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TWO INEQUALITIES FOR CONVEX EQUIPOTENTIAL SURFACES∗

YAJUN ZHOU†

Abstract. We establish two geometric inequalities, respectively, for harmonic functions in exterior
Dirichlet problems, and for Green’s functions in interior Dirichlet problems, where the boundary surfaces
are smooth and convex. Both inequalities involve integrals over the mean curvature and the Gaussian
curvature on an equipotential surface, and the normal derivative of the harmonic potential thereupon.
These inequalities generalize a geometric conservation law for equipotential curves in dimension two,
and offer solutions to two free boundary problems in three-dimensional electrostatics.
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1. Introduction
Consider a three-dimensional exterior Dirichlet problem (“3-exD” below), where a

non-constant harmonic function U(r),r∈Ω⊂R3 solves a Laplace equation

∇2U(r) = 0, r∈Ω (1.1)

in an unbounded domain Ω, whose boundary ∂Ω is a smooth and connected surface, on
which U(r) remains constant. The flux condition

−
∮
∂Ω

n ·∇U(r)dS= Φ>0 (1.2)

(with n being the outward unit normal on ∂Ω, and dS the surface element) is equivalent
to the following asymptotic behavior:

U(r)∼ Φ

4π|r|
, |r|→+∞. (1.3)

If 0 /∈Ω∪∂Ω, then one can define the Green’s function G(r) =G∂Ω
D (0,r) in three-

dimensional interior Dirichlet problem (“3-inD” below) as the solution to
∇2G(r) = 0, r∈R3r(Ω∪∂Ω∪{0}),
G(r) = 0, r∈∂Ω,

− lim
ε→0+

∮
|r|=ε

n ·∇G(r)dS= 1.
(1.4)

According to the maximum principle for harmonic functions, we have U(r)>0,r∈Ω∪
∂Ω in 3-exD and G(r)>0,r∈R3r(Ω∪∂Ω∪{0}) in 3-inD. In what follows, we write
Σϕ for the equipotential surface on which the harmonic function [either U(r) in 3-exD
or G(r) in 3-inD] equals a given non-negative ϕ.

In classical physics, the 3-exD (resp. 3-inD) problem occurs in electrostatic equi-
librium of an isolated metallic conductor (resp. a point charge enclosed in a metal-
lic cavity), where our harmonic function of interest is the electrostatic potential, and
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E(r) = |∇U(r)| (resp. E(r) = |∇G(r)|) is the magnitude of the electrostatic field, also
known as “field intensity”. If the boundary surface ∂Ω is smooth and convex (with non-
negative Gaussian curvature K(r)≥0,r∈∂Ω), then we have E(r) 6= 0 in both 3-exD
and 3-inD problems [14, Proposition 3.2], and all the equipotential surfaces (exclud-
ing the boundary) are smooth and strictly convex (with positive Gaussian curvature
K(r)>0,r∈Σϕ 6=∂Ω) [11, Theorem 1.1].

A quantitative understanding of the interplay between geometry (shape of an
equipotential surface ∂Ω) and physics (the distribution of field intensity |∇U(r)|,r∈∂Ω)
has practical consequences, ranging from the design of lightning-rods [18] to the self-
assembly of metallic nanoparticles [12]. The “common knowledge” that strongest field
accompanies greatest curvature is mathematically unfounded [18, Figure 5]. Therefore,
instead of following electricians’ folklore about pointwise causal relationship between
curvature and field intensity, it is more sensible to study statistical correlations between
geometric and physical quantities, in a non-local manner.

In this work, we focus on 3-exD and 3-inD problems with smooth and convex
boundaries (“3-exDc” and “3-inDc” hereafter), and investigate integrals on equipotential
surfaces Σϕ with bounded mean curvature1 H(r)≤0,r∈Σϕ, Gaussian curvatureK(r)≥
0,r∈Σϕ, and non-vanishing field intensity E(r) 6= 0,r∈Σϕ. (For convenience, we shall
also use the term “electrostatic problems” to cover both 3-exDc and 3-inDc.) We will
construct inequalities for surface integrals involving H(r), K(r) and E(r), thereby
presenting a priori bounds for statistical averages of field intensity fluctuation |n×
∇logE(r)|2 through statistical averages of curvature fluctuation H2(r)−K(r).

After laying out the geometric settings in Section 2, we will prove our main result
(Theorem 1.1) and its consequence (Corollary 1.1) in Section 3.

Theorem 1.1 (Geometric inequalities on convex equipotential surfaces). For every
level set Σ in 3-exDc, we have the following inequality (strict unless ∂Ω is a sphere):∮

Σ

4[H2(r)−K(r)]−|n×∇ log |∇U(r)||2

|∇U(r)|
dS≥0. (1.5)

For every level set Σ in 3-inDc, we have following inequality (strict unless ∂Ω is a sphere
centered at the origin):∮

Σ

4[H2(r)−K(r)]−|n×∇ log |∇G(r)||2

|∇G(r)|
dS≤0. (1.6)

Corollary 1.1 (Spherical solutions to two free boundary value problems). If there
is a spherical equipotential surface in 3-exDc, then the boundary ∂Ω must be a sphere.
If there is an equipotential surface in 3-inDc on which |∇G(r)| remains constant, then
∂Ω must be a sphere centered at the origin.

