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AN IMPROVED SMALL DATA THEOREM FOR
THE VLASOV-POISSON SYSTEM∗

JACK SCHAEFFER†

Abstract. A collisionless plasma is modeled by the Vlasov-Poisson system. Smooth solutions are
considered in three spatial dimensions with compactly supported initial data. The main theorem of
this work is a small data result that improves an earlier theorem of Bardos and Degond in that it does
not require the derivatives of the initial data to be small. Another theorem is presented here that gives
a sufficient condition that ensures that the charge density decays as t−3, which is the rate which occurs
when asymptotically all particles disperse freely.
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1. Introduction
Consider the Vlasov-Poisson system:

∂tf+v ·∇xf+eE ·∇vf = 0

ρ(t,x) =
∫
f(t,x,v)dv

E=
∫
ρ(t,y) x−y

|x−y|3 dy

(1.1)

where t≥0 is time, x∈R3 is position, and v∈R3 is momentum. f is the number
density of particles in phase space. Collisional effects are neglected. Since it makes
no difference to the methods used here, we consider only one species of particle, with
mass one. When e= +1 the system describes a collisionless plasma acting under its self
induced electrostatic field, E. When e=−1 the force is gravitational attraction, and
the system is frequently used in modeling a galaxy. The initial condition

f(0,x,v) =f0(x,v)

is imposed where f0 is given.
Let

‖f0‖∞= sup{|f0(x,v)| :x,v∈R3},

‖ρ(t)‖∞= sup{|ρ(t,x)| :x∈R3},

and

C0 ={f0∈C1
0 (R6) :‖f0‖∞+‖Df0‖∞≤C0, f0≥0,

and |x|≥C0 or |v|≥C0 implies f0(x,v) = 0}

for some C0>0.
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Theorem 1.1. Assume that f0∈C0 and there exist C>0 and p∈ (2,3] such that

‖ρ(t)‖∞≤C(1+ t)−p. (1.2)

Then there exists Cp>0 such that

‖ρ(t)‖∞≤Cp(1+ t)−3 (1.3)

for all t≥0.

The intuition to this result is that the decay from (1.2) is sufficient to show that
after some time, T , the characteristics (particle paths) scatter and actually achieve the
full decay obtained in [1]. Thus we call this the scattering result. The condition p>2
is used in the proof of Lemma 3.3, which is used in the proof of both theorems.

Our other main theorem is the following small data theorem:

Theorem 1.2. There exist ε0>0 and C>0 such that if f0∈C0 and

‖f0‖∞≤ ε0

then

‖ρ(t)‖∞≤C‖f0‖∞(1+ t)−3 (1.4)

for all t≥0.

The small data result of [1] requires that ‖Df0‖∞ be taken sufficiently small, while
this theorem does not. Much of what makes this possible is Lemma 2.1 below, which
roughly says that a bound on ‖ρ(t)‖∞ ensures that E is ”almost Lipschitz” in x.

That solutions remain smooth for all time was established in [22] and independently
in [19]. Much less is known about the large-time behavior of solutions. In the plasma
physics case some decay estimates follow from an identity developed in [17] (also in
[21]). Other time-asymptotic results in three dimensions are obtained in [15, 20, 27].
See [4, 6, 10–12,26] for results in lower dimension.

A major open question is “under what conditions do all the particles asymptotically
disperse freely (leading to (1.3))”. It is interest in this question that motivated this
paper.

Besides [1] we mention some other small data type results for collisionless kinetic
problems: For the relativistic Vlasov-Poisson system see [2]. For the relativistic Vlasov-
Maxwell system see [14] and also [5, 13, 24, 28, 30]. For the Vlasov-Einstein system
see [8, 25], and [18]. For the Vlasov-Nördstrom system see [7]. For (1.1) we mention
also [16] and [29].

Finally we cite [9] and [23] as general references on rigorous kinetic theory.
The letter, C, is used to denote a generic positive constant which changes from line

to line. When a specific constant needs to be named so that it may be referred to later,
a numerical subscript is used, such as C0 in the definition of C0. Cp denotes a positive
constant which depends on p. Throughout the entire paper we assume that f0∈C0.
Hence we may bound the L1 and L∞ norms of f0 by a constant, C, which depends on
C0. Since these norms are conserved, these bounds hold at later times also. We define
X(s,t,x,v) and V (s,t,x,v) by X(t,t,x,v) =x, V (t,t,x,v) =v,

dX

ds
=V
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and

dV

ds
=E(s,X).

