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NORMALIZED GOLDSTEIN-TYPE LOCAL MINIMAX METHOD FOR
FINDING MULTIPLE UNSTABLE SOLUTIONS OF

SEMILINEAR ELLIPTIC PDES∗

WEI LIU† , ZIQING XIE‡ , AND WENFAN YI§

Abstract. In this paper, we propose a normalized Goldstein-type local minimax method (NG-
LMM) to seek for multiple minimax-type solutions. Inspired by the classical Goldstein line search
rule in the optimization theory in R

m, which is aimed to guarantee the global convergence of some
descent algorithms, we introduce a normalized Goldstein-type search rule and combine it with the local
minimax method to be suitable for finding multiple unstable solutions of semilinear elliptic PDEs both
in numerical implementation and theoretical analysis. Compared with the normalized Armijo-type local
minimax method (NA-LMM), which was first introduced in [Y. Li and J. Zhou, SIAM J. Sci. Comput.,
24(3):865–885, 2002] and then modified in [Z.Q. Xie, Y.J. Yuan, and J. Zhou, SIAM J. Sci. Comput.,
34(1):A395–A420, 2012], our approach can prevent the step-size from being too small automatically and
then ensure that the iterations make reasonable progress by taking full advantage of two inequalities.
The feasibility of the NG-LMM is verified strictly. Further, the global convergence of the NG-LMM is
proven rigorously under a weak assumption that the peak selection is only continuous. Finally, it is
implemented to solve several typical semilinear elliptic boundary value problems on square or dumbbell
domains for multiple unstable solutions and the numerical results indicate that this approach performs
well.
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method; normalized Goldstein-type search rule.
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1. Introduction
Consider to find multiple solutions to the Euler-Lagrange equation

J ′(u)=0, (1.1)

where J , called a generic energy functional, is a C1-functional on a Hilbert space H,
and J ′ is its Fréchet derivative. The solutions to the Euler-Lagrange Equation (1.1) are
corresponding to the critical points of J . The most well-known critical points are the
local minima (maxima), which the classical variational or optimization theories focus
on. In contrast, a critical point, which is not a local extremum, is called a saddle point.
Actually a saddle point u∗ of J is a critical point, whose any neighborhood in H contains
points v and w such that J(v)<J(u∗)<J(w). Saddle points are unstable and will be
the main concern in this paper.

From Morse theory, for a critical point u∗, let H=H−⊕H0⊕H+, where H−, H0

and H+ are, respectively, the maximum negative definite, null and maximum positive
definite orthogonal subspaces of the linear operator J ′′(u∗) in H with dim(H0)<∞.
Then the Morse index (MI) of u∗ is defined as the dimension of H−, i.e., MI(u∗)=
dim(H−). For instance, a local minimum of the energy functional J is a solution of
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(1.1) with MI=0. As a matter of fact, the Morse index is an important concept that
provides information of the local structure of a critical point and is used to describe its
instability. Actually the higher the Morse index is, the more unstable the critical point
is.

Multiple saddle points with different performance and instability indices exist in
many nonlinear problems in the natural and social sciences [2,4,12,20,21,26,30–32]. In
physics, chemistry and materials sciences, saddle points appear as unstable equilibria
or transient excited states of the energy surface. They are usually used to study the
rare transition of different stable states or metastable states, and play a significant role
in determining the physical and chemical properties of substances such as nucleation
and reaction rate. Due to the difficulties and challenges in making direct experimental
observation, several computational methods have been developed for computing saddle
points, e.g., string method, gentlest ascent method and dimer method, etc., for which
we refer to [6,8–10,13,29] and references therein. It is noted that the numerical methods
above are mainly aimed to find the saddle points with MI=1. With the development of
science and technology, nowadays more and more attention is paid to both theory and
application to solve numerically for multiple unstable critical points with higher Morse
index in a stable way.

Inspired by the numerical work of Choi-McKenna [5], Ding-Costa-Chen [7] and
Chen-Zhou-Ni [3], a local minimax method (LMM) that characterizes a saddle point as
a solution to a local minimax problem was established in Li-Zhou’s work [15]. Based on
the local characterization, a numerical local minimax algorithm was designed for finding
multiple saddle points [15,16]. Roughly speaking, the LMM characterizes a saddle point
of J as a solution to the following two-level local optimization problem [15, 16, 26, 28]:
Find u∗∈H s.t.

J(u∗)= min
v∈SH

max
u∈[L,v]

J(u), (1.2)

where SH ={v∈H :‖v‖=1} is the unit sphere with ‖·‖ the norm in H, L⊂H is a
given finite-dimensional closed subspace and [L,v]={tv+w :w∈L, t≥0}. It is appar-
ent that the local maximization in the first level is actually an optimization problem
in the finite-dimensional half subspace [L,v]. Consequently some standard numerical
optimization algorithms can be conveniently implemented to solve it. Nevertheless, the
local minimization in the second level is more challenging as it works in the unit sphere
SH , which is infinite-dimensional. In the LMM, the steepest descent direction serves as
the search direction in the local minimization process. As a matter of fact, this strategy
has been widely applied for solving various multiple solution problems. For this topic,
we refer to [26–28,33] and references therein.

On the other hand, to guarantee the robustness of the numerical methods, the
large-scope or even global convergence is always one of the main issues to the descent
algorithms for solving optimization problems or nonlinear equations. It is known that
the line search rule is one of the efficient strategies to find a suitable step-size and
guarantee the global convergence of the numerical methods to the optimization problems
[14, 22, 23]. In the optimization theory, for a given objective function f defined in R

m,
the aim of the line search is to find a step-size sk>0 along a descent direction dk starting
from xk, s.t.,

f(xk+skdk)<f(xk). (1.3)

If the step-size sk is determined by minimizing the objective function along the descent
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direction dk starting from xk, i.e.,

f(xk+skdk)=min
s>0

f(xk+sdk), (1.4)

it is called an exact line search rule with sk the optimal step-size. Though there exist
several exact line search algorithms in the literature, they are not popular since they are
often expensive. In contrast, if the step-size sk is chosen such that the descent amount
f(xk)−f(xk+skdk)>0 is acceptable, this line search rule is called an inexact one. Due
to their efficiency and much cheaper computational cost compared with the exact line
search strategies, the inexact line search rules are highly preferred in practice. In the
literature the well-known inexact line search rules include the Armijo rule [1], Goldstein
rule [11] and Wolfe-Powell rule [19, 24,25], etc..

As mentioned above, the LMM is aimed to find the local optimal solution u∗∈H
for the two-level optimization problem (1.2). Once vk and uk are obtained, the LMM
tries to find

vk+1=vk(sk)=
vk+skdk

‖vk+skdk‖ , uk+1=p(vk(sk)), (1.5)

by some search rules, where sk>0 is a step-size, dk ∈H is the steepest descent direction
of J at uk, and p(vk(sk)) represents a local maximizer of J on the finite-dimensional
half subspace [L,vk(sk)] and can be expressed as p(vk(sk))= tkvk(sk)+wk

L∈ [L,vk(sk)]
for some tk≥0 and wk

L∈L. Actually p(vk(sk)) denotes a local peak selection of J
w.r.t. L at vk(sk), an important concept which will be introduced in Section 2. Since
the sequence {vk}⊂SH generated by the algorithm of the LMM is constrained on a
unit sphere, the line search strategies in the optimization theory have to be updated so
that they are suitable for this new situation. Actually in [15], the idea of line search
in the optimization theory in R

m was borrowed for the first time with a normalized
modification to adapt for the generic nonlinear functional with a minimax structure.
They tried to find sk>0 such that J(p(vk(s))) at sk is minimized, i.e.,

J(p(vk(sk)))=min
s>0

J(p(vk(s))), (1.6)

with sk the optimal step-size [15]. However, such a step-size rule is a kind of exact
one and is not convenient for both numerical implementation and convergence analysis.
Moreover, it is even more expensive and complicated than its partner in the optimization
theory. In fact, J(p(v)) is a composite functional of J, p and v, and the update vk+1=
vk(sk) is nonlinear in terms of sk, while the update xk+1=xk(sk)=xk+skdk is linear
w.r.t. sk in the optimization theory.

