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INVARIANT DOMAIN PRESERVING CENTRAL SCHEMES FOR
NONLINEAR HYPERBOLIC SYSTEMS∗

BOJAN POPOV† AND YUCHEN HUA‡

Abstract. We propose a central scheme framework for the approximation of hyperbolic systems
of conservation laws in any space dimension. The new central schemes are defined so that any convex
invariant set containing the initial data can be an invariant domain for the numerical method. The
underlying first-order central scheme is the analog of the guaranteed maximum speed method of [J.-
L Guermond and B. Popov, SIAM J. Anal., 54(4):2466–2489, 2016] adjusted to the finite volume
framework. There are three novelties in this work. The first one is that any classical second-order
central scheme can be modified to satisfy an invariant domain property of the first-order scheme via
a process which we call convex limiting. This is done by using convex flux limiting along the lines of
[J.-L Guermond, B. Popov and I. Tomas, Comput. Meth. Appl. Mech. Engrg., 347:143–175, 2019].
The second novelty is the design of a new second-order method based on slope limiting only. The new
local slope reconstruction technique is based on convex limiting so that the cell interface values are
corrected to fit into a local invariant domain of the hyperbolic system. This new type of slope limiting
depends on the hyperbolic system and to the best of our knowledge is the only one to guarantee local
invariant domain preservation. Both schemes, flux and slope limiting based, are shown to be second-
order accurate for smooth solutions in the L∞-norm and robust in all test cases. The third novelty is
a new second-order method based on the MAPR limiter from [I. Christov and B. Popov, J. Comput.
Phys., 227(11):5736–5757, 2008] and adaptive slope limiting in the spirit of [A. Kurganov, G. Petrova
and B. Popov, SIAM J. Sci. Comput., 29(6):2381–2401, 2007] but based on an entropy commutator.
This new method can be used as an underlying high-order method and combined with convex flux
limiting to guarantee a local invariant domain property. The time stepping of all methods is done by
using strong stability preserving Runge-Kutta methods and the invariant domain property is proved
under a standard CFL condition.

Keywords. nonlinear hyperbolic systems; Riemann problem; invariant domain; second-order
method; convex limiting; finite volume method; central schemes.
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1. Introduction
We consider Godunov-type approximations of nonlinear hyperbolic systems of con-

servation laws. There are two types of Godunov-type schemes: upwind and central. In
general, the upwind-type schemes are considered to be less diffusive and with sharper
resolution than the central schemes. However, they are based on exact or approximate
Riemann solvers and some of them can be very expensive, especially in the multidimen-
sional case. Central schemes are more efficient because they require only an estimate
on the local speed of propagation at each interface and their overall complexity for
achieving given accuracy tends to be smaller, see for example [19, 20]. Moreover, there
are no Riemann solvers or characteristic decomposition involved which makes them
a universal tool for a wide variety of problems. The goal of this work is to develop
new central schemes which are robust in the sense that they preserve the invariant do-
main properties of the underlying hyperbolic system and at the same time keep the low
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computational complexity of the central framework. The new methods being invariant
domain preserving means that they are: (i) robust when the solution is close to the
boundary of the admissible set of the hyperbolic system, for example vacuum states for
the Euler equations; (ii) naturally reduce oscillations by imposing local convex limiting.
Moreover, the methods remain second-order accurate in all numerical tests after the
local convex limiting process (flux or slope limiting). A high-order method can be made
invariant domain preserving by adapting the convex flux limiting process developed in
the finite element framework in [11, 12] to the central scheme setup. This is not a big
novelty but it has not been done in the finite volume context. We present it here with
all details so that practitioners can use it and make an existing finite volume method
more robust. Note that we impose local convex limiting on the numerical solution in
contrast with many existing positivity preserving methods. For example, the bound
preserving limiting developed by [25] for the Euler system is very different from the
convex limiting used here and in [11, 12]. Namely, in contrast to [25] we check and
correct the local second-order method to fit into a local convex set in phase space: we
limit density, internal energy and specific entropy using local values. In the positivity
preserving limitation, see (3.5) and (3.7) in [25], the corrections are only active when
the local values are close to a global numerical vacuum state (defined to be 10−13 for
the density and pressure) of the Euler system. Away from this numerical vacuum the
limiters in (3.5) and (3.7) in [25] are not active, hence some other limitation, typically
limiting local variation of the solution, is used to make the method stable.

We develop two new versions of the Kurganov-Tadmor (KT) scheme, see [19], which
are invariant domain preserving. The first new scheme we propose is based on a MAPR
style limiter [2], an entropy commutator used for adaptive limiting, see §3.3.2, and
convex flux limiting (see §4.2) to make the scheme invariant domain preserving. The
MAPR style limiting allows for second-order accuracy for smooth solutions in the L∞-
norm, adaptive limiting is essential for problems with nonconvex fluxes [21] where phase
transition is present, and convex flux limiting, see Algorithm 1, guarantees robustness of
the method. The entropy commutator simplifies the adaptive limiting process from [21]
and makes the process universal for any hyperbolic system with an entropy. This scheme
seems to have the best performance in all tests we considered. The second scheme
that we propose is based on an invariant domain preserving slope limiter, see §4.3.
That scheme is formally second-order accurate and there is no need to do any extra
limitations, the invariant domain is preserved because of the new convex slope limiting,
see Algorithm 2. This is a brand new way to do slope limiting because it depends on the
hyperbolic system at hand. For scalar equations, the local invariant domain property
reduces to local maximum principle preservation and the resulting methods are not
new. However, when dealing with systems, the local limitations are not related in any
way to maximum principle. The goal of the limiting process is to put the interface
states into a local convex set in phase space and this is the only tool used to define
and reduce oscillations. All local sets used for limitations are extracted from the so-
called bar states, see (3.7), which are averages of exact solutions of “fake” Riemann
problems. This is similar to the finite element approach in [11, 12]. We are unaware
of any other slope limiting methods which guarantee local invariant domain property
for any hyperbolic system under a standard CFL and keeps the second-order accuracy
of the method. Moreover, this is the most cost efficient method we propose. The
paper is organized as follows. The problem is formulated in §2. The central scheme
settings are introduced in §3. The quasiconcave limitation is presented in §4. The new
invariant domain preserving schemes are also detailed in this section. The main results
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of this section are Lemma 4.2, Theorem 4.1, and Lemma 4.4. The performance of the
proposed methods is illustrated in §5. In both cases, flux or slope convex limiting, we
observe in all numerical tests that the extra cost of convex limiting is not dominating
and the convex limiting process does not deteriorate second-order accuracy for smooth
solutions. Moreover, both schemes are simple to implement, parameter free, robust, and
can be applied without any changes for various hyperbolic systems, for example when
phase transitions are present and near vacuum states. In principle, this methodology
can be extended for more general second-order finite volume type schemes (which only
evolve cell averages in time) on unstructured meshes. However, a general approach for
arbitrary unstructured meshes will overcomplicate the presentation of the methods, the
description of the local limitations and make the resulting schemes difficult to use in
practice.

2. Preliminaries
The objective of this section is to introduce the notions of nonlinear hyperbolic

systems, Riemann problem and the concept of stability for systems, i.e., the invariant
domain property. The reader who is familiar with the notions of invariant domains
and Riemann problems may skip this section and go directly to §3. Our definitions of
invariant sets and domains are identical to the ones in [6].

2.1. Nonlinear hyperbolic systems. Let d and m be the space dimension and
we consider the following hyperbolic systems in conservation form{

∂tu+∇·f(u) =0, for (x,t)∈Rd×R+

u(x,0) =u0(x)
(2.1)

where the variable u takes value in Rm and the flux f takes value in (Rm)d, and
we consider u as a column vector u= (u1,. ..,um)>. The flux is a matrix with
entries fij(u),1≤ i≤m,1≤ j≤d and ∇·f is a column vector with entries (∇·f)i=∑

1≤j≤d∂(xj)fij . For any n= (n1,. ..,nd)
>∈Rd, we denote f(u) ·n the column vector

with entries
∑

1≤j≤dnjfij(u), where i∈{1 :m}.
To simplify questions regarding boundary conditions, we assume that either periodic

boundary conditions are enforced, or the initial data is compactly supported or constant
outside a compact set. In both cases we denote by D the spatial domain where the
approximation is constructed.

We assume that (2.1) is such that there is a clear notion for the solution of the
one-dimensional Riemann problem. Namely, we assume that there exists an admissible
set A⊂Rm such that the following one-dimensional Riemann problem is (uniquely)
solvable

∂tv+∂x(f(v)·n) = 0, (x,t)∈R×R+, v(x,0) =

{
vL if x<0

vR if x>0
(2.2)

for any unit vector n∈Rd and any Riemann pair (vL,vR) in A2. An important property
of the Riemann solution is that it has finite speed of propagation λmax(n,uL,uR).
Namely, for any t≥0 we have

v(x,t) =

{
vL, if x≤−tλmax(n,uL,uR)

vR, if x≥ tλmax(n,uL,uR).
(2.3)

We assume also that there exists a convex subset A of A, which we call invariant set,
such that for any Riemann pair in A, the average of the Riemann solution over the
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Riemann fan
∫ tλmax(n,uL,uR)

−tλmax(n,uL,uR)
v(x,t)dx is also in A for all (x,t)∈R×R+. The existence

of such a set has been established by [3] on a very large class of hyperbolic systems.

The following elementary result is a well-known consequence of (2.3), see e.g., [6,
Lem. 2.1].

Lemma 2.1. Let uL,uR∈A, let u(n,uL,uR) be the Riemann solution to (2.2), let

ū(t,n,uL,uR) :=
∫ 1

2

− 1
2

u(n,uL,uR)(x,t)dx and assume that tλmax(n,uL,uR)≤ 1
2 , then

ū(t,n,uL,uR) =
1

2
(uL+uR)− t(f(uR) ·n−f(uL) ·n). (2.4)

2.2. Invariant sets and domain. Following [6], we introduce the notions of
invariant sets and invariant domains. We associate invariant sets only with the solutions
of Riemann problems and define invariant domains only for an approximation process.

Definition 2.1 (Invariant Set). We say that a set A⊂A⊂Rm is invariant for
(2.1) if for any pair (uL,uR)∈A×A, any unit vector n∈Sd−1(0,1), and any t>0, the
average of the entropy solution of the Riemann problem (2.2) over the Riemann fan,

say, 1
t(λ+

m−λ−
1 )

∫ λ+
mt

λ−
1 t

u(n,uL,uR)(x,t)dx, remains in A.

We now introduce the notion of invariant domain for an approximation process.
Let Xh⊂L1(Rd,Rm) be a finite-dimensional approximation space and let Sh :Xh3
uh 7→Sh(uh)∈Xh be a discrete process over Xh. Henceforth we abuse the language by
saying that a member of Xh, say uh, is in the set A⊂Rm when actually we mean that
{uh(x)|x∈Rd}⊂A.