Two-dimensional analogs of electrostatic problems can be regarded as the situations
of three-dimensional cylindrical surfaces with translational invariance along the z-axis.
For the two-dimensional cross-section of such cylindrical surfaces, the curvature of an
equipotential curve becomes κ=−2H, while the Gaussian curvature vanishes identically
K≡0. Therefore, the surface integrals appearing in Theorem 1.1 are reminiscent of the

1By choosing an outward unit normal vector, we are adopting a sign convention where the unit
sphere has mean curvature H =−1.
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following integrals on equipotential curves [22, (1.14)]:∮
Σ

[κ(r)]2−|n×∇ log |∇U(r)||2

|∇U(r)|
ds and

∮
Σ

[κ(r)]2−|n×∇ log |∇G(r)||2

|∇G(r)|
ds (1.7)

for 2-exD and 2-inD, respectively. In our previous work [22, §2.2 and §3], we have shown
that both integrals are constants (independent of ϕ) when the boundary ∂Ω is a smooth
Jordan curve. Our proof in Section 3 will reveal a unified mechanism underlying the
geometric inequalities in Theorem 1.1 and the geometric conservation laws in (1.7).

Theorem 1.1 unveils a subtle constraint between the fluctuations of curvatures and
field intensity on a single equipotential surface. Its toy application (Corollary 1.1),
by contrast, contains less surprising statements (cf. stronger results for the Green’s
functions in [16, Theorem III.2]). To conclude this article, we will strengthen the first
half of Corollary 1.1 in Rd (d≥2), and sharpen its second half in R2.

2. Geometric preparations
In this section, we set up a geometric framework for electrostatic problems (Section

2.1), and prepare some differential formulae (Section 2.2) that will be useful later.
Unavoidably, we will recover some standard identities in classical differential geometry
[8,15,20], as well as reproduce part of the modern investigations of level sets for Green’s
functions on manifolds [4–6,14]. Nevertheless, we choose to include our derivations here,
for the sake of consistency and accessibility. Indeed, the availability of certain vector
calculus identities in the flat Euclidean space R3 does make our computations more
straightforward than generic cases on intrinsically curved Riemannian manifolds.

2.1. Curvilinear coordinates and Laplacian decomposition. Akin to our
previous work [22, Section 2.1], we set up a curvilinear coordinate system r(ϕ,u,v)≡
r(u0,u1,u2) that is compatible with equipotential surfaces in R3. In this coordinate
system, ϕ≡u0 coincides with the value of the harmonic potential [U(r) in 3-exD, G(r)
in 3-inD], and a pair of points on distinct equipotential surfaces share the same (u,v)≡
(u1,u2) coordinates if and only if they are joined by an integral curve of ∇ϕ. Thus, a
family of equipotential surfaces Σϕ evolve according to the following equation

∂r(ϕ,u,v)

∂ϕ
=− n

E(r)
, r∈Σϕ, (2.1)

which conserves the total surface flux

d

dϕ

∮
Σϕ

n ·∇ϕdS= 0. (2.2)

This conservation is expected from the Gauß law of electrostatics, which is part of the
Maxwell equations for classical electrodynamics [10, §1.4, §1.7]. Hereafter, we will refer
to (2.1) as the Gauß–Maxwell flow.

On each equipotential surface, we define the components of the covariant metric
tensor (gij) as gij :=∂ir ·∂jr, where ∂i is short-hand for ∂/∂ui. The contravariant
metric tensor (gij) is the matrix inverse of (gij). The line element on each equipotential
surface is given by ds2 =gij duiduj , where the Einstein summation convention is applied
hereinafter, and a Latin index takes values in {1,2}.

On each equipotential surface, we have the Gauss formula [8, §4.3]: ∂i∂jr= Γkij∂kr+

bijn, for connection coefficients Γkij :=gk`∂i∂jr ·∂`r= 1
2g
k`(∂ig`j+∂jgi`−∂`gij) [8, §5.7]

and the coefficients of second fundamental form bij :=∂i∂jr ·n. The components of the
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Weingarten transform Ŵ = (bji ) is defined by bji :=gjkbki and appears in the Weingarten

formula: ∂in=−bji∂jr, that is, dn=−Ŵ dr for infinitesimal changes tangent to the
equipotential surface. The mean curvature is half the trace of the Weingarten transform:
H := 1

2 Tr(Ŵ ) = 1
2 (b11 +b22) = 1

2g
ijbij ; while the Gaussian curvature is the determinant of

the Weingarten transform: K := det(Ŵ ) = b11b
2
2−b12b21.

Being compatible with the Gauß–Maxwell flow equation in (2.1), we have g00 :=∂0r ·
∂0r=E−2 = 1/g00 and g0i=g0i :=∂0r ·∂ir= 0. In this way, the Euclidean line element
ds2 = dx2 +dy2 +dz2 can be reformulated as

ds2 =gµν duµduν =
dϕ2

E2
+gij duiduj , (2.3)

where a Greek index takes values in {0,1,2}. One may extend the definition of connec-
tion coefficients as ∂µ∂νr= Γλµν∂λr, where the newly-arisen connection coefficients will
be computed in the following proposition.