We also define

Q(t) = sup{|v| : there exists x∈R3 and s∈ [0,t] such that f(s,x,v) 6= 0}.

That Q(t) is finite for all t≥0 was shown in [22]. This paper is organized as follows: the
second Section 2 contains preliminary lemmas. The main lemma of the paper (which
both theorems rely on) is in Section 3. Section 4 is the proof of Theorem 1.1. Section
5 is the proof of Theorem 1.2. Finally a few technical arguments are in the Appendix.

The results of this work would hold equally well if multiple species of particles were
considered. A single species has been taken to streamline the presentation. Similarly
the results are valid for e= +1 and for e=−1. We will just consider e= +1 throughout.
Hence from here on the letter e denotes the real number where the natural logarithm
is unity. Similarly we expect that the above results may be generalized to solutions
that decay as x tends to infinity but do not have compact support in x, but we assume
compact support here to streamline the presentation.

2. Preliminaries
In this section we prove some preliminary lemmas. For this entire section we assume

that

‖ρ(t)‖∞≤η(1+ t)−p (2.1)

holds for 0≤ t<T+ where T+∈ (0,∞)∪{+∞}, p∈ (2,3], and 0<η≤C. Define

log∗(x) =

1 if 0≤x≤e

log(x) if e<x.

The following lemma may be viewed as a replacement for the Calderon-Zygmund in-
equality which fails for the L∞ norm.

Lemma 2.1. There exists C1>0 such that

|E(t,x+h)−E(t,x)|≤C1η
1
2 (1+ t)−p1 |h|log∗(

1

|h|
) (2.2)

for 0≤ t<T+ and x,h∈R3 where p1 = 2+ 2
3 (p−2).

Proof. We have

|E(t,x+h)−E(t,x)|=|
∫
ρ(t,y)(

x+h−y
|x+h−y|3

− x−y
|x−y|3

)dy|

≤
∫
|ρ(t,x−z)| | z+h

|z+h|3
− z

|z|3
|dz. (2.3)

Note that for |z|≥3|h|, we have |z+h|≥ 2
3 |z| so

| z+h

|z+h|3
− z

|z|3
|=

∣∣∣∣|z|3(z+h)−|z+h|3z
∣∣∣∣

|z+h|3|z|3
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≤

∣∣∣∣ |z|3−|z+h|3
∣∣∣∣ |z|+ |z|3|h|

( 2
3 |z|)3|z|3

=
27

8
(|z|−5| |z+h|3−|z|3|+ |z|−3|h|). (2.4)

Using the mean value theorem it may be shown that (for |z|≥3|h|)∣∣∣∣ |z+h|3−|z|3
∣∣∣∣≤C|z|2|h|

and hence (2.4) yields

| z+h

|z+h|3
− z

|z|3
|≤C|z|−3|h|.

Returning to (2.3) we have for R≥3|h|

|E(t,x+h)−E(t,x)|≤
∫
|z|<3|h|

‖ρ(t)‖∞(|z+h|−2 + |z|−2)dz

+

∫
3|h|<|z|<R

‖ρ(t)‖∞C|z|−3|h|dz+CR−2
∫
R<|z|

|ρ(t,x−z)|dz

≤C‖ρ(t)‖∞
(
|h|+ |h| log(

R

3|h|
)

)
+C‖ρ(t)‖1R−2

≤C
(
η(1+ t)−p|h|log∗(

R

3|h|
)+R−2

)
. (2.5)

Let

R= (η(1+ t)−p|h|)−1/2.

If R≥3|h| let R=R. Then (2.5) yields

|E(t,x+h)−E(t,x)|≤Cη(1+ t)−p|h|log∗(
(1+ t)p/2

3η1/2|h|3/2
). (2.6)

If

(1+ t)p/2

3η1/2|h|3/2
≤e

then (2.2) follows immediately from (2.6), so consider

(1+ t)p/2

3η1/2|h|3/2
>e.

