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GLOBAL WELL-POSEDNESS OF
THE STOCHASTIC CAMASSA-HOLM EQUATION*

YONG CHENT, JINQIAO DUAN?, AND HONGJUN GAOS

Abstract. We establish the existence of global martingale solutions of the stochastic Camassa-
Holm equation in H'(R). The construction of the solution is based on the regularization method and
the stochastic compactness method. Furthermore, we use Borel-Cantelli Lemma to prove the global
existence of mild solution of the stochastic Camassa-Holm equation with small noise in L2(R).
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1. Introduction
The Camassa-Holm (CH) equation

Up — Uggt + 3UUL — 2UzpUgy — Ulggy =0 (1.1)

was derived by Camassa and Holm in [5] as a model of shallow water waves. Here u
denotes the fluid velocity in the x direction or, equivalently, the height of the water’s
free surface above a flat bottom [5,37,38,40]. Equation (1.1) was originally derived
by Fuchssteiner and Fokas [28,29] as a bi-Hamiltonian generalization of KdV. A rig-
orous justification of the derivation of Equation (1.1) as an approach to the governing
equations for water waves was recently provided by Constantin and Lannes [21].

Equation (1.1) is completely integrable [5,20] as it can be written as a compatibility
condition of two linear systems (Lax pair) with a real isospectral parameter A, and has
a bi-Hamiltonian structure [13,28], which can be written as

0H oH
mt:—JlTrnz:—JzTrnl, (].2)

where
M=1U—"Ugy,
the Hamiltonian operators
J1=0-0%, Jo=0m+mo,

and the corresponding Hamiltonians

1 1
lef/(u2—|—ui)da:, HQZ*/(U,S—FU/Ui)dJ?.
2 Jr 2 Jr
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The Cauchy problem for the CH equation has been studied extensively. For initial
data ug€ H*(R),s>3/2, Equation (1.1) is locally well posed [14, 23, 42]. Moreover,
Equation (1.1) has global strong solutions [14,17] and also finite-time blow-up solutions
[14,15,17,18,23,42]. On the other hand, it has global weak solutions in H'(R) [3,4,12,
16,19,32-34,45]. The ill-posedness of the CH equation in H3/2 and in the critical space
B;’,/f, 1<r<oo is proved in [31].

Since there are some uncertainties in geophysical and climate dynamics [1,35], it is
widely recognized to take random effect into account in mathematical models. Using
stochastic variational method, the stochastic CH equation was derived in [35,36]. The
wellposedness of stochastic CH equation with additive noise in H®,s>3/2 is proved
in [7]. The multiplicative noise case is obtained in [44] in H®, where s>3/2 for the
local wellposedness and s> 3 for the global existence. For the general Lévy process, the
well-posedness in H® s> 3/2 is given in [9] as a special example. The wellposedness of
stochastic modified CH equation with cubic nonlinearity in H*®,s>5/2 is proved in [8].
In this paper, we will establish the existence of martingale solutions in H' and prove
the regularization by the multiplicative noise of stochastic CH equation.

1.1. Martingale solutions. Introduce the following Hamiltonian function

Hy(m)= ;/}R(u +uu?)dr — 78 /umde (1.3)

where W = ¥ is a white noise anc} W is a standard Brownian motion. Putting (1.3)

into (1.2) with Ha(m) replaced by Ha(m), we get the following stochastic CH equation
dm+ (umg 4 2mug )dt =mdW (t), t >0, z €R. (1.4)

Applying (1—02)~! to both sides of (1.4), we have

du+ v, dt +vydt =udW (t), (1.5)

where the source term v is defined as a convolution:

1 1
v=GCG(x)* (u*+ 2ui) G(x)= ie"ml. (1.6)
For the initial data, we take
u(0,2) = o (@). (L.7)

We will establish the martingale solution of (1.5)-(1.7), which is defined as follows.
DEFINITION 1.1. A martingale solution of (1.5)-(1.7) is a system ((Q,F,F;,P),W,a),

which satisfies
(1) (Q,JE,JZ}?]TD) is a filtered probability space with filtration F,
(2) W is a F;-standard Brownian motion,
(8) for almost every t, (t) is progressively measurable,
(4) @e L2(Q;C([0,T]; H (R))). For t€[0,T], € C™, the following holds P-a.s.

/Rﬂ(t)cpda:/Ruogod:r/Ot/}R(ﬂﬁm)(s)gpdzds+/Ot/sz(s)gafdxds+/Ot/Rﬁ(s)<pda:dV~V,

~_ 1 —|z ~2 1~2
where 0= Le~ 1ol (a2 + 1a2).
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Denote M™(R) as the space of positive regular Borel measures on R with bounded
total variation. The first main result is as follows.

THEOREM 1.1.  Let the initial data ug € H'(R) and mo=1ug —tgze € MT(R). Then
there exists a global martingale solution of the stochastic Camassa-Holm Equation (1.5)-

(1.7).
Theorem 1.1 will be proved through the following steps.

Step 1: We consider (1.5) with the regularized initial value
u(0,) = o (@), (1)

where uge = pe *ug,0 < e<<1 and p, is the Friedrichs’ mollifier

pe=( /R pE)de) e p(e M), zER,

where pe C°(R) is defined by

/@1 for x| <1,
pl)=
0, for |z|>1.

