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GLOBAL WELL-POSEDNESS OF
THE STOCHASTIC CAMASSA-HOLM EQUATION∗

YONG CHEN† , JINQIAO DUAN‡ , AND HONGJUN GAO§

Abstract. We establish the existence of global martingale solutions of the stochastic Camassa-
Holm equation in H1(R). The construction of the solution is based on the regularization method and
the stochastic compactness method. Furthermore, we use Borel-Cantelli Lemma to prove the global
existence of mild solution of the stochastic Camassa-Holm equation with small noise in L2(R).
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1. Introduction
The Camassa-Holm (CH) equation

ut−uxxt+3uux−2uxuxx−uuxxx= 0 (1.1)

was derived by Camassa and Holm in [5] as a model of shallow water waves. Here u
denotes the fluid velocity in the x direction or, equivalently, the height of the water’s
free surface above a flat bottom [5, 37, 38, 40]. Equation (1.1) was originally derived
by Fuchssteiner and Fokas [28, 29] as a bi-Hamiltonian generalization of KdV. A rig-
orous justification of the derivation of Equation (1.1) as an approach to the governing
equations for water waves was recently provided by Constantin and Lannes [21].

Equation (1.1) is completely integrable [5,20] as it can be written as a compatibility
condition of two linear systems (Lax pair) with a real isospectral parameter λ, and has
a bi-Hamiltonian structure [13,28], which can be written as

mt=−J1
δH2

δm
=−J2

δH1

δm
, (1.2)

where

m=u−uxx,

the Hamiltonian operators

J1 =∂−∂3, J2 =∂m+m∂,

and the corresponding Hamiltonians

H1 =
1

2

∫
R

(u2 +u2
x)dx, H2 =

1

2

∫
R

(u3 +uu2
x)dx.
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The Cauchy problem for the CH equation has been studied extensively. For initial
data u0∈Hs(R),s>3/2, Equation (1.1) is locally well posed [14, 23, 42]. Moreover,
Equation (1.1) has global strong solutions [14,17] and also finite-time blow-up solutions
[14,15,17,18,23,42]. On the other hand, it has global weak solutions in H1(R) [3,4,12,
16,19,32–34,45]. The ill-posedness of the CH equation in H3/2 and in the critical space

B
3/2
2,r ,1<r<∞ is proved in [31].

Since there are some uncertainties in geophysical and climate dynamics [1,35], it is
widely recognized to take random effect into account in mathematical models. Using
stochastic variational method, the stochastic CH equation was derived in [35, 36]. The
wellposedness of stochastic CH equation with additive noise in Hs,s>3/2 is proved
in [7]. The multiplicative noise case is obtained in [44] in Hs, where s>3/2 for the
local wellposedness and s>3 for the global existence. For the general Lévy process, the
well-posedness in Hs,s>3/2 is given in [9] as a special example. The wellposedness of
stochastic modified CH equation with cubic nonlinearity in Hs,s>5/2 is proved in [8].
In this paper, we will establish the existence of martingale solutions in H1 and prove
the regularization by the multiplicative noise of stochastic CH equation.

1.1. Martingale solutions. Introduce the following Hamiltonian function

H̃2(m) =
1

2

∫
R

(u3 +uu2
x)dx− 1

2
∂−1
x

∫
R
umdxẆ , (1.3)

where Ẇ = dW
dt is a white noise and W is a standard Brownian motion. Putting (1.3)

into (1.2) with H2(m) replaced by H̃2(m), we get the following stochastic CH equation

dm+(umx+2mux)dt=mdW (t), t>0, x∈R. (1.4)

Applying (1−∂2
x)−1 to both sides of (1.4), we have

du+uuxdt+vxdt=udW (t), (1.5)

where the source term v is defined as a convolution:

v=G(x)∗(u2 +
1

2
u2
x), G(x) =

1

2
e−|x|. (1.6)

For the initial data, we take

u(0,x) =u0(x). (1.7)

We will establish the martingale solution of (1.5)-(1.7), which is defined as follows.

Definition 1.1. A martingale solution of (1.5)-(1.7) is a system ((Ω̃,F̃ ,F̃t,P̃),W̃ ,ũ),
which satisfies

(1) (Ω̃,F̃ ,F̃t,P̃) is a filtered probability space with filtration F̃t,
(2) W̃ is a F̃t-standard Brownian motion,

(3) for almost every t, ũ(t) is progressively measurable,

(4) ũ∈L2(Ω̃;C([0,T ];H1(R))). For t∈ [0,T ],ϕ∈C∞, the following holds P̃-a.s.∫
R
ũ(t)ϕdx=

∫
R
u0ϕdx−

∫ t

0

∫
R

(ũũx)(s)ϕdxds+

∫ t

0

∫
R
ṽ(s)ϕxdxds+

∫ t

0

∫
R
ũ(s)ϕdxdW̃ ,

where ṽ= 1
2e
−|x| ∗(ũ2 + 1

2 ũ
2
x).
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DenoteM+(R) as the space of positive regular Borel measures on R with bounded
total variation. The first main result is as follows.

Theorem 1.1. Let the initial data u0∈H1(R) and m0 =u0−u0xx∈M+(R). Then
there exists a global martingale solution of the stochastic Camassa-Holm Equation (1.5)-
(1.7).

Theorem 1.1 will be proved through the following steps.

Step 1: We consider (1.5) with the regularized initial value

uε(0,x) =u0ε(x), (1.8)

where u0ε=ρε ∗u0,0<ε�1 and ρε is the Friedrichs’ mollifier

ρε= (

∫
R
ρ(ξ)dξ)−1ε−1ρ(ε−1x), x∈R,

where ρ∈C∞c (R) is defined by

ρ(x) =

{
e1/(x2−1), for |x|<1,

0, for |x|≥1.

The global existence of solution (uε,vε) of (1.5), (1.8) in the time interval [0,T ],∀T >0
can be established by Lemma 2.1 and those local results in [7, 9, 44].

Step 2: We establish some uniform estimates of (uε,vε,M ε) with M ε=
∫ t

0
uεdW ,

which are important to get the tightness of the distributions of (uε,vε,M ε). These can
be obtained mainly by Itô formula and Burkholder-Davis-Gundy (B-D-G) inequality
[11,24,25]. We also adapt some skills to estimate ‖ux‖L∞ in Lemma 2.2.