Proposition 2.1 (Connection coefficients). We have the following computations for
connection coefficients involving the index 0:

Γ0
ij =−Ebij , Γ0

j0 = − 1

E

∂E

∂uj
, Γkj0 =

bkj
E

; (2.4)

Γ0
ij =−E

2

2

∂gij
∂ϕ

, Γj00 =−1

2
gjm

∂g00

∂um
=

1

E3
gjm

∂E

∂um
; (2.5)

Γ0
00 =

1

2
g00∂0g00 =− ∂

∂ϕ
logE= Γmm0. (2.6)

Proof. To prove the three identities in (2.4), it would suffice to compare the
equation ∂µ∂νr= Γλµν∂λr with the Gauß and Weingarten formulae:

∂2r

∂ui∂uj
= Γkij

∂r

∂uk
−Ebij

∂r

∂ϕ
,

∂

∂uj

(
E
∂r

∂ϕ

)
= bkj

∂r

∂uk
. (2.7)

The two identities in (2.5) follow from the Christoffel formula Γλµν = 1
2g
λη(∂µgην +

∂νgµη−∂ηgµν).
Before deducing (2.6), we compare the two expressions of Γ0

ij in (2.4) and (2.5) and
write down

∂gij
∂ϕ

=
2

E
bij ,

∂ logdet(gij)

∂ϕ
=gij

∂gij
∂ϕ

=
2

E
gijbij =

4H

E
. (2.8)

On the other hand, the Laplace equation∇2ϕ(r) =−∇·E(r) = 0 implies zero divergence
of E-field, i.e. ∂0 log(E

√
g) = 0, (hereafter g= det(gij)), thus (2.8) gives rise to

2H+
∂E

∂ϕ
= 0, i.e. n ·∇ logE= 2H. (2.9)

It is easy to recast (2.9) into the harmonic coordinate condition Γ0 :=gijΓ0
ij+g00Γ0

00 = 0,
which leads to (2.6).

Remark 2.1. Using the identity ∂0gij = 2bij/E, we can also readily deduce ∂0g
ij =

−2gikbjk/E.
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The three-dimensional Laplace operator ∆ =∂2
x+∂2

y +∂2
z can be presented in curvi-

linear coordinates as

∆ =gµν(∂µ∂ν−Γλµν∂λ) =
1√

det(gµν)
∂λ

(
gλη
√

det(gµν)∂η

)
. (2.10)

Here, det(gµν) =g/E2 for g= det(gij). Similarly, one can define the Laplace operator on
equipotential surface Σ as

∆Σ =gij(∂i∂j−Γkij∂k) =
1
√
g
∂k
(
gk`
√
g∂`
)
. (2.11)

Proposition 2.2 (Decomposition of Laplacian). The Laplace operator ∆ can be rewrit-
ten as

∆ = ∆Σ +E2 ∂2

∂ϕ2
− 1

E
gjm

∂E

∂um
∂

∂uj
. (2.12)

Proof. By definition, we have

∆ = ∆Σ−gijΓ0
ij

∂

∂ϕ
+g00

(
∂2

∂ϕ2
−Γj00

∂

∂uj
−Γ0

00

∂

∂ϕ

)
. (2.13)

With the substitution of g00 =E2 and the expressions for Γ0
ij ,Γ

j
00,Γ

0
00 from Proposi-

tion 2.1, we obtain the claimed result in (2.12).

Corollary 2.1 (Geometric description of ∇logE). We have

∇logE(r) =k(r)N(r)+2H(r)n(r). (2.14)

Here, k(r) is the curvature (inverse of the radius of curvature) of the electric field line
(E-line) that passes r, and H(r) is the mean curvature of the equipotential surface that
passes r, with N and n being the respective unit normal vectors for the E-line and
equipotential surface.

Proof. As we already have the normal derivative n ·∇ logE= 2H in (2.9), it is
sufficient to show that the tangential gradient [n×∇ logE(r)]×n=gjm(∂m logE)∂jr is
equal to kN . To fulfill this task, we compute

0=∆r= ∆Σr+E2 ∂
2r

∂ϕ2
− 1

E
gjm

∂E

∂um
∂r

∂uj

=2Hn−E2 ∂(n/E)

∂ϕ
−gjm ∂ logE

∂um
∂r

∂uj
=−E∂n

∂ϕ
−gjm ∂ logE

∂um
∂r

∂uj
, (2.15)

where the definition for the curvature of a curve kN =−E∂0n can be substituted in
the last step.

Remark 2.2. The result in (2.14) is well known in physics, as the tangential and
normal components of ∇ logE can be easily derived from elementary vector analysis [10,
p. 591] and the Gauß theorem of electrostatic field [10, p. 52, Problem 1.11], respectively.
We have rederived (2.14) in our curvilinear coordinate system as a double check of the
computations involving the connection coefficients and the Laplacian.
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Later on, we will often use the notation Df :=gij∂if∂jr for the tangential gradient
of a smooth function f . This allows us to abbreviate (2.15) as ∂ϕn=D(1/E) for the
Gauß–Maxwell flow. It follows immediately from (2.15) that

∂ϕE=∂ϕ(En) =ED(1/E)−2Hn=−∇logE. (2.16)

It is also easy to verify, for the Gauß–Maxwell flow, that the following commutation
relation holds:

∂ϕ(Df)−D(∂ϕf) =−ŴDf

E
−n(Df) ·

(
D

1

E

)
:=−

gikbjk∂if∂jr

E
−ngij∂if∂j

1

E
. (2.17)

In particular, (2.15) and the commutation relation above would entail

∆n−∆Σn=E2∂ϕ[D(1/E)]+ŴD logE

= 2DH+2(Ŵ −2H)D logE−n|D logE|2,
(2.18)

a formula that will be used later in Section 2.2.

2.2. Evolution of mean and Gaussian curvatures on equipotential sur-
faces. Since we will be interested in tracking down the changes of curvatures across
different equipotential surfaces, it is sensible to derive formulae for the derivatives of
curvatures with respect to the potential ϕ.