Then (2.6) becomes

|E(t,x+h)−E(t,x)| ≤ Cη(1+ t)−p|h| 12 log( (1+t)p

9η|h|3 )

≤ Cη(1+ t)−p|h|
(

log(1+ t)+log( 1
η )+log( 1

|h| )
)
.
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Using p1 = 2+ 2
3 (p−2) and η≤C, this yields

|E(t,x+h)−E(t,x)|≤Cη|h|(1+ t)−p1 +C(1+ t)−p|h|η1/2 +Cη(1+ t)−p|h| log(
1

|h|
)

≤Cη1/2(1+ t)−p1(|h|+ |h| log(
1

|h|
))

≤Cη1/2(1+ t)−p1 |h| log∗(
1

|h|
),

which is (2.2).
Finally if R<3|h|, take R= 3|h|. Then using R<3|h|, (2.5) yields

|E(t,x+h)−E(t,x)|≤C(η(1+ t)−p|h|+ |h|−2)

≤Cη(1+ t)−p|h|.

Lemma 2.2. Let t>0 and S∈C2[0,t]. Assume that dS
ds (s) vanishes at s= t and that

α∈C[0,t] is nonnegative with

|d
2S

ds2
(s)|≤α(s)|S(s)| log∗(

1

|S(s)|
)

for all s∈ [0,t]. Let

A= exp(−
∫ t

0

(τ+1)α(τ)dτ),

then for |S(t)|< exp(−1/A) we have

|S(s)|+ |dS
ds

(s)|≤ |S(t)|A

for all s∈ [0,t].

Proof. Note that

dS

ds
(s) =−

∫ t

s

d2S

dτ2
(τ)dτ

and

S(s) =S(t)+

∫ t

s

(τ−s)d
2S

dτ2
(τ)dτ

so

|S(s)|+ |dS
ds

(s)|≤ |S(t)|+
∫ t

s

(τ−s+1)α(τ)|S(τ)| log∗(
1

|S(τ)|
)dτ.

Define S on [0,t] by

S(s) = |S(t)|+
∫ t

s

(τ+1)α(τ)S(τ)log∗(
1

S(τ)
)dτ
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and let

T = inf{s∈ [0,t] :S≤e−1 on [s,t]}.

That the set defining T is nonempty follows from the assumption that |S(t)|<
exp(−1/A). Then by explicit calculation

S(s) = |S(t)|exp(−
∫ t
s
(τ+1)α(τ)dτ) (2.7)

on [T ,t]. But then

S(T ) = |S(t)|exp(−
∫ t
T
(τ+1)α(τ)dτ)

≤ |S(t)|A<e−1,

so it follows that T = 0. Now since the mapping x 7→x log∗( 1
x ) is increasing it follows

that

|S(s)|+ |dS
ds

(s)|≤S(s)

on s∈ [0,t]. Now the lemma follows by (2.7).

Lemma 2.3. Let C1 and p1 be as in Lemma 2.1 and define

A= exp(−C1η
1/2(p1−2)−1).

There exists C>0 such that for 0≤ t<T+ and |x−y|<e−1/A we have

|ρ(t,x)−ρ(t,y)|≤C|x−y|A.
Proof. For any v∈R3 let

S(s) =X(s,t,x,v)−X(s,t,y,v).

Then by Lemma 2.1

|d
2S

ds2
(s)|=|E(s,X(s,t,x,v)−E(s,X(s,t,y,v))|

≤α(s)|S(s)| log∗(
1

|S(s)|
)

where

α(s) =C1η
1/2(1+s)−p1 .

Note that ∫ t

0

(τ+1)α(τ)dτ ≤C1η
1/2

∫ ∞
0

(1+τ)1−p1dτ

=C1η
1/2(p1−2)−1

so

exp(−
∫ t

0

(1+τ)α(τ)dτ)≥A.
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By Lemma 2.2 (and since dS
ds (t) =v−v= 0)

|S(0)|+ |dS
ds

(0)|≤ |S(t)|A= |x−y|A.

Hence

|f(t,x,v)−f(t,y,v)|=|f(0,X(0,t,x,v),V (0,t,x,v))−f(0,X(0,t,y,v),V (0,t,y,v))|

≤‖∇x,vf(0)‖∞(|S(0)|+ |dS
ds

(0)|)≤C|x−y|A. (2.8)

Note that for any s≥0,z∈R3, and R>0

|E(s,z)| ≤
∫
|z̃−z|<R

|ρ(s,z̃)|
|z−z̃|2 dz̃+

∫
|z̃−z|>R

|ρ(s,z̃)|
|z−z̃|2 dz̃

≤ C(‖ρ(s)‖∞R+‖ρ(s)‖1R−2)

≤ C(‖ρ(s)‖∞R+R−2).