The global existence of solution (u¢,v¢) of (1.5), (1.8) in the time interval [0,7],VT >0
can be established by Lemma 2.1 and those local results in [7,9,44].

Step 2: We establish some uniform estimates of (u®,v¢,M€) with MezfotuedW,
which are important to get the tightness of the distributions of (u€,v¢,M€). These can
be obtained mainly by Itd formula and Burkholder-Davis-Gundy (B-D-G) inequality
[11,24,25]. We also adapt some skills to estimate ||uz| e~ in Lemma 2.2.

Step 3: We get the tightness results of the random variable (u¢,v¢,M¢) by some
lemmas in [43]. Then, from the Jakubowski-Skorohod theorem [39], there exist a prob-
ability space (2, F# P¥) and random variables (de,ﬁe,l\;ﬁ) — (&,f},]\;[),IP’u—a.s., such that
the probability distribution of (115,176,1\25) is the same as that of (u®,v¢,M*¢). Using a
cut-off function as in [6], we can show that (@, 7€, M¢) satisfies the regularized equation

in (Qf, F%,P%). We also prove the limit M is a martingale and can be expressed as
M:fot @dW in a new probability space (Q,F,P) which is an extension of (Qf, F* P¥).
Step 4: We prove the strong convergence of (a€,9¢) in L?*(Q;C([0,T]; L% .(R)) x

loc
L2([0,T);L? .(R))) by the uniform integrability criterion and Vitali’s convergence the-
orem. Since there exists 42 in ¥, we also need to get the strong convergence of u,
in L2(Q;C([0,T);L?,.(R))). Tt can be solved by the renormalized formulations in the
stochastic cases and the stopping time skill. Then in view of the almost sure conver-
gence on (€, F,P), we can get that (@, W) is a martingale solution of (1.5)-(1.7) in the
sense of Definition 1.1.

1.2. Mild solutions. If we take

1 1 .
Hz(m)=§A(u3+uui)dx—54u2dxow,

then we can get the following Stratonovich stochastic CH equation

dm+ (umg 4 2mug)dt =my odW (t),t >0, z €R. (1.9)
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Compared with Equation (1.4), Equation (1.9) has the following conserved quantity

el 7 :/R(uer“i)dx:IIuOH%l-

It is also proved in [22] that Equation (1.9) has similar properties as those for the
determined case, such as peakon solutions, isospectrality and wave-breaking result.

For this form of noise, Flandoli et al. discovered in [27] that the noise could improve
the theory of the linear transport equations. There are also some regularization by noise-
type results (e.g. [2,26,30]). But, the relevant results for the stochastic nonlinear fluid
equation are few. Let us write the It6 form of (1.9) as follows

1
dm+ (umg +2mug ) dt = gmmdt—kmxdW(t). (1.10)

There is no regularizing effect from %mm, which is fully compensated by the It6 term.

In fact, let n(z,t) =m(zx,t—W(t))=u(z,t —W(t)) —ugs(x,t —W(t)), we have
M +ung +2nu, =0,

which has the same regularization as the deterministic case. If the noise intensity in
(1.10) is small, i.e.

1
dm+ (umg +2mug ) dt = immdt—kémxdW(t), (1.11)

with 6 € (0,1), we have a regularization from the operator %8% The effect of a small
noise on the stochastic modified Camassa-Holm equation was studied in [10].
Applying (1—-0%)~! to both sides of (1.11), we have

1
du—iumdtz—vxdt—i—duxdW(t), (1.12)

where v is given by (1.6). The mild solution of (1.12) is given by
¢ ¢
u(t):S(t)uof/ S(tfs)vzderé/ S(t—s)u,dW(t), (1.13)
0 0

2
where S(t) :f_l(e_%t). By the semigroup theory of the stochastic parabolic PDEs
[11], we prove the local existence and uniqueness of mild solution of Equation (1.12).
Then, we obtain the global existence by the Borel-Cantelli Lemma. The result is as
follows.

THEOREM 1.2. Let the initial data uo(x)€ L*(R). Then for any T >0, the
stochastic Camassa-Holm Equation (1.12) has a unique solution w such that ue

L2(@:C([0,T]; L*(R)) N L2([0,T]; H' (R))).

This paper is organized as follows. In Section 2, we give the proof of Theorem 1.1.
In Section 3, we prove Theorem 1.2.

2. Proof of Theorem 1.1

In this section, we prove Theorem 1.1 by three subsections. In Subsection 2.1, some
estimates of the random variables (u¢,v¢,M€) are established. In Subsection 2.2, the
tightness of the distribution of (u¢,v¢,M€) is obtained. Finally, the convergence of the
random variables is proved in Subsection 2.3.
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First, we give some notations. Given p>1, a€(0,1), let W*P([0,T7;
Sobolev space of all we LP(0,T; K) such that

T () —u(s)|;
1 ull) — US|k
/ / |t—s|1+0‘1’ dtds < oo,
endowed with the norm

T
2 [|u(t) ”K
||UHW0<~P([O,T];K) / H“”Kdt"'/ / |t_3|1+o¢p T alivap Otds.