As a result, we concentrate on some inexact step-size search rules in the following,
i.e., the step-size sk is chosen such that the descent amount J(p(vk))−J(p(vk(sk)))>0
is acceptable by tolerance. In the literature, the normalized Armijo-type search rule
was first introduced in [16] and further developed as the following simpler form in [28],
i.e.,

J(p(vk(sk)))−J(p(vk))≤−1

4
tksk‖dk‖2, (1.7)

where the factor 1
4 can be substituted by any constant σ with 0<σ<1. Once sk

satisfies the condition (1.7), uk+1=p(vk(sk)) is a new acceptable approximation. Here,
the step-size sk is determined by a backtracking strategy [16, 23]. This algorithm is
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much easier to be implemented practically than the former version. Meanwhile, thanks
to this update, the convergence of the algorithm was established in [16]. Then the
LMM was further modified in [26] by a significant relaxation for the domain of the
local peak selection. The global convergence analysis for this modified version was also
provided by overcoming the lack of homeomorphism of the local peak selection due to
the relaxation for the domain of the local peak selection. Moreover, since the decrease
condition (1.7) is satisfied for all sufficiently small sk>0, the normalized Armijo-type
search rule combined with a backtracking strategy is always feasible. Nevertheless, a
choice of an appropriate backtracking factor is not known a priori. Therefore some
safeguards are needed in order to prevent sk from being too small and not terminating.
For example, with an appropriately small least step smin>0 given, if (1.7) is not satisfied
but sk‖dk‖<smin, the search has to stop artificially.

The purpose of our effort is to combine new search rules with the LMM for finding
multiple unstable solutions of semilinear PDEs. It is noted that, to overcome the draw-
back of the artificial control of the step-size in the classical Armijo line search rule in the
optimization theory, the Goldstein line search rule is introduced [14, 22, 23]. Actually
it is composed of two conditions: one guarantees the decrease, and the other enables
the step-size not to be too small. As a result, it turns to be one of the most popular
line search rules. Inspired by the success of the normalized Armijo-type local mini-
max method (NA-LMM) and the Goldstein line search rule in the optimization theory,
this paper is aimed to establish the normalized Goldstein-type local minimax method
(NG-LMM) for finding multiple minimax-type solutions of the Euler-Lagrange Equation
(1.1), and provide its mathematical justification and global convergence analysis.

This paper is organized as follows. In Section 2, we give some preliminaries for
our work. Secondly, the normalized Goldstein search rule is given and its feasibility
and some related properties are provided in Section 3 and then, Section 4 presents the
normalized Goldstein-type local minimax algorithm (NG-LMA) in details. In Section 5
the global convergence of NG-LMA is verified strictly. Further, Section 6 is devoted
to exhibit some numerical results by implementing our approach for finding multiple
unstable solutions of Lane-Emden equation, Henon equation and the limiting stationary
Gierer-Meinhardt equation on square or dumbbell domains. All these numerical results
and analysis illustrate the effectiveness and robustness of the approach. Finally, some
concluding remarks are given in Section 7.

2. Preliminaries

In order to depict our method, it is necessary to introduce some notations and
background as preliminaries.

Let ‖·‖ be the norm induced by the inner product 〈·, ·〉H of the Hilbert space H. For
some finite-dimensional closed subspace L⊂H, its orthogonal complement is denoted
by L⊥. Then each v∈H can be decomposed into v=vL+v⊥, where vL∈L and v⊥∈L⊥.
It is worthy to point out that the subspace L can be flexibly determined in practice.
Actually, in our numerical algorithm it is simply taken as the span of some previously
found critical points. This choice of L can guarantee that the computed solution is
different from those in L (see the details in Sections 4 or 6) and thus a new one.

Denote SH ={v∈H :‖v‖=1} as the unit sphere in H. For each v∈SH , we define
a closed half-subspace [L,v]={tv+w :w∈L, t≥0}. The local peak selection is defined
as follows.

Definition 2.1 (Local peak selection [26]). Denote 2H as the set of all subsets of H.
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The set-valued peak mapping P :SH →2H w.r.t. L is defined by

P (v) :={u∗|J(u∗)= max
u∈[L,v]

J(u)}, ∀v∈SH .

A single-valued mapping p :SH →H is called a peak selection of J w.r.t. L if

p(v)∈P (v), ∀v∈SH .

For a given v∈SH , we say that J has a local peak selection w.r.t. L at v if there is a
neighborhood N (v) of v and a mapping p :N (v)∩SH →H such that

p(u)∈P (u), ∀u∈N (v)∩SH .

With the definition of the local peak selection p of J w.r.t. L in hands, a solution
submanifold is defined as

M=
{
p(v)

∣∣p(v)∈P (v), v∈SH

}
. (2.1)

The idea of the solution submanifold (2.1) is dated from [17], in which Nehari introduced
it to study a dynamical system. Then in [18], Ding-Ni used Nehari’s idea to investigate
a semilinear elliptic problem with homogeneous Dirichlet boundary condition. They
introduced a solution submanifold which is actually a special case of M defined in (2.1)
when L={0}.

According to [26], the target of the LMM is to find the local minimizer u∗ of J on
the submanifold M, i.e.,

J(u∗)= min
u∈M

J(u). (2.2)

By the definition, the local peak selection p(v) is a local maximum point of J on the half
subspace [L,v]. Thus (2.2) is equivalent to the two-level local optimization problem of
the form (1.2). In addition, if a saddle point of J , which is an unstable critical point in
H, is characterized by (2.2), then it becomes stable on the submanifold M. Then, some
descent search algorithms can be implemented to deal with this problem. In the LMM,
the steepest descent direction serves as the search direction in the local minimization
process (2.2). However, it has to be mentioned that, the smoothness of J ′(w)∈H∗,
with H∗ the duality of H (e.g., H∗=H−1(Ω) for H=H1(Ω)), is usually “poor” and
cannot serve as a search direction in H. Instead, the Riesz representer of −J ′(u) in H,
denoted by d=−∇J(u)∈H, is used as an appropriate search direction and also called
the steepest descent direction, which is determined by

〈d,φ〉H =−〈J ′(u),φ〉, ∀φ∈H, (2.3)

with 〈·, ·〉 the duality pairing between H and its dual space H∗. It will be seen that, in
numerical implementation, d can be obtained by several classical numerical methods,
e.g., the finite element method, and so on.

3. Normalized Goldstein search rule and its feasibility
The classical Goldstein line search rule [11, 23] in the optimization theory in the

Euclidean space for a given objective function f is usually expressed as

σ1s
k∇f(xk)T dk≤f(xk+skdk)−f(xk)≤σ2s

k∇f(xk)T dk,
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with dk a descent direction of f(x) at xk, for some constants σ1 and σ2 satisfying
0<σ2<σ1<1. Motivated by it, we introduce a normalized Goldstein search rule for
finding multiple saddle-point solutions of semilinear PDEs in this section.

For simplicity, set H=H1
0 (Ω) or H

1(Ω), unless specified. Denote v=vL+v⊥∈SH

and p(v)= tv+wL∈ [L,v], with p(v) the local peak selection of J w.r.t. L at v, where
vL, wL∈L, v⊥∈L⊥ and v⊥ �=0. Let d=−∇J(p(v)) defined in (2.3). The definition
of the local peak selection p(v) and the relation between −J ′(p(v)) and d imply the
following orthogonality properties.

Lemma 3.1 ([26]).
(i) J ′(p(v))⊥[L,v] and J ′(p(v))⊥p(v) w.r.t. the duality pairing 〈·, ·〉;
(ii) d⊥[L,v] and d⊥p(v) w.r.t. the inner product 〈·, ·〉H .

It is observed that

v(s)=
v+sd

‖v+sd‖ =
vL√

1+s2‖d‖2 +
v⊥+sd√
1+s2‖d‖2 :=vL(s)+v⊥(s), (3.1)

with

vL(s)=
vL√

1+s2‖d‖2 , v⊥(s)=
v⊥+sd√
1+s2‖d‖2 . (3.2)

By Lemma 3.1, it holds that vL(s)∈L and v⊥(s)∈L⊥. In addition, we have the following
property for v⊥(s).

Lemma 3.2. For v(s) expressed as in (3.1), it holds that ‖v⊥(s)‖≥‖v⊥‖>0.