Taking

R=‖ρ(s)‖−1/3∞

and using (2.1) yields

‖E(s)‖∞≤Cη2/3(1+s)−2p/3

and hence

Q(s)≤Q(0)+

∫ s

0

‖E(τ)‖∞dτ

≤C+Cη2/3(
2p

3
−1)−1≤C. (2.9)

Now by (2.8)

|ρ(t,x)−ρ(t,y)| = |
∫
|v|<Q(t)

(f(t,x,v)−f(t,y,v))dv|

≤ C|x−y|A 4π
3 Q

3(t)≤C|x−y|A,

completing the proof.

Define

‖ρ(t)‖H = sup{ |ρ(t,x)−ρ(t,y)|
|x−y|A

:x,y∈R3 with 0< |x−y|<e−1/A}

where A is defined in Lemma 2.3.

Lemma 2.4. There is Cp>0 such that

‖DxE(t)‖∞≤Cp log∗(
1+‖ρ(t)‖H
‖ρ(t)‖∞

)‖ρ(t)‖∞. (2.10)
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Proof. From page 345 of [3] we have

|∂xkEk(t,x)|=|− 4π

3
ρ(t,x)+

∫
|y−x|<d

(ρ(t,y)−ρ(t,x))
3(yk−xk)2−|y−x|2

|y−x|5
dy

+

∫
|y−x|>d

ρ(t,y)
3(yk−xk)2−|y−x|2

|y−x|5
dy|

for any d>0. So for 0<d≤e−1/A and R≥d we have

|∂xkEk(t,x)|≤4π

3
‖ρ(t)‖∞+‖ρ(t)‖H

∫
|y−x|<d

|y−x|A4|y−x|−3dy

+‖ρ(t)‖∞
∫
d<|y−x|<R

4|y−x|−3dy+

∫
R<|y−x|

|ρ(t,y)|4R−3dy

≤Cp((1+log(
R

d
))‖ρ(t)‖∞+‖ρ(t)‖HdA+R−3). (2.11)

Define

d= (
‖ρ(t)‖∞
‖ρ(t)‖H

)1/A

and

R=‖ρ(t)‖−1/3∞ .

If d≤e−1/A and R≥d we take d=d and R=R and obtain

|∂xkE(t,x)| ≤ C(1+log(R
d

))‖ρ(t)‖∞

≤ C log∗
(
‖ρ(t)‖1/AH

‖ρ(t)‖
1
3
+1/A
∞

)
‖ρ(t)‖∞

≤ C log∗
(

(1+‖ρ(t)‖H)
1
3
+1/A

‖ρ(t)‖
1
3
+1/A
∞

)
‖ρ(t)‖∞

≤ Cp log∗
(

1+‖ρ(t)‖H
‖ρ(t)‖∞

)
‖ρ(t)‖∞,

which is the bound stated in (2.10).

If d>e−1/A we take

d=e−1/A

and obtain (using d>e−1/A in (2.11))

|∂xkEk(t,x)|≤C((1+log(Re1/A))‖ρ(t)‖∞+R−3).

If R≥e−1/A we take R=R and obtain

|∂xkEk(t,x)|≤Cp log∗(
1

‖ρ(t)‖∞
)‖ρ(t)‖∞
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and otherwise take R=e−1/A which yields

|∂xkEk(t,x)|≤Cp‖ρ(t)‖∞.

In the remaining case (d≤ exp(−1/A) and R<d), we take d=R=d. Then (2.11)
and R<d yield

|∂xkEk(t,x)|≤Cp‖ρ(t)‖∞.

Thus in all cases

|∂xkEk(t,x)|≤Cp log∗
(

1+‖ρ(t)‖H
‖ρ(t)‖∞

)
‖ρ(t)‖∞.

For i 6=k from page 346 of [3] we have

|∂xiEk(t,x)| = |
∫
|y−x|<d(ρ(t,y)−ρ(t,x)) 3(yi−xi)(yk−xk)

|y−x|5 dy

+
∫
d<|y−x|ρ(t,y) 3(yi−xi)(yk−xk)

|y−x|5 dy|

for any d>0. Proceeding as before leads to the same estimate and (2.10) follows.