Proposition 2.3 (Evolution of the second fundamental form). We have the following
identities

∂bij
∂ϕ

= (bkj bki−∂i∂j+Γkij∂k)
1

E
(2.19)

and

2
∂H

∂ϕ
=−∆Σ

1

E
− 4H2−2K

E
. (2.20)

Proof. From the identity ∂0(∂i∂jr) =∂i(∂0∂jr), we may deduce ∂0Γ0
ij+ΓνijΓ

0
ν0 =

∂iΓ
0
j0 +Γνj0Γ0

νi. This results in (2.19), upon substitution of the connection coefficients.

Combining 2H=gijbij and ∂0g
ij =−2gikbjk/E with (2.19), we obtain

2
∂H

∂ϕ
=−∆Σ

1

E
−
bkj b

j
k

E
, where bkj b

j
k = Tr(Ŵ 2) = 4H2−2K.

This verifies (2.20).

Proposition 2.4 (Evolution of Gaussian curvature). We have the following formula

∂

∂ϕ
(K
√
g) =−∂i

(
βij
√
g∂j

1

E

)
⇐⇒ ∂

∂ϕ

K

E
=− 1

E
√
g
∂i

(
βij
√
g∂j

1

E

)
(2.21)

for βij := 2Hgij−gikbjk = b–ij/g, where (b–ij) =
(
b22 −b12
−b12 b11

)
is the adjugate matrix of (bij).

Proof. Using Jacobi’s formula for the derivative of a determinant, we may verify
that

∂

∂ϕ
(K
√
g) =

∂

∂ϕ

(
det(bij)√

g

)
=
b–ij
√
g

∂bij
∂ϕ
−

2HK
√
g

E
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=
b–ij
√
g

(bkj bki−∂i∂j+Γmij∂m)
1

E
−

2HK
√
g

E

=βij
√
g(−∂i∂j+Γmij∂m)

1

E
, (2.22)

where we have quoted (2.19) in the penultimate step, before using the relation
b–ijbkj bki/g=Kδjkb

k
j = 2HK in the last step. Then, we note that the Codazzi–Mainardi

equation ∂kbij−∂jbik+Γ`ijb`k−Γ`ikb`j = 0 and the vanishing covariant derivatives of the

metric (gik);` :=∂`g
ik+gimΓkm`+gkmΓim`= 0 allow us to compute ∂ib

k
j +Γki`b

`
j−Γ`ijb

k
` =:

bkj;i= bki;j and (βik);k = b``;kg
ik−gijbkj;k = b``;kg

ik−gijbkk;j = 0, thereby leading to

−∂i
(
βij
√
g∂jf

)
=βij

√
g(−∂i∂j+Γmij∂m)f, (2.23)

for every smooth function f . Combining the results in (2.22) and (2.23), we arrive at
the claimed formula in (2.21).

Remark 2.3. When the field intensity E is non-vanishing on an entire equipotential
surface Σϕ, we may double-check the reasonability of (2.21) by the following computa-
tion

d

dϕ

∮
Σϕ

KdS=

∮
Σϕ

1
√
g

∂

∂ϕ
(K
√
g)dS=−

∮
Σϕ

1
√
g
∂i

(
βij
√
g∂j

1

E

)
dS= 0. (2.24)

On the other hand, we know from the Gauß–Bonnet theorem that
∮

Σϕ
KdS= 2πχ(Σϕ),

where χ(Σϕ) is the Euler–Poincaré characteristic that determines the topology of Σϕ.
The result in (2.24) is thus expected from the non-critical E-lines that establish diffeo-
morphisms among all the equipotential surfaces in a neighborhood of Σϕ.

Corollary 2.2 (Weatherburn formula [20, p. 231]). The following identity holds on
every smooth surface

∆Σn= (2K−4H2)n−2(n×∇H)×n. (2.25)

Proof. Applying (2.23) to the three Euclidean components of r=xex+yey+zez,
we can quickly recover the following formula of Minkowski [15]:

1
√
g
∂i
(
βij
√
g∂jr

)
= 2Kn, (2.26)

with the computation

1
√
g
∂i
(
βij
√
g∂jr

)
=βij(∂i∂j−Γmij∂m)r=

b–ijbijn

g
=

2det(bij)

g
n= 2Kn. (2.27)

This in turn allows us to verify the Weatherburn formula via

∆Σn−2Kn=
1
√
g
∂i
(
gij
√
g∂jn−βij

√
g∂jr

)
=− 1
√
g
∂i(2Hg

ij√g∂jr) =−4H2n−2DH, (2.28)

where we have exploited gij
√
g∂jn=−gikbjk

√
g∂jr, βij := 2Hgij−gikbjk and a familiar

relation ∆Σr= 1√
g∂i(g

ij√g∂jr) = 2Hn.
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Combining (2.18) and (2.25), we immediately arrive at the following representation
of ∆n :=ex∆(n ·ex)+ey∆(n ·ey)+ez∆(n ·ez):

∆n= 2(Ŵ −2H)D logE−n(|D logE|2 +4H2−2K), (2.29)

a result that will be used later in Corollary 3.1.

3. Main result and applications
Like previous studies of level sets for harmonic functions [4–6,14,22], we will build

a monotonicity result (Section 3.1) on positive-definite quadratic forms, before subse-
quently applying it to the proof of Theorem 1.1 and Corollary 1.1 in Section 3.2. We
will finally devote Section 3.3 to some generalizations of Corollary 1.1.