611

K) be the

Denote WH1(]0,T] x R) as the Sobolev space of u€ L' ([0,T] x R) and u; € L*([0,T] x R).

2.1. Uniform estimates. In this subsection, we will construct some estimates of
the random variables (u€,v¢, M€) of the solution of (1.5), (1.8). To simplify the notation,

we will drop € in (u¢,v¢, M) throughout this subsection.

LEMMA 2.1.  For k>1, we have

E sup |lullf <2uoll7 e
0<t<T

Proof. Differentiating (1.5) w.r.t. 2 one obtains

1
dugy = —(ui F Uy ) At — Vg dt 4+ 1, dW = _5(%25 + 22Uy, — 2u2)dt —vdt +uydW.

(2.2)

By applying the It6 formula to ||ul|?. of Equation (1.4) and |lu,|%. of Equation

(2.2), we get

t

t t
20 =] 22 —2 / (wyv)ds+ [ [ullZads+2 / ()W,
0 0 0

and
t

t t
IIUxH%FHaneIIZm—?/ (g, v)ds + Iqullizder?/ (ttz, g ) AW,
0 0 0

where (u,uu;) =0 and (uz,u2 +2ut,, —2u?) =0 are used. Then, we have

t t
a2 = 2+l 2 = o[22 + / lulZds+2 / 2,
from which and applying It6 formula to ||u|2F, with k> 1, we have
]2 =d( | 2p0)*

k(k—1)
=k||ull 3% d||ull 3 + ull 35l ul| 7 dlul| 7
:k\|u||H1dt+2k(k;—1)||u||H1dt+2k\|u||§}2dW

By B-D-G inequality and Young inequality, we get

t T
E sup 2k/ ||u||i}3de0E(/ ul| 5 ds) /2
0 0

0<t<T

(2.3)
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T
<CE( sup [Ju(s)|2 / u(s)25 ds)'/
0<t<T 0

1 T
<1E sup |lu(s)|2 +CE / ()12 ds.
2 o<i<T 0

Then, it follows from the above estimates
T
E sup |lull3: S2HU0H§§1+C]E/ [uls)|[37: ds,
0<t<T 0

from which and Grénwall inequality (2.1) is obtained. d
REMARK 2.1. By the Sobolev embedding theorem, we have for k>1

E sup Hu(t)H%’io <E sup ||u(t)\|?fl <C. (2.4)
0<t<T 0<t<T

LEMMA 2.2.  Suppose mg=1g — uoge € MT(R). Then for k>1

E sup [u.|7% <C.
0<t<T

Proof.  Let p(t,x) be the solution of the following equation for a.e. we

= T
{ Op=nu(t,p), 0<t<T, 25)

p(0,2) =z, z€R.

By the well-known results in the theory of ordinary differential equations as that in [18],
Equation (2.5) has a unique solution p € C1([0,7] x R,R) for a.e. we Q.
By It6 multiplicative formula, we have
d[m(t,p)p3] =[dm +m.dp|p} +2mp,dp,
=[dm +mgudt)p? +2mp3u,dt = mp2dW,

from which we get
m(t,p)p2 = moew(t)fé. (2.6)

Since u= %e‘m *m, we have
o0

1 * 1
u(t,x):ie*‘”/ eYm(t,y)dy+ 56””/ e Ym(t,y)dy, (2.7)

from which we deduce that

1 ¢ 1 e
ux(t,x)z—ie_z/ e’m(t,y)dy + iem/ e Ym(t,y)dy.

Consequently,

o0

u(taa) + s () =€ [ e mtg)dy, (2.8)

x
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u(t,z) —uy(t,x)=e"" /m eYm(t,y)dy. (2.9)

— 0o

If mg does not change sign on R, then by (2.6), so does m. Since mg =g —Ugzs €
MT(R), by Lemmas 3.3 and 3.4 in [16], we have mo. >0 and ug. —ug weakly in H1.
Then by (2.7), u>0 and by (2.8)-(2.9),

—u(t,x) <ug(t,z) <u(t,z),
from which and (2.4) we obtain that

E sup |z |2 <E sup |ul|?5 <C, (2.10)
0<t< 0<t<

where k> 1. O
We give some estimates for the nonlinear term v defined by (1.6).

LEMMA 2.3. For j=1 or oo, and k>1, we have

E sup |v]|1; <C, (2.11)

]E”UHWl’l([O,T]xR) <C. (2.12)

Proof. Let G(z)= %e*m. Then ||G||yy1.5 <C for j=1 or co. By Young inequality,
1
IIWH’&/LJ:II/G(il?*y)(u2+§ugzc)(y)dy||’§v1,j
<|1Gllwaf|u® + u:z”Ll < Cllull,

from which and Lemma 2.1, (2.11) is obtained.
Next, we prove (2.12). By It6 multiplicative formula, we have

|| U”Ll ([0,T]xR)

du du 1 dug, dug
/ //G;v y)[2udu+uzdu, + T dt 2 T |dydzdt

:2/0 /R/RG(J:—:U)[u(—uuw vz—i—ud;v)]dydxdt

T 1, 0 dw
+ G(r—y){us[— = (ug +2uugy —2u”) —v+u,——| }dydadt
o JrJr 2 dt

T
+/ //G(m—y)[u2+lui]dyda¢dt
0o JrJR 2

=11+ 1+ 15.