Step 3: We get the tightness results of the random variable (uε,vε,M ε) by some
lemmas in [43]. Then, from the Jakubowski-Skorohod theorem [39], there exist a prob-
ability space (Ω],F ],P]) and random variables (ũε, ṽε,M̃ ε)→ (ũ, ṽ,M̃),P]-a.s., such that
the probability distribution of (ũε, ṽε,M̃ ε) is the same as that of (uε,vε,M ε). Using a
cut-off function as in [6], we can show that (ũε, ṽε,M̃ ε) satisfies the regularized equation
in (Ω],F ],P]). We also prove the limit M̃ is a martingale and can be expressed as

M̃ =
∫ t

0
ũdW̃ in a new probability space (Ω̃,F̃ ,P̃) which is an extension of (Ω],F ],P]).

Step 4: We prove the strong convergence of (ũε, ṽε) in L2(Ω̃;C([0,T ];L2
loc(R))×

L2([0,T ];L2
loc(R))) by the uniform integrability criterion and Vitali’s convergence the-

orem. Since there exists ũ2
x in ṽ, we also need to get the strong convergence of ux

in L2(Ω̃;C([0,T ];L2
loc(R))). It can be solved by the renormalized formulations in the

stochastic cases and the stopping time skill. Then in view of the almost sure conver-
gence on (Ω̃,F̃ ,P̃), we can get that (ũ,W̃ ) is a martingale solution of (1.5)-(1.7) in the
sense of Definition 1.1.

1.2. Mild solutions. If we take

H̃2(m) =
1

2

∫
R

(u3 +uu2
x)dx− 1

2

∫
R
u2dx◦Ẇ ,

then we can get the following Stratonovich stochastic CH equation

dm+(umx+2mux)dt=mx ◦dW (t), t>0, x∈R. (1.9)
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Compared with Equation (1.4), Equation (1.9) has the following conserved quantity

‖u‖2H1 =

∫
R

(u2 +u2
x)dx=‖u0‖2H1 .

It is also proved in [22] that Equation (1.9) has similar properties as those for the
determined case, such as peakon solutions, isospectrality and wave-breaking result.

For this form of noise, Flandoli et al. discovered in [27] that the noise could improve
the theory of the linear transport equations. There are also some regularization by noise-
type results (e.g. [2, 26, 30]). But, the relevant results for the stochastic nonlinear fluid
equation are few. Let us write the Itô form of (1.9) as follows

dm+(umx+2mux)dt=
1

2
mxxdt+mxdW (t). (1.10)

There is no regularizing effect from 1
2mxx, which is fully compensated by the Itô term.

In fact, let η(x,t) =m(x,t−W (t)) =u(x,t−W (t))−uxx(x,t−W (t)), we have

ηt+uηx+2ηux= 0,

which has the same regularization as the deterministic case. If the noise intensity in
(1.10) is small, i.e.

dm+(umx+2mux)dt=
1

2
mxxdt+δmxdW (t), (1.11)

with δ∈ (0,1), we have a regularization from the operator 1
2∂

2
x. The effect of a small

noise on the stochastic modified Camassa-Holm equation was studied in [10].
Applying (1−∂2

x)−1 to both sides of (1.11), we have

du− 1

2
uxxdt=−vxdt+δuxdW (t), (1.12)

where v is given by (1.6). The mild solution of (1.12) is given by

u(t) =S(t)u0−
∫ t

0

S(t−s)vxds+δ

∫ t

0

S(t−s)uxdW (t), (1.13)

where S(t) =F−1(e−
ξ2

2 t). By the semigroup theory of the stochastic parabolic PDEs
[11], we prove the local existence and uniqueness of mild solution of Equation (1.12).
Then, we obtain the global existence by the Borel-Cantelli Lemma. The result is as
follows.

Theorem 1.2. Let the initial data u0(x)∈L2(R). Then for any T >0, the
stochastic Camassa-Holm Equation (1.12) has a unique solution u such that u∈
L2(Ω;C([0,T ];L2(R))∩L2([0,T ];H1(R))).

This paper is organized as follows. In Section 2, we give the proof of Theorem 1.1.
In Section 3, we prove Theorem 1.2.

2. Proof of Theorem 1.1
In this section, we prove Theorem 1.1 by three subsections. In Subsection 2.1, some

estimates of the random variables (uε,vε,M ε) are established. In Subsection 2.2, the
tightness of the distribution of (uε,vε,M ε) is obtained. Finally, the convergence of the
random variables is proved in Subsection 2.3.
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First, we give some notations. Given p>1, α∈ (0,1), let Wα,p([0,T ];K) be the
Sobolev space of all u∈Lp(0,T ;K) such that∫ T

0

∫ T

0

‖u(t)−u(s)‖pK
|t−s|1+αp

dtds<∞,

endowed with the norm

‖u‖2Wα,p([0,T ];K) =

∫ T

0

‖u‖2Kdt+
∫ T

0

∫ T

0

‖u(t)−u(s)‖pK
|t−s|1+αp

dtds.

Denote W 1,1([0,T ]×R) as the Sobolev space of u∈L1([0,T ]×R) and ut∈L1([0,T ]×R).

2.1. Uniform estimates. In this subsection, we will construct some estimates of
the random variables (uε,vε,M ε) of the solution of (1.5), (1.8). To simplify the notation,
we will drop ε in (uε,vε,M ε) throughout this subsection.

Lemma 2.1. For k≥1, we have

E sup
0≤t≤T

‖u‖2kH1 ≤2‖u0‖2kH1eCT . (2.1)

Proof. Differentiating (1.5) w.r.t. x one obtains

dux=−(u2
x+uuxx)dt−vxxdt+uxdW =−1

2
(u2
x+2uuxx−2u2)dt−vdt+uxdW. (2.2)

By applying the Itô formula to ‖u‖2L2 of Equation (1.4) and ‖ux‖2L2 of Equation
(2.2), we get

‖u‖2L2 =‖u0‖2L2−2

∫ t

0

(u,vx)ds+

∫ t

0

‖u‖2L2ds+2

∫ t

0

(u,u)dW,

and

‖ux‖2L2 =‖u0x‖2L2−2

∫ t

0

(ux,v)ds+

∫ t

0

‖ux‖2L2ds+2

∫ t

0

(ux,ux)dW,

where (u,uux) = 0 and (ux,u
2
x+2uuxx−2u2) = 0 are used. Then, we have

‖u‖2H1 =‖u‖2L2 +‖ux‖2L2 =‖u0‖2H1 +

∫ t

0

‖u‖2H1ds+2

∫ t

0

‖u‖2H1dW, (2.3)

from which and applying Itô formula to ‖u‖2kH1 with k≥1, we have

d‖u‖2kH1 =d(‖u‖2H1)k

=k‖u‖2k−2
H1 d‖u‖2H1 +

k(k−1)

2
‖u‖2k−4

H1 d‖u‖2H1d‖u‖2H1

=k‖u‖2kH1dt+2k(k−1)‖u‖2kH1dt+2k‖u‖2kH1dW.