Definition 2.2 (Invariant Domain). A convex invariant set A⊂A⊂Rm is said to
be an invariant domain for the process Sh if and only if for any state uh in A, the state
Sh(uh) is also in A.

For scalar conservation equations the notions of invariant sets and invariant domains
are closely related to the maximum principle, see §2.2.1. In the case of nonlinear systems,
the notion of maximum principle does not apply and must be replaced by the notion
of invariant domain. For example, the invariant domain theory when m= 2 and d= 1
relies on the existence of global Riemann invariants, the best known examples are the
hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian form, see [6]
for details. For results on general hyperbolic systems, we refer the reader to [3, 4, 15].

Here, we will illustrate the abstract notions of invariant sets and invariant domains
with some examples which are used in this paper.

2.2.1. Example 1: scalar equations. Assume m= 1 and d is arbitrary,
i.e., (2.1) is a scalar equation. Provided f ∈Lip(R;Rd), any bounded interval is an
admissible set for (2.1). For any Riemann data uL, uR, the maximum speed of
propagation in (2.3) is bounded by λmax(uL,uR) := ||f ·n||Lip(umin,umax) where umin =
min(uL,uR), umax = max(uL,uR). If f is convex and is of class C1, we have
λmax(uL,uR) = max(|n ·f ′(uL)|,|n ·f ′(uR)|) if n ·f(uL)≤n ·f(uR) and λmax(uL,uR) =
n ·(f(uL)−f(uR))/(uL−uR) otherwise. Any interval [a,b]⊂R is admissible and is an
invariant set for (2.1), i.e., if uR,uL∈ [a,b], then a≤u(n,uL,uR)≤ b for all times, i.e.,
any interval [a,b] is an invariant domain for any numerical scheme which satisfies a local
maximum principle property.
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2.2.2. Example 2: p-system. The one-dimensional motion of an isentropic gas
is modeled by the so-called p-system. In Lagrangian coordinates the system is written
as follows: {

∂tv+∂xu= 0,

∂tu+∂xp(v) = 0, for (x,t)∈R×R+.
(2.5)

The dependent variables are the velocity u and the specific volume v, i.e., the reciprocal
of density. The mapping v 7→p(v) is the pressure and is assumed to be of class C2(R+;R)
and to satisfy

p′<0, 0<p′′. (2.6)

A typical example is the so-called gamma-law, p(v) = rvγ , where r>0 and γ≥1. Using
the notation u= (v,u)>, any set A⊂ (0,∞)×R is admissible. Using the notation dµ :=√
−p′(s)ds, and assuming

∫∞
1
<∞, the system has two families of global Riemann

invariants:

w1(u) =u+

∫ ∞
v

dµ, and w2(u) =u−
∫ ∞
v

dµ. (2.7)

Note that
∫∞

1
dµ<∞ if γ>1. Let a,b∈R, then it can be shown that any set Aab∈

R+×R of the form

Aab :={u∈R+×R | a≤w2(u),w1(u)≤ b} (2.8)

is an invariant set for the system (2.5), see [15, Exp. 3.5, p. 597]. Moreover, Aab is
an invariant domain for the LxF scheme, [14, Thm. 2.1] and [15, Thm. 4.1], and the
guaranteed maximum speed method of [6].

2.2.3. Example 3: Euler equations. Consider the compressible Euler equa-
tions:

∂tc+∇·(f(c)) =0, c=

 ρ
m
E

, f(c) =

 m
m⊗m

ρ +pI
m
ρ (E+p)

 . (2.9)

where the independent variables are the density ρ, the momentum vector field m and
the total energy E. The velocity vector field u is defined by u := m

ρ and the internal

energy density e by e :=ρ−1E− 1
2 ||u||

2
`2 . The quantity p is the pressure. The symbol I

denotes the identity matrix in Rd. Let s :=s(ρ,e) be the specific entropy of the system,
and assume that −s is strictly convex as a function of τ := 1/ρ and e. It is known that

Ar :={(ρ,m,E)|ρ>0,e>0,s≥ r} (2.10)

is an invariant set for the Euler system for any r∈R. For example, it is shown in [4, Thm.
7 and 8] that the Ar is convex and is an invariant domain for the staggered Lax-Friedrichs
scheme. The non-staggered Lax-Friedrichs scheme and the guaranteed maximum speed
(GMS) first-order scheme from [6] are also invariant domain preserving.
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3. Central schemes
In this section, we introduce the analog of the first-order invariant domain preserving

scheme from [6] adopted to the central framework and the corresponding second-order
invariant domain preserving central scheme. Both of these schemes are derived from the
semi-discrete Kurganov-Tadmor scheme, see [19]. For more details on central schemes
we refer the reader to [19,20]. Following [19], we restrict our presentation to the case of
one and two space dimensions. However, it is not difficult to derive the analogous results
in arbitrary space dimension on rectangular meshes. We start with the one-dimensional
setup.

3.1. First-order central scheme. We first consider the case of one space di-
mension. {

∂tu+∂xf(u) = 0, for (x,t)∈R×R+

u(x,0) =u0(x)
(3.1)

We assume that the space discretization is uniform. That is, we set the cell centers to
be xj := j∆x, j∈Z, and assume that the approximate solution ũn(x)≈u(x,tn) at time
tn is a piecewise constant function

ũn(x) :=
∑
j

unj 1[xj−1/2,xj+1/2], xj±1/2 :=xj±
∆x

2
. (3.2)

The values unj , j∈Z, are the cell averages of the approximate solution at time tn. The

time step ∆tn := tn+1− tn is generic, determined by a CFL condition for each n≥0, and
we will denote tn+1 = tn+∆t where we abuse the notation and drop the dependence on
n in the time step. The invariant domain first-order scheme from [6] can be written as
follows

un+1
j −unj

∆t
=−

f(unj+1)−f(unj−1)

2∆x
+
λni+1/2

2∆x
(unj+1−unj )−

λni−1/2

2∆x
(unj −unj−1), (3.3)

where the quantity λnj+1/2 :=λmax(unj ,u
n
j+1,f) denotes the maximum speed of prop-

agation of the Riemann problem with left state unj , right state unj+1 and flux f , see
(2.2) and (2.3) in section §2.1. As proved in [6, Thm. 4.1] the above scheme is invariant
domain preserving if the following CFL condition holds for all n≥0

∆tmaxjλ
n
j+1/2

∆x
≤ 1

2
. (3.4)

However, it is easy to verify that using forward Euler time stepping for the first-order
semi-discrete central scheme in [19, Eqn. (4.8)] will result in the same discrete method.
Therefore, in the one-dimensional case, the fully discrete first-order central scheme
from [19] coincides with the invariant domain preserving method from [6] when the
maximum speed is defined as above and Euler time stepping is used.

We now rewrite the fully discrete scheme (3.3) in flux form using the notation

uL,n+1
j to indicate that this is the first-order method:

uL,n+1
j −unj

∆t
=−

Lnj+1/2−L
n
j−1/2

∆x
(3.5)

where Lnj+1/2 is the first-order interface numerical flux

Lnj+1/2 =
1

2
(f(unj+1)+f(unj ))− 1

2
λnj+1/2(unj+1−unj ). (3.6)
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Remark 3.1. The Euler time stepping in (3.5) can be upgraded to any strong stability
preserving (SSP) Runge-Kutta (RK) scheme and the method will still be invariant
domain preserving under a standard CFL-condition, for more details see the discussion
in [10, §4.5] for more details and references on SSP-RK schemes.

For completeness, we recall the following result established in [6] in this setup.

Theorem 3.1. Let A⊂A be an invariant set for (3.1) in the sense of Definition (2.2).
Assume that A is convex and that for any admissible states uL, uR, the maximum speed
of propagation λmax(uL,uR,f) is finite. Assume that u0

h∈A and the CFL condition
(3.4) holds. Then we have:

(1) A is an invariant domain for the process unh 7→un+1
h where un+1

h is computed with
the scheme (3.3) for all n≥0.

(2) Given n≥0 and j∈{1 : I}, let B⊂A be a convex invariant set such that unj ∈B and

unj±1∈B, then un+1
j ∈B.

Remark 3.2. The proof of Theorem 3.1 relies on the introduction of auxiliary states,
called bar states, given by

ūn+1
j+1/2 :=

1

2
(unj +unj+1)− 1

2λnj+1/2

(f(unj+1)−f(unj )), (3.7)

which under the CFL-condition (3.4) are averages of the exact solution of the Riemann
problem with a left state unj , a right state unj+1 and a flux f , see Lemma 2.1. These
states are naturally in the local invariant set of the problem, see [6], and are essential
for the convex limiting process which we use in this paper.

Now we consider the case of two space dimensions in (2.1) with x := (x,y){
∂tu+∂xf(u)+∂yg(u) = 0, for (x,t)∈R2×R+,

u(x,0) =u0(x).
(3.8)

We use uniform rectangular mesh with cell centers (xj ,yk) := (j∆x,k∆y), j,k∈Z, and
take the approximate solution ũn(x,y)≈u(x,y,tn) at time tn to be a piecewise-constant
function

ũn(x,y) :=
∑
j,k

unj,k1[xj−1/2,xj+1/2]×[yk−1/2,yk+1/2], (3.9)

where the values unj,k, j,k∈Z, are the cell averages of the approximate solution at time
tn. The time step is determined in the same way as in the one dimensional case. Namely,
we denote tn+1 = tn+∆t where we abuse the notation and drop the dependence on n
in the time step. The fully discrete first-order central scheme is given by

uL,n+1
j,k −uL,nj,k

∆t
=−

Ln,xj+1/2,k−L
n,x
j−1/2,k

∆x
−
Ln,yj,k+1/2−L

n,y
j,k−1/2

∆y
, (3.10)

where the first-order interface fluxes are defined as follows:

Ln,xj+1/2,k =
1

2
(f(unj+1,k)+f(unj,k))− 1

2
λn,xj+1/2,k(unj+1,k−unj,k), (3.11a)

Ln,yj,k+1/2 =
1

2
(g(unj,k+1)+g(unj,k))− 1

2
λn,yj,k+1/2(unj,k+1−unj,k). (3.11b)
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Similar to the one-dimensional case we have an invariant domain property for
this first-order method, un+1 :=uL,n+1, if the local speeds are given by λn,xj+1/2,k =

λmax(unj,k,u
n
j+1,k,f), λn,yj,k+1/2 =λmax(unj,k,u

n
j,k+1,g) and the following CFL condition

holds for all n≥0

max
j,k

(∆tλn,xj+1/2,k

∆x
+

∆tλn,yj,k+1/2

∆y

)
≤ 1

2
(3.12)

Namely, Theorem 3.1 holds under the CFL condition (3.12).