3.1. Monotonicity of an integral on equipotential surface. To prepare for
the proof of Theorem 1.1, we compute two more quantities: ∆logE and ∆n

E . Both these
quantities vanish in two-dimensional electrostatic problems, as one can easily check by
complex analytic techniques.

Proposition 3.1 (Laplacian representation of Gaussian curvature). There is a
geometric identity

∆logE+2K= 0, (3.1)

which is a special case of [21, Proposition 1.4].

Proof. We first employ (2.20) to compute

− ∂2

∂ϕ2
logE=

∂

∂ϕ

(
2H

E

)
=

4H2

E2
+

2

E

∂H

∂ϕ
=− 1

E
∆Σ

1

E
+

2K

E2
. (3.2)

Meanwhile, we may use the definition of Laplacian ∆ in the curvilinear coordinate
system to evaluate

∆logE=
E
√
g
∂µ

(√
g

E
gµν∂ν logE

)
=− E
√
g
∂µ

(
√
ggµν∂ν

1

E

)
=−E∆Σ

1

E
+E2 ∂2

∂ϕ2
logE.

(3.3)

Combining (3.2) with (3.3), we arrive at the claimed identity.

Corollary 3.1 (A geometric representation of ∆n
E ). We have the following formula:

∆
n

E
= 4

(
βij∂i

1

E
∂jr+

Kn

E

)
. (3.4)

Proof. Combining our formula for ∆n in (2.29) with the identity ∆logE+2K=
0, and noting that (∇logE ·∇)n= 2H(n ·∇)n+(D logE ·∇)n= 2HD logE−ŴD logE,
we can compute

∆
n

E
=

∆n

E
+n∆

1

E
+2gµν∂µ

1

E
∂νn

=2βij∂i
1

E
∂jr−

(4H2−2K+ |D logE|2)n

E
−n∇·

(
1

E
∇logE

)
− 2

E
(∇ logE ·∇)n

=2βij∂i
1

E
∂jr+

4Kn

E
− 2

E
(2H−Ŵ )D logE= 4

(
βij∂i

1

E
∂jr+

Kn

E

)
, (3.5)
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as claimed.

Corollary 3.2 (Evolution of a surface integral). We have the following derivative
formula:

d

dϕ

∮
Σϕ

(
H2−K− |D logE|2

4

)
dS

E
=−3

2

∮
Σϕ

βij∂i
1

E
∂j

1

E
dS. (3.6)

Proof. One can verify (3.6) by a brute-force computation, using the derivatives of
H, K, E and gij studied in Section 2. Here, we will build our proof on Proposition 3.1
and Corollary 3.1, to highlight the mechanism shared by the derivative formula (3.6)
for three-dimensional electrostatics and its two-dimensional counterpart [22, (2.25)].

Specializing the vector Green identity [7, p. 156]∫
D

[Q ·∆F −F ·∆Q]d3r

=

∮
∂D

[(ν×Q) ·(∇×F )+(ν ·Q)(∇·F )−(ν×F ) ·(∇×Q)−(ν ·F )(∇·Q)]dS (3.7)

to Q(r) =∇logE(r) and F (r) =n(r)/E(r), we may put down∫
D

[
∇ logE(r) ·∆n(r)

E(r)
− n(r)

E(r)
·∆∇logE(r)

]
d3r

=

∮
∂D

{
[ν×∇ logE(r)] ·

[
∇× n(r)

E(r)

]
+[ν ·∇ logE(r)]

[
∇· n(r)

E(r)

]
−
[
ν · n(r)

E(r)

]
∆logE(r)

}
dS, (3.8)

where ν is the outward normal vector with respect to the domain boundary ∂D.

We first look at the integral over D (which vanishes in the two-dimensional electro-
statics where ∆Q= ∆F =0). We can rewrite the integrand as

∇ logE ·∆n
E
− n
E
·∆∇logE=4βij∂i

1

E
∂j logE+

8HK

E
+

2

E
n ·∇K

=4βij∂i
1

E
∂j logE+

8HK

E
+

2

E
n ·∇K

−8n ·∇K
E

+
8
√
g
∂i

(
βij
√
g∂j

1

E

)
, (3.9)

after employing the relations in (2.21), (3.1) and (3.5).

We then turn our attention to the boundary contributions. If we pick the bound-
ary ∂D= Σϕ1 ∪Σϕ2 as the union of two equipotential surfaces Σϕ1 and Σϕ2 , with the
latter surface enclosing the former, then ν corresponds to n on Σϕ2

and −n on Σϕ1
.

Meanwhile, it is straightforward to compute that

∇× n
E

= −∇×∇ϕ
E2

=−∇ 1

E2
×∇ϕ=

2n×∇ logE

E
, (3.10)

∇· n
E

= −∇· ∇ϕ
E2

=−∇ 1

E2
·∇ϕ=−2n ·∇ logE

E
=−4H

E
. (3.11)
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Plugging the results from the last two paragraphs into the vector Green identity,
we obtain

2

∮
Σϕ2

|n×∇ logE|2−|n ·∇ logE|2 +K

E
dS

−2

∮
Σϕ1

|n×∇ logE|2−|n ·∇ logE|2 +K

E
dS

=

∫ ϕ1

ϕ2

dϕ

{∮
Σϕ

[
4βij∂i

1

E
∂j logE+

12HK

E
−6n ·∇K

E
+

8
√
g
∂i

(
βij
√
g∂j

1

E

)]
dS

E

}

=

∫ ϕ1

ϕ2

dϕ

{
−12

∮
Σϕ

βij∂i
1

E
∂j

1

E
dS+6

d

dϕ

∮
Σϕ

K

E
dS

}
. (3.12)

Here, in the last step, we have integrated by parts, and used the fact that ∂0
√
g=

2H
√
g/E [see the second half of (2.8)]. Now, differentiating both sides of (3.12) with

respect to ϕ1, we arrive at

8
d

dϕ

∮
Σϕ

(
H2−K− |D logE|2

4

)
dS

E
=−2

d

dϕ

∮
Σϕ

|n×∇ logE|2−|n ·∇ logE|2 +4K

E
dS

=−12

∮
Σϕ

βij∂i
1

E
∂j

1

E
dS, (3.13)

as claimed in (3.6).