Lemma 2.5. There is Cp>0 such that

‖DxE(t)‖∞≤Cp log∗(
1+ t

η
)η(1+ t)−p (2.12)

for t∈ [0,T+).

Proof. Since x 7→ log∗(Cx )x is increasing it follows from Lemma 2.4 and (2.1) that

‖DxE(t)‖∞≤Cp log∗(
1+‖ρ(t)‖H
η(1+ t)−p

)η(1+ t)−p.

But Lemma 2.3 yields

‖ρ(t)‖H ≤C.

Using this and η≤C we have

‖DxE(t)‖∞ ≤ Cpη(1+ t)−p log∗
(
C(1+t)p

η

)
≤ Cpη(1+ t)−p log∗

(
C(1+t)p

η (Cη )p−1
)

= Cpη(1+ t)−p log∗
(
C( 1+t

η )p
)

and (2.12) follows.

3. The main lemma
Both Theorems 1.1 and 1.2 rely on Lemma 3.3 below, which appears in [1]. We

present a different proof than that of [1] and emphasize that the assumptions on higher
order derivatives made in [1] are not made here.

We will use the follwing two technical facts whose proofs are in the Appendix:
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Lemma 3.1. Let A,B∈R3 with Ak≥0, Bk≥0, and

Bk−
1

12
|B|≤Ak

for k= 1,2,3. Then

|A|≥ 2

5
|B|. (3.1)

Lemma 3.2. Let M ∈R3×R3 and B>0 such that

|Mx|≥B|x|

for all x∈R3. Then

|det(M)|≥B3. (3.2)

Lemma 3.3. For any p∈ (2,3] there exists εp>0 such that if

‖DxE(t)‖∞≤ εp(1+ t−T )−p (3.3)

holds on [T,T+) with 0≤T , T+∈ (T,∞)∪{∞}, then

|∂X
∂v

(s,t,x,v)−(s− t)I|≤ 1

12
(t−s), (3.4)

|X(s,t,x,v)−X(s,t,x,w)|≥ 2

5
(t−s)|v−w|, (3.5)

and

|det(
∂X

∂v
(s,t,x,v))|≥ (

2

5
(t−s))3 (3.6)

for T ≤s≤ t<T+ and x,v,w∈R3. Also

‖ρ(t)‖∞≤C‖f0‖∞(1+T )3Q3(T )(t−T )−3 (3.7)

for t∈ (T,T+).

Proof. Let us temporarily suppress the dependence on (t,x,v) and write

R(s) =
∂X

∂v
(s,t,x,v)−(s− t)I.

Then

R(t) =
dR

ds
(t) = 0

and

d2R

ds2
(s) =DxE(s,X(s))(R(s)+(s− t)I)

so

|R(s)|= |
∫ t

s

(τ−s)DxE(τ,X(τ))(R(τ)+(τ− t)I)dτ |.
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Assume that

‖DxE(s)‖∞≤ ε(1+s−T )−p

holds on [T,T+). Restrictions on ε will be imposed as needed. Then

|R(s)|≤ ε
∫ t

s

τ−s
(1+τ−T )p

(|R(τ)|+ t−τ)dτ.

Integration by parts yields

|
∫ t
s

(τ−s)(t−τ)
(1+τ−T )p dτ | = |(p−1)−1(p−2)−1( t−s

(1+s−T )p−2

− s−t
(1+t−T )p−2 −2

∫ t
s

dτ
(1+τ−T )p−2 )|

≤ Cp(t−s)
so

|R(s)|≤α(s)+

∫ t

s

β(τ)|R(τ)|dτ

where

α(s) =Cpε(t−s)

and

β(τ) = ε(1+τ−T )1−p≥ ε τ−s
(1+τ−T )p

.

By Grönwall’s inequality

|R(s)| ≤ α(s)+
∫ t
s
α(τ)β(τ)e

∫ τ
s
β(u)dudτ

≤ Cpε(t−s)+Cpε(t−s)
∫∞
T
β(τ)e

∫∞
T
β(u)dudτ

= Cpε(t−s)(1+Cpεe
Cpε).