Proof. A direct calculation shows that

‖v⊥(s)‖2=‖v(s)‖2−‖vL(s)‖2=1− ‖vL‖2
1+s2‖d‖2 ≥1−‖vL‖2=‖v⊥‖2>0.

The conclusion is obtained.

Denote the local peak selection of J w.r.t. L at v(s) as p(v(s))= tsv(s)+wL,s∈
[L,v(s)], where wL,s∈L. The normalized Goldstein search rule is introduced as follows.

Definition 3.1 (The normalized Goldstein search rule). Let p(v)= tv+wL, with t>0
and wL∈L, be the local peak selection of J w.r.t. L at v. For two constants σ1 and σ2

with 0<σ2<σ1<1, if s>0 satisfies

−σ1ts‖d‖2<J(p(v(s)))−J(p(v))<−σ2ts‖d‖2, (3.3)

then it is said that the step-size s satisfies the normalized Goldstein search rule w.r.t.
L at v.

Before we prove the feasibility of the normalized Goldstein search rule, we should
discuss some related properties in the following.

Lemma 3.3. For any point v∈SH satisfying d=−∇J(p(v)) �=0, it holds that

s‖d‖√
1+s2‖d‖2 <‖v(s)−v‖<s‖d‖, ∀s>0. (3.4)

Furthermore,

lim
s→0+

‖v(s)−v‖
s‖d‖ =1. (3.5)
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Proof. A straightforward calculation leads to

‖v(s)−v‖=
∥∥∥∥ v+sd

‖v+sd‖ −v

∥∥∥∥
=

1√
1+s2‖d‖2

∥∥∥(1−√
1+s2‖d‖2)v+sd

∥∥∥
=

1√
1+s2‖d‖2

∥∥∥∥∥ −s2‖d‖2
1+

√
1+s2‖d‖2 v+sd

∥∥∥∥∥
=

s‖d‖√
1+s2‖d‖2

√
1+

s2‖d‖2
(1+

√
1+s2‖d‖2)2 , (3.6)

in which the fact d⊥v is used. Thus

s‖d‖√
1+s2‖d‖2 <‖v(s)−v‖<s‖d‖, ∀s>0. (3.7)

It further implies that

lim
s→0+

‖v(s)−v‖
s‖d‖ =1. (3.8)

Lemma 3.4. Let v̄∈SH with v̄⊥ �=0. Suppose that the local peak selection p w.r.t. L
is continuous at v̄. Set p(v)= tvv+wL and p(v̄)= tv̄ v̄+ w̄L. If v→ v̄, then tv → tv̄ and
wL→ w̄L.

Proof. Due to the decomposition of v=v⊥+vL and v̄= v̄⊥+ v̄L, v→ v̄ implies
v⊥→ v̄⊥ �=0 immediately. On the other hand, by the continuity of p at v̄, when v→ v̄,

‖p(v)−p(v̄)‖2=‖tvv⊥− tv̄ v̄⊥‖2+‖tvvL− tv̄ v̄L+wL− w̄L‖2→0.

As a result, ‖tvv⊥− tv̄ v̄⊥‖→0. Therefore

tv =
‖tvv⊥‖
‖v⊥‖ → ‖tv̄ v̄⊥‖

‖v̄⊥‖ = tv̄, (3.9)

where the fact that ‖v̄⊥‖ �=0 is employed. Furthermore, we have

wL=p(v)− tvv→p(v̄)− tv̄ v̄= w̄L.

Furthermore, Lemma 3.3 and Lemma 3.4 imply the following lemma directly.

Lemma 3.5. Denote p(v)= tv+wL and p(v(s))= tsv(s)+wL,s, where v∈SH with
v⊥ �=0. Suppose that the local peak selection p w.r.t. L is continuous at v. Then ts→ t
and wL,s→wL as s→0.

Based on the previous lemmas, we have the following crucial property under a weak
assumption that p is continuous, which improves the results of Lemma 2.1 in [15] and
Lemma 2.13 in [27] by changing the domain of the peak selection p(v) from SL⊥ to SH

and relaxing the restriction on v.
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Lemma 3.6. Let J ∈C1 and p be a local peak selection of J w.r.t. L at v∈SH with
v⊥ �=0, d=−∇J(p(v)) �=0. If p is continuous at v, then

J(p(v(s)))−J(p(v))≤−ts‖d‖2+o(s). (3.10)

Proof. Denote θ=
ts√

1+s2‖d‖2 v+wL,s. The continuity of p at v, Lemma 3.3 and

Lemma 3.5 state that

p(v(s))→p(v) and θ→p(v) as s→0+.

By definition, p(v) is a local maximizer of J on the half subspace [L,v]. Thus, for s>0
small enough, the mean value theorem yields

J(p(v(s)))−J(p(v))≤J(p(v(s)))−J(θ)=
tss√

1+s2‖d‖2 〈J
′(ξ),d〉, (3.11)

with ξ= ξ(s)=μp(v(s))+(1−μ)θ for some μ=μ(s)∈ (0,1), where θ∈ [L,v] is used. The
facts that p(v(s))→p(v), θ→p(v) as s→0+, and μ=μ(s)∈ (0,1), combined with the
triangle inequality imply that, when s→0+,

‖ξ−p(v)‖=‖μp(v(s))+(1−μ)θ−p(v)‖≤μ‖p(v(s))−p(v)‖+(1−μ)‖θ−p(v)‖→0.

Thus, due to J ∈C1, we have

‖J ′(ξ)−J ′(p(v))‖→0 as s→0+. (3.12)

Then, by employing the Cauchy-Schwartz inequality and Lemma 3.5, for s>0 small
enough, (3.11) and (3.12) lead to

J(p(v(s)))−J(p(v))≤ tss√
1+s2‖d‖2

(
〈J ′(p(v)),d〉+〈J ′(ξ)−J ′(p(v)),d〉

)

≤ tss√
1+s2‖d‖2

(
−‖d‖2+‖J ′(ξ)−J ′(p(v))‖‖d‖

)

=−ts
s‖d‖2√
1+s2‖d‖2 +o(s)

=−ts‖d‖2+
(
t− ts√

1+s2‖d‖2

)
s‖d‖2+o(s)

=−ts‖d‖2+o(s). (3.13)

The proof is completed.

Then the following lemma is a straightforward result of Lemma 3.6.

Lemma 3.7. Let v∈SH with v⊥ �=0. If J ∈C1 has a local peak selection p w.r.t. L at
v, i.e., p(v)= tv+wL, s.t. (i) p is continuous at v; (ii) t>0; (iii) ‖d‖>0, then for any
σ∈ (0,1), there is δ>0, s.t.,

J(p(v(s)))−J(p(v))<−σts‖d‖2, ∀0<s<δ. (3.14)

Now we proceed to show the feasibility of the normalized Goldstein search rule
stated in Definition 3.1 for its implementation in the NG-LMA, which will be introduced
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in Section 4. It will be noted that, once an initial ascent direction v0=v0⊥+v0L∈SH

with v0⊥∈L⊥, v0L∈L, v0⊥ �=0, is chosen in the NG-LMA, the closed set U⊂S[L⊥,v0
L]⊂SH

defined by

U={v=v⊥+τv0L∈S[L⊥,v0
L] :v⊥∈L⊥,0≤ τ ≤1}, (3.15)

contains all functions vk generated by the algorithm. Meanwhile, from (3.1) and (3.2),
v(s)∈U if v∈U. Consequently, in the discussion below, the domain of the peak selection
p is limited to U⊂SH rather than SH , unless specified.