By Young and Hélder inequalities, we have

T T
L<c / G (e 1+ ava 2 )+ C / |Gl [ 2 AW
0 0

T T
<c / (Ill o Nl et 22+ el 22 ol =)+ © / ul22dW
0 0
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T T
<O [ (luli i o+ e )it +C [l
T T
SC/ (IluHiz+IIUII§11+II%IIQLa)dt+C/ [u]|7-dW.
0 0
We can rewrite I as follows

T
1
12:/ //G(m—y)[—f(uui)w—&—umu) uzv—i—uwdd—w]dydxdt

/ //dG uu dydzdtf/ // x—y)uzvdydrdt
+/ //G(m—y)uidyda:dW
o JrRJR

Then Young and Holder inequalities imply

T T T
L<C [ (Gllwsw |1 de+ / |Gl [zl 1 dt+ / Gl 22 2V
0 0 0
T T
<c / (el o+ 12112 + et o] 22 )t + / s |2 AW
0 0

T T
<c / (el + a2 + olf22) e+ / g 22V

Similarly, we have

T
0

Hence, it follows from the above estimates that
d T
E”&U”’zl([o,T]xR) SCE[/O (lfallF + [lull 2+ [[0][y1.2)dt]*

T
SCE/O (lullF + llull s+ ol 2)dt < C,

where the last inequality follows from Lemma 2.1 and (2.11). |

2.2. Tightness. In this subsection, we obtain the tightness of M€, u¢ and v°.
LEMMA 2.4 (Tightness). Define

S=C([0,T]; Liye(R)) x LP([0, T LT, o (R)) x C([0,T]; Hje(R)), p = 1,

equipped with its Borel o-algebra. Let uc be the probability measure on S which is the
image of P on Q by the map: w— (u(w,),v*(w,"),M(w,-)), that is, for any BCS,

pf(B)=PlweQ: (u(w,),v(w, ), M(w,-)) € B).

Then the sequence of the probability measure u¢ is tight.



YONG CHEN, JINQIAO DUAN, AND HONGJUN GAO 615

Proof.
Step 1: We will show for each >0, there is a compact subset K of C([0,T]; H. .(R))
such that P(M“¢KY) <.

By B-D-G inequality and Lemma 2.1, we have for k>1,

t
B sup [M°(0)[H=E sup | [ uaw|

0<t<T o<t<T Jo
T

T
gCE(/ |12 ) gCE/ a2 dt < CT. (2.13)
0 0

By It6 formula,

IIME(f)*ME(S)qulé/ [ () [[ME(r) = M () || 2 dW () /Ilu ) dr.

By Lemma 2.1, B-D-G inequality, Holder and Young inequalities, we obtain

E sup ( /T [ (r) L2 | ME(r) = M (s) | s dW (r))?

s<t<t

S]E/ ()| | ME(r) = M<(s) || 32 dr

<E sup [[M*(r) = M(8) |3 [[u(r) I (t—5)

1
<3E sup [M*(r) —M<(s)|lzpn +C(t—s)%

s<r<t
From the above two estimates, we have

E sup ||M€(r)—M€(s)||jlql <C(t—s)*42E sup ||UG(T)HZ}_11 (t—s)2<CO(t—s)2

s<r<t s<r<t
Hence,
T 4
ME 6 1
E| f||4 » / / ” M(3)llzx dtds<C, (2.14)
OT:HY) \t _ 5|

where C' is independent of e.

Let

Ki={geC([0,7]; 4" <R}.

): ||g||W%’4([O,T];H1) —

Then K7 is a compact subset of C([0,7]; H,
(2.14) and Chebyshev inequality that

) by Corollary 2 in [43]. Tt follows from

loc

E[Me]L o )
)< 4(0,T;H") <£

R4 - R

PO EKD) =PUM 3.1 gy 2 R

Choosing R*=3Cn~1, we get

P(MeKl)>1 g (2.15)
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Step 2: Find a compact subset K of C([0,T];L},.(R)) such that P(u® ¢ KJ) < 1.
Let

K3={geC(0,.T; H"): |gllcqor);mr) < R.110g o o.ry:22) < R}

Then by Lemma A.1, KJ is a compact subset of C([0,T];L? (R)).

loc
From (1.5), Holder, Young and interpolation inequalities,

10 (u® = M) || 2 <[luug ]l L2 + o[l 2
1/2 1/2
<Ol o [ s + Cllog 122 05 112

<C(lu e+l +llvgllor + (105 )-
which combined with (2.4), Lemmas 2.1 and 2.3 imply

E sup |0¢(u®—M®)|2 <C. (2.16)
0<t<T

It follows from Lemma 2.1, (2.13), (2.16) and Chebyshev inequality that

P(u— M ¢ KJ) <P(|lu = M*||cqo,ry:m1) > R)+P(|0:(u = ME)|| ¢ (o,73:11) > R)
<EHUE _ME”QC([O,T];Hl) +E||0¢(uc _Me)HQC([O,T]%Hl)

< JE
C
<o
Choosing R?2=3Cn~!, we have
P(u— M eK])>1— g (2.17)

It follows from (2.15) and (2.17) that there exists a compact subset K of
C([0,T); L3, .(R)) such that

P(u ek])>1—

w3

Step 3: Find a compact subset K of LP([0,T]; L}, .(R)) such that P(v° ¢ K3) < 2.
Let
Ky ={veC([0,T]; H"): |lglloqorwr=) < R, llgllwri(o.r)xr) < R}.