Hence for ε sufficiently small (3.4) holds.
To prove (3.5) let us write

X(v) =X(s,t,x,v).

Let

Ak = |Xk(v)−Xk(w)|

and

Bk = (t−s)|vk−wk|.

By the mean value theorem there is ξ such that

Ak = |∇Xk(ξ) ·(v−w)|

≥ Bk−|∇Xk(ξ) ·(v−w)−(s− t)(vk−wk)|.
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By (3.4) it follows that

Ak≥Bk−
1

12
(t−s)|v−w|=Bk−

1

12
|B|,

so (3.5) follows by Lemma 3.1.
Next, from (3.5) it follows that

|(DvX(v))u|≥ 2

5
(t−s)|u|

for any v,u∈R3 and now (3.6) follows from Lemma 3.2.
Writing

X(v) =X(T,t,x,v), V (v) =V (T,t,x,v)

we have ∫
f(t,x,v)dv=

∫
S

f(T,X(v),V (v))
det(∂X∂v )

det(∂X∂v )
dv

where

S={v :f(t,x,v) 6= 0}.

Now by (3.6) ∫
f(t,x,v)dv≤‖f(T )‖∞

∫
S

|det(∂X∂v )|
( 2
5 (t−T ))3

dv

=(
5

2
)3‖f0‖∞(t−T )−3

∫
{X(v):v∈S}

dy. (3.8)

Consider v∈S, then

f(t,x,v) =f0(X(0,t,x,v),V (0,t,x,v)) 6= 0

so

|X(0,t,x,v)|≤C.

Hence

|X(v)| = |X(0,t,x,v)+
∫ T
0
V (s,t,x,v)ds|

≤ C+
∫ T
0
Q(s)ds≤C+TQ(T )

≤ C(1+T )Q(T ).

Now by (3.8) ∫
f(t,x,v)dv≤C‖f0‖∞(1+T )3Q3(T )(t−T )−3

and (3.7) follows.
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4. The scattering result
Assume that

‖ρ(t)‖∞≤C(1+ t)−p (4.1)

for all t≥0 with p∈ (2,3]. Then taking η=C, (2.1) holds and Lemma 2.5 yields

‖DxE(t)‖∞≤Cp log∗(
1+ t

C
)(1+ t)−p.

Let

p1 = 2+
2

3
(p−2)

and choose εp1 as in Lemma 3.3. Choose Tp≥0 such that

Cp log∗(
1+ t

C
)(1+ t)p1−p≤ εp1

for all T ≥Tp. Then for t>Tp

‖DxE(t)‖∞ ≤ Cp log∗( 1+t
C )(1+ t)−p

≤ εp1(1+ t)−p1 ≤ εp1(1+ t−Tp)−p1 .

Now by Lemma 3.3 (with T+ =∞)

‖ρ(t)‖∞≤C‖f0‖∞(1+Tp)
3Q3(Tp)(t−Tp)−3

for t>Tp. Since Tp≤Cp we have

(1+Tp)
3Q3(Tp)≤Cp

and for t>2Tp+1

‖ρ(t)‖∞≤Cp(t−Tp)−3≤Cp(t+1)−3.

But from (4.1)

‖ρ(t)‖∞≤C≤Cp(t+1)−3

on 0≤ t≤Tp, so (1.3) follows.

5. The small data result
Let p= 5

2 and choose εp as in Lemma 3.3. By Lemma 2.4 we have

‖DxE(0)‖∞<εp

for ‖f0‖∞ sufficiently small. Define

T+ = sup{τ >0 :‖DxE(t)‖∞≤ εp(1+ t)−p for all t∈ [0,τ ]}.

We assume T+ is finite and derive a contradiction. Since T+ is finite we have

‖DxE(T+)‖∞= εp(1+T+)−p. (5.1)
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Taking T = 0 we have

‖DxE(t)‖∞≤ εp(1+ t)−p

on t∈ [0,T+) so by Lemma 3.3

‖ρ(t)‖∞≤C‖f0‖∞t−3 (5.2)

for t∈ (0,T+). For 0≤ t≤1

|ρ(t,x)|≤
∫
|v|<Q(t)

‖f(t)‖∞dv

=
4π

3
Q3(t)‖f0‖∞≤

4π

3
Q3(1)‖f0‖∞

≤C‖f0‖∞. (5.3)

From (5.2)and (5.3) it follows that

‖ρ(t)‖∞≤C‖f0‖∞(1+ t)−3 (5.4)

for t∈ [0,T+). This is (2.1) with

η=C‖f0‖∞, p= 3

so Lemma 2.5 yields

‖DxE(t)‖∞≤C log∗(
1+ t

C‖f0‖∞
)C‖f0‖∞(1+ t)−3

for t∈ [0,T+). It follows that

‖DxE(T+)‖∞≤C log∗(
1+T+
C‖f0‖∞

)C‖f0‖∞(1+T+)−3.