By B-D-G inequality and Young inequality, we get

E sup
0≤t≤T

2k

∫ t

0

‖u‖2kH1dW ≤CE(

∫ T

0

‖u‖4kH1ds)1/2
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≤CE( sup
0≤t≤T

‖u(s)‖2kH1

∫ T

0

‖u(s)‖2kH1ds)1/2

≤1

2
E sup

0≤t≤T
‖u(s)‖2kH1 +CE

∫ T

0

‖u(s)‖2kH1ds.

Then, it follows from the above estimates

E sup
0≤t≤T

‖u‖2kH1 ≤2‖u0‖2kH1 +CE
∫ T

0

‖u(s)‖2kH1ds,

from which and Grönwall inequality (2.1) is obtained.

Remark 2.1. By the Sobolev embedding theorem, we have for k≥1

E sup
0≤t≤T

‖u(t)‖2kL∞ ≤E sup
0≤t≤T

‖u(t)‖2kH1 ≤C. (2.4)

Lemma 2.2. Suppose m0 =u0−u0xx∈M+(R). Then for k≥1

E sup
0≤t≤T

‖ux‖2kL∞ ≤C.

Proof. Let p(t,x) be the solution of the following equation for a.e. ω∈Ω{
∂tp=u(t,p), 0<t<T,

p(0,x) =x, x∈R.
(2.5)

By the well-known results in the theory of ordinary differential equations as that in [18],
Equation (2.5) has a unique solution p∈C1([0,T ]×R,R) for a.e. ω∈Ω.

By Itô multiplicative formula, we have

d[m(t,p)p2
x] =[dm+mxdp]p

2
x+2mpxdpx

=[dm+mxudt]p
2
x+2mp2

xuxdt=mp2
xdW,

from which we get

m(t,p)p2
x=m0e

W (t)− t2 . (2.6)

Since u= 1
2e
−|x| ∗m, we have

u(t,x) =
1

2
e−x

∫ x

−∞
eym(t,y)dy+

1

2
ex

∫ ∞
x

e−ym(t,y)dy, (2.7)

from which we deduce that

ux(t,x) =−1

2
e−x

∫ x

−∞
eym(t,y)dy+

1

2
ex

∫ ∞
x

e−ym(t,y)dy.

Consequently,

u(t,x)+ux(t,x) =ex
∫ ∞
x

e−ym(t,y)dy, (2.8)
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u(t,x)−ux(t,x) =e−x
∫ x

−∞
eym(t,y)dy. (2.9)

If m0 does not change sign on R, then by (2.6), so does m. Since m0 =u0−u0xx∈
M+(R), by Lemmas 3.3 and 3.4 in [16], we have m0ε≥0 and u0ε⇀u0 weakly in H1.
Then by (2.7), u≥0 and by (2.8)-(2.9),

−u(t,x)≤ux(t,x)≤u(t,x),

from which and (2.4) we obtain that

E sup
0≤t≤T

‖ux‖2kL∞ ≤E sup
0≤t≤T

‖u‖2kL∞ ≤C, (2.10)

where k≥1.

We give some estimates for the nonlinear term v defined by (1.6).

Lemma 2.3. For j= 1 or ∞, and k≥1, we have

E sup
0≤t≤T

‖v‖kW 1,j ≤C, (2.11)

E‖v‖kW 1,1([0,T ]×R)≤C. (2.12)

Proof. Let G(x) = 1
2e
−|x|. Then ‖G‖W 1,j ≤C for j= 1 or∞. By Young inequality,

‖v‖kW 1,j =‖
∫
R
G(x−y)(u2 +

1

2
u2
x)(y)dy‖kW 1,j

≤‖G‖W 1,j‖u2 +
1

2
u2
x‖kL1 ≤C‖u‖2kH1 ,

from which and Lemma 2.1, (2.11) is obtained.
Next, we prove (2.12). By Itô multiplicative formula, we have

‖ d
dt
v‖L1([0,T ]×R)

=

∫ T

0

∫
R

∫
R
G(x−y)[2udu+uxdux+

du

dt

du

dt
+

1

2

dux
dt

dux
dt

]dydxdt

=2

∫ T

0

∫
R

∫
R
G(x−y)[u(−uux−vx+u

dW

dt
)]dydxdt

+

∫ T

0

∫
R

∫
R
G(x−y){ux[−1

2
(u2
x+2uuxx−2u2)−v+ux

dW

dt
]}dydxdt

+

∫ T

0

∫
R

∫
R
G(x−y)[u2 +

1

2
u2
x]dydxdt

=:I1 +I2 +I3.

By Young and Hölder inequalities, we have

I1≤C
∫ T

0

‖G‖L∞(‖u2ux‖L1 +‖uvx‖L1)dt+C

∫ T

0

‖G‖L∞‖u2‖L1dW

≤C
∫ T

0

(‖u‖L∞‖u‖L2‖ux‖L2 +‖u‖L2‖vx‖L2)dt+C

∫ T

0

‖u‖2L2dW
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≤C
∫ T

0

(‖u‖2L2 +‖u‖2L∞‖ux‖2L2 +‖vx‖2L2)dt+C

∫ T

0

‖u‖2L2dW

≤C
∫ T

0

(‖u‖2L2 +‖u‖4H1 +‖vx‖2L2)dt+C

∫ T

0

‖u‖2L2dW.

We can rewrite I2 as follows

I2 =

∫ T

0

∫
R

∫
R
G(x−y)[−1

2
(uu2

x)x+uxu
2)−uxv+u2

x

dW

dt
]dydxdt

=
1

2

∫ T

0

∫
R

∫
R

dG(x−y)

dx
uu2

xdydxdt−
∫ T

0

∫
R

∫
R
G(x−y)uxvdydxdt

+

∫ T

0

∫
R

∫
R
G(x−y)u2

xdydxdW.