Remark 3.3. Similar to the one-dimensional case, the proof of Theorem 3.1 relies on
the introduction of the bar states

ūn+1
j+1/2,k =

1

2
(unj,k+unj+1,k)− 1

2λj+1/2,k
(f(unj+1,k)−f(unj,k)), (3.13)

and

ūn+1
j,k+1/2 =

1

2
(unj,k+unj,k+1)− 1

2λj,k+1/2
(f(unj,k+1)−f(unj,k)), (3.14)

which under the CFL-condition (3.12) are averages of exact solutions of Riemann prob-
lems, therefore, these states are naturally in the local invariant set of the problem.
In the general multidimensional case (d≥2), Theorem 3.1 holds when the constant in
the CFL condition (3.12) is 1

2d and we call such methods guaranteed maximum speed
(GMS) schemes, see [7] for more details on GMS schemes.

3.2. Second-order central scheme. Here we recall the second-order central
scheme from [19], which we call the KT-scheme in the rest of the paper. In one space
dimension case, we assume the same setup of space and time discretization as for first-
order GMS-scheme, and assume the approximate solution ũn=u(x,tn) at time t= tn

to be piecewise linear

ũn :=
∑
j

[unj +(ux)nj (x−xj)]1[xj−1/2,xj+1/2], xj±1/2 :=xj±
∆x

2
, (3.15)

where values unj are cell averages of approximate solutions and (ux)nj are approximations
of exact derivatives ux(xj ,t

n). The semi-discrete KT-scheme is given by

d

dt
uj(t) =−

f(u+
j+1/2(t))+f(u−j+1/2(t))−f(u+

j−1/2(t))−f(u−j−1/2(t))

2∆x

+
aj+1/2(t)(u+

j+1/2(t)−u−j+1/2(t))−aj−1/2(t)(u+
j−1/2(t)−u−j−1/2(t))

2∆x
(3.16)

where u+
j+1/2 :=uj+1(t)− ∆x

2 (ux)j+1(t), u−j+1/2 :=uj(t)+ ∆x
2 (ux)j(t) are the interface

values and aj+1/2(t) =λmax(u−j+1/2(t),u+
j+1/2(t),f) denotes maximum speed. By setting

the second-order numerical flux to be

Hn
j+1/2 :=

f(un,+j+1/2)+f(un,−j+1/2)

2
−
anj+1/2

2
(un,+j+1/2−un,−j+1/2). (3.17)

and using a forward Euler in time we obtain the fully discrete KT-scheme

uH,n+1
j −unj

∆t
=−

Hn
j+1/2−H

n
j−1/2

∆x
. (3.18)
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Remark 3.4. The KT-scheme (3.16) will reduce to its first-order form (3.3) if we set
the slopes (ux)nj to zero. As in the first-order case, high-order time stepping is done by
using SSP-RK schemes.

In the case of two space dimensions, we use the same rectangular cell and the
same time discretization as for the first-order scheme. The approximate solution ũn=
u(x,y,tn) is a piecewise linear function given by

ũn(x,y) :=
∑
j,k

[unj,k+(ux)nj,k(x−xj)+(uy)nj,k(y−yk)]1[xj−1/2,xj+1/2]×[yk−1/2,yk+1/2],

(3.19)
where xj±1/2 :=xj± ∆x

2 , yk±1/2 :=yk± ∆y
2 . The values unj,k are the cell averages of

the approximate solutions and ((ux)nj,k,(uy)nj,k) is the approximate gradient on the cell
[xj−1/2,xj+1/2]× [yk−1/2,yk+1/2] at time t= tn. Following [19], we set the numerical
fluxes to be

Hn,x
j+1/2,k :=

f(un,+j+1/2,k)+f(un,−j+1/2,k)

2
−
an,xj+1/2,k

2
(un,+j+1/2,k−un,−j+1/2,k), (3.20a)

Hn,y
j,k+1/2 :=

g(un,+j,k+1/2)+g(un,−j,k+1/2)

2
−
an,yj,k+1/2

2
(un,+j,k+1/2−un,−j,k+1/2), (3.20b)

where un,+j+1/2,k :=unj+1,k− ∆x
2 (unx)j+1,k, un,−j+1/2,k :=unj,k+ ∆x

2 (unx)j,k, un,+j,k+1/2 =

unj,k+1−
∆y
2 (uny )j,k+1, un,−j,k+1/2 =unj,k+ ∆y

2 (uny )j,k separately, and the local speeds are

an,xj+1/2,k =λmax(un,−j+1/2,k(t),un,+j+1/2,k(t),f), an,yj,k+1/2 =λmax(un,−j,k+1/2(t),un,+j,k+1/2(t),g).

Then, a forward Euler time step of the semi-discrete KT-scheme can be written as
follows

uH,n+1
j,k −unj,k

∆t
=−

Hn,x
j+1/2,k−H

n,x
j−1/2,k

∆x
−
Hn,y
j,k+1/2−H

n,y
j,k−1/2

∆y
. (3.21)

3.3. Piecewise linear reconstruction. In order to completely describe the
KT-scheme (3.16), we need to define the slope reconstructions in (3.15) and (3.19). It
is well known that a nonlinear slope reconstruction is needed. A common approach is
to use a nonlinear limiter and we recall here some of the widely used choices below. We
present the reconstruction process in one space dimension. The multidimensional case
is handled by splitting the gradient reconstruction into onedimensional steps.

3.3.1. Examples of slope reconstructions. We start with a classical slope
reconstruction based on the so-called minmod limiter. The minmod slope limiter is
given by

σm
j (u) = (ux)j := m(

uj+1−uj
∆x

,
uj−uj−1

∆x
), (3.22)

where the minmod operator is defined as follows

m(x1,x2,. ..,xn) =


min1≤j≤nxj , if xj>0 ∀j,
max1≤j≤nxj , if xj<0 ∀j,
0, otherwise.

(3.23)

Another minmod-type θ-dependent family with 1≤θ≤2 is given by

σm,θ
j (u) = (ux)j := m

(
θ
uj+1−uj

∆x
,
uj+1−uj−1

2∆x
,θ
uj−uj−1

∆x

)
, (3.24)
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see for example [16, p.1900]. The range of θ (1≤θ≤2) guarantees a local maximum
principle for scalar equations, see [19, Cor. 5.1].

There are many other second-order reconstructions, most notably the so-called uni-
formly non-oscillatory (UNO) reconstruction, introduced by [13]. We refer the reader
to [21] for more nonlinear reconstructions and when it is appropriate to use them.

Another gradient reconstruction, appropriate for unstructured meshes and avoiding
the clipping phenomenon of minmod, was introduced in [2]. It is based on the so-called
MAPR limiter given by

mapr(x1,x2,. ..,xn) ={xi |where|xi|= min
1≤j≤n

|xj |} (3.25)

σmapr,θ
j (u) = (ux)j :=mapr(θj

uj+1−uj
∆x

,
uj+1−uj−1

2∆x
,θj

uj−uj−1

∆x
), (3.26)

where 1≤θj is a number specified by the user. Using θj = 1 gives the MAPR recon-
struction from [2] and the generalized MAPR (1≤θj≤4) is the natural analog of the
minmod-θ limiter. We use a variable theta in this paper, θnj = 2−Rnj with Rnj the en-
tropy commutator defined in (3.30), and apply the MAPR limiter (3.25) in the regions
of non-smooth flow, where non-smooth is defined by θnj ≤1.5. Note that, in the regions
of smooth flow the entropy commutator is almost zero, see Section 3.3.2, so θnj ≤1.5
is a good cutoff for the limiter. If θnj >1.5 we use the central slope, i.e., we define

σmapr,θ =
uj+1−uj−1

2∆x .

We can also define an abstract limiter which guarantees that the second-order re-
construction does not violate a local invariant domain property. In the scalar case this is
the well known local maximum principle and minmod-θ will do the job but for nonlinear
systems the invariant domain depends on the systems at hand and minmod-θ is not an
appropriate choice. We call such a limiter an invariant domain limiter σinv

j . Namely,

we define the invariant slope σinv
j to be such that the values un,−j+1/2 :=unj +

σinv
j ∆x

2 and

un,+j−1/2 :=unj −
σinv
j ∆x

2 are in local invariant sets defined by the user. More precisely, we

have the following local abstract limitation.

Definition 3.1. Let Aj−1/2 be an invariant set of (2.1) containing the states unj−1

and unj and Aj+1/2 be an invariant set of (2.1) containing unj and unj+1. Then the

invariant slope σinv
j corresponding to the invariant sets Aj−1/2 and Aj+1/2 is defined as

σinv
j = `

uj+1−uj−1

2∆x where ` is the largest number in [0,1] such that un,+j−1/2∈Aj−1/2 and

un,−j+1/2∈Aj+1/2.

The actual computation of such limiters and a precise definition of the local sets
Aj−1/2 which allows the method to be second order will be given later, see Algorithm 2
and the numerical tests but for the time being we stay in this abstract setting. The key
difference between minmod-type slope limiting (or any other classical limiting) and the
invariant domain slope limiting is that one tries to impose a local maximum principle
(or reduce oscillations in physical space) and the invariant domain slope limiting only
limits the slopes so that the invariant domain property is imposed in phase space at
cell interfaces. With the above notations we are now ready to describe the two new
methods we propose in this paper:

(1) Method 1 is a based on convex flux limiting. It uses the MAPR slope, see (3.25),
when θnj ≤1.5 and the central slope if θnj >1.5. The value of θ is computed using
θnj = 2−Rnj with Rnj the entropy commutator defined in (3.30). The method is made
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invariant domain preserving using convex flux limiting, see Algorithm 4.2.1. In the
paper we refer to this method as the MAPR-EV-CL method, where EV stands for
the use of entropy viscosity commutator used to determine θnj and and CL refers to
the convex flux limiting used to enforce the local invariant domain property.

(2) Method 2 is a based on convex slope limiting only. It uses the invariant domain slope
limiter, see Definition 3.1, and the resulting scheme is invariant domain preserving
under standard CFL, see Theorem 4.1 and Theorem 4.2; in the paper we refer to this
method as the INV-CL method, where INV is for invariant domain preserving and
CL refers to the convex limiting used to generate this invariant domain preserving
slope limiter.

Any other method used in the simulations will be identified by the limiter used in the
KT-scheme, for example the method based on the minmod limiter (refered to minmod
in the numerical section) will be shown as a standard comparison in all numerical
examples. We now continue with the exact construction of θj required in the definition
of the MAPR limiter.

