2

2v
φ2tξ = (G1t−(

p

v
)tφξ−(

p̂ξφ

v
)t)
p

2
φtξ. (4.44)

Multiplying (3.2)3t by ψtξ, it holds that

(Cvζttψt)ξ−(Cvζtξψt)t+Cvζtξ(ψtt−s−ψtξ)+pψ2
tξ

=κ(
ζξ
v
− θ̂ξφ
v̂v

)tξψtξ−ptψξψtξ−((p− p̂)ûξ)tψtξ−G2tψtξ. (4.45)

Combining (4.44)-(4.45) together, we get

(
p

2
φtψtξ−Cvζtξψt)t+(Cvζttψt−

p

2
φtψtt)ξ+

p2

2v
φ2tξ+

p

2
ψ2
tξ

=(
R

v
ζξ)t

p

2
φtξ+(G1t−(

p

v
)tφξ−(

p̂ξφ

v
)t)
p

2
φtξ−Cvζtξ(ψtt−s−ψtξ)
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+κ(
ζξ
v
− θ̂ξφ
v̂v

)tξψtξ−ptψξψtξ+(
p

2
)tψtξφt−(

p

2
)ξψttφt

−((p− p̂)ûξ)tψtξ−G2tψtξ

.
p2

9v
φ2tξ+

p

9
ψ2
tξ+O(1)|ûξ||(φ,ξ)|2 +O(1)(δ+ε

1
8 +N(t))|(φ2ξ ,ψ2

ξ ,ζ
2
ξ ,ζ

2
ξξ)|

+ |G1t(φtξ,ζtξ)|+ |G2tψtξ|+ |G1t(φξ,ψξ)|+ |ζtξ|2 +κ(
ζξ
v

)tξψtξ. (4.46)

Differentiating both sides of (3.2)1,2 with respect to time t, we deduce that

φtξ =
1

s−
(φtt−ψtξ),

ψtξ =
1

s−
(ψtt+(

R

v
ζξ)t−(

p

v
)tφξ−

p

v
φtξ+(

p̂−p
v

v̂ξ−
p̂ξφ

v
)t+G1t). (4.47)

Using (4.47), it yields

κ(
ζξ
v

)tξψtξ =κ(
ζξ
v

)tξ
s−

s2−−
p
v

(ψtt+
R

v
ζtξ−

p

v

1

s−
φtt)

+κ(
ζξ
v

)tξ
s−

s2−−
p
v

[G1t+(
R

v
)tζξ−(

p

v
)tφξ+(

p̂−p
v

v̂ξ−
p̂ξφ

v
)t]

=κ[(
ζξ
v

)t
s−

s2−−
p
v

(ψtt−
p

v

1

s−
φtt)]ξ−κ(

ζξ
v

)t(
s−

s2−−
p
v

)ξ(ψtt−
p

v

1

s−
φtt)

+κ(
ζξ
v

)t
1

s2−−
p
v

(
p

v
)ξφtt−κ[(

ζξ
v

)t
s−

s2−−
p
v

(ψtξ−
p

v

1

s−
φtξ)]t

+κ((
ζξ
v

)t
s−

s2−−
p
v

)tψtξ−κ((
ζξ
v

)t
1

s2−−
p
v

p

v
)tφtξ

+κ[(
ζξ
v

)ξ
s−

s2−−
p
v

R

v
ζtξ]t−κ(

ζξ
v

)ξ(
s−

s2−−
p
v

R

v
ζtξ)t

+{κ(
ζξ
v

)ξ
s−

s2−−
p
v

[G1t+(
R

v
)tζξ−(

p

v
)tφξ+(

p̂−p
v

v̂ξ−
p̂ξφ

v
)t]}t

−κ(
ζξ
v

)ξ(
s−

s2−−
p
v

[G1t+(
R

v
)tζξ−(

p

v
)tφξ+(

p̂−p
v

v̂ξ−
p̂ξφ

v
)t])t. (4.48)

Therefore, using (4.42), the following estimate holds,

|
∫ t

0

∫
R+

κ(
ζξ
v

)tξψtξdξdτ |

.‖(φ0,ψ0)‖23 +‖ζ0‖24 + δ̄+ε
1
8 +

∫ t

0

∫
R+

p2

9v
φ2tξ+

p

9
ψ2
tξdξdτ (4.49)

Integrating Equation (4.46) over [0,t]×R+ and using (4.42), (4.49), we can get (4.43)
after similar computations. This completes the proof of Lemma 4.7.

Combining the results of Lemma 4.1-Lemma 4.7, from system (3.2), all the terms in
the priori estimates (3.13) could be obtained and we complete the proof of Proposition
3.2.
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