We take ‖f0‖∞ small enough that

C‖f0‖∞≤e−1,

then

log∗( 1+T+

C‖f0‖∞ )(1+T+)−1/2 = (1+T+)−1/2 log( 1+T+

C‖f0‖∞ )

≤ x−1/2 log( x
C‖f0‖∞ )

x=e2C‖f0‖∞

= C‖f0‖−1/2∞ .

Hence

‖DxE(T+)‖∞ ≤ C‖f0‖−1/2∞ C‖f0‖∞(1+T+)−5/2

= C‖f0‖1/2∞ (1+T+)−5/2.

For ‖f0‖∞ sufficiently small this contradicts (5.1). Hence T+ = +∞ for ε sufficiently
small and (5.4) holds for all t≥0 completing the proof.
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Appendix. To prove Lemma 3.1 define

G={k :Bk≥
1

6
|B|}.

Then ∑
G
B2
k = |B|−

∑
Gc
B2
k≥|B|2−

∑
Gc

(
1

6
|B|)2≥ 11

12
|B|2.

Also, for k∈G

A2
k≥ (Bk−

1

12
|B|)2 =

(
1

2
Bk+

1

2
(Bk−

1

6
|B|)

)2

≥ 1

4
B2
k

so

|A|2≥
∑
G
A2
k≥

1

4

∑
G
B2
k≥

1

4
(
11

12
|B|2)

and (3.1) follows.

To prove Lemma 3.2 define e(k)∈R3 by e
(k)
i = 1 if i=k and 0 otherwise. Let

P (1) =Me(1)

and choose c1,c2,c3∈R and P (2),P (3)∈R3 such that

Me(2) = c1P
(1) +P (2),

Me(3) = c2P
(1) +c3P

(2) +P (3),

and

P (1) ·P (2) =P (1) ·P (3) =P (2) ·P (3) = 0.

Then

|detM |= |P (1)||P (2)||P (3)|.

But

|P (1)|= |Me(1)|≥B|e(1)|=B,

|P (2)| = |Me(2)−c1P (1)|= |M(e(2)−c1e(1))|

≥ B|e(2)−c1e(1)|≥B,

and

|P (3)| = |Me(3)−c2P (1)−c3P (2)|

= |Me(3)−c2Me(1)−c3M(e(2)−c1e(1))|

= |M(e(3) +(c1c3−c2)e(1)−c3e(2))|

≥ B|e(3) +(c1c3−c2)e(1)−c3e(2)|

≥ B,

so (3.2) follows.
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[2] C. Bardos, P. Degond, and T-N. Ha, Existence globale des solutions des equations de Vlasov-
Poisson relativistes en Dimension 3, C.R. Acad. Sci. Paris, 301:265–268, 1985. 1

[3] J. Batt, Global symmetric solutions of the initial value problem of stellar dynamics, J. Diff. Eqs.,
25(3):342–364, 1977. 2, 2

[4] J. Batt, M. Kunze, and G. Rein, On the asymptotic behavior of a one-dimensional, monocharged
plasma and a rescaling method, Adv. Diff. Eqs., 3:271–292, 1998. 1

[5] L. Bigorgne, Sharp asymptotic behavior of solutions of the 3D Vlasv-Maxwell system with small
data, Comm. Math. Phys., 376:893–992, 2020. 1

[6] J.R. Burgan, M.R. Feix, E. Fijalkow, and A. Munier, Self-Similar and asymptotic solutions for a
one-dimensional Vlasov beam, J. Plasma Phys., 29:139–142, 1983. 1

[7] D. Fajman, J. Joudioux, and J. Smulevici, Sharp asymptotics for small data solutions of the
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