3.3.2. Entropy based smoothness indicator. In this section, we are going to
consider a different approach to create a new limited reconstruction. Namely, we would
like to use the central unlimited slope in smooth regions and a nonlinear minmod-type
limited slope in the regions of discontinuities. Moreover, the change between the two
reconstructions should happen when a physical discontinuity forms. Similar to [8], the
approach we take to detect a discontinuity is to measure an entropy production. Our
objective is to construct a second-order method that is entropy consistent and at the
same time close to being invariant domain preserving. However, we do not want to rely
on the yet to be explained limiting process to enforce entropy consistency. We refer the
reader to Lemma 3.2, Lemma 4.6 and §6.1 in [7] and [6, §5.1] for counter-examples of
methods that are invariant domain preserving but entropy violating. Invariant domain
limitation should be understood as a light post-processing applied to a method that is
already entropy consistent and almost invariant domain preserving. In [8,9], a high-order
graph viscosity that is entropy consistent was introduced. However, we do not want the
time discretization to interfere with the estimation of the residual, and we follow the
entropy viscosity commutator approach proposed in [11]. For simplicity, we present
the entropy viscosity commutator in the one dimensional case. Let (η(u),F (u)) be the
entropy pair of system (3.1), that is, η is a convex function of the vector of conserved
variables u, and the entropy flux F satisfies DF (u) =η′(u)>Df(u). Following [11, §3.4]
and [12, §6.4] we measure the discrepancy in the chain rule as follows

∆n
j =F (unj+1)−F (unj−1)−η′(unj )>(f(unj+1)−f(unj−1)). (3.27)

We set

Cnj = |F (unj+1)−F (unj−1)|+ |η′(unj )>| · |f(unj+1)−f(unj−1)|, (3.28)

to be a corresponding normalizing coefficient, where for a vector function g we denote
|g| :=‖g‖`2 . Notice that in smooth regions Cnj could be very close to or even zero. Thus,
to avoid division by zero, we set

αnj = max(|F (unj+1)|,|F (unj )|,|F (unj−1)|), (3.29a)

βnj = |η′(unj )>| ·λmax,n
j ·(|unj+1−unj |+ |unj −unj−1|), (3.29b)



540 INVARIANT DOMAIN PRESERVING CENTRAL SCHEMES

where λmax,n
j := max(λnj+1/2,λ

n
j−1/2) is the global maximum speed of propagation at

time tn and define the normalized entropy viscosity commutator as

Rnj =
|∆n

j |
max(Cnj ,εα

n
j ,εβ

n
j )
, (3.30)

where ε is a small number, for example ε := 10−8. By definition, we have that Rnj ∈ (0,1]

because |∆n
j |≤Cnj . Note that (3.27) is a discrete version of F ′−η′ ·f ′ and because

on continuous level F ′−η′ ·f ′= 0, using Taylor’s expansion one could prove that Rnj =
O(∆x) in smooth regions and Rnj ∼1 in the regions of shocks. For more details on
discrete entropy viscosity commutators, we refer the reader to [11, §3.4]. We now define
the local weights θnj needed for the MAPR limiter (3.25) as follows

1≤θnj := 2−Rnj ≤2. (3.31)

In smooth regions, we have θnj = 2−O(∆x) and near shocks we have θnj ∼1.

4. Quasiconcavity based limitation
In this section, we introduce a technique which will modify an existing second-

order method, for example the original KT-scheme, and make it local invariant domain
preserving. We present two limiting techniques which can do that, both based on the
so-called convex limiting first introduced in [11]. Both of these limitations will upgrade
the KT-scheme to satisfy an invariant domain property and numerically preserve the
second-order accuracy of the method. The first approach is called convex flux limiting,
see Algorithm 4.2.1, and will make any KT-scheme based on any slope limiting invariant
domain preserving. This is the approach we use when applying the MAPR limiter, i.e.,
Method 1. The second approach is based on convex slope limiting and guarantees
that after the slope limitation the linear function is in the local invariant domain, see
Algorithm 2. This is the approach we use when applying Method 2, no flux limiting is
needed.

Invariant domains are convex sets in phase space. In general, second-order finite
volume methods, and in particular the KT-scheme, may violate the invariant domain
property if the cell averages are on the boundary of the invariant set. For example,
assume that the state unj is on ∂S, where S is a local invariant set, unj−1,u

n
j ,u

n
j+1∈S.

Then the piecewise linear reconstruction using any nonzero σj will create interface values
un,+j+1/2 and un,−j+1/2. Because unj is the midpoint of the segment connecting un,+j+1/2 and

un,−j+1/2, we conclude that at least one of the points un,+j+1/2 or un,−j+1/2 is outside S,

thus violates the invariant domain property. Once an interface value moves outside the
invariant region, we may have that un+1

j is outside the set S under a standard CFL
condition. We have observed that to be true numerically for the KT-scheme and other
second-order finite volume schemes in many numerical tests where the invariant domain
boundary is smooth but not affine. Examples of systems with non-affine local invariant
sets are the p-system (see §2.2.2) and the Euler equations (see §2.2.3).

4.1. Invariant domains via quasiconcave constraints. In order to unify into
a single framework all the bounds that we want to enforce on the second-order solution,
we are going to rely on the notion of quasiconcavity, which we now recall.

Definition 4.1 (Quasiconcavity). Given a convex set A⊂Rm, we say that a function
Ψ :A→R is quasiconcave if every upper level set of Ψ is convex; that is, the set Lλ(Ψ) :=
{u∈A|Ψ(u)≥λ} is convex for any λ∈R in the range of Ψ.
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Note that concavity implies quasiconcavity. In all hyperbolic problems we consider,
we assume that the invariant domain can be described as an intersection of quasiconcave
constraints of the type Ψ(u)≥0 and we will enforce such quasiconcave constraints via
the convex limiting procedure introduced in [11, §4.2]. Moreover, in practice we will
modify all quasiconcave constraints to be concave constraints because the limitation
process is much simpler in the concave case. We now describe the set quasiconcave
constraints for all cases considered in the paper.

4.1.1. Scalar equations. In Example 1 in §2.2.1, the invariant domain is an
interval and we enforce it by imposing a local maximum principle. To be precise, we
set

umin
j := min(unj ,u

n
j±1,ū

n+1
j±1/2), umax

j := max(unj ,u
n
j±1,ū

n+1
j±1/2). (4.1)

Theorem 3.1 guarantees that the first-order method satisfies the local maximum prin-
ciple umin

j ≤un+1,L
j ≤umax

j . So, the convex limiting must enforce umin
j ≤un+1

j ≤umax
j

to guarantee an invariant domain property. By setting Ψ1
j (u) =u−umin

j and Ψ2
j (u) =

umax
j −u, we transform imposing the local maximum principle to imposing two linear

(therefore quasiconcave) constraints: Ψ1
j (u),Ψ2

j (u)≥0.

4.1.2. The p-system. In the case of p-system (2.5), see §2.2.2, we use the
Riemann invariants (2.7) to set a=wmin

2,j and b=wmax
1,j , with the definition

wmax
1,j := max(wn1,j ,w

n
1,j±1,w̄

n+1
1,j±1/2), wmin

2,j := min(wn2,j ,w
n
2,j±1,w̄

n+1
2,j±1/2), (4.2)

where wn1,j :=w1(unj ), wn2,j :=w2(unj ), w̄n+1
1,j±1/2 :=w1(ūn+1

j±1/2), and w̄n+1
2,j±1/2 :=

w2(ūn+1
j±1/2). Theorem 3.1 guarantees that wmin

2,i ≤w
L,n+1
2,i ≤wL,n+1

1,i ≤wmax
1,i . There-

fore, the local invariant set to be enforced is an intersection of two local concave
constraints: wmin

2,j ≤w
n+1
2,j and wn+1

1,j ≤wmax
1,j . By setting Ψ1

j (u) =wmax
1,j −w1(u) and

Ψ2
j (u) =w2(u)−wmin

2,j , we have that the concave constraints we are going to enforce

in this case are: Ψ1
j (u),Ψ2

j (u)≥0.

4.1.3. Euler equations. In the case of the Euler system (2.9), it is known
that the specific entropy is a quasiconcave function of the conserved variables, that is
Φ(u) :=s(ρ,e) is quasiconcave. The first-order solution uL,n+1 satisfies

ρmax
j ≥ρL,n+1

j , ρL,n+1
j ≥ρmin

j , eL,n+1
j ≥0, sL,n+1

j ≥smin
j , (4.3)

where we set

ρn,min
j := min(ρnj ,ρ

n
j±1, ρ̄

n+1
j±1/2), ρn,max

j := max(ρnj ,ρ
n
j±1, ρ̄

n+1
j±1/2),

en,min
j := min(enj ,e

n
j±1, ē

n+1
j±1/2),

sn,min
j := min(Φ(unj ),Φ(unj±1),Φ(ūn+1

j±1/2)). (4.4)

Then, the invariant set (2.10) can be imposed by enforcing that the high-order solution
uH,n+1 be in the intersection of the following four quasiconcave constraints:

ρn,max
j ≥ρ, ρ≥ρn,min

j , e≥en,min
j , s≥sn,min

j . (4.5)

Two of the above four constraints are not concave: e≥en,min
j and s−sn,min

j ≥0. How-
ever, one can modify the constraints, assuming that the density is already positive, and
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make them concave. For example, the mathematical entropy ρs and the total internal
energy ρe are concave functions of the conserved variables. Therefore, the modified
constraints ρe−ρen,min

j ≥0 and ρs−ρsn,min
j ≥0 are concave.

In the case of the γ-law equation of state, s= log(e
1

γ−1 ρ−1), one can impose the
invariant set (2.10) by enforcing

ρn,max
j −ρ≥0, ρ−ρn,min

j ≥0, ρe−cn,min
j ργ≥0. (4.6)

where cn,min
j = exp((γ−1)sn,min

j ).

Note that, the constraints ρ>0 and ρe−cn,min
j (ρn+1

j )γ≥0 imply that the internal energy

is positive. Thus, by setting Ψ1
j (u) =ρn,max

j −ρ, Ψ2
j (u) =ρ−ρn,min

j and Ψ3
j (u) =ρe−

cn,min
j ργ , we will enforce that Ψ1

j (u),Ψ2
j (u),Ψ3

j (u)≥0 to guarantee the invariant domain
property (2.10).

4.2. Invariant domain via flux limiting. In this section we develop a novel
limiting technique for enforcing quiasiconcave constraints. We adopt the methodology
of [11] to the central scheme framework. Simple linear constraints like ρmin

j ≤ρnj+1≤ρmax
j

can be easily enforced by using the flux corrected transport (FCT) technique, see for
example [24] and [1]. However, the FCT approach is designed for box-like limitation and
cannot be easily modified to enforce general convex constraints without losing second-
order accuracy. Moreover, the use of the bar states (3.7), (3.13) and (3.14) is critical in
the definition of the local constraints, see settings of the invariant bounds (4.1), (4.2)
and (4.4) for examples.