Then Young and Hölder inequalities imply

I2≤C
∫ T

0

‖G‖W 1,∞‖uu2
x‖L1dt+

∫ T

0

‖G‖W 1,∞‖uxv‖L1dt+

∫ T

0

‖G‖W 1,∞‖u2
x‖L1dW

≤C
∫ T

0

(‖u‖2L∞+‖u2
x‖2L1 +‖ux‖L2‖v‖L2)dt+

∫ T

0

‖ux‖2L2dW

≤C
∫ T

0

(‖u‖2H1 +‖u‖4H1 +‖v‖2L2)dt+

∫ T

0

‖ux‖2L2dW.

Similarly, we have

I3≤C
∫ T

0

‖u‖2H1dt.

Hence, it follows from the above estimates that

E‖ d
dt
v‖kL1([0,T ]×R)≤CE[

∫ T

0

(‖u‖2H1 +‖u‖4H1 +‖v‖2W 1,2)dt]k

≤CE
∫ T

0

(‖u‖2kH1 +‖u‖4kH1 +‖v‖2kW 1,2)dt≤C,

where the last inequality follows from Lemma 2.1 and (2.11).

2.2. Tightness. In this subsection, we obtain the tightness of M ε,uε and vε.

Lemma 2.4 (Tightness). Define

S=C([0,T ];L2
loc(R))×Lp([0,T ];Lploc(R))×C([0,T ];H1

loc(R)), p≥1,

equipped with its Borel σ-algebra. Let µε be the probability measure on S which is the
image of P on Ω by the map: ω→ (uε(ω,·),vε(ω,·),M ε(ω,·)), that is, for any B⊂S,

µε(B) =P(ω∈Ω : (uε(ω,·),vε(ω,·),M ε(ω,·))∈B).

Then the sequence of the probability measure µε is tight.
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Proof.
Step 1: We will show for each η>0, there is a compact subset Kη1 of C([0,T ];H1

loc(R))
such that P(M ε /∈Kη1)≤ η

3 .
By B-D-G inequality and Lemma 2.1, we have for k≥1,

E sup
0≤t≤T

‖M ε(t)‖2kH1 =E sup
0≤t≤T

‖
∫ t

0

uεdW‖2kH1

≤CE(

∫ T

0

‖uε‖2H1dt)k≤CE
∫ T

0

‖uε‖2kH1dt≤CT. (2.13)

By Itô formula,

‖M ε(t)−M ε(s)‖2H1 ≤
∫ t

s

‖uε(r)‖H1‖M ε(r)−M ε(s)‖H1dW (r)+

∫ t

s

‖uε(r)‖2H1dr.

By Lemma 2.1, B-D-G inequality, Hölder and Young inequalities, we obtain

E sup
s≤τ≤t

(

∫ τ

s

‖uε(r)‖H1‖M ε(r)−M ε(s)‖H1dW (r))2

≤E
∫ t

s

‖u(r)‖2H1‖M ε(r)−M ε(s)‖2H1dr

≤E sup
s≤r≤t

‖M ε(r)−M ε(s)‖2H1‖u(r)‖2H1(t−s)

≤1

2
E sup
s≤r≤t

‖M ε(r)−M ε(s)‖4H1 +C(t−s)2.

From the above two estimates, we have

E sup
s≤r≤t

‖M ε(r)−M ε(s)‖4H1 ≤C(t−s)2 +2E sup
s≤r≤t

‖uε(r)‖4H1(t−s)2≤C(t−s)2.

Hence,

E‖M ε‖4
W

3
8
,4(0,T ;H1)

=E
∫ T

0

∫ T

0

‖M ε(r)−M ε(s)‖4H1

|t−s| 52
dtds≤C, (2.14)

where C is independent of ε.
Let

Kη1 ={g∈C([0,T ];H1) :‖g‖
W

3
8
,4([0,T ];H1)

≤R}.

Then Kη1 is a compact subset of C([0,T ];H1
loc) by Corollary 2 in [43]. It follows from

(2.14) and Chebyshev inequality that

P(M ε /∈Kη1) =P(‖M ε‖
W

3
8
,4([0,T ];H1)

≥R)≤
E‖M ε‖4

W
3
8
,4(0,T ;H1)

R4
≤ C

R4
.

Choosing R4 = 3Cη−1, we get

P(M ε∈Kη1)≥1− η
3
. (2.15)
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Step 2: Find a compact subset Kη2 of C([0,T ];L2
loc(R)) such that P(uε /∈Kη2)≤ η

3 .
Let

K̃η2 ={g∈C([0,T ];H1) :‖g‖C([0,T ];H1)≤R,‖∂tg‖C([0,T ];L2)≤R}.

Then by Lemma A.1, K̃η2 is a compact subset of C([0,T ];L2
loc(R)).

From (1.5), Hölder, Young and interpolation inequalities,

‖∂t(uε−M ε)‖L2 ≤‖uεuεx‖L2 +‖vεx‖L2

≤C‖uε‖L∞‖uε‖H1 +C‖vεx‖
1/2
L1 ‖vεx‖

1/2
L∞

≤C(‖uε‖2L∞+‖uε‖2H1 +‖vεx‖L1 +‖vεx‖L∞).

which combined with (2.4), Lemmas 2.1 and 2.3 imply

E sup
0≤t≤T

‖∂t(uε−M ε)‖L2 ≤C. (2.16)

It follows from Lemma 2.1, (2.13), (2.16) and Chebyshev inequality that

P(uε−M ε /∈K̃η2)≤P(‖uε−M ε‖C([0,T ];H1)≥R)+P(‖∂t(uε−M ε)‖C([0,T ];H1)≥R)

≤
E‖uε−M ε‖2C([0,T ];H1) +E‖∂t(uε−M ε)‖2C([0,T ];H1)

R2

≤ C

R2
.

Choosing R2 = 3Cη−1, we have

P(uε−M ε∈K̃η2)≥1− η
3
. (2.17)

It follows from (2.15) and (2.17) that there exists a compact subset Kη2 of
C([0,T ];L2

loc(R)) such that

P(uε∈Kη2)≥1− η
3
.

Step 3: Find a compact subset Kη3 of Lp([0,T ];Lploc(R)) such that P(vε /∈Kη3)≤ η
3 .