Theorem 3.1. Suppose J ∈C1 and p is a local peak selection of J w.r.t. L at
v∈U with v⊥ �=0 and p(v)= tv+wL. Further assume that (i) p is continuous at v; (ii)
t>0; (iii) ‖d‖>0; (iv) infv∈UJ(p(v))>−∞. Then for any given constants σ1,σ2 with
0<σ2<σ1<1, there exist two constants s̄1, s̄2 with 0<s̄1<s̄2, s.t. for any s∈ (s̄1, s̄2),
it satisfies the normalized Goldstein search rule, i.e.,

−σ1ts‖d‖2<J(p(v(s)))−J(p(v))<−σ2ts‖d‖2. (3.16)

Proof. Denote

ϕσ
v (s)=J(p(v(s)))−J(p(v))+σst‖d‖2, σ∈ (0,1). (3.17)

Obviously it is only needed to prove that there exists a bounded interval (s̄1, s̄2)⊂ (0,∞),
s.t. ϕσ1

v (s)>0 and ϕσ2
v (s)<0 for any s∈ (s̄1, s̄2). Lemma 3.7 states that for any σ∈ (0,1),

there exists a constant δ>0, s.t., for any s∈ (0,δ), ϕσ
v (s)<0. As a result, for σi, i=1,2,

there exists δ1, s.t. ϕσi
v (s)<0, for any s∈ (0,δ1). On the other hand, the fact that

v(s)∈U and condition (iv) lead to

J(p(v(s)))≥ inf
v∈U

J(p(v))>−∞. (3.18)

Due to the conditions (ii), (iii) and (3.18), we have

lim
s→+∞ϕσ

v (s)=+∞. (3.19)

Since J ∈C1, p is continuous at v and v(s) is continuous w.r.t. s, ϕσ
v (s) is continuous

w.r.t. s also. Consequently, the combination of (3.19) and the fact of ϕσ2
v (s)<0 for

s∈ (0,δ1) implies that ϕσ2
v (s)=0 has at least one root in (0,∞). Set

s̄2= s̄2(v) :=min{s̄>0 :ϕσ2
v (s̄)=0}>δ1>0. (3.20)

It is true that ϕσ2
v (s)<0 for each s∈ (0, s̄2). Actually we can prove it by contradiction

argument. Suppose that there exists s̄3∈ (0, s̄2), s.t. ϕσ2
v (s̄3)≥0. Since ϕσ2

v (s)<0 for
any s∈ (0,δ1), there exists s̄4∈ (0, s̄3]⊂ (0, s̄2), s.t. ϕσ2

v (s̄4)=0. The fact s̄4<s̄2 is a
contradiction to the definition of s̄2.

Note that 0<σ2<σ1<1, (3.17) leads to ϕσ1
v (s̄2)>ϕσ2

v (s̄2)=0. Thus ϕσ1
v (s)=0 also

has at least one root in (0, s̄2). Set

s̄1= s̄1(v) :=max{s̄∈ (0, s̄2) :ϕ
σ1
v (s̄)=0}>δ1>0. (3.21)

We claim that ϕσ1
v (s)>0 for each s∈ (s̄1, s̄2), which can be verified by contradiction

argument similarly as above.



156 NORMALIZED GOLDSTEIN-TYPE LOCAL MINIMAX METHOD

Lemma 3.8. Suppose that the same assumptions of Theorem 3.1 hold. Denote s̄0
as the least positive sign-changing point of ϕσ1

v (s). Then, for any s>0 satisfying the
left-hand-side inequality of the normalized Goldstein search rule at v, i.e.,

−σ1ts‖d‖2<J(p(v(s)))−J(p(v)), (3.22)

with σ1 the constant as that in Theorem 3.1, there holds that s> s̄0= s̄0(v)>0. Further,

s̄0= s̄0(v)= inf{s∣∣−σ1ts‖d‖2<J(p(v(s)))−J(p(v))<−σ2ts‖d‖2}.
Proof. In terms of the definition of s̄0= s̄0(v) and similar to the proof of Theo-

rem 3.1, it is also true that s̄0>0 and

ϕσ1
v (s)≤0, ∀s∈ (0, s̄0).

Obviously (3.22) leads to ϕσ1
v (s)>0, which, combined with ϕσ1

v (s̄0)=0, implies s> s̄0=
s̄0(v)>0. Consequently, s̄0 is a lower bound of the Goldstein step-size. On the other
hand, by the definitions of s̄i, i=0,1,2, s̄0≤ s̄1<s̄2. As s̄0 is the least positive sign-
changing point of ϕσ1

v (s) with ϕσ1
v (s)≤0 for s∈ (0, s̄0) and there exists a small right

neighborhood of s̄0, s.t. ϕσ1
v (s)>0 and ϕσ2

v (s)<0, i.e., s in this right neighborhood of
s̄0 satisfies the normalized Goldstein search rule. As a result, we have

s̄0= s̄0(v)= inf{s∣∣−σ1ts‖d‖2<J(p(v(s)))−J(p(v))<−σ2ts‖d‖2}.

Owing to Lemma 3.8, it is natural to introduce the following definition.

Definition 3.2 (The least Goldstein search step-size). For two fixed constants σ1

and σ2 with 0<σ2<σ1<1, s̄0= s̄0(v) defined in Lemma 3.8 is called the least Goldstein
search step-size w.r.t. L at v.

Remark 3.1. Actually Figure 3.1 provides a geometric interpretation of Theorem 3.1
and Lemma 3.8:

(1) The points on the curve J(p(v(s))) w.r.t. s sandwiched between the dotted straight
lines in the figures correspond to all acceptable points of the normalized Goldstein
search rule. Obviously all s∈ (s̄1, s̄2) satisfy the normalized Goldstein search rule.
Thus this validates the feasibility of the normalized Goldstein search rule;

(2) All s satisfying the normalized Goldstein search rule have an infimum s̄0= s̄0(v)>0,
which is the least positive sign-changing point of ϕσ1

v (s). This property will guar-
antee that the iterative sequence generated by the NG-LMM will not accumulate at
some points before the termination condition is satisfied under a natural condition.
This will be verified in details in Lemma 5.3.

4. The normalized Goldstein-type local minimax algorithm (NG-LMA)

Based on the discussion above, we will describe the NG-LMA in this section. By
Lemma 3.7 and the contradiction argument, following the lines of the proof of Theorem
2.1 in [15], we obtain the following theorem routinely.

Theorem 4.1. If J has a local peak selection w.r.t. L at v̄∈SH with ‖v̄⊥‖ �=0, which
is denoted as p(v̄)= t̄v̄+ w̄L, satisfying (i) p is continuous at v̄; (ii) t̄>0; (iii) v̄ is a
local minimum point of J(p(v)) in SH , then ū=p(v̄) /∈L is a critical point of J .

Theorem 4.1 characterizes a saddle point as a local minimax solution. Actually it
states that, under the assumptions (i) and (ii), a minimum point ū of J on M is a
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0 ss̄1(s̄0) s̄2

J(p(v))

J(p(v(s)))

J(p(v))− σ2ts‖d‖2

J(p(v))− σ1ts‖d‖2

0 ss̄2

J(p(v))

J(p(v(s)))

s̄1s̄0

J(p(v))− σ1ts‖d‖2

J(p(v))− σ2ts‖d‖2

Fig. 3.1. The illustration for the feasibility of the normalized Goldstein search rule and the
existence of the least Goldstein search step-size.

critical point not in L and so is a new solution different from those in L. As mentioned
above, ū is unstable in H but stable on M and some descent algorithms can work for
the minimization problem in terms of J on M. Consequently, Theorem 4.1 serves as
a mathematical justification of the following NG-LMA, which is a stable algorithm for
finding unstable solutions.

On the other hand, to establish an existence result for semilinear elliptic PDEs with
non-convex generic functional, the following Palais-Smale (P.S.) condition is often used
to replace the compactness condition. Actually it will also play a crucial role in the
global convergence analysis for our numerical approach in Section 5.

Definition 4.1. A functional J ∈C1(H,R) is said to satisfy the Palais-Smale (P.S.)
condition if any sequence {un}∞n=1⊂H satisfying that J(un) is bounded and J ′(un)→
0(n→∞), has a convergent subsequence.

The so-called ascent (descent) direction defined in the following is also needed.

Definition 4.2. A point v∈H is called an ascent (descent) direction of J at u if
there exists δ>0, s.t.,

J(u+ tv)> (<)J(u), ∀0<t<δ.

Now we present the normalized Goldstein-type local minmax algorithm.

Algorithm 4.1. (The NG-LMA).

Step 1. (Initialization) Take an error tolerance ε1>0, two constants s.t. 0<σ2<σ1<
1 and n−1 previously found critical points of J . Set the support L=span{u1,u2, · · · ,um}
where u1,u2, · · · ,um are m (m≤n−1) previously found critical points and um is the one
with the highest critical value in {ui} (1≤ i≤m). Choose an initial ascent direction
v0=v0L+v0⊥∈SH at um where v0L∈L, 0 �=v0⊥∈L⊥. Set k=0, t0=1, w0

L=um∈L;

Step 2. (Peak selection) Using uk= tkvk+wk
L as the initial guess, solve for p(vk) s.t.