4.2.1. Flux limiting algorithm. We subtract the first-order update (3.5) from
the high-order update (3.18) and get:

uH,n+1
j =uL,n+1

j − ∆t

∆x
(Hn

j+1/2−H
n
j−1/2−L

n
j+1/2 +Lnj−1/2). (4.7)

By setting Gnj+1/2 := 2∆t
∆x (Hn

j+1/2−L
n
j+1/2) to be the high/low order flux difference, we

rewrite (4.7) as the following convex splitting form

uH,n+1
j =

1

2
(uL,n+1

j −Gnj+1/2)+
1

2
(uL,n+1

j +Gnj−1/2). (4.8)

Following [11, §4.2], we introduce a pair of scalar limiting parameters (l+j ,l
−
j ) to

create a limited second-order update

un+1
j (l+j ,l

−
j ) :=

1

2
(uL,n+1

j − l+j G
n
j+1/2)+

1

2
(uL,n+1

j + l−j G
n
j−1/2). (4.9)

which should satisfy the invariant domain property. Similar to the FCT approach, we
recover the first-order solution if l+j = l−j = 0 and the second-order solution if l+j = l−j = 1.

Let Ψz
j be a quasiconcave function where z is one of the constraints describing the

local invariant set at cell j. We denote with Azj the zero level set of Ψz
j . For example, we

set Ψρmax

j =ρmax
j −ρ and Aρmax

j ={u|ρmax
j −ρ≥0} for the Euler system. By definition,

Azj is a convex set. The goal is to find the largest positive numbers `±j ≤1 such that

un+1
j (l+j ,l

−
j ) is in Azj i.e., Ψz

j (u
n+1
j (l+j ,l

−
j ))≥0 for any 0≤ l+j ≤ `

+
j and 0≤ l−j ≤ `

−
j . In

order to simplify the notations, for any l∈R we denote u+
j (l) :=uL,n+1

j − lGnj+1/2 and

u−j (l) :=uL,n+1
j + lGnj−1/2. The following two lemmas describe the flux limiting process

for a given constraint z.
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Lemma 4.1. Let Ψz
j :A→R be the quasiconcave function mentioned above. Assume

that `z,±j ∈ [0,1] are such that Ψz
j (u

+
j (`z,+j ))≥0 and Ψz

j (u
−
j (`z,−j ))≥0, then we have that

Ψz
j (u

n+1
j (`z,+j ,`z,−j ))≥0.

Lemma 4.2. Let’s define `z,±j to be

`z,+j =

{
1 if Ψz

j (u
+
j (1))≥0,

max{`∈ [0,1]|Ψz
j (u

+
j (`))≥0} otherwise.

(4.10)

`z,−j =

{
1 if Ψz

j (u
−
j (1))≥0,

max{`∈ [0,1]|Ψz
j (u
−
j (`))≥0} otherwise.

(4.11)

Now we set `zj+1/2 = min(`z,+j ,`z,−j+1), we have that for all lzj+1/2∈ [0,`zj+1/2], it holds that

Ψz
j (u

n+1
j (lzj+1/2,l

z
j−1/2))≥0.

Remark 4.1. We refer the reader to [11] because the proofs of Lemma 4.1 and
Lemma 4.2 are analogous to the proofs of Lemma 4.3 and Lemma 4.4 in [11].

The second-order update un+1
j is a convex combination of u+

j and u−j , see (4.9).
Therefore, using the above lemmas, the limited update

uz,n+1
j =

1

2
u+
j (`zj+1/2)+

1

2
u−j (`zj−1/2). (4.12)

satisfies the constraint z. We now describe the full flux limiting process for all local
constraints in the following algorithm.

Algorithm 1 Convex flux limiting

Input: uL,n+1
j , Gnj+1/2, kmax, z1,. ..,zq.

Output: un+1
j

1: for i= 1 to kmax do
2: for z= 1 to zq do
3: Compute limiting parameters `zj+1/2 via Lemma 4.1 and Lemma 4.2.
4: end for
5: Set `j+1/2 := minz∈{z1,...,zq} `

z
j+1/2.

6: Update un+1
j =un+1

j (`j−1/2,`j+1/2) via (4.9).

7: Update Gn+1
j+1/2 = 2∆t

∆x (Hn+1
j+1/2−L

n+1
j+1/2)

8: end for
9: Return un+1

j .

Remark 4.2. In the numerical experiments reported at the end of this paper, we
take kmax = 1.

Remark 4.3. The computational cost of finding `z,±j for a given j can be reduced

by setting `+j = `−j := `j in (4.9) and denote un+1
j (`) :=un+1

j (`,`). Then `j is computed
with one line search

`j =

{
1 if Ψz

j (u
n+1
j (1))≥0,

max{`∈ [0,1]|Ψz
j (u

n+1
j (`))≥0} otherwise.

(4.13)
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If Ψz
j (u
±
j (`j))≥0, we set `j+1/2 = min(`j ,`j+1) and skip step 3 in the algorithm. In

practice, the single search is successful most of the time and therefore we make one line
search instead of 2d line searches where d is the space dimension.

In the case of two space dimensions, subtracting (3.10) from (3.21) and set-
ting Gn,xj+1/2,k := 4∆t

∆x (Hn,x
j+1/2,k−L

n,x
j+1/2,k), Gn,yj,k+1/2 := 4∆t

∆y (Hn,y
j,k+1/2−L

n,y
j,k+1/2), we ob-

tain the following convex splitting form for the high-order solution

uH,n+1
j,k =

1

4
(uL,n+1

j,k −Gn,xj+1/2,k)+
1

4
(uL,n+1

j,k +Gn,xj−1/2,k)

+
1

4
(uL,n+1

j,k −Gn,yj,k+1/2)+
1

4
(uL,n+1

j,k +Gn,yj,k−1/2). (4.14)

The corresponding limited second-order update is given by

un+1
j,k (lx,±j,k ,l

y,±
j,k ) :=

1

4
(uL,n+1

j,k − lx,+j,k G
n,x
j+1/2,k)+

1

4
(uL,n+1

j,k + lx,−j,k G
n,x
j−1/2,k)

+
1

4
(uL,n+1

j,k − ly,+j,k G
n,y
j,k+1/2)+

1

4
(uL,n+1

j,k + ly,−j,k G
n,y
j,k−1/2)

:=
1

4
ux,+j,k (lx,+j,k )+

1

4
ux,−j,k (lx,−j,k )+

1

4
uy,+j,k (ly,+j,k )+

1

4
uy,−j,k (ly,−j,k ). (4.15)

where the four scalar limiting parameters lx,±j,k and ly,±j,k are computed such that each

of the four states ux,+j,k (lx,+j,k ), ux,−j,k (lx,−j,k ), uy,+j,k (ly,+j,k ), uy,−j,k (ly,−j,k ) satisfies the invariant
domain property. Similar to the one dimensional case, given a quasiconcave function
Ψz
j,k which describes a local constraint z at a cell (j,k) with a zero level set Azj,k,

we find the largest positive numbers `x,±j,k ,`
y,±
j,k ≤1 such that the above mentioned four

states are in Azj,k for any 0≤ lx,+j,k ≤ `
x,+
j,k , 0≤ lx,−j,k ≤ `

x,−
j,k and 0≤ ly,+j,k ≤ `

y,+
j,k , 0≤ ly,−j,k ≤

`y,−j,k . Analogous to the one dimensional case, these limiters are computed via line
searches and one can use a single line search instead of four most of the time, see
Remark 4.3.

4.3. Invariant domain via slope limiting. It is well known in the literature
that one can reduce oscillations via either flux limiting or slope limiting. Both limi-
tations are different but give similar numerical results. In this section we describe a
convex limiting procedure using slope limiting. The key difference is that the local in-
variant sets to be enforced are now located at interfaces and are different from the local
invariant sets at cell centers used in flux limiting, see §4.1 and §4.2.

We start with the one dimensional case. Instead of enforcing un+1
j to be in the

invariant set, we will limit the interface values given by the local linear reconstructions:
un,±j−1/2 and un,±j+1/2. In the fully discrete KT-scheme (3.17)-(3.18) we will change the

notation and use λnj+1/2 instead of anj+1/2 to denote the local speed in (3.17). The orig-
inal second-order KT-scheme is not invariant domain preserving in general. However, a
modification of the KT-scheme is going to be invariant domain preserving under a new
CFL-condition.

Theorem 4.1. Let A be a convex invariant set of (2.1), n≥0 and j∈Z be
such that unj and all interface values un,±j±1/2 are in A. Assume that the second-

order solution un+1
j is computed with the KT-scheme (3.17)-(3.18), where λnj−1/2 :=

anj−1/2 =λmax(un,−j−1/2,u
n,+
j−1/2,f) and λnj+1/2 :=anj+1/2 =λmax(un,−j+1/2,u

n,+
j+1/2,f). Let

λnj,± :=λmax(un,+j−1/2,u
n,−
j+1/2,f) be the in cell local speed and define the maximum local
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speed by λmax
j := max(λnj−1/2,λ

n
j+1/2,λ

n
j,±). Then under the CFL condition ∆t

∆xλ
max
j ≤ 1

4 ,

we have that un+1
j ∈A.

Proof. Using the definition of λnj+1/2 we have that the bar state

ūn+1
j+1/2,± :=

un,+j+1/2 +un,−j+1/2

2
−

f(un,+j+1/2)−f(un,−j+1/2)

2λnj+1/2

(4.16)

is in the invariant domain A, see Lemma 2.1. Similarly, we have that the bar state

ūn+1
j−1/2,± :=

un,+j−1/2 +un,−j−1/2

2
−

f(un,+j−1/2)−f(un,−j−1/2)

2λnj−1/2

(4.17)

is also in A. With this notation, we represent the KT-scheme update as follows

un+1
j =unj +

∆t

∆x
λnj+1/2ū

n+1
j+1/2,±+

∆t

∆x
λnj−1/2ū

n+1
j−1/2,±

+
2∆t

∆x

(
−
λnj+1/2u

n,−
j+1/2

2
−
λnj−1/2u

n,+
j−1/2

2
−

f(un,−j+1/2)−f(un,+j−1/2)

2

)
. (4.18)

We now define another bar state

ūn+1
j,± :=

un,+j−1/2 +un,−j+1/2

2
−

f(un,−j+1/2)−f(un,+j−1/2)

2λmax
j

(4.19)

which is also in the invariant domain A because λmax
j ≥λmax(un,+j−1/2,u

n,−
j+1/2,f), see

Lemma 2.1. Using (4.19) in (4.18) and the fact that
un,+
j−1/2

+un,−
j+1/2

2 =unj , we obtain

un+1
j =

(
1−4

∆t

∆x
λmax
j

)
unj

+
∆t

∆x
λnj+1/2ū

n+1
j+1/2,±+

∆t

∆x
λnj−1/2ū

n+1
j−1/2,±+

2∆t

∆x
λmax
j ūn+1

j,±

+
∆t

∆x
(λmax
j −λnj−1/2)un,+j−1/2 +

∆t

∆x
(λmax
j −λnj+1/2)un,+j−1/2. (4.20)

Under the CFL-condition ∆t
∆xλ

max
j ≤ 1

4 , we have that un+1
j is a convex combination of

unj , the bar states ūn+1
j−1/2,±, ūn+1

j+1/2,±, ūn+1
j,± , and the interface states un,+j−1/2, un,+j−1/2.