Let

Kη3 ={v∈C([0,T ];H1) :‖g‖C([0,T ];W 1,∞)≤R,‖g‖W 1,1([0,T ]×R)≤R}.

Since W 1,∞(R)⊂⊂Lploc(R)⊂L1(R), then by Lemma A.1, Kη3 is a compact subset of
Lp([0,T ];Lploc(R)) with p≥1. It follows from Lemma 2.3 and Chebyshev inequality that

P(vε /∈Kη3)≤P(‖vε‖C([0,T ];W 1,∞)≥R)+P(‖vε‖W 1,1([0,T ]×R)≥R)

≤
E‖vε‖2C([0,T ];W 1,∞) +E‖vε‖2W 1,1([0,T ]×R)

R2

≤ C

R2
.

Choosing R2 = 3Cη−1, we have

P(vε∈Kη3)≥1− η
3
.
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In conclusion, for any η>0, there exists compact subset Kη1×K
η
2×K

η
3 of S such

that

P(ω :M ε∈Kη1 ,uε∈K
η
2 ,v

ε∈Kη3)≥1−ε.

Hence, the tightness property of µε is proved.

From the tightness property in Lemma 2.4 and Prokhorov’s theorem, there exists
a subsequence such that µε→µ weakly, where µ is a probability on S. According to
Skorokhod’s theorem, there exists a probability space (Ω],F ],P]) and random variables
(ũε, ṽε,M̃ ε), and (ũ, ṽ,M̃) with values in S such that

L(uε) =L(ũε), L(vε) =L(ṽε), L(M ε) =L(M̃ ε), (2.18)

where L(·) denotes the probability law of (·) and

(ũε, ṽε,M̃ ε)→ (ũ, ṽ,M̃) in S, P]−a.s. (2.19)

Next, we need to prove that (ũε, ṽε,M̃ ε) satisfies the following equation:

ũε(t) =u0ε−
∫ t

0

ũεũεxds−
∫ t

0

ṽεxds+M̃ ε. (2.20)

In order to prove (2.20), we define

γε(t),
∫ T

0

‖uε(t)−u0ε+

∫ t

0

uεuεxds+

∫ t

0

vεxds−M ε‖2H−1dt.

Of course

γε= 0, P−a.s. (2.21)

Similarly, we denote

γ̃ε(t),
∫ T

0

‖ũε(t)−u0ε+

∫ t

0

ũεũεxds+

∫ t

0

ṽεxds−M̃ ε‖2H−1dt. (2.22)

We have the following lemma.

Lemma 2.5. For γ̃ε defined in (2.22), we have γ̃ε= 0, P]−a.s.. That is, (ũε, ṽε,M̃ ε)
satisfies (2.20).

Proof. By (2.18) and the continuity of γ̃ε, we have that the distribution of γ̃ε is
equal to the distribution of γε on R+, that is

E]φ(γ̃ε) =Eφ(γε), (2.23)

for any φ∈Cb(R+), which is the space of continuous bounded functions on R+. Now,
for ∀η>0, define φη ∈Cb(R+) by

φη(y) =

{ y
η , for 0≤y<η,

1[η,∞)(y), for y≥η.

Then by (2.21) and (2.23),

P](γ̃ε≥η) =

∫
Ω]

1[η,∞)γ̃
εdP]
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≤
∫

Ω]
1[0,η]

γ̃ε

η
dP]+

∫
Ω]

1[η,∞)γ̃
εdP]

=E]φη(γ̃ε) =Eφη(γε) = 0. (2.24)

Since η is arbitrary, we can infer from (2.24) that

γ̃ε= 0, P]−a.s.,

from which we get that (ũε, ṽε,M̃ ε) satisfies (2.20).

Lemma 2.6. The limit process M̃ in (2.19) is an H1-valued continuous martingale.
Moreover, there exists a stochastic basis (Ω̃,F̃ ,P̃) such that

M̃(t) =

∫ t

0

ũdW̃ , (2.25)

where W̃ is a standard Brownian motion over the basis (Ω̃,F̃ ,P̃).

Proof. By Fatou’s lemma, (2.18) and (2.13),

E]‖M̃‖4C([0,T ];H1)≤limε→0E]‖M̃ ε‖4C([0,T ];H1)

=limε→0E‖M ε‖4C([0,T ];H1)≤C. (2.26)

For any bounded continuous function ϕ on H1×L2 and 0≤ r≤s≤ t≤T, it holds

E((M ε(t)−M ε(s))ϕ(uε(r),vε(r))) = 0,

which yields

E]((M̃ ε(t)−M̃ ε(s))ϕ(ũε(r), ṽε(r))) = 0.

Hence

E]((M̃(t)−M̃(s))ϕ(ũ(r), ṽ(r))) = 0. (2.27)

Let F̂t be the σ-algebra generated by (ũ(r), ṽ(r),M̃(r)),0≤ r≤ t, and all P]-negligible
sets in F ]. Then, set

F ]t =
⋂
η>0

F̂t+η, 0≤ t<T.

By (2.26)-(2.27), M̃ is an H1-valued continuous martingale with respect to {F ]t }.
For a,b∈H1,0≤ t≤T and almost all ω̃∈ Ω̃, we find as ε→0,

(M̃ ε(t),a)H1(M̃ ε(t),b)H1→ (M̃(t),a)H1(M̃(t),b)H1 ,∫ t

0

(a,ũε)H1(b,ũε)H1ds→
∫ t

0

(a,ũ)H1(b,ũ)H1ds.

Hence, the quadratic variation of M̃ is given by

〈M̃〉t=

∫ t

0

∞∑
j=1

(ej ,ũ)2
H1ds=

∫ t

0

‖ũ‖2H1ds

where {ej} is an orthonormal basis for H1. By Theorem 8.2 in [24], there exists a

stochastic basis (Ω̃,F̃ ,P̃) which is an extension of (Ω],F ],P]) such that (2.25) holds.
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2.3. Convergence. In this subsection, we get some strong convergence in Ω̃×
[0,T ]×R. Let qε= ũεx. Then from (2.20), qε satisfies

dqε= (−(ũεqε)x− ũε2−
1

2
qε2 + ṽε)dt+dM̃ ε

x. (2.28)

Lemma 2.7 (Convergence). The following convergences hold

ũε→ ũ strongly in L2(Ω̃;C([0,T ];L2
loc(R))), (2.29)

ṽε→ ṽ strongly in L2(Ω̃;L2([0,T ];L2
loc(R))), (2.30)

qε⇀q weakly in Lk(Ω̃;C([0,T ];L2(R))), (2.31)

qε2⇀q2 weakly in Lk(Ω̃;C([0,T ];Lp(R))), (2.32)

where 1≤k<∞,1≤p<∞. Moreover,

q2(ω,t,x)≤ q2(ω,t,x), for almost all (ω,t,x)∈Ω× [0,T ]×R, (2.33)

q= ũx, in the sense of distributions on Ω̃× [0,T ]×R. (2.34)

Proof. Let us consider the positive nondecreasing function f(x) =x2, which sat-

isfies limx→∞
f(x)
x =∞. Since ũε and uε has the same distribution, by Lemma 2.1, we

have

Ẽ sup
0≤t≤T

f(‖ũε‖2L2) = Ẽ sup
0≤t≤T

‖ũε‖4H1 =E sup
0≤t≤T

‖uε‖4H1 ≤C.