J(p(vk))= max
u∈[L,vk]

J(u),

and still denote uk=p(vk)= tkvk+wk
L;

Step 3. (The steepest descent direction) Compute the steepest descent direction
dk of J at uk by the definition in (2.3);
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Start

Initialization

Compute uk=p(vk)

Compute dk=−∇J(uk)

‖dk‖≤ε1?

Output uk

Choose a step size sk>0
satisfying the normalized
Goldstein search rule (3.3)

Set vk+1=
vk+skdk

‖vk+skdk‖
and update k=k+1

Stop

Yes

No

Fig. 4.1. The flowchart of the NG-LMA.

Step 4. (Termination) If ‖dk‖≤ε1, output u
k, and stop; else goto Step 5;

Step 5. (The normalized Goldstein search) Find

vk(sk)=
vk+skdk

‖vk+skdk‖ ,

such that sk satisfies the normalized Goldstein search rule (3.3). As mentioned before,
a steepest descent search vk(sk) usually leaves the submanifold M and a return rule is
needed for the search to come back to M;

Step 6. (Iteration) Set vk+1=vk(sk) and update k=k+1, then goto Step 2.

In general, it is recommended to set σ1=0.8 and σ2=0.2 in the realization of the
NG-LMA. Further, to illustrate the NG-LMA more clearly, a flowchart is depicted in
Figure 4.1.

On the other hand, it is worthwhile to point out that the step-size sk in Step 5
of the k-th iteration which satisfies the normalized Goldstein search rule is searched by
the following procedure.

Algorithm 4.2. The Normalized Goldstein Search Algorithm.

Step 5-1. Take an initial point sk0 in [0,+∞) (or [0,smax], e.g., smax=1) and a fixed
constant η>1 (e.g., η=2). Compute J(uk). Set a0 :=0, b0 :=+∞ (or smax) and j :=0;

Step 5-2. Compute J
(
p(vk(skj ))

)
. Actually the local maximum point p

(
vk(skj )

)
in

[L,vk(skj )] is computed by using the initial guess u= tkvk(skj )+wk
L, where tk and wk

L
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are those in uk=p(vk)= tkvk+wk
L. This process is similar to that in Step 2 and the

aim of it is to guarantee the continuity of the peak selection p numerically;

Step 5-3. If

J
(
p(vk(skj ))

)−J(uk)<−σ2t
kskj ‖dk‖2,

go on; otherwise, set aj+1 :=aj , bj+1 :=skj , s
k
j+1 :=

aj+1+bj+1

2
and j := j+1, goto Step

5-2;

Step 5-4. If

J
(
p(vk(skj ))

)−J(uk)>−σ1t
kskj ‖dk‖2,

output sk :=skj and stop; otherwise, set aj+1 :=skj , bj+1 := bj ,

skj+1 :=

⎧⎨
⎩

aj+1+bj+1

2
if bj+1<+∞,

ηskj , otherwise,

and j := j+1, goto Step 5-2.

5. Convergence analysis of the NG-LMM
In this section, we establish the convergence analysis for the NG-LMA. One of the

main issues is to show the weak version of the homeomorphism of the peak selection p(v)
when v∈U. In fact, similar to [26], to relax the requirement on the initial ascent direc-
tions, we extend the domain of the peak selection p(v) from SL⊥ to SH in Definition 2.1.
As a result, p(v) is, in general, no longer a homeomorphism. In order to compensate for
this shortage, Xie et al. provided a weak version of the homeomorphism in Theorem
2.1 in [26] for the normalized Armijo-type local minimax algorithm (NA-LMA), which
is a helpful property for the convergence analysis of the modified LMA. Fortunately, by
taking a careful look at the proof, it also holds for the NG-LMA. Another crucial issue
is to illustrate that the sequence will not accumulate around a non-critical point. For
this purpose, we prove a locally uniform lower bound of the step-size determined by
the normalized Goldstein search rule by taking full advantage of the left inequality of
the normalized Goldstein search rule. Actually this strategy is completely distinguished
from the analysis for the NA-LMA in [26].

For the convergence analysis later, we begin with two corresponding lemmas below.
The first lemma is aimed to depict some monotonic properties of the sequence {vk}
generated by the NG-LMA and will be used in the proof of the subsequent lemma. The
second one is exactly the weak version of the homeomorphism of p. As the proof can
be accomplished following the same strategies as those in Lemma 2.3 in [26], herein it
is skipped for brevity.

Lemma 5.1. Let {vk}⊂SH be a sequence generated by the NG-LMA. Assume v0=
v0⊥+v0L∈SH with v0⊥∈L⊥,v0L∈L,v0⊥ �=0. Then for any k=1,2, · · ·, we have vk=vk⊥+
τkv0L∈SH for some vk⊥∈L⊥, 0<τk+1<τk<1 and ‖vk⊥‖<‖vk+1

⊥ ‖. Furthermore vkL=
τkv0L converges.

Lemma 5.1 states that there are three monotonic properties in the algorithm for all
vk=vk⊥+vkL,k=1,2, · · · , namely,

J(p(vk+1))<J(p(vk)), ‖vk+1
⊥ ‖>‖vk⊥‖, ‖vk+1

L ‖<‖vkL‖. (5.1)
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Further, it implies that, once an initial ascent direction v0=v0⊥+v0L is chosen in the
NG-LMA with v0⊥∈L⊥, ‖v0⊥‖ �=0, v0L∈L, all functions vk generated by the NG-LMA
are in the closed subset U of SH with

U={v=v⊥+τv0L∈S[L⊥,v0
L] :v⊥∈L⊥,0≤ τ ≤1}.

That is the reason why the domain of the peak selection p is only limited to be U⊂SH

instead of SH in Section 3. On the other hand, to guarantee the sequence {vk} to depart
from L, we only need to take v0, s.t. ‖v0L‖<1 or ‖v0⊥‖>0, i.e., v0 leaves L rather than
lies in L.

Lemma 5.2. Let {vk}⊂U be a sequence generated by the NG-LMA taking the initial
ascent direction v0 with v0⊥ �=0. Assume (i) p is continuous in U; (ii) tk≥α>0,∀k=
0,1,2, · · ·. Then p(vk)= tkvk+wk

L→p∗∈H implies that there exists v∗∈U such that
vk→v∗ /∈L and p(v∗)=p∗ /∈L.

Lemma 5.2 is the weak version of the homeomorphism of p, which is the same as
Theorem 2.1 in [26].

The following lemma guarantees that the sequence generated by the NG-LMA will
not accumulate at some point before the termination condition is satisfied.

Lemma 5.3. Let J ∈C1, p(v̄)= t̄v̄+ w̄∈ [L,v̄] with v̄⊥ �=0 be a local peak selection
of J w.r.t. L at v̄ and s̄0(v) be the least Goldstein search step-size at v defined in
Definition 3.2. Assume (i) both p(v) and s̄0= s̄0(v) are continuous around v̄; (ii) t̄>
0; (iii) ‖d̄‖=‖d(v̄)‖>0. Denote s(v) a step-size at v determined by the normalized
Goldstein search rule (3.3). Then there exists a neighborhood V of v̄ and s0>0, s.t.
s(v)≥s0>0 for every v∈V ∩U.

Proof. Set s0= s̄0(v̄)/2 with s̄0(v̄)>0 the least Goldstein search step-size at v̄. By
condition (i), s̄0(v) is continuous around v̄. Therefore there exists a neighborhood V of
v̄, s.t. s̄0(v)>s0>0 for every v∈V ∩U. According to Lemma 3.8, for the step-size s(v)
determined by the normalized Goldstein search rule (3.3), we have s(v)>s̄0(v)>s0>0
for every v∈V ∩U. Then we draw the conclusion.

At this point, we are ready to prove the global convergence for the NG-LMA as
follows, which is the main result of this paper.