Since the interface states un,+j−1/2, un,+j−1/2 are assumed to be in the invariant domain A,

and because of the definition of λmax
j all bar states are also in A, then it follows by

convexity that un+1
j ∈A.

Remark 4.4. Note that, in order to have the invariant domain property we need to
design a limited piecewise linear reconstruction so that the interface values un,±j±1/2 are

in the local invariant set A. If the local slope is set to be zero we recover the first-order
result, see Theorem 3.1 and Remark 3.2.

We now describe a convex slope limiting process which guarantees that the interface
states un,−j−1/2 and un,+j−1/2 and can be modified to be in a given local invariant set

A. As before, we are going to impose a finite set of quasiconcave constraints Ψz
j−1/2,

z∈{z1,. ..,zq}, with the assumption that enforcing these guarantees that the interface
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states un,−j−1/2 and un,+j−1/2 are in A. Similar to the flux limiting process, see §4.2.1, we

denote by Azj−1/2 the zero level set of Ψz
j−1/2, thus enforcing u∈Azj−1/2 is equivalent

to enforcing Ψz
j−1/2(u)≥0. By definition we have un,+j−1/2 =unj − ∆x

2 (unx)j and un,−j−1/2 =

unj−1 + ∆x
2 (unx)j−1. Setting (unx)j = ljσ

a
j for any j∈Z, where σa

j :=
unj+1−u

n
j−1

2∆x is the
central slope and lj ∈ [0,1] is a slope limiter, we define the limited interface values to be

un,+j−1/2(lj) =unj −
∆x

2
ljσ

a
j , un,−j−1/2(lj−1) =unj−1 +

∆x

2
lj−1σ

a
j−1. (4.21)

Similar to the flux limiting limitation, we need to find the largest values lz,−j and lz,+j−1

such that for a given j both un,+j−1/2(lz,−j ) and un,−j−1/2(lz,+j−1) are in Azj−1/2. This is

described in the following lemma.

Lemma 4.3. Let’s define `z,−j and `z,+j−1 to be

`z,−j =

{
1 if Ψz

j−1/2(un,+j−1/2(1))≥0,

max{`j ∈ [0,1]|Ψz
j−1/2(un,+j−1/2(`j))≥0} otherwise.

(4.22)

`z,+j−1 =

{
1 if Ψz

j−1/2(un,−j−1/2(1))≥0,

max{`j−1∈ [0,1]|Ψz
j−1/2(un,+j−1/2(`j−1))≥0} otherwise.

(4.23)
Then for all lz,−j ∈ [0,`z,−j ] and lz,+j−1∈ [0,`z,+j−1], it holds that Ψz

j−1/2(un,+j−1/2(lz,−j ))≥0 and

Ψz
j−1/2(un,−j−1/2(lz,+j−1))≥0.

Let’s denote un+1
j (lj−1,lj ,lj+1) to be the limited second-order update computed

with interface values un,−j−1/2(lj−1),un,+j−1/2(lj),u
n,−
j+1/2(lj),u

n,+
j+1/2(lj+1). Note that we

recover the first-order solution if lj−1 = lj = lj+1 = 0 and the second-order solution if
lj−1 = lj = lj+1 = 1. The goal is to find a set of local limiters which preserve the invari-
ant domain property. A straightforward application of Theorem 4.1 and Lemma 4.3
gives the following.

Lemma 4.4. Let `z,+j−1,`
z,−
j be the slope limiters computed via Lemma 4.3 for any j∈Z

and n≥0. If we set `zj = min(`z,−j ,`z,+j ) for j∈Z, then we have that un+1
j (`zj−1,`

z
j ,`

z
j+1)∈

Azj−1/2∪A
z
j+1/2.

Remark 4.5. Note that, the underlying assumption is that both sets Azj−1/2 and
Azj+1/2 are in a local invariant set A. We now describe the slope limiting algorithm for
all local constraints.

Algorithm 2 Convex slope limiting

Input: unj , un,+j−1/2, un,−j+1/2, z1,. ..,zq.

Output: un+1
j

1: for z= 1 to zq do
2: Compute limiting parameters `zj via Lemma 4.3 and Lemma 4.4.
3: end for
4: Set `j := minz∈{z1,...,zq} `

z
j for all j∈Z.

5: Update un+1,+
j−1/2 and un+1,−

j+1/2 .

6: Update un+1
j =un+1

j (`j−1,`j ,`j+1).

7: Return un+1
j .
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In the case of two space dimensions, we limit the second-order solution via a similar
approach. Consider the KT-scheme (3.20)-(3.21), where un,±j+1/2,k and un,±j,k+1/2 are the

interface values given by the local linear reconstructions. Using λn,xj+1/2,k and λn,yj,k+1/2

instead of an,xj+1/2,k and an,yj,k+1/2 respectively in (3.20), we have the following result.

Theorem 4.2. Let A be a convex invariant set of (2.1), n≥0 and j,k∈Z be
such that unj,k and all interface values un,±j±1/2,k and un,±j,k±1/2 are in A. Assume

that the second-order solution un+1
j,k is computed with the KT-scheme (3.20)-

(3.21), where λn,xj−1/2,k :=an,xj−1/2,k =λmax(un,−j−1/2,k,u
n,+
j−1/2,k,f), λn,xj+1/2,k :=an,xj+1/2,k =

λmax(un,−j+1/2,k,u
n,+
j+1/2,k,f), λn,yj,k−1/2 :=an,yj,k−1/2 =λmax(un,−j,k−1/2,u

n,+
j,k−1/2,g) and

λn,yj,k+1/2 :=an,yj,k+1/2 =λmax(un,−j,k+1/2,u
n,+
j,k+1/2,g). We set the in cell local speeds to be

λn,xj,k,± :=λmax(un,+j−1/2,k,u
n,−
j+1/2,k,f) and λn,yj,k,± :=λmax(un,+j,k−1/2,u

n,−
j,k+1/2,g) and define

the maximum local speeds in the x− and the y−direction respectively by

λmax,x
j,k := max(λn,xj−1/2,k,λ

n,x
j+1/2,k,λ

n,x
j,k,±), (4.24a)

λmax,y
j,k := max(λn,yj,k−1/2,λ

n,y
j,k+1/2,λ

n,y
j,k,±). (4.24b)

Then under the CFL condition ∆t
∆xλ

max,x
j,k + ∆t

∆yλ
max,y
j,k ≤ 1

4 , we have that un+1
j,k ∈A.

Remark 4.6. The proof for Theorem 4.2 is analogous to the proof of Theorem 4.1 and
we omit it. This result generalizes the scalar maximum principle proved in [19, Thm.
5.1] to an invariant domain property for an arbitrary hyperbolic system under the CFL
condition

max
j,k

(∆t

∆x
λmax,x
j,k ,

∆t

∆y
λmax,y
j,k

)
≤ 1

8
. (4.25)

Similar to the one dimensional case, we define the limited interface values by

un,+j−1/2,k(lxj,k) =unj,k−
∆x

2
lxj,kσ

a,x
j,k , un,−j−1/2,k(lxj−1,k) =unj−1,k+

∆x

2
lxj−1,kσ

a,x
j−1,k,

un,+j,k−1/2(lyj,k) =unj,k−
∆y

2
lyj,kσ

a,y
j,k , un,−j,k−1/2(lyj,k−1) =unj,k−1 +

∆y

2
lyj,k−1σ

a,y
j,k−1. (4.26)

where σa,x
j,k and σa,y

j,k are two-dimensional central slopes defined by σa,x
j,k :=

unj+1,k−u
n
j−1,k

2∆x

and σa,y
j,k :=

unj,k+1−u
n
j,k−1

2∆y and lxj,k,l
y
j,k ∈ [0,1] are the to be computed slope limiters. For

a given constraint z, let Az,xj±1/2,k and Az,yj,k±1/2 be the local invariant sets at the in-

terfaces of cell [xj−1/2,xj+1/2]× [yk−1/2,yk+1/2] such that Az,xj±1/2,k and Az,yj,k±1/2 are

all in A. Using Lemma 4.3 and Lemma 4.4, we find largest positive lxj,k,l
y
j,k ∈ [0,1]

such that un,+j−1/2,k(lxj,k),un,−j−1/2,k(lxj−1,k)∈Az,xj−1/2,k and un,+j,k−1/2(lyj,k),un,−j,k−1/2(lyj,k−1)∈
Az,yj,k−1/2 for all j,k∈Z.

4.4. Application to the Euler system. In this section, we will illustrate how to
apply the two types of convex limiting processes stated in §4 for the Euler system of gas
dynamics. More specifically, we explain how to apply the quasiconcave limitation from
§4.1. The general approach we follow in all convex limitations is the one from [11, §4.1].
That is, we enforce the same type of limitations on the density and specific entropy. In
all limitations, to reduce the computational cost, we apply one diagonal search first as
described in Remark 4.3. We assume that the equation of state is a gamma-law, i.e., the

specific entropy is s= log(e
1

γ−1 ρ−1), and we impose the local invariant sets by enforcing
the constraints (4.6).
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4.4.1. Flux limiting. Using the same notation as in §4.1.3 and defining ∆Gnj =

(∆Gρ,nj ,∆Gm,nj ,∆GE,nj )> := (Gnj+1/2−G
n
j−1/2), we perform the flux limitation process

as follows:

(1) We limit the density by setting ψ1
j (l) := Ψ1

j (u
n+1
j (l)) =ρn,max

j −ρL,n+1
j + l∆Gρ,nj and

ψ2
j (l) := Ψ2

j (u
n+1
j (l)) =ρL,n+1

j − l∆Gρ,nj −ρ
n,min
j . We compute the limiters on den-

sity by

lρj =


min(

|ρn,max
j −ρL,n+1

j |
|∆Gρ,nj |+ερ

,1) if ψ1
j (1)<0,

1 if ψ1
j (1)≥0 & ψ2

j (1)≥0,

min(
|ρL,n+1
j −ρn,min

j |
|∆Gρ,nj |+ερ

,1) if ψ2
j (1)<0,

(4.27)

where we take ερ= ερn,max
j , where ε= 10−16 to avoid division by zero.