Thus, by Lemma A.2 and (2.19), we have (2.29).
By (2.18), Young inequality and Lemma 2.1, we have

Ẽ‖ṽε‖4L2([0,T ]×R) =E‖vε‖4L2([0,T ]×R)

=E
∫ T

0

‖
∫
R
G(x−y)(u2 +

1

2
u2
x)(y)dy‖2L2dt

≤CE
∫ T

0

‖G‖2L2‖u2 +
1

2
u2
x‖2L1dt

≤CE
∫ T

0

‖u‖4H1dt≤CT,

which, combined with Lemma A.2 and (2.19), imply (2.30).
From Lemmas 2.1, 2.2 and (2.18), we have for k≥1

Ẽ sup
t∈[0,T ]

‖qε‖2kL2 ≤C, (2.35)

Ẽ sup
t∈[0,T ]

‖qε‖2kL∞ ≤C. (2.36)

By (2.35) we can infer that the sequence qε contains a subsequence, still denoted by qε,
that satisfies (2.31).
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By interpolation and Young inequalities, for 2≤p<∞

‖qε‖Lp ≤‖qε‖
2
p

L2‖qε‖
1− 2

p

L∞ ≤‖q
ε‖L2 +‖qε‖L∞ .

from which and (2.35)-(2.36) imply

Ẽ sup
t∈[0,T ]

‖qε2‖kLp/2 = Ẽ sup
t∈[0,T ]

‖qε‖2kLp ≤C,

which implies the weak convergence of (2.32).
Inequality (2.33) is true thanks to the weak convergence in (2.32). Finally, (2.34)

is a consequence of the definition of qε, (2.29) and (2.31).

Taking ε→0 in (2.20) and (2.28), it follows from Lemmas 2.6 and 2.7 that

ũ(t) =u0−
∫ t

0

ũũx+ ṽxds+

∫ t

0

ũdW̃ , (2.37)

q(t) =u0x−
∫ t

0

((ũq)x+ ũ2 +
1

2
q2− ṽ)ds+

∫ t

0

qdW̃ , (2.38)

hold in the sense of distribution in [0,T ]×R for almost all ω̃∈ Ω̃.
Since we have the nonlinear term ũ2

x= q2 in ṽ, we need to show that the strong
convergence of qε in L2(Ω̃;L2([0,T ];L2

loc(R))). First, we give the following lemma.

Lemma 2.8. The following limits hold

lim
t→0+

Ẽ
∫
R
q2(t,x)dx= lim

t→0+
Ẽ
∫
R
q2(t,x)dx=

∫
R
u2

0x(x)dx. (2.39)

Proof. Since ũ∈L2(Ω̃;C([0,T ];H1)) and (2.34), we have q(t)⇀u0x in L2 as t→0+,
so that

liminf
t→0+

Ẽ
∫
R
q2(t,x)dx≥

∫
R
u2

0xdx. (2.40)

Since uε and ũε have the same distribution, taking expectation on (2.3), we can get

E‖ũε‖2H1 =‖u0ε‖2H1 +E
∫ t

0

‖ũε‖2H1ds,

from which and Grönwall inequality we have

E(‖ũε‖2L2 +‖ũεx‖2L2)≤ (‖u0ε‖2L2 +‖u0εx‖2L2)et,

which combined with Lemma 2.7 imply,

lim
t→0+

Ẽ(‖ũ‖2L2 +

∫
R
q2dx)≤ lim

t→0+
liminf
ε→0

Ẽ(‖ũε‖2L2 +

∫
R
qε2dx)≤‖u0‖2L2 +‖u0x‖2L2 . (2.41)

Since ũ∈L2(Ω̃;C([0,T ];H1)), it follows from (2.33), (2.40) and (2.41) that∫
R
u2

0xdx≤ liminf
t→0+

Ẽ
∫
R
q2(t,x)dx≤ lim

t→0+
Ẽ
∫
R
q2dx≤

∫
R
u2

0xdx,

from which we get (2.39).



YONG CHEN, JINQIAO DUAN, AND HONGJUN GAO 621

Now, we prove the strong convergence of qε.

Lemma 2.9 (Convergence). Let qε= ũεx and q= ũx. Then, we have

q2(t) = q2(t), almost everywhere in Ω̃× [0,T ]×R. (2.42)

Proof. From (2.28) and (2.38), by Itô formula, we have

dq2 =2qdq+〈dq,dq〉=−(2q(ũq)x+2qũ2 +qq2−2qṽ−q2)dt+2q2dW̃

=−((ũq2)x+q(q2−q2)−2q(ṽ− ũ2)−q2)dt+2q2dW̃ , (2.43)

and

dqε2 =2qεdqε+〈dqε,dqε〉=−(2qε(ũεqε)x+2qεũε2 +qε3−2qεṽε−qε2)dt+2qε2dW̃

=−((ũεqε2)x−2q(ṽε− ũε2)−qε2)dt+2qε2dW̃ . (2.44)

Taking ε→0 in (2.44) and by Lemma 2.7,

dq2 =−((ũq2)x−2q(ṽ− ũ2)−q2)dt+2q2dW̃ . (2.45)

Let f = q2−q2. Then, it follows from (2.43) and (2.45) that

df =−((ũf)x+qf−f)dt+2fdW̃ ,

Define the stopping time

τR= inf{t∈ [0,T ] : sup
t∈[0,T ]

‖q‖L∞ <R}.