Since Wt (R)cc LY (R)C L'(R), then by Lemma A.1, K] is a compact subset of
LP([0,T]; LY (R)) with p>1. It follows from Lemma 2.3 and Chebyshev inequality that

loc
P(ve ¢ KJ) <P([|[v°[|c (o, w1y = R) +P([|[v¢||w(jo,71xr) > R)

<EH’U€||%’([O,T];W1’°°) +]E||/U6||%/V1=1([O,T]><R)

< 22
<o
Choosing R?=3Cn~!, we have
P(vc e KI) > 172.
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In conclusion, for any 1> 0, there exists compact subset K7 x Kj x K of S such
that

Plw: M eK],u €K v e])>1—e.
Hence, the tightness property of € is proved. ]

From the tightness property in Lemma 2.4 and Prokhorov’s theorem, there exists
a subsequence such that p¢— p weakly, where p is a probability on S. According to
Skorokhod’s theorem, there exists a probability space (QFf, F* P#) and random variables
(1167176,]\;15), and (ﬂ,ﬁ,M) with values in S such that

L(u)=L(a), L(v°)=L(0%), L(M) = L(M"), (2.18)
where £(-) denotes the probability law of (-) and

(a€,0¢, M) — (4,0, M) in S, P* —a.s. (2.19)

Next, we need to prove that (ﬂﬁ,ﬁe,M €) satisfies the following equation:

t t
ff(t):uoé—/ ffﬂ;ds—/ 56 ds+ M°. (2.20)
0 0

In order to prove (2.20), we define

T t t
vg(t)é/ ||u€(t)—u0€—|—/ uﬁu;ds—&—/ veds — ME||%-1dt.
0 0 0
Of course
~¢=0, P—a.s. (2.21)

Similarly, we denote

T t t
F5(t) 2 /0 1€ (£) — e + /0 @G ds -+ /0 Gds — M€||%,_. dt. (2.22)

We have the following lemma.

LEMMA 2.5. For 4¢ defined in (2.22), we have =0, P* —a.s.. That is, (ﬂe,fﬁ,MC)
satisfies (2.20).

Proof. By (2.18) and the continuity of 4¢, we have that the distribution of 5¢ is
equal to the distribution of 4¢ on RT, that is

Ef6(7) =E¢(7°), (2.23)

for any ¢ € Cp(RT), which is the space of continuous bounded functions on RT. Now,
for Vi >0, define ¢, € C,(R™) by

%, for 0<y<n,
oy(y) =
1[77,00) (y)a for y=n.

Then by (2.21) and (2.23),

]P)ﬁ (’76 > 77) :Aﬁ 1[77,00)’3’6d1[mj
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S/ 1[0777]ld]P>”+/ 1[17700)@661[@&
Qf n Qt
=Ef,(3°) =E¢y(v*) =0. (2.24)
Since 7 is arbitrary, we can infer from (2.24) that
3¢=0, PP —a.s.,
from which we get that (a€,¢, M¢) satisfies (2.20). 0

LEMMA 2.6.  The limit process M in (2.19) is an H'-valued continuous martingale.
Moreover, there exists a stochastic basis (§2,F,IP) such that

t
M(t):/ adw, (2.25)
0
where W is a standard Brownian motion over the basis (0, F, I@’)
Proof. By Fatou’s lemma, (2.18) and (2.13),

EMM|E 0,7y 11y <bime o BHIM (| E 0,001
=lim Bl M0, 1) < C- (2:26)

For any bounded continuous function ¢ on H' x L? and 0<r <s<t<T, it holds
E((M(t) — M(s))p(u(r),v(r))) =0,

which yields

Hence

=
=
=
|
=
NG
5

a(r),v(r))) =0. (2.27)

Let F; be the o-algebra generated by (a(r),d(r),M(r)),0<r<t, and all Pf-negligible
sets in F. Then, set

./—'f: m]}ﬂ_n, 0<t<T.
n>0

By (2.26)-(2.27), M is an H'-valued continuous martingale with respect to {F}.
For a,b€ H',0<t<T and almost all &€, we find as e —0,

(ME(t),a) s (M(8),b) g — (M (t), @) g (M (), b) 1,
/(a,ﬂe)H1(b,ﬂE)H1d8—>/(a,ﬂ)Hl(b,ﬂ)H1ds.
0 0

Hence, the quadratic variation of M is given by

t o© t
(it)e= [ S (ersiids= [l
P

where {e;} is an orthonormal basis for H'. By Theorem 8.2 in [24], there exists a
stochastic basis (Q,F,P) which is an extension of (Qf, F# P*) such that (2.25) holds. O
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2.3. Convergence. In this subsection, we get some strong convergence in ) x
[0,T]xR. Let ¢°=4af. Then from (2.20), ¢° satisfies