Theorem 5.1. Let J satisfy the (P.S.) condition, p(v) be a local peak selection of
J w.r.t. L at v, s̄0(v) be the least Goldstein step-size at v and {vk} and {uk} be the
sequences generated by the NG-LMA with ε1=0, s.t. uk=p(vk)= tkvk+wk

L∈ [L,vk]
and vk ∈U. If (i) both p and s̄0 are continuous in U; (ii) tk≥α>0,∀k=0,1,2, · · ·; (iii)
infv∈UJ(p(v))>−∞, then there exists a subsequence {vki}∞i=1 s.t. vki →v∗∈SH\L and
uki =p(vki)→u∗=p(v∗) /∈L with J ′(u∗)=0. If, in addition, u∗ is isolated, then vk→v∗

and uk→u∗.

Proof. As in the notation of Algorithm 4.1, we have uk=p(vk), dk=−∇J(uk),
and sk is the step-size satisfying the normalized Goldstein search rule at vk. By the
right inequality of the normalized Goldstein search rule, we have

J(uk+1)−J(uk)<−σ2t
ksk‖dk‖2. (5.2)

Since J(uk) is monotonically decreasing and bounded from below, it should converge.
We claim that {uk} is a (P.S.) sequence, which can be verified by contradiction argu-
ment. Suppose that there exists a positive constant δ, s.t. ‖dk‖>δ>0 for ∀k>K with
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K ∈N
+ appropriately large. In terms of (5.2) and the condition (ii),

J(uk+1)−J(uk)<−σ2αδs
k‖dk‖, ∀k>K. (5.3)

Adding up (5.3), we get

∞∑
k=K+1

(
J(uk+1)−J(uk)

)≤−σ2αδ

∞∑
k=K+1

sk‖dk‖. (5.4)

Condition (iii) and the monotonic decrease of J(uk) imply
∑∞

k=0(J(u
k)−J(uk+1)) is

convergent. This fact, combined with (5.4), leads to the convergence of
∑∞

k=0s
k‖dk‖.

As a result,

sk‖dk‖→0, sk→0 as k→∞, (5.5)

where, the second fact is due to the fact ‖dk‖>δ>0 for ∀k>K.
On the other hand, thanks to the convergence of

∑∞
k=0s

k‖dk‖, by Lemma 3.3,

‖vk+1−vk‖=‖vk(sk)−vk‖<sk‖dk‖, for sk>0, (5.6)

which means that {vk} is a Cauchy sequence. Then {vk} converges to some v̄∈U. Due
to the fact J(u)∈C1 and the continuity of p in U and ‖dk‖=‖∇J(p(vk))‖>δ>0 for
∀k>K, we have ‖∇J(p(v̄))‖≥ δ>0. By Lemma 5.3, there exists a positive constant
s0, s.t. if v∈U is close to v̄ sufficiently, s(v)>s0>0. Especially sk=s(vk)>s0>0 for
k large enough. It is a contradiction to (5.5). Therefore there exists a subsequence
{uki}∞i=0 s.t. J ′(uki)→0 as i→∞ and J(uki) converges. By the (P.S.) condition,
{uki}∞i=0 possesses a subsequence, still denoted by {uki} again, that converges to a
critical point.

Finally, using the property verified in Lemma 5.2 to replace the homeomorphism
condition and follow the lines of the original proof for the global sequence convergence
in [33], we draw the conclusion.

Remark 5.1. Since dist(p(vk),L) := infw∈L‖p(vk)−w‖=‖tkvk⊥‖= tk‖vk⊥‖ and 0<
‖v0⊥‖≤‖vk⊥‖≤1, condition (ii) in Theorem 5.1 is equivalent to the separable condition
of p(vk) and L depicted by dist(p(vk),L)≥β>0 for some constant β>0 in [15,16,26]. If
L is spanned by some previously found solutions, then this condition will also guarantee
that the computed solution must be a new one not included in the support L. In
fact, for some special cases in [15, 26], the local peak selection can be given exactly
and the assumption dist(p(vk),L)≥β>0 can be proven strictly for L={0}. While for
the general cases, the definition of the local peak selection is a little bit abstract and
complicated and the assumption dist(p(vk),L)≥β>0 is hard to be verified rigorously.
Fortunately, it is easy to numerically check this assumption in practical computation.
Our computational experiences show that in most cases all tk satisfy this assumption if
the initial ascent direction v0 is chosen far away from L. If it is not satisfied at some
iterative step, i.e., tk≈0 for some k, the algorithm can still move on, but it may fail
to find a new critical point not in L. In this case, one can restart the algorithm with
different initial data.

6. Numerical experiments
Consider a semilinear elliptic equation as follows:

F (x,u)=εΔu(x)−λu(x)+f
(
x,u(x)

)
=0, x∈Ω, (6.1)
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where Ω is a bounded domain in R
m, the parameters ε>0, λ≥0 and the function f(x,ξ)

satisfies the following standard hypotheses:

(h1) f(x,ξ) is locally Lipschitz continuous on Ω̄×R.

(h2) There are positive constants a1 and a2, s.t.,

|f(x,ξ)|≤a1+a2|ξ|s, (6.2)

where 0≤s<
m+2

m−2
for m>2. If m=2,

|f(x,ξ)|≤a1 exp
(
φ(ξ)

)
, (6.3)

where φ(ξ)ξ−2→0 as |ξ|→∞.

(h3) f(x,ξ)=o(|ξ|) as ξ→0.

(h4) There are constants μ>2 and M ≥0, s.t., for |ξ|≥M ,

0<μg(x,ξ)≤ ξf(x,ξ), (6.4)

where g(x,ξ)=
∫ ξ

0
f(x,t)dt.

(h5)
f(x,ξ)

|ξ| is increasing w.r.t. ξ.

Remark 6.1. For two-dimensional problem, (h2) is not a substantial restriction; (h4)
implies that f(x,ξ) is superlinear.
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Fig. 6.1. The coarse mesh grid on a square (left) and the ground state solution u1 (right)
with L={0}, (x̃1,x̃2)=(−0.5,0.5) and r=0.1 on the square.

The generic functional associated with the semilinear elliptic Equation (6.1) is

Jε(u)=
1

2

∫
Ω

(
ε|∇u(x)|2+λu(x)2

)
dx−

∫
Ω

g
(
x,u(x)

)
dx, u∈H≡Hε(Ω), (6.5)

whereH≡Hε(Ω) is a Hilbert space with an ε-dependent inner product and norm defined
as

〈u,v〉ε=
∫
Ω

(ε∇u ·∇v+uv)dx, ‖u‖2ε=
∫
Ω

(ε|∇u|2+u2)dx.
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Fig. 6.2. Two sign-changing solutions u2 (left) with L=span{u1}, (x̃1,x̃2)=(−0.5,0.5)
and r=0.1 and u3 (right) with L=span{u1}, (x̃1,x̃2)=(−0.5,0) and r=0.1 on the square.

Actually the ε-dependent norm is equivalent to the standard H1 norm

‖u‖2H1 =

∫
Ω

(|∇u|2+u2)dx.

According to [20], it is easy to prove that, under the hypotheses (h1)-(h4), Jε is C1 and
satisfies the (P.S.) condition, which plays an important role in our theoretical analysis
as mentioned before. In addition, Jε has a mountain pass structure with 0 a local
minimum point of Jε. Further, under hypotheses (h1)-(h5), the uniqueness of a local
peak selection p(v) of Jε in [L,v] implies its continuity at v.