When we are dealing with the convex boundary surfaces ∂Ω in Theorem 1.1, all
the equipotential surfaces Σϕ 6=∂Ω in question are strictly convex [11, Theorem 1.1], on
which (βij) = (b–ij/g) is negative definite. Therefore, we have a monotonicity statement

d

dϕ

∮
Σϕ

(
H2−K− |D logE|2

4

)
dS

E
≥0, (3.14)

where the inequality is strict unless E(r),r∈Σϕ 6=∂Ω is a constant.
It is worth noting that the last inequality is the first instance where the strict

convexity of equipotential surfaces has played an indispensable rôle in our derivations.
All our previous theoretical developments are applicable to both convex and non-convex
equipotential surfaces alike. Since Theorem 1.1 and Corollary 1.1 both require convex
equipotential surfaces, a diligent reader may rework all our main results in this article
using the support function of convex equipotential surfaces, as in Ma–Zhang [13].

3.2. Geometric inequalities and their applications. Our next task is to
show that

lim
ϕ→0

∮
Σϕ

(
H2−K− |D logE|2

4

)
dS

E
= 0 (3.15)

in 3-exD and

lim
ϕ→+∞

∮
Σϕ

(
H2−K− |D logE|2

4

)
dS

E
= 0 (3.16)

in 3-inD. Once this is done, we can deduce the two inequalities in Theorem 1.1 from
(3.14).
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As we go to sufficiently large distances |r| in Ω, say, away from the circumsphere of
R3rΩ, the spherical harmonic expansion of U(r) converges uniformly and absolutely
[10, §4.1]:

U(r) =

∞∑
`=0

∑̀
m=−`

√
4π

2`+1
c`m

Y`m(θ,φ)

|r|`+1
, (3.17)

where the spherical coordinates r= |r|(sinθcosφ,sinθsinφ,cosθ) are employed, along
with the spherical harmonic function Y`m(θ,φ) and the constants c`m [the multi-pole
coefficients associated with the (`,m)-modes]. The only significant contributors to our
surface integral are the two leading `-modes: `= 0,1, as all the higher-order terms
amount to infinitesimal corrections to our surface integral for equipotential surfaces at
infinite distances. Without loss of generality, we may evaluate the left-hand side of
(3.15) by investigating the dipole field

U(r) =
c00

|r|
+
c10 cosθ

|r|2
, c00>0,c10 6= 0, (3.18)

which is rotationally symmetric about the z-axis. We parametrize the equipotential
surface ΣU with

x=
c00 +

√
(c00)2 +4c10U cosθ

2U
sinθcosφ

y=
c00 +

√
(c00)2 +4c10U cosθ

2U
sinθsinφ

z=
c00 +

√
(c00)2 +4c10U cosθ

2U
cosθ

(0≤θ≤π,0≤φ≤2π) (3.19)

so that the surface element is given by

dS=

[
(c00)2 sinθ

U2
+
c10 sin2θ

U
+O(U0)

]
dθdφ; (3.20)

the two principal curvatures (eigenvalues of the Weingarten transform Ŵ ) read

kθ =
U

c00
+

(c10)2(1−9cos2θ)U3

4(c00)5
+O(U4), kφ=

U

c00
− (c10)2(5+3cos2θ)U3

4(c00)5
+O(U4),

(3.21)

leading us to

H2−K=
(kθ−kφ)2

4
=O(U6); (3.22)

the surface distribution of E=E(θ,φ) satisfies

E=
U2

c00
− (c10)2(3cos2θ+1)U4

4(c00)5
+O(U5); (3.23)

|n×∇ logE|2 =
9(c10)4 sin2θcos2θ

(c00)10
U6 +O(U7). (3.24)



448 CONVEX EQUIPOTENTIAL SURFACES

Now it becomes clear that our integral on ΣU has order O(U2) for the dipole field.
Hence, the limit formula (3.15) is true.

So far, we have established∮
Σϕ

(
H2−K− |D logE|2

4

)
dS

E
=−3

2

∫ ϕ

0

(∮
ΣU

βij∂i
1

E
∂j

1

E
dS

)
dU ≥0 (3.25)

for 3-exDc, where (βij) is negative definite on ΣU for all U ∈ (0,ϕ).

If the equality holds for a certain given Σϕ, then we will have D logE(r) = 0,r∈ΣU
for all U ∈ (0,ϕ), and also∮

ΣU

H2−K
E

dS=

∮
ΣU

(
H2−K− |D logE|2

4

)
dS

E
= 0 (3.26)

for all U ∈ (0,ϕ). This implies that at every point on the strictly convex surface ΣU , the
two eigenvalues of the Weingarten transform Ŵ are equal, so ΣU must be a sphere [8,
§5.2, Theorem 1b]. The condition D logE(r) = 0,r∈ΣU also means that the spheres
ΣU ,U ∈ (0,ϕ) are all concentric. If the center of these spheres is r0∈R3, then we will
have U(r) = Φ

4π|r−r0| whenever |r−r0|> Φ
4πϕ . By the unique continuation principle

[3, 19], we know that U(r) = Φ
4π|r−r0| holds for all r∈Ω∪∂Ω. This proves that ∂Ω is

spherical.