Denote t∧τR= min{t,τR}. Taking integrations over R× [η,t∧τR], we have∫
R
f(t∧τR)dx=

∫
R
f(η)dx−

∫ t∧τR

η

∫
R

((ũf)x+qf−f)dxds+2

∫ t∧τR

η

∫
R
fdW̃

≤
∫
R
f(η)dx+C(R)

∫ t∧τR

η

∫
R
fdxds+2

∫ t∧τR

η

∫
R
fdxdW̃ .

By B-D-G inequality,

2Ẽ sup
t∈[0,T ]

|
∫ t∧τR

η

∫
R
fdxW̃ |≤CẼ(

∫ T∧τR

η

(

∫
R
fdx)2dt)1/2

≤CẼ( sup
t∈[0,T ]

∫
R
f(t)dx

∫ T∧τR

η

∫
R
fdxdt)1/2

≤1

2
Ẽ sup
t∈[0,T ]

∫
R
f(t)dx+CẼ

∫ T∧τR

η

∫
R
fdxdt.

Let η→0 and by Lemma 2.9, we have

Ẽ sup
t∈[0,T ]

∫
R
f(t∧τR)dx≤C(R)Ẽ sup

t∈[0,T ]

∫ t∧τR

0

∫
R
fdxds,
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from which, Grönwall inequality and (2.33) imply that

q2(t∧τR) = q2(t∧τR), almost everywhere in Ω̃× [0,T ]×R.

Let R→∞ and by Lemma 2.2, we can get (2.42).

Proof. (Proof of Theorem 1.1.) By Lemmas 2.7 and 2.9,

ũε→ ũ strongly in L2(Ω̃;C([0,T ];L2
loc(R))),

ũεx→ ũx strongly in L2(Ω̃;L2([0,T ];L2(R))).

Then, taking ε→0 in (2.20), we have

ũ(t) =u0−
∫ t

0

ũũx+ ṽxds+

∫ t

0

ũdW̃ ,

holds in the sense of distribution in [0,T ]×R for almost all ω̃∈ Ω̃ and ṽ= 1
2e
−|x| ∗(ũ2 +

1
2 ũ

2
x). Thus, the proof is complete.

3. Proof of Theorem 1.2
In this section, we will prove the global existence and uniqueness of the stochastic

CH Equation (1.11) by contraction mapping theorem.
Since v is local Lipschitz, we need to consider the truncated equation of (1.13)

u(t) =S(t)u0−
∫ t

0

S(t−s)vnxds+δ

∫ t

0

S(t−s)uxdW (t), (3.1)

where

vn=ηn(‖u‖H1)v (3.2)

and for n>0, ηn : [0,∞)→ [0,1] is a mollifer C∞-function such that ηn(r) = 1 for 0≤ r≤n
and ηn(r) = 0 for r≥2n.

Proof. (Proof of Theorem 1.2.) Introduce a Banach space YT equipped with
the norm

‖u‖2T =E{ sup
0≤t≤T

‖u‖2L2 +

∫ T

0

‖u‖2H1dt}. (3.3)

Denote Φ be a mapping in YT defined by

Φu=S(t)u0−
∫ t

0

S(t−s)vnxds+δ

∫ t

0

S(t−s)uxdW (t). (3.4)

Step 1: Φ :YT→YT is well defined and bounded.
The first term in (3.4) can be estimated as follows

‖S(t)u0‖T =E{ sup
0≤t≤T

‖S(t)u0‖2L2 +

∫ T

0

‖S(t)u0‖2H1dt}

≤E{‖u0‖2L2 +

∫ T

0

∫
R
ξ2e−ξ

2tû2
0(ξ)dξdt}

≤2‖u0‖2L2 . (3.5)
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By Young inequality, we have

‖
∫ t

0

S(t−s)vnxds‖2L2 ≤t
∫ t

0

‖vnx‖2L2ds

≤t‖Gx‖2L2ηn(‖u‖H1)

∫ t

0

‖u2 +
1

2
u2
x‖2L1ds

≤CnT
∫ T

0

‖u‖2H1dt. (3.6)

Denote I=
∫ t

0
S(t−s)vnxds. Then I is the solution of the following equation{

∂tI− 1
2Ixx=vnx ,

I(x,0) = 0.
(3.7)

By the standard energy estimate on (3.7), Hölder inequality and (3.6), we have

‖I‖2L2 +

∫ t

0

‖I(s)‖2H1ds=2

∫ t

0

(vnx ,I)dr≤
∫ t

0

2‖I‖L2‖vnx‖L2dr

≤2 sup
0≤t≤T

‖I(t)‖L2

∫ t

0

‖vnx‖L2dr

≤Cn
√
T (

∫ T

0

‖u‖2H1dt)1/2ηn(‖u‖H1)

∫ t

0

‖Gx‖L2‖u2 +
1

2
u2
x‖L1dr

≤CnT
∫ T

0

‖u‖2H1dt,

from which implies ∫ T

0

‖
∫ t

0

S(t−s)vnxds‖2H1ds≤CnT
∫ T

0

‖u‖2H1dt. (3.8)

By B-D-G inequality, we have

δE sup
0≤t≤T

‖
∫ t

0

S(t−s)uxdW (t)‖2L2 ≤ δE
∫ T

0

‖ux‖2L2dt≤ δE
∫ T

0

‖u‖2H1dt, (3.9)

and by Itô isometry,

δE
∫ T

0

‖
∫ t

0

S(t−s)uxdW (t)‖2H1dt=δE
∫ T

0

∫ t

0

∫
R
ξ2e−ξ

2(t−s)ûξ(ξ,s)dξdsdt

=δE
∫
R

∫ T

0

∫ T

s

ξ2e−ξ
2(t−s)ûξ(ξ,s)dtdsdξ

≤δE
∫ T

0

‖u‖2H1ds. (3.10)

Taking (3.5)-(3.10) into account, we can find a constant Cn(T ) such that

‖Φu‖2T ≤Cn(T )(‖u0‖2L2 +‖u‖2T ).