(2) For limitation on the specific entropy, we use ψ3
j (l) := Ψ3

j (l) = (ρL,n+1
j −

l∆Gρ,nj )(eL,n+1
j − l∆Ge,nj )−cn,min

j (ρL,n+1
j − l∆Gρ,nj )γ which is a concave down func-

tion of l. We define lsj as follows. If ψ3
j (min(1,lρj ))≥0, we take lsj = min(1,lρj );

if ψ3
j (0)>0 and ψ3

j (min(1,lρj ))<0, we define lsj to be the unique positive root of

ψ3
j (l) = 0; if ψ3

j (0) = 0 and ψ3
j (min(1,lρj ))<0, then ψ3

j (l) = 0 has exactly two roots

and we take lsj to be the largest nonnegative root of ψ3
j (l) = 0.

Let lj = lsj , then it follows by Lemma 4.8 and Lemma 4.13 in [11] that the limited

solution un+1
j (lj) :=uL,n+1

j − ljλ∆Gnj satisfies the invariant domain property described
in §4.1.3.

4.4.2. Slope Limiting. We start by constructing the local invariant constraints
at cell interface xj−1/2. We set

ρn,min
j−1/2 := min(ρnj ,ρ

n
j−1, ρ̄

n+1
j−1/2), ρn,max

j−1/2 := max(ρnj ,ρ
n
j−1, ρ̄

n+1
j−1/2).

sn,min
j−1/2 := min(Φ(unj ),Φ(unj−1),Φ(ūn+1

j−1/2)). (4.28)

Analogous to the flux limiting case, we set Ψ1
j−1/2(u) =ρn,max

j−1/2−ρ, Ψ2
j−1/2(u) =ρ−

ρn,min
j−1/2, Ψ3

j−1/2(u) =ρe−cn,min
j−1/2ρ

γ , where cn,min
j−1/2 = exp((γ−1)sn,min

j−1/2). We impose the

invariant domain property by enforcing Ψ1
j−1/2(u),Ψ2

j−1/2(u),Ψ3
j−1/2(u)≥0 on each

interface. Using the same notation as in §4.3, we denote σa
j := (σa,ρ

j ,σa,m
j ,σa,E

j )> to be
the central slope and define

u−j+1/2(l) :=unj +
∆x

2
lσa
j , u+

j−1/2(l) :=unj −
∆x

2
lσa
j . (4.29)

Depending on the sign of σa,ρ
j , we limit the density as follows:

(1) If σa,ρ
j >0, we set

lρj = min(
|ρn,max
j+1/2−ρ

n
j |

|∆x2 σa,ρ
j |+εn,+ρ

,
|ρnj −ρ

n,min
j−1/2|

|∆x2 σa,ρ
j |+εn,−ρ

,1), (4.30)

where εn,+ρ = ερn,max
j+1/2 and εn,−ρ = ερn,max

j−1/2, with ε= 10−16 to avoid division by zero.

(2) If σa,ρ
j <0, we set

lρj = min(
|ρnj −ρ

n,min
j+1/2|

|∆x2 σa,ρ
j |+εn,+ρ

,
|ρn,max
j−1/2−ρ

n
j |

|∆x2 σa,ρ
j |+εn,−ρ

,1). (4.31)
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(3) If σa,ρ
j = 0, we take lρj = 1.

For limitation on the specific entropy, we enforce Ψ3
j+1/2(u−j+1/2(l))≥0 and

Ψ3
j−1/2(u+

j−1/2(l))≥0. Let us denote ψ+
j (l) = Ψ3

j+1/2(u−j+1/2(l)) and ψ−j (l) =

Ψ3
j−1/2(u+

j−1/2(l)). Note that both of these functions are concave-down functions of

l. Therefore, following the same approach as in §4.4.1, we compute ls,+j and ls,−j . Then,

the slope limiter for the specific entropy is defined as lsj = min(ls,+j ,ls,−j ). After all limi-
tation, the following result holds.

Lemma 4.5. Let lj = lsj for all j∈Z, then for any l∈ [0,lj ], we have that

Ψz
j−1/2(u+

j−1/2(l))≥0 and Ψz
j+1/2(u−j+1/2(l))≥0, z= 1,2,3.

4.5. Local relaxations. It has been observed in many instances that enforcing
strict local bounds in the limitation process may reduce the accuracy of the method. In
the scalar case it is well known that enforcing strict local maximum principle results in
the so-called clipping phenomenon and the rate of error in L∞ is reduced. In the case
of systems, such effects can be observed when the local states are close to the boundary
of the invariant domain. We refer the reader to [17] and [11] for further discussion on
the relaxation bounds for the Euler system, in particular for relaxation of the minimum
principle on the specific entropy. We follow that approach from [11, §4.7] which was
originally proposed for the Euler system but could be easily applied in the general
setting. We observe in all numerical tests that after relaxation the limited method
keeps the accuracy of the unlimited method.

For simplicity we restrict ourselves to the case of one space dimension with the two
dimensional case being analogous. Let Ω be the computational domain in space and let
h be the mesh size. That is, we take h := ∆x

|Ω| with |Ω| being the diameter of the set.

Le z denote the quantity to be limited. For example, z could be −w1,w2 for P-system,
see §4.1.2, or z could be ρ,−ρ,s for Euler system, see §4.1.3. We give two types of
relaxations as follows.

(1) Limitation on a constraint z describing a smooth curved part of the boundary.
For example, z=−w1,w2 in the p-system, or z=s in the Euler system, let xij =
1
2 (xi+xj), we define ∆znj := maxj 6=i∈{j,j±1}(z

n(xij)−zmin
j ) and set

zmin,1
j :=zmin

j −min(rh|zmin
j |,|∆znj |). (4.32)

Then we will use zmin,1
j instead of zmin

j to be the bound of the local invariant sets.

(2) Limitation on constraint z describing linear part on the boundary. For example,
z=u or z=−u in scalar equations, or z=±ρ in the Euler system. Setting ∆2znj =

znj−1−2znj +znj+1, we define ∆2znj := 1
6

∑
j 6=i∈{j,j±1}(

1
2∆2zni + 1

2∆2znj ) and ∆̃2znj :=

m{ 1
2∆2zni |i∈{j,j±1}}, where m is the minmod operator defined in §3.3.1. The

relaxed bound of local invariant set is defined as

zmin,2
j :=zmin

j −min(rh|zmin
j |,|∆2znj |), (4.33a)

z̃min,2
j :=zmin

j −min(rh|zmin
j |,|∆̃2znj |). (4.33b)

We will use zmin,2
j or z̃min,2

j instead of zmin
j to be the bounds of local invariant sets.

It is observed in the numerical tests that both of these two bounds defined in (4.33)
are robust and give similar results.
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Remark 4.7. The relaxation technique on the bounds was first introduced in [11, §4.7]
for the Euler system and later on generalized for general hyperbolic systems in [12, §7.6].
We simply apply this idea here in (4.32) and (4.33), with rh= min(1,h1.5) to restrict the
relaxation order to O(h1.5). The exponent 1.5 seems to give good results and enforces
the original invariant domain in the limit h→0, see [12, §7.6] for more details.

5. Numerical illustrations
In this section, we report numerical test to illustrate the performance of the two lim-

iting techniques mentioned above. Our code is constructed using finite volume method
on uniform cells of size ∆x=h (in the 1d case) or ∆x= ∆y=h (in the 2d case). Time
stepping is done by using SSP-RK3 methods (three stages, third-order), see [18,22]. The
time step is computed by using formula τ = CFL× h

λmax,n , where λmax,n is the global
maximum speed of the method used at time tn. For p∈ [1,∞], we introduce a consoli-
dated error indicator at time t by adding the relative error in Lp−norm of all conserved
variables:

δαp (t) =
∑
i

||uih(t)−ui(t)||Lp(D)

||ui(t)||Lp(D)
, u= (u1,u2,. ..,um), (5.1)

where α=f or s, corresponding to flux limiting or slope limiting error. For the Euler
system, in all examples we use a γ-law equation of state, i.e., p= (γ−1)ρe. We test the
two new methods, MAPR-EV-CL and INV-CL, against the classical Minmod method
(KT-scheme based on the minmod slope limiter given in (3.22)). Note that the MAPR-
EV limiter (3.25) is only applied when θnj ≤1.5 and in the regions of smooth flow (θnj >

1.5) we define σmapr,θ =
uj+1−uj−1

2∆x .

5.1. Linear transport equation. To illustrate the second-order accuracy of the
newly developed schemes, we start with the one-dimensional linear transport equation,
ut+ux= 0, 0≤x≤2π. The initial condition is u(x,0) = sin(x) and the exact solution is
given by u(x,t) = sin(x− t) assuming periodic boundary conditions. We run the test for
0≤ t≤0.5 and the results are given in Table 5.1 and Table 5.2. For L1-convergence, we
observe that all three methods presented in the paper reach a second-order accuracy
and relatively smaller errors are obtained using MAPR-EV-CL and INV-CL. For L∞-
convergence, the convergence rate is around 2 if we use MAPR-EV-CL or INV-CL.
However, if we take the Minmod limiter only, the rate seems to be 4/3 which is expected
for the classical minmod-type limitation.

# of cells
Minmod limiter MAPR-EV-CL INV-CL

δf1 (t) rate δf1 (t) rate δs1(t) rate

100 2.90E-03 1.05E-04 1.05E-04
200 7.79E-04 1.90 2.62E-05 2.00 2.62E-05 2.00
400 2.04E-04 1.93 6.55E-06 2.00 6.56E-06 2.00
800 5.35E-05 1.93 1.64E-06 2.00 1.64E-06 2.00
1600 1.41E-05 1.93 4.09E-07 2.00 4.11E-07 2.00
3200 3.63E-06 1.95 1.02E-07 2.00 1.03E-07 2.00

Table 5.1. Linear equation, L1-Convergence tests with CFL = 0.25.

5.2. Burgers’ equation. We consider the one dimensional inviscid Burgers’

equation, ut+(u
2

2 )x= 0, with an exact solution with limited smoothness, ∂xu(·,t) is with



BOJAN POPOV AND YUCHEN HUA 551

# of cells
Minmod limiter MAPR-EV-CL INV-CL

δf∞(t) rate δf∞(t) rate δs∞(t) rate

100 1.27E-02 1.65E-04 1.65E-04
200 5.55E-03 1.19 4.11E-05 2.00 4.11E-05 2.00
400 2.29E-03 1.27 1.03E-05 2.00 1.03E-05 2.00
800 9.33E-04 1.30 2.57E-06 2.00 2.57E-06 2.00
1600 3.83E-04 1.29 6.43E-07 2.00 6.43E-07 2.00
3200 1.55E-04 1.30 1.61E-07 2.00 1.61E-07 2.00

Table 5.2. Linear equation, L∞-Convergence tests with CFL = 0.25.