1 -
dg* = (—(a°q ) — 0 — §q€2+f15)dt+dM;. (2.28)

LEMMA 2.7 (Convergence). The following convergences hold

@ — 1 strongly in L*(Q;C([0,T); L2, .(R))), (2.29)
o€ = strongly in L*(Q; L*([0,T); L2, (R))), (2.30)
¢ — q weakly in L*(Q;C([0,T); L} (R))), (2.31)
q2 — q2 weakly in L*(Q;C([0,T]; LP(R))), (2.32)

where 1 <k <oo,1<p<oo. Moreover,

¢ (w,t,x) <q2(w,t,x), for almost all (w,t,r) €Qx[0,T] xR, (2.33)

q=1iy, in the sense of distributions on Q x [0,T] x R. (2.34)

Proof. Let us consider the positive nondecreasing function f(z)=2x2, which sat-

isfies limg_y oo f(f) =o00. Since u¢ and u¢ has the same distribution, by Lemma 2.1, we

have

E sup f([la|7:)=E sup ||a||z=FE sup [u|} <C.
0<t<T 0<t<T 0<t<T

Thus, by Lemma A.2 and (2.19), we have (2.29).
By (2.18), Young inequality and Lemma 2.1, we have

|51 72 0. 77 xm) =ENv 22 (0.17xR)

r 1
=& [ 1 [ G+ g2 )yl

T
1
<CE [ Gl + 5o 3

T
gC]E/ |||} dt < CT,
0

which, combined with Lemma A.2 and (2.19), imply (2.30).
From Lemmas 2.1, 2.2 and (2.18), we have for k>1

E sup |¢°|2k <C, (2.35)
t€[0,T]

E sup |¢°)%k <C. (2.36)
t€[0,T]

By (2.35) we can infer that the sequence ¢¢ contains a subsequence, still denoted by ¢¢,
that satisfies (2.31).
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By interpolation and Young inequalities, for 2 <p < oo

2 1—2
lgllze <llg N Z2lla " < llg“ll 22 +[lg[ oe -
from which and (2.35)-(2.36) imply

E sup [lg?|l},.=E sup [¢°||7 <C,
te[0,T] te[0,T

which implies the weak convergence of (2.32).
Inequality (2.33) is true thanks to the weak convergence in (2.32). Finally, (2.34)
is a consequence of the definition of ¢¢, (2.29) and (2.31). |

Taking e —0 in (2.20) and (2.28), it follows from Lemmas 2.6 and 2.7 that

t t
a(t)zuo—/ ﬁﬂgg—kﬁzds—&—/ adw, (2.37)
0 0
t

t 1— -
q(t):quf/ ((ﬂq)x+62+§q2—ﬁ)ds+/ qdW , (2.38)
0 0

hold in the sense of distribution in [0,7] x R for almost all & € Q.

Since we have the nonlinear term @2 =q? in 9, we need to show that the strong

convergence of ¢ in L*(€; L2([0,T); L}, (R))). First, we give the following lemma.

loc

LEMMA 2.8.  The following limits hold

w2 TR _ [ .2
lim E/}Rq (t,x)dm-tlirgl+E/H§q (t,x)dx—/uow(x)dx. (2.39)

t—0+ R

Proof. Since @€ L?(Q;C([0,T]; H')) and (2.34), we have q(t) — uq, in L? as t — 0+,
so that

P> 2 > 2 .
lirilé&fE/Rq (t,x)dm_/}RuOmdm. (2.40)

Since uf and @€ have the same distribution, taking expectation on (2.3), we can get

t
B 3 =loc s+ | By,
0
from which and Grénwall inequality we have

E(la|Z> +la5ll72) < (luoell7z + [[uoes|l72)e",

which combined with Lemma 2.7 imply,

Jim Bl + | Pdo) < Jim liminfB(Ja 32+ | 0*do) < ol + luos - (241

Since @€ L*(Q;C([0,T); H')), it follows from (2.33), (2.40) and (2.41) that

/ugwdxgliminf]l};/qz(t,m)dxg lim E/?dmﬁ/ugwdx,
R t—0+ R t—0+ R R

from which we get (2.39). O
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Now, we prove the strong convergence of ¢°¢.