Therefore the operator Φ :YT→YT is well defined and bounded.
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Step 2: Φ :YT→YT is a contraction.
To this end, for some technical reason to be seen, we need to introduce an equivalent

norm in YT , depending on a parameter µ>0, defined as follows

‖u‖2µ,T =E{ sup
0≤t≤T

‖u‖2L2 +µ

∫ T

0

‖u‖2H1dt}. (3.11)

Let u1,u2∈YT . Then in view of (3.1), g=u1−u2 satisfies

g(t) =−
∫ t

0

S(t−s)(vn1x−vn2x)ds+δ

∫ t

0

gx(s)dW (s). (3.12)

Without loss of generality, let ‖u1‖H1 >‖u2‖H1 . Then

‖vn1x−vn2x‖2L2

=‖ηn(‖u1‖H1)G(x)∗∂x(u2
1 +

1

2
u2

1x)−ηn(‖u2‖H1)G(x)∗∂x(u2
2 +

1

2
u2

2x)‖2L2

≤‖ηn(‖u1‖H1)G(x)∗∂x[g(u1 +u2)+
1

2
gx(u1x+u2x)‖2L2

+‖(ηn(‖u1‖H1)−ηn(‖u2‖H1))G(x)∗∂x(u2
2 +

1

2
u2

2x)‖2L2

≤C‖Gx‖2L2‖ηn(‖u1‖H1)[g(u1 +u2)+
1

2
gx(u1x+u2x)‖2L1

+η
′

n(·)(‖u1‖H1−‖u2‖H1)2‖Gx‖2L2‖u2
2 +

1

2
u2

2x‖2L1

≤Cn‖g‖2H1 . (3.13)

Using (3.12) and the simple inequality (a+b)2≤Cεa2 +(1+ε)b2 with Cε= (1+ε)/ε, for
any ε>0, we get

E sup
0≤t≤T

‖Φg‖2L2 ≤E sup
0≤t≤T

{Cε‖
∫ t

0

S(t−s)(vn1x−vn2x)ds‖2L2

+(1+ε)δ‖
∫ t

0

gx(s)dW (s)‖2L2}, (3.14)

similarly,

E
∫ T

0

‖Φg‖2H1dt≤E{Cε
∫ T

0

‖
∫ t

0

S(t−s)(vn1x−vn2x)ds‖2H1dt

+(1+ε)δ

∫ T

0

‖
∫ t

0

gx(s)dW (s)‖2H1dt}. (3.15)

Applying the estimates (3.6), (3.8), (3.9) and (3.10) to (3.14) and (3.15), we obtain

‖Φg‖2µ,T ≤CnCεT 2(1+µ)E sup
0≤t≤T

‖u‖2H1 +µ(1+ε)(1+
1

µ
)δE

∫ T

0

‖g‖2H1dt. (3.16)

Choose µ= 1
δ ,ε=

√
(1+δ)/2δ−1 and sufficiently small T so that

‖Φg‖2µ,T ≤ρ‖g‖2µ,T , (3.17)
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for some ρ∈ (0,1). Therefore, Φ is a contraction in YT and it has a unique solution un

of Equation (3.1) in YT for a small T . Since T does not depend on the initial value u0,
that solution may be extended to any interval [0,T0] with ∀T0>0. We write T0 =T in
the following.

Introducing a stopping time τn defined by

τn= inf{t>0 :‖un‖H1 >n}

if it exists, and set τn=T otherwise. Then, for t<τn,u(t) =un(t) is the solution of
Equation (1.12). Since τn is increasing in n, let τ∞= limn→∞ τn a.s.. For t<τ∞, we
have t<τn for some n>0, and define u(t) =un(t). Then limt→τ∞ ‖u‖H1 =∞ if τ∞<T
and hence u is a local solution. For the uniqueness, suppose that there is another solution
ũ(t),t<τ for a stopping τ . Then ũ(t) =un(t) for t<τn. It follows that ũ(t) =u(t) for
t<τ∞ and τ = τ∞.

Step 3: Global solution. Using Itô formula to ‖u(T ∧τn)‖H1 , we have

‖u(T ∧τn)‖2H1 =‖u0‖2H1 . (3.18)

On the other hand, we have

E‖u(T ∧τn)‖2H1 ≥E{I(τn≤T )‖u(T ∧τn)‖2H1}≥n2P{τn≤T}, (3.19)

where I(·) is the indicator function. In view of (3.18)-(3.19), we have

P{τn≤T}≤
1

n2

so that, by the Borel-Cantelli lemma,

P{τ∞>T}= 1,

for any T >0. Hence, u= limn→∞u
n is a global solution.
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Appendix. Some lemmas. The following lemma is proved in Theorems 5 and 7
in [43].

Lemma A.1 ( [43]). Let X,Y and Z be Banach spaces such that X⊂⊂Y ⊂Z.
(1) Assume 1≤p≤∞, K is a bounded set in Lp(0,T ;X) and for u∈K, ‖u(t+

δ)−u(t)‖Lp(0,T−δ;Z)→0 as δ→0. Then K is relatively compact in Lp(0,T ;Y ) (and in
C(0,T ;Y ) if p=∞).

(2) Assume Y be intermediate space of class θ with respect to X and Z, that is to
say there exists θ such that

‖u‖Y ≤C‖u‖1−θX ‖u‖θZ , ∀u∈X∩Z, 0<θ<1.
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Assume 1≤pi≤∞,i= 1,2, K is a bounded set in Lp1(0,T ;X) and for u∈K, ‖u(t+
δ)−u(t)‖Lp2 (0,T−δ;Z)→0 as δ→0. Then K is relatively compact in Lp(0,T ;Y ) with
1/p= (1−θ)/p1 +θ/p2.

The following lemmas are proved in [41].

Lemma A.2 (Uniform integrability [41]). If there exists a nonnegative measurable

function f in E+, such that limx→∞
f(x)
x =∞ and supα∈ΓE[f(|Xα|)]<∞. Then {Xα,α∈

Γ} are uniformly integrable.

Lemma A.3 (Vitali’s convergence theorem [41]). Suppose p∈ [1,∞),{vε}∈Lp and
{vε} converges to v in probability. Then the following are equivalent:

(1) vε→v in Lp;

(2) the variables |vε|p are uniformly integrable;

(3) E(|vε|p)→E(|v|p).
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[26] R. Duboscq and A. Réveillac, Stochastic regularization effects of semi-martingales on random
functions, J. Math. Pures Appl., 106(6):1141–1173, 2016. 1.2

[27] F. Flandoli, M. Gubinelli, and E. Priola, Well posedness of the transport equation by stochastic
perturbation, Invent. Math., 180:1–53, 2010. 1.2

[28] A. Fokas and B. Fuchssteiner, Symplectic structures, their Bäcklund transformation and hereditary
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