# of cells
Minmod limiter MAPR-EV-CL limiter Slope limiter

δf1 (t) rate δf1 (t) rate δs1(t) rate

100 1.17E-03 5.43E-04 6.47E-04
200 4.24E-04 1.47 1.65E-04 1.72 2.30E-04 1.49
400 1.56E-04 1.44 5.33E-05 1.63 8.47E-05 1.44
800 5.93E-05 1.40 1.84E-05 1.53 3.28E-05 1.37
1600 2.28E-05 1.38 6.68E-06 1.46 1.28E-05 1.35
3200 8.89E-06 1.36 2.51E-06 1.41 5.10E-06 1.33
6400 3.48E-06 1.35 9.63E-07 1.38 2.03E-06 1.33

Table 5.3. 1D Burgers’ equation, Convergence tests with CFL = 0.25.

bounded variation: u(x,t) = 0 if x<0.25; u(x,t) = 4x−1
4t+1 if 0.25≤x<0.5+ t; u(x,t) =

1 if 0.5+ t≤x≤1. The computation is done for 0≤ t≤0.5 and the results are reported
for t= 0.4 in Table 5.3. We observe that using the method based on the MAPR limiter
gives the optimal rate in L1. This is a super-convergence effect that we observe for
scalar equations. However, the methods based on the minmod and the invariant slope
limiter have a convergence rate around 4/3 which is expected for a method based on
mass lumping, see [5] for details. Moreover, the convex flux limiting process doesn’t
affect the convergence rate of the unlimited MAPR-EV method.

5.3. KPP test case. We consider the so-called KPP-test, a two dimensional
scalar conservation equation with a non-convex flux, see [21, §5.3] for more details.
This test checks if the high-order method has enough viscosity to resolve correctly the
composite wave structure of the unique entropy solution, see Figure 5.1.

# of cells
Minmod limiter MAPR-EV-CL INV-CL

δf1 (t) rate δf1 (t) rate δs1(t) rate

100 4.61E-03 2.26E-03 2.27E-03
200 2.02E-03 1.19 9.59E-04 1.24 9.53E-04 1.25
400 8.72E-04 1.21 3.88E-04 1.31 3.91E-04 1.29
800 3.54E-04 1.30 1.51E-04 1.36 1.53E-04 1.35
1600 1.44E-04 1.30 6.00E-05 1.33 6.05E-05 1.34
3200 5.80E-05 1.31 2.42E-05 1.31 2.43E-05 1.32

Table 5.4. The p-system, expansion wave, Convergence tests with CFL = 0.25.

∂tu+∂x sinu+∂y cosu= 0, u(x,y,0) =

{
14π
4 , if

√
x2 +y2≤1,

π
4 , otherwise.

(5.2)
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Fig. 5.1. KPP-wave: CFL= 0.25, t= 1, 40000 cells. Left: Minmod limiter; Center: MAPR-EV-
CL; Right: INV-CL.

All schemes are able to resolve correctly the composite wave structure. Note that if we
use the MAPR limiter with θ= 2 the method will fail to converge to the correct solution,
see [21] for details.

5.4. The p-system. We assume the pressure is given by p(v) = rv−γ for the
p-system (2.5). In the numerical example we take γ= 3, and compute the Riemann

problem with initial data (vl,ul) = (1,0) and (vr,ur) = (2
2

γ−1 , 1
γ−1 ). The exact solution

is a single rarefaction wave, see [11, §5] for more details on this test. The convergence
rate for all methods is around 4

3 , see Table 5.4. The convex limiting process does not
affect the rate of the unlimited MAPR-EV method.

5.5. The Euler system, 1D smooth wave. We start with a one-dimensional
test whose purpose is to estimate the convergence rate of the methods on a very smooth
solution. We set v(x,t) = 1, p(x,t) = 1 and

ρ(x,t) =

{
1+26(x1−x0)−6(x− t−x0)3(x1−x+ t)3, if x0≤x− t<x1,

1 otherwise,
(5.3)

where x0 = 0.1, x1 = 0.3 and γ= 7
5 . This is an exact solution for Euler, see [11, §5] for

more details. The numerical solution is computed from t= 0 to t= 0.1. The results are
shown in Table 5.5.

# of cells
Minmod limiter MAPR-EV-CL INV-CL

δf∞(t) rate δf∞(t) rate δs∞(t) rate

100 1.53E-01 3.40E-02 2.75E-02
200 6.64E-02 1.21 8.09E-03 2.07 6.68E-03 2.04
400 2.83E-02 1.23 2.45E-03 1.72 3.32E-03 1.01
800 1.17E-02 1.27 6.55E-04 1.90 1.15E-03 1.54
1600 4.78E-03 1.29 1.70E-04 1.94 3.44E-04 1.74
3200 1.93E-03 1.31 4.35E-05 1.97 9.20E-05 1.90

Table 5.5. 1D smooth wave, Convergence tests with CFL = 0.25.

5.6. The Euler system, 1-rarefaction wave. We consider the Riemann
problem with the following initial data: (ρL,vL,pL) = (3,cL,1), (ρR,vR,pR) = ( 1

2 ,vL+
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# of cells
Minmod limiter MAPR-EV-CL INV-CL

δf1 (t) rate δf1 (t) rate δs1(t) rate

100 1.63E-02 1.63E-02 1.45E-02
200 7.51E-03 1.12 3.96E-03 2.04 4.31E-03 1.75
400 3.15E-03 1.25 1.11E-03 1.83 1.31E-03 1.72
800 1.23E-03 1.36 3.37E-04 1.72 4.12E-04 1.67
1600 4.71E-04 1.38 1.09E-04 1.63 1.37E-04 1.59
3200 1.84E-04 1.36 3.59E-05 1.60 5.02E-05 1.45

Table 5.6. 1D Euler, 1-rarefaction wave, Convergence tests with CFL = 0.25.

2
γ−1 (cL−cR),pL(ρRρL )γ), where cL=

√
γpL/ρL, cR=

√
γpR/ρR and γ= 7

5 . The exact so-

lution is described in [11, §5]. The numerical solution is computed starting from initial
time t= 0.2

vR−cR and running to final time t= 0.2. The results are given in Table 5.6.
The L1-convergence rate is best for the MAPR-EV-CL method.

5.7. The Euler system, Leblanc shock tube. We continue with a Riemann
problem that is known in the literature as the Leblanc shocktube. The results are shown
in Table 5.7. The performance of all methods is similar.

# of cells
Minmod limiter MAPR-EV-CL INV-CL

δf∞(t) rate δf∞(t) rate δs∞(t) rate

100 1.25E-01 1.24E-01 1.24E-01
200 8.92E-02 0.49 8.04E-02 0.62 7.98E-02 0.64
400 5.79E-02 0.62 5.18E-02 0.64 4.91E-02 0.70
800 3.27E-02 0.83 2.75E-02 0.91 2.52E-02 0.96
1600 1.84E-02 0.83 1.44E-02 0.93 1.34E-02 0.91
3200 9.30E-03 0.98 7.57E-03 0.93 6.63E-03 1.02

Table 5.7. 1D Euler, Leblanc shocktube, Convergence tests with CFL = 0.25.

5.8. The Euler system, blast wave. We consider the well known Woodward-
Collela blast wave. The computations are done on the domainD= (0,1) with CFL=0.25.
The final time is t= 0.038. The results are shown in Figure 5.2. The MAPR-EV-CL
method has the best resolution of the contact wave.

Fig. 5.2. Blast wave, t= 0.038, CFL= 0.25. Left: Minmod limiter; Center: MAPR-EV-CL;
Right: INV-CL.
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5.9. The Euler system, Isentropic Vortex. We consider a two-dimensional
problem introduced in [23]. The flow field is isentropic and the solution is smooth.
Let ρ∞=P∞=T∞= 1, u∞= (1,1)T be free stream values. We define the following
perturbation values for the velocity and the temperature:

δu(x,t) =
β

2π
exp(

1−r2

2
)(−x̄2,x̄1), δT (x,t) =

(γ−1)β2

8γπ2
exp(1−r2), (5.4)

where β= 5 is a constant defining the vortex strength, γ= 7
5 , x̄= (x1−xc

1(t),x2−xc
2(t)),

where xc(t) = (x0
1 + t,x0

2) is the position of the vortex, and r2 =‖x̄‖2`2 . The exact solution
is a passive convection of the vortex with the mean velocity u∞:

ρ(x,t) = (T∞+δT )1/(γ−1), u(x,t) =u∞+δu, p(x,t) =ργ . (5.5)

We perform the numerical computations in the rectangle D= (0,20)×(0,20) from
t= 0 until t= 2, and we take x0

1 =x0
2 = 10. The results are shown in Table 5.8 and

Figure 5.3. In this test it is critical to use local relaxation in the convex limitation
process, see Section 4.5, to achieve the optimal convergence order. Both the MAPR-
EV-CL and the INV-CL methods are optimal in this case.

# of cells
Minmod limiter MAPR-EV-CL INV-CL

δf∞(t) rate δf∞(t) rate δs∞(t) rate

2500 2.66E-01 1.25E-01 8.66E-02
10000 1.19E-01 1.17 1.85E-02 2.75 1.85E-02 2.22
40000 5.82E-02 1.03 3.57E-03 2.38 3.57E-03 2.38
160000 2.94E-02 0.99 7.08E-04 2.34 7.08E-04 2.34

Table 5.8. Isentropic vortex test case, Convergence tests with CFL = 0.25.

Fig. 5.3. Isentropic vortex at t= 2, CFL= 0.25. Left: Mimmod limiter; Center: MAPR-EV-CL;
Right: INV-CL.

5.10. The Euler system, Mach 3 Test. Now we consider the classical Mach
3 flow in a wind tunnel with a forward facing step. The computational domain is
D= (0,3)×(0,1)\(0.6,3)×(0,0.2); the geometry of the domain is shown in Figure 5.4.
The initial data is ρ= 1.4, p= 1, v= (3,0)>. The inflow boundary conditions are
ρ|{x=0}= 1.4, p{x=0}= 1, v{x=0}= (3,0)> and at the outflow boundary, {x= 3}, we do
nothing. On the top and bottom boundaries of the channel we enforce v ·n= 0. The
computational results at t= 4 are shown in Figure 5.4. The MAPR-EV scheme (center)
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Fig. 5.4. Mach 3 step, density at t=4, CFL=0.25. Top: Mimmod limiter; Center: MAPR-EV-
CL; Bottom: INV-CL;

requires convex limiting to run and the results are superior in the region of the contact
wave. The INV-CL scheme (bottom) has some instability in the contact but it is less
pronounced at this mesh size. The minmod method (top) is the most diffusive scheme
in this case, see Figure 5.4.
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