LEMMA 2.9 (Convergence). Let ¢° =4S and ¢=1u,. Then, we have

(t) =q2(t), almost everywhere in Q2 x [0,T] x R. (2.42)

Proof.  From (2.28) and (2.38), by It6 formula, we have

dq® =2qdq+ (dq,dq) = —(2q(iiq). +2qi* + qq2 — 2q0 — ¢*)dt + 2¢*dW
=—((1%)s +q(¢® — ¢*) — 2q(0 — &%) — ¢°)dt +2°dW, (2.43)

and

dq62:2qedqe+<dqe dqe>:_(2q6(~eqe)w+2qeu52+q 2qe,ﬁe_q62)dt+2q£2dW
— ((@q°?), — 2q(2° — u?) — ¢%)dt 4+ 2¢°2dW . (2.44)

Taking e —0 in (2.44) and by Lemma 2.7,
dq? = — ((aq?)x — 2q(0—@%) — ¢2)dt +2¢2dW . (2.45)
Let f=¢>—¢2. Then, it follows from (2.43) and (2.45) that

df =—=((@f)s+qf = f)dt+2fdWV,
Define the stopping time

Tr=inf{t€[0,7]: sup |q|lr~ < R}.
£€[0,T]

Denote t ATgr =min{t,7r}. Taking integrations over R x [n,t ATg], we have

[ tenmayde= [ ronda - /n [ (@eta - prisds 2 /n [ raiw
< /]R f(n)dz+C(R) /77 o /R fdrds+2 /n o /R fdzdW.

By B-D-G inequality,

tATR TATR
2F sup | /fd:rW|<C’E/ /fd:s )2dt)/?

te[0,T] Jn
TATR
( sup / f(t)dzx / / fdxdt)'/?
tE[OT]

TATR
<= E sup /f dl’+CE/ /fdxdt.

te[0,T]

Let n—0 and by Lemma 2.9, we have

tATR
E sup /ft/\TR)dx<C’( )E sup / /fdxds,
R

te[0,T] te[0,T]J0
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from which, Gronwall inequality and (2.33) imply that
@ (tATR)=¢2(t ATR), almost everywhere in Q x [0,7] x R.

Let R— oo and by Lemma 2.2, we can get (2.42). |
Proof. (Proof of Theorem 1.1.) By Lemmas 2.7 and 2.9,

@€ — @ strongly in L2(Q;C([0,T];L3,.(R))),

loc

S — i, strongly in L2(€; L2([0,T); L*(R))).

Then, taking e — 0 in (2.20), we have
¢ ¢t
ﬂ(t):uo—/ ﬂﬂm—i—ﬁxds—&—/ udW,
0 0

holds in the sense of distribution in [0,7] x R for almost all @€ Q and o= %e““" * (02 +
0

%ai) Thus, the proof is complete.

3. Proof of Theorem 1.2

In this section, we will prove the global existence and uniqueness of the stochastic
CH Equation (1.11) by contraction mapping theorem.

Since v is local Lipschitz, we need to consider the truncated equation of (1.13)

u(t):S(t)uo—/O S(t—s)v;ds—l—é/o S(t—s)ug,dW(t), (3.1
where

0" =1 ([lull g )v (3.2)

and for n.> 0, n,, : [0,00) — [0,1] is a mollifer C*°-function such that 1, (r)=1for 0<r<n
and 7, (r) =0 for r >2n.

Proof. (Proof of Theorem 1.2.) Introduce a Banach space Yr equipped with
the norm

T
Jully=E{ sup [ulfs+ [ ulfede). (33)
0<t<T 0
Denote ® be a mapping in Y defined by
¢ ¢
Du=S(t)ug —/ S(t—s)vgds—l—é/ S(t—s)u,dW(t). (3.4)
0 0

Step 1: ®:Y7 — Yy is well defined and bounded.
The first term in (3.4) can be estimated as follows

T
1S (t)uollr =E{ sup IIS(t)uO||2L2+/ 1S (t)uol| 7 dt}
0<t<T 0

T
2 2,—&%:2
<E{|Juo|% + /O /R 2 1a3 () dedt)
<22 (3:5)
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By Young inequality, we have
t t
I [ Ste-spasia <t [ o ads
0 0
2 "o Loas
StllGxHLGn(HMlHl)/O lu”+ 5 uz |z ds
T
gch/ |2, dt. (3.6)
0
Denote I = fot S(t—s)vids. Then I is the solution of the following equation

aI_lI:w:: n’
{t i (3.7

I(x,0)=0.

By the standard energy estimate on (3.7), Holder inequality and (3.6), we have
t t t
HIII%2+/O ||I(5)||§{1d3:2/0 (vZZJ)dTS/O 2[| 11 2 (v ]| L2dr
t
<2 sup [10)]s2 [ e2lzndr
0<t<T 0
T t 1
<CVI([ Nulledt) ) [ 1Gulialla® + 502 s dr
0 0

T
gCnT/ [l dt,
0

from which implies

Tt T
/ ||/ S(t—s)vﬁds”?{ldsgCnT/ l|u||3; dt. (3.8)
o Jo 0
By B-D-G inequality, we have
t T T
SE sup || S(t—s)ude(t)HszgéE/ ||um\|%zdt§5E/ uladt,  (3.9)
o<t<T Jo 0 0

and by It6 isometry,

T t T t
OR / I / St — 8)updW (1) dt =OF / / / 264 (¢, s)dgdsdt
0 0 0 0 JR

T T R
=K /R /O / €2e=8 =) (€,5)dtdsde

T
géE/ ul|2,: ds. (3.10)
0

Taking (3.5)-(3.10) into account, we can find a constant C,,(7T") such that
1@ullF < Cu(T) (lluollZ2 + llullZ)-

Therefore the operator @ :Yr — Yr is well defined and bounded.
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Step 2: ¢:Y; — Yy is a contraction.
To this end, for some technical reason to be seen, we need to introduce an equivalent
norm in Y7, depending on a parameter p >0, defined as follows

T
ull},.r =E{ sup IIUII2L2+u/ [ullFdt}. (3.11)
o<t<T 0

Let uy,us € Yr. Then in view of (3.1), g=uj —uqy satisfies

t t
g(t)z—/ S(t—s)(v{‘m—vgz)ds—i—&/ 9z (8)dW (s). (3.12)
0 0
Without loss of generality, let |Ju|| g1 > ||uz| 1. Then
||U?w _USJHQL?