It is noted that all f(x,ξ) in the following have the forms of power function f(x,ξ)=
|x|lξj with l≥0 and j>2, which guarantee the assumptions (h1)-(h5). In this section
we shall first display profiles of multiple solutions to Lane-Emden equation and Henon
equation on square and dumbbell domains. Then we shall illustrate multiple solutions
to the limiting stationary Gierer-Meinhardt equation. In order to show a solution un’s
profile and contour more clearly, a vertical translation un−1.5maxun(x) is introduced
in the figures below. Unless specified, 32768 triangular elements are used to decompose
the domain Ω in our numerical tests. However, in order to see the mesh grids in the
figures clearly, a coarse mesh (e.g., see the left of Figure 6.1 with 4096 triangle elements)
is employed to redraw the profiles and contours. It is worthwhile to point out that the
steepest descent direction dk can be found by many existing numerical algorithms,
e.g., a finite element method, a finite difference method, or a spectral method. In our
numerical code, a MATLAB subroutine assempde, which is based on the finite element
method, is called for getting dk, while a MATLAB subroutine fminunc/fminsearch

is implemented to compute the local peak selection at vk, uk=p(vk). Moreover, the
stopping criteria ‖dk‖H <ε1 (e.g., ε1=5×10−4) is utilized to terminate the iteration.
Meanwhile we also display the maximum norm of the residual of the model equation,
i.e., ‖F‖∞, to monitor the accuracy of our numerical computation. Furthermore, more
information on a numerical solution, e.g., its energy and peak locations, can be found
by zooming in at the top portion of its figure. Although many numerical results for
Ω being a square, dumbbell, L-shaped area or concentric-ring domain, and so on, have
been gotten, we only show some typical numerical results on a square or dumbbell
domain owing to the limit of the length of this paper.
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Fig. 6.3. Two sign-changing solutions u4 (left) with L=span{u1,u2}, (x̃1,x̃2)=(−0.5,0.5)
and r=0.1 and u5 (right) with L=span{u1,u3}, (x̃1,x̃2)=(−0.5,0) and r=0.1 on the square.
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Fig. 6.4. The coarse mesh grid on a dumbbell (left) and a solution u1 (right) with L={0},
(x̃1,x̃2)=(2,0) and r=1 on the dumbbell.

Case 1 (Lane-Emden equation): We first present some numerical results for
Lane-Emden equation with homogenous Dirichlet boundary condition by setting ε=1,
λ=0 and f(x,u)=uj(x) in (6.1), i.e.,{

Δu(x)+uj(x)=0, x∈Ω,
u(x)=0, x∈∂Ω,

(6.6)

with j=3. In this case, we select an initial ascent direction v0 accordingly by solving{−Δv0(x)= c(x), x∈Ω,
v0(x)=0, x∈∂Ω,

c(x)=

{
1, if |(x1,x2)−(x̃1,x̃2)|≤ r,
0, otherwise,

(6.7)

and a normalization followed. Thus the peak-locations (x̃1,x̃2) of an initial ascent
direction can be conveniently selected.

We list profiles and contours of several solutions on a square Ω=(−1,1)2 in Fig-
ures 6.1-6.3 and those of the solutions on a dumbbell Ω in Figures 6.4-6.6. u1 in the
right of Figure 6.1 is the ground state solution, i.e., the least energy solution, which is
the unique positive solution of Lane-Emden Equation (6.6) on Ω=(−1,1)2. Figures 6.2
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and 6.3 show two sign-changing solutions with the same Morse index but different sym-
metries.
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J(u3)=1.6432e+02

Fig. 6.5. Two solutions u2 (left) with L={0}, (x̃1,x̃2)=(−1,0) and r=0.5 and u3 (right)
with L={0}, (x̃1,x̃2)=(0.25,0) and r=0.2 on the dumbbell.
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Fig. 6.6. Two solutions u4 (left) with L=span{u1}, (x̃1,x̃2)=(−1,0) and r=0.5 and u5

(right) with L=span{u1}, (x̃1,x̃2)=(2,0) and r=1 on the dumbbell.

Case 2 (Henon equation): We now present some numerical results for Henon
equation with homogenous Dirichlet boundary condition by setting ε=1,λ=0 and
f(x,u)= |x|luj(x), i.e., {

Δu(x)+ |x|�uj(x)=0, x∈Ω,
u(x)=0, x∈∂Ω,

(6.8)

with �=6, j=3. Actually Henon equation is a generalization of Lane-Emden equation
in astrophysics for the study of rotating stellar structures. The initial ascent direction
v0 is chosen similarly as that in (6.7). Due to the presence of the variable coefficient |x|�
in the nonlinear term, the peak of the ground state solution u1 of Henon equation in
Figure 6.7 is closer to the boundary compared with that of Lane-Emden equation, and
more and more positive solutions emerge (e.g., u4, u5 and u8 in Figures 6.8-6.10). The
profiles and contours of some solutions on the square and dumbbell domain are shown
in Figures 6.7-6.10 and Figures 6.11-6.13, respectively.
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Fig. 6.7. The ground state solution u1 (left) with L={0}, (x̃1,x̃2)=(−0.5,0.5) and r=0.1
and a solution u2 (right) with L=span{u1}, (x̃1,x̃2)=(0.5,−0.5) and r=0.1 on the square.
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Fig. 6.8. Two solutions u3 (left) with L=span{u1}, (x̃1,x̃2)=(−0.5,0.5) and r=0.1 and
u4 (right) with L=span{u2}, (x̃1,x̃2)=(−0.5,0.5) and r=0.5 on the square.
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Fig. 6.9. Two solutions u5 (left) with L=span{u3}, (x̃1,x̃2)=(−0.5,0.5) and r=0.5 and
u6 (right) with L=span{u4,u5}, (x̃1,x̃2)=(0.5,0.5) and r=0.5 on the square.
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Fig. 6.10. Two solutions u7 (left) with L=span{u1,u4}, (x̃1,x̃2)=(0.5,0.5) and r=0.5 and
u8 (right) with L=span{u6,u7}, (x̃1,x̃2)=(0.5,0.5) and r=0.5 on the square.
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Fig. 6.11. Two solutions u1 (left) with L={0}, (x̃1,x̃2)=(2,0) and r=1 and u2 (right)
with L={u1}, (x̃1,x̃2)=(−1,0) and r=0.5 on the dumbbell.
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Fig. 6.12. Two solutions u3 (left) with L=span{u2}, (x̃1,x̃2)=(2,0) and r=1 and u4

(right) with L=span{u1}, (x̃1,x̃2)=(2,0) and r=0.5 on the dumbbell.
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Fig. 6.13. Two solutions u5 (left) with L=span{u1,u3}, (x̃1,x̃2)=(0.25,0) and r=0.2 and
u6 (right) with L=span{u1,u4}, (x̃1,x̃2)=(−1,0) and r=0.5 on the dumbbell.
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Fig. 6.14. A coarse four-level locally refined mesh-grid of Ω (left) and the trivial solution
u1
ε =1 with ε=0.84 (right).
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Fig. 6.15. Two nontrivial least-energy solutions with ε=0.8 (left) and ε=0.1 (right).



W. LIU, Z.Q. XIE, AND W.F. YI 169

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

||u||
∞
=2.1315 at (0.9974,−0.9948), ||d||

ε
=1.9652e−05, ||F||

∞
=2.0381e−04, J

ε
(u)=7.0604e−01

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−7

−6

−5

−4

−3

−2

−1

0

||u||
∞
=2.4575 at (−0.9974,0.9948) and (0.9974,−0.9948), ||d||

ε
=1.9893e−04,

||F||
∞
=1.1431e−03, J

ε
(u)=1.6770e+00

Fig. 6.16. A positive solution u1
1/2 with v0(x)=sin(0.5πx1), L={0}, ε=1/2 (left) and a

sign-changing solution u2
1/2 with v0(x)=sin(0.5πx2), L=span{u1

1/2}, ε=1/2 (right).
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Fig. 6.17. A positive solution u1
1/5 with v0(x)=sin(0.5πx1), L={0}, ε=1/5 (left) and a

positive solution u2
1/5 with v0(x)=sin(0.5πx2), L=span{u1

1/5}, ε=1/5 (right).
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Fig. 6.18. A positive solution u1 with v0(x)=sin(0.5πx1), L={0}, ε=0.1 (left) and a
positive solution u2 with v0(x)=sin(0.5πx1)sin(0.5πx2), L={0}, ε=0.1 (right).
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Fig. 6.19. A positive solution u3 with v0(x)=cos(πx1), L={0}, ε=0.1 (left) and a positive
solution u4 with v0(x)=cos(πx1)sin(0.5πx2), L={0}, ε=0.1 (right).
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Fig. 6.21. A interior single-peak solution u1
i with v0(0.5,0.5)(x), L={0}, ε=10−3 (left) and

a interior two-peak solution u2
i with v0(−0.5,0.5)(x), L=span{u1

i }, ε=10−3 (right).
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Case 3 (The limiting stationary Gierer-Meinhardt equation): Now we
consider the limiting stationary Gierer-Meinhardt equation in biological pattern forma-
tion with homogenous Neumann boundary condition on a square by setting λ=1 and
f(x,u)= |u(x)|j−1u(x), i.e.,{

εΔu(x)−u(x)+ |u(x)|j−1u(x)=0, x∈Ω,
∂u
∂n =0, x∈∂Ω,

(6.9)

with ε the singularly perturbed parameter, j=3 and Ω=(−1,1)2.
The initial ascent direction is usually taken as

v0xc
(x)=

{
cos2(0.5π|x−xc|/r), if |x−xc|≤ r,

0, otherwise,
(6.10)

unless specified, where xc∈ Ω̄ and r>0. To guarantee ‖v0‖=1 as shown in the NG-LMA
in Section 4, a normalization is always followed. For simplicity, we shall not mention it
explicitly in the following numerical examples. By appropriately choosing the values of
xc and r, one can guarantee that v0xc

(x) satisfies the homogeneous Neumann boundary
condition and control the position of the peaks of the solutions conveniently. In the
following examples, we always set r=0.5.