After establishing the first half of Theorem 1.1, we can move on to the 3-exDc case
of Corollary 1.1. Suppose that we have a spherical equipotential surface Σϕ on which

−
∮

Σϕ

|D logE|2

4E
dS=

∮
Σϕ

(
H2−K− |D logE|2

4

)
dS

E
≥0 (3.27)

entails D logE(r) = 0,r∈Σϕ, so equality holds in (3.25). We are then reduced to the
situations in the last paragraph, whereupon a spherical ∂Ω becomes inevitable.

It is much easier to prove the limit formula (3.16) for 3-inDc, because

dS

E
=O(|r|4 sinθdθdφ), H2−K=O

(
1

|r|2

)
, |D logE|=O

(
1

|r|

)
, (3.28)

as |r|→0. This quickly leads us to∮
Σϕ

(
H2−K− |D logE|2

4

)
dS

E
=

3

2

∫ +∞

ϕ

(∮
ΣG

βij∂i
1

E
∂j

1

E
dS

)
dG≤0 (3.29)

for 3-inDc, where (βij) is negative definite on ΣG for all G∈ (ϕ,+∞).

If the equality holds for a certain given Σϕ, then we will have D logE(r) = 0,r∈ΣG
for all G∈ (ϕ,+∞), and also∮

ΣG

H2−K
E

dS=

∮
ΣG

(
H2−K− |D logE|2

4

)
dS

E
= 0 (3.30)

for all G∈ (ϕ,+∞). This implies that the strictly convex equipotential surfaces ΣG,G∈
(ϕ,+∞) are concentric spheres, and that G(r) = 1

4π|r| for 0< |r|< 1
4πϕ . Again, by unique

continuation, we conclude that ∂Ω must be a sphere centered at the origin.
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After completing the verification of Theorem 1.1, we can wrap up our main course
with the 3-inDc case of Corollary 1.1. Suppose that we have |D logE(r)|= |n×∇G(r)|=
0,r∈Σϕ so that∮

Σϕ

(H2−K)dS

E
=

∮
Σϕ

(
H2−K− |D logE|2

4

)
dS

E
≤0. (3.31)

Since H2−K≥0, we are led to H2−K≡0 on Σϕ. Therefore, equality holds in (3.29),
and we are reduced to the scenario in the last paragraph, with the same conclusion
about the configuration of ∂Ω.

It is worth noting that Agostiniani and Mazzieri [1, Appendix A] have furnished a
general framework for asymptotic analysis of exterior and interior Dirichlet problems
involving harmonic potentials, applicable to Euclidean spaces of arbitrary dimensions.
I thank an anonymous referee for bringing my attention to their work.

3.3. Related problems in Rd (d≥2). In the next theorem, we strengthen the
first statement of Corollary 1.1 in Rd (d>2).

Theorem 3.1 (A free boundary problem in d-exD). Let d∈Z>2. Suppose that
U(r),r∈Ω⊂Rd solves the Laplace equation in an unbounded domain Ω, whose bound-
ary ∂Ω is a compact (hyper)surface. This function has asymptotic behavior U(r)∼

Φ
d(d−2)πd/2|r|d−2

∫∞
0
td/2e−tdt as |r|→+∞. If one equipotential surface in Ω is a (hy-

per)sphere centered at r0∈Rd, then U(r) = Φ
d(d−2)πd/2|r−r0|d−2

∫∞
0
td/2e−tdt holds for

all r∈Ω.

Proof. Suppose that we have an equipotential surface |r−r0|=R. Define

V (r′)≡V
(
R2(r−r0)

|r−r0|2

)
:= |r−r0|d−2U(r), |r−r0|≥R. (3.32)

One can check that this expression extends to a bounded harmonic function V (r′),|r′|≤
R, whose boundary value is a constant. Such a harmonic function must be a constant
function. This proves our claim that all the equipotential surfaces of U(r),r∈Ω⊂Rd
are (hyper)spherical.

We note that the second half of Corollary 1.1 extends to d-inD (without any convex-
ity requirements) of arbitrary dimensions d, as shown by Payne–Schaeffer [16, Theorem
III.2]. Similar results for p-harmonic functions have also been obtained by Alessandrini–
Rosset [2, Theorem 1.1], Enciso–Peralta-Salas [9, Theorem 1] and Poggesi [17, Theorem
1.3].

Before closing this article, we state and prove the planar analog of Corollary 1.1
(assuming that the boundary curves ∂Ω are always smooth Jordan curves), using results
from [22].

Theorem 3.2 (Circular solutions to three free boundary value problems). If there is
a circular equipotential curve in 2-exD, then the boundary ∂Ω must be a circle. If there
is an equipotential curve in 2-exD on which E(r) = |∇U(r)| remains constant, then ∂Ω
must be a circle. If there is an equipotential curve in 2-inD on which E(r) = |∇G(r)|
remains constant, then ∂Ω must be a circle centered at the origin.