1 1
=l (| 1r2) G () * O (u + 5”?1;) — 1 ([Juzl ) G (@) % 0 (u3 + §U§x) 172

1
<]l 1) G(2) * Oz [g(ur +u2) + 5906(”190 +u2z) H%2

1
) = ma(lluz | ) G () % 00 (u3 + 3, )17

1
<CN|GllZz lImn (llun | )9 +u2) + 5 2 (w10 + s 17
, 1
+0 () (luall e = [zl )Gl 72 w3 + 5
<CullgllF- (3.13)

Using (3.12) and the simple inequality (a+b)? < C.a?+ (1+¢)b? with C. = (1+¢)/e, for
any € >0, we get

t
E sup [®g|7:<E sup {CsH/ S(t—s)(vi, —v5,)ds||7
0<t<T 0<t<T 0

o t
(48] [ gn (W (5[, (3.14)
similarly,
T T t
B [ oglpdi<Bic. [ [ S(e-s)ut ~ o )dsled
0 0 0
T t
+(1+5)(5/ H/ 9o ()W (5) |21 dt}. (3.15)
0 0
Applying the estimates (3.6), (3.8), (3.9) and (3.10) to (3.14) and (3.15), we obtain
1 T
| ®gll7 7 <CrCT?(1+p)E sup Hullip+u(1+a)(1+—)6]E/ lglpdt.  (3.16)
0<t<T " 0

Choose p1=%,e=+/(1+6)/26 —1 and sufficiently small T so that

12gll5. 2 < pllgll7. . (3.17)
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for some p€(0,1). Therefore, ® is a contraction in Y7 and it has a unique solution u™
of Equation (3.1) in Y7 for a small T'. Since T' does not depend on the initial value ug,
that solution may be extended to any interval [0,Tp] with VT >0. We write To =T in
the following.

Introducing a stopping time 7, defined by

Tp=Inf{t>0: ||u"|| g1 >n}

if it exists, and set 7, =T otherwise. Then, for ¢ <7,,u(t)=u"(t) is the solution of
Equation (1.12). Since 7, is increasing in n, let 7o, =limy, 007 a.8.. For t <74, we
have ¢t <, for some n>0, and define u(t) =u"(¢). Then lim;_,,_ |Ju| g1 =00 if 7o <T
and hence w is a local solution. For the uniqueness, suppose that there is another solution
a(t),t <7 for a stopping 7. Then @(t) =u"(t) for t <7,. It follows that a(t) =u(t) for
t<Teo and T="Tno.

Step 3: Global solution. Using It6 formula to ||u(T' A7y,)| g1, we have
[u(T A7) 3 = luoll - (3.18)
On the other hand, we have
Ellu(TAmu)l[7n > E{I (70 <T) (T ATo)|[30 } > 0P < T}, (3.19)
where I(-) is the indicator function. In view of (3.18)-(3.19), we have
P{7, <T}< iz
n
so that, by the Borel-Cantelli lemma,
P{rec >T} =1,

for any T'>0. Hence, u=1lim, ., u™ is a global solution. 0
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Appendix. Some lemmas. The following lemma is proved in Theorems 5 and 7
in [43].
LEMMA A.1 ( [43]). Let X,Y and Z be Banach spaces such that X CCY C Z.

(1) Assume 1<p<oo, K is a bounded set in LP(0,T;X) and for uek, ||u(t+
0) —u(t)|r0,7—5,2) =0 as 6 —0. Then K is relatively compact in LP(0,T;Y) (and in
C(0,T;Y) if p=o0).

(2) Assume Y be intermediate space of class 0 with respect to X and Z, that is to
say there exists 0 such that

ully < Cllulls ?llull, Yue XNZ,0<0<1.
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Assume 1<p;<o00,i=1,2, K is a bounded set in LP*(0,T;X) and for uelkC, ||u(t+
8) —u(t)|| ez 0,7—5;2) =0 as 6—0. Then K is relatively compact in LP(0,TY) with
1/p=(1-6)/p1+0/p>.

The following lemmas are proved in [41].

LEMMA A.2 (Uniform integrability [41]).  If there exists a nonnegative measurable

function f in BT, such that limg o @ =00 and sup,cr E[f(|Xq|)] <oo. Then {X,,a €
T} are uniformly integrable.

LeEMMA A.3 (Vitali’s convergence theorem [41]).  Suppose p€[l,00),{v} € LP and
{v°} converges to v in probability. Then the following are equivalent:

(1) v¢—wv in LP;

(2) the variables |v¢|P are uniformly integrable;

(3) E(|v[") = E(|v[?).
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