In [26], Xie et al. found and proved the critical perturbation value of ε, i.e.,

εc=
j−1

λ2
,

where the monotone increasing sequence {λk}∞k=1 are all the eigenvalues of the operator
−Δ in Ω=(−1,1)2 under the homogenous Neumann boundary condition with λ1=0.
When ε>εc, the positive solution is only the trivial one u1

ε=1; when ε<εc, non-trivial
positive solutions emerge. In our case, εc=

j−1
0.25π2 ≈0.8106. Actually, when ε>εc, only

the trivial positive solution u1
ε can be found. Figure 6.14 (right) shows the trivial solution

u1
ε with ε=0.84, which is just a little bigger than εc. When ε<εc, the least-energy

solutions with unique peak at the corner of ∂Ω are obtained by taking v0=v0(1,1)(x),
see Figure 6.15 for ε=0.8 and ε=0.1. We observe that the peak of the least energy
solutions becomes sharper and more narrow, with their energy being smaller as the
singularly perturbed parameter ε turns to be smaller.

In addition, according to Theorem 3.1 in [26], j−1
λk

,k=2,3, · · · are bifurcation points

for the trivial positive solutions u1
ε=1. All positive solutions are directly/indirectly

generated by these bifurcations from u1
ε as ε decreases across each bifurcation point

j−1
λk

. When εc>ε> j−1
λ3

= j−1
0.5π2 ≈0.4053, the nontrivial positive solutions can only be the

least-energy ones. When ε< j−1
λ3

, more and more nontrivial positive solutions emerge.

Figures 6.16-6.17 show solutions when j−1
λ3

<ε=1/2<εc and 0.1621≈ j−1
λ5

<ε=

1/5< j−1
λ4

≈0.2026, respectively. Each solution on the left of Figures 6.16-6.17 is a
positive least-energy solution with MI=1 corresponding to ε=1/2 and 1/5, respectively.
Then put it in the support L and the NG-LMA captures the corresponding sign-changing
or positive solutions with MI=2 shown on the right parts. Besides, we have obtained
numerous interesting symmetrical or asymmetrical solutions with MI>1 whose exis-
tence is still open, e.g., the solutions with the peaks locating along a line and so on. We
show some of them in Figures 6.18-6.20 with 0.090≈ j−1

λ7
<ε=0.1< j−1

λ6
≈0.1013.

Further, when ε is small enough, due to the existence of interior or boundary lay-
ers, the efficiency of the computation depends strongly on the quality of the mesh.



172 NORMALIZED GOLDSTEIN-TYPE LOCAL MINIMAX METHOD

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

||u||
∞
=2.2059 at (−0.5003,0.5007), (−0.5007,−0.5003) and (0.5003,0.5007), ||d||

ε
=1.3093e−05,

||F||
∞
=5.6242e−04, J

ε
(u)=1.7581e−02

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

||u||
∞
=2.2058 at (−0.5003,0.5007), (0.5003,−0.5007), (−0.5007,−0.5003) and (0.5003,0.5007),

||d||
ε
=1.8578e−05, ||F||

∞
=4.4177e−04, J

ε
(u)=2.3442e−02

Fig. 6.22. Two interior multiple-peak solutions u3
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3
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Fig. 6.23. A boundary-noncorner single-peak solution u1
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10−3 (right).

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

||u||
∞
=2.2068 at (0.9997,−0.3333), (0.9997,0.3333) and (0.3333,0.9997), ||d||

ε
=8.8550e−06,

||F||
∞
=8.2589e−04, J

ε
(u)=8.7911e−03

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

||u||
∞
=2.2070 at (−0.3333,0.9997), (0.9997,−0.3333), (0.3333,0.9997) and (0.9997,0.3333),

||d||
ε
=1.0892e−05, ||F||

∞
=2.6751e−03, J

ε
(u)=1.1721e−02

Fig. 6.24. Two boundary-noncorner multiple-peak solutions u3
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In this case, we combine a symmetrical mesh with 32768 triangular elements and a
local refinement strategy to produce a computational mesh as shown in Figure 6.14
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(left). We obtained fruitful interior single-peak solutions, interior multiple-peak solu-
tions, boundary-corner single-peak solutions, boundary-noncorner single-peak solutions
(whose peak locates at the boundary point with the minimum mean curvature) and
boundary-corner or boundary-noncorner multiple-peak solutions. These solutions are
in accordance with the theoretical prediction of [2,12] and the numerical results in [26].
Limited by the length of this paper, we only show some of them in Figures 6.21-6.24. It
is noted that the energy of the interior single-peak solutions is always bigger than that
of the least-energy solution for the same ε.

7. Concluding remarks

In this paper, a normalized Goldstein-type local minmax algorithm (NG-LMA) is
proposed to find multiple minimax-type solutions of semilinear elliptic PDEs. Compared
with the normalized Armijo search rule, which needs to control the step-size by using
a backtracking strategy, as shown in the classical local minmax method [15,16,26], the
normalized Goldstein search rule is composed of two conditions, which not only enable
the energy functional to decrease sufficiently, but also prevent the step-size from being
too small automatically. The feasibility of the NG-LMA is proven strictly. Further, its
global convergence is verified rigorously. Finally, the numerical results of several typical
semilinear elliptic equations on square or dumbbell domains are shown to validate the
feasibility of our approach. Further, it is worth to mention that the hypothesis of the
local Lipschitz-continuity of the peak selection in [26] is replaced by the continuity in
U, a subset of SH , in the theoretical analysis for both the NA-LMA and NG-LMA.
Consequently, our work strengthens the mathematical foundation for the LMM.
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[2] D.M. Cao and T. Küpper, On the existence of multipeaked solutions to a semilinear Neumann
problem, Duke Math. J., 97:261–300, 1999.

[3] G. Chen, J. Zhou, and W.-M. Ni, Algorithms and visualization for solutions of nonlinear elliptic
equations, Int. J. Bifur. Chaos Appl. Sci. Engrg., 10(07):1565–1612, 2000.

[4] M. Chipot and P. Quittner, Handbook of Differential Equations: Stationary Partial Differential
Equations, Elsevier/North Holland, 2004.

[5] Y.S. Choi and P.J. McKenna, A mountain pass method for the numerical solution of semilinear
elliptic problems, Nonlinear Anal., 20(4):417–437, 1993.

[6] G.M. Crippen and H.A. Scheraga, Minimization of polypeptide energy: XI. The method of gentlest
ascent, Arch. Biochem. Biophys., 144(2):462–466, 1971.

[7] Z. Ding, D. Costa, and G. Chen, A high-linking algorithm for sign-changing solutions of semi-
linear elliptic equations, Nonlinear Anal., 38(2):151–172, 1999.

[8] W. E, W. Ren, and E. Vanden-Eijnden, String method for the study of rare events, Phys. Rev.
B, 66(5):052301, 2002.

[9] W. E, W. Ren, and E. Vanden-Eijnden, Simplified and improved string method for computing the
minimum energy paths in barrier-crossing events, J. Chem. Phys., 126(16):164103, 2007.

[10] W. E and X. Zhou, The gentlest ascent dynamics, Nonlinearity, 24(6):1831–1842, 2011.
[11] A.A. Goldstein, On steepest descent, SIAM J. Control Optim., 3(1):147–151, 1965.
[12] C. Gui, J. Wei, and M. Winter, Multiple boundary peak solutions for some singularly perturbed

Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17:47–82, 2000.
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