Proof. In [22, §2.3], we have demonstrated the following inequality (strict unless
∂Ω is circular) ∮

Σ

[
n×∇ κ

E

]
·
[
n×∇ 1

E

]
ds≤0 (3.33)
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for all equipotential curves Σ in 2-exD. Here, the sign convention for curvature has been
chosen so that the unit circle has κ= +1. If an equipotential curve Σ is circular, then
we will have

κ

∮
Σ

[
n×∇ 1

E

]
·
[
n×∇ 1

E

]
ds≤0 (3.34)

for a positive constant κ. This means that n×∇ 1
E(r) =0,r∈Σ and equality holds in

(3.33). Therefore, the boundary curve ∂Ω is indeed a circle.
For two-dimensional electrostatic problems, we have κ=−2H, K≡0 and βij≡0.

Thus, Proposition 3.1 and Corollary 3.1 reduce to ∆logE= 0 and ∆n
E = 0, respectively.

The vector Green identity in our proof of Corollary 3.2 then brings us an integral∮
Σϕ

κ2−|D logE|2

E
ds (3.35)

that is independent of ϕ. In [22, §2.2 and §3], we have shown that such a geometric
conservation law can be paraphrased as∮

Σϕ

(
κ

E
−
∮

Σϕ

κ

E
dµ

)2

dµ=

∮
Σϕ

∣∣∣∣D 1

E

∣∣∣∣2 dµ (3.36)

for a probability measure dµ=Eds/Φ. In both 2-exD and 2-inD, plugging a constant
field intensity D 1

E(r) =0,r∈Σϕ into the right-hand side of the equation above, we may

read off from the left-hand side that D κ
E = 0 on the respective equipotential curve. This

implies that there is an equality∮
Σϕ

[
n×∇ κ

E

]
·
[
n×∇ 1

E

]
ds= 0. (3.37)

According to our analysis in [22, §2.3 and §3], this can only happen if ∂Ω is a circle in
2-exD, or ∂Ω is a circle centered at the origin in 2-inD.

Acknowledgments. This research was supported in part by the Applied Mathe-
matics Program within the Department of Energy (DOE) Office of Advanced Scientific
Computing Research (ASCR) as part of the Collaboratory on Mathematics for Meso-
scopic Modeling of Materials (CM4).

Part of this work was assembled from my research notes in 2006 (on curvature
effects in nanophotonics) and 2011 (on entropy in curved spaces). I am grateful to Prof.
Xiaowei Zhuang (Harvard) and Prof. Weinan E (Princeton) for their thought-provoking
questions in 2006 and 2011 that inspired these research notes. Many thanks are also
due to two referees whose suggestions helped improve the presentation of the current
work.

REFERENCES

[1] V. Agostiniani and L. Mazzieri, Riemannian aspects of potential theory, J. Math. Pures Appl.,
104(3):561–586, 2015. 3.2

[2] G. Alessandrini and E. Rosset, Symmetry of singular solutions of degenerate quasilinear elliptic
equations, Rend. Istit. Mat. Univ. Trieste, 39:1–8, 2007. 3.3

[3] N. Aronszajn, A unique continuation theorem for solutions of elliptic partial differential equations
or inequalities of second order, J. Math. Pures Appl., 36:235–249, 1957. 3.2

https://doi.org/10.1016/j.matpur.2015.03.008
https://mathscinet.ams.org/mathscinet-getitem?mr=2441608
https://mathscinet.ams.org/mathscinet-getitem?mr=92067


YAJUN ZHOU 451

[4] T. Holck Colding, New monotonicity formulas for Ricci curvature and applications. I, Acta Math.,
209(2):229–263, 2012. 2, 3

[5] T. Holck Colding and W.P. Minicozzi, Monotonicity and its analytic and geometric implications,
Proc. Natl. Acad. Sci. USA, 110(48):19233–19236, 2013. 2, 3

[6] T. Holck Colding and W.P. Minicozzi, Ricci curvature and monotonicity for harmonic functions,
Calc. Var. Part. Diff. Eqs., 49(3-4):1045–1059, 2014. 2, 3

[7] D.L. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Second Edi-
tion, Springer, Berlin, Germany, 93, 1998. 3.1

[8] M.P. do Carmo, Differential Geometry of Curves & Surfaces, Dover Publications Inc., Mineola,
NY, 2016. 2, 2.1, 3.2

[9] A. Enciso and D. Peralta-Salas, Symmetry for an overdetermined boundary problem in a punc-
tured domain, Nonlinear Anal., 70(2):1080–1086, 2009. 3.3

[10] J.D. Jackson, Classical Electrodynamics, Third Edition, John Wiley & Sons, New York, NY, 1999.
2.1, 2.2, 3.2

[11] J. Jost, X.-N. Ma, and Q. Ou, Curvature estimates in dimensions 2 and 3 for the level sets of
p-harmonic functions in convex rings, Trans. Amer. Math. Soc., 364(9):4605–4627, 2012. 1,
3.1

[12] A.M. Kalsin, M. Fialkowski, M. Paszewski, S.K. Smoukov, K.J.M. Bishop, and B.A. Grzybowski,
Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice, Science,
312(5772):420–424, 2006. 1

[13] X.-N. Ma and W. Zhang, The concavity of the Gaussian curvature of the convex level sets of
p-harmonic functions with respect to the height, Commun. Math. Stat., 1(4):465–489, 2013.
3.1

[14] X.-N. Ma and Y. Zhang, The convexity and the Gaussian curvature estimates for the level sets
of harmonic functions on convex rings in space forms, J. Geom. Anal., 24(1):337–374, 2014.
1, 2, 3
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