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A SHARP CONVERGENCE RATE FOR A MODEL EQUATION OF
THE ASYNCHRONOUS STOCHASTIC GRADIENT DESCENT∗

YUHUA ZHU† AND LEXING YING‡

Abstract. We give a sharp convergence rate for the asynchronous stochastic gradient descent
(ASGD) algorithms when the loss function is a perturbed quadratic function based on the stochastic
modified equations introduced in [An et al. Stochastic modified equations for the asynchronous stochas-
tic gradient descent, arXiv:1805.08244]. We prove that when the number of local workers is larger than
the expected staleness, then ASGD is more efficient than stochastic gradient descent. Our theoretical
result also suggests that longer delays result in slower convergence rate. Besides, the learning rate
cannot be smaller than a threshold inversely proportional to the expected staleness.
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1. Introduction
Thanks to the availability of large datasets and modern computing resources,

optimization-based machine learning has achieved state-of-the-art results in many ap-
plications of artificial intelligence. As the datasets continue to increase, distributed
optimization algorithms have received more attention for solving large scale machine
learning problems. Parallel stochastic gradient descent (SGD) is arguably the most
popular one among them.

Based on the interaction between different working nodes, there are two types of
parallel SGD algorithms: synchronous v.s. asynchronous SGD (SSGD v.s. ASGD).
Both methods compute the gradient of the loss function for a given mini-batch on local
workers. In SSGD, the local workers pause the training process until the gradients
from all local works have been added into the shared parameter variable. While in
ASGD, the local workers interact with the shared parameter independently without
any synchronization, i.e., each local worker continues to compute the next gradient
right after their own gradients have been added to the shared parameter. Therefore,
ASGD is presumably more efficient than SSGD since the overall training speed is not
affected by the slow local workers. On the other hand, ASGD can potentially suffer from
the problem of delayed gradients, i.e., the gradients that a local worker sends to the
shared parameter are often computed with respect to the parameter of an older version
of the model. Therefore, extra stochasticity is introduced in ASGD due to this delay.
An interesting mathematical problem is how the delayed gradient affects the training
process.

There have been a few papers in the literature that analyze the convergence rate
of ASGD. Most of them are from an optimization perspective. For example, [7, 12, 14]
proved that ASGD can achieve a nearly optimal rate of convergence when the optimiza-
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tion problem is sparse; [13] studies the relationship between ASGD and momentum
SGD.

Related work. This note follows a perspective based on partial differential equation
(PDE) and stochastic differential equation (SDE). In [10], Li et al. first introduced the
stochastic modified equations (SME) for modeling the dynamics of SGD in a continuous
time approximation. Following this work, there have been quite a few papers along this
direction [5, 8, 9, 11] for SGD. Specifically, [3, 4, 6] use the approximated SDE and PDE
to study the convergence rate of SGD and SGD with momentum. However, literatures
about ASGD are limited. Recently, in [1], An et al. applied the SME approach to the
study of ASGD. Based on their paper, we study the convergence rate of ASGD.

This note studies the convergence rate of the time-dependent probability distribu-
tion function (PDF) of ASGD to its steady state distribution by using PDE techniques of
the stochastic modified equation. The main focus is on the case where the loss function
is a perturbed quadratic function. There are mainly two difficulties in this analysis. The
first one is that asynchrony results in a degenerate diffusion operator in the correspond-
ing PDE. No trivial analysis is able to give an exponential decay rate for the convergence
to the steady state. Thanks to the association of a degenerate diffusion operator and a
conservative operator, the decay rate can be recovered through “hypocoercivity” [15].
The key here is to construct a Lyapunov functional to prove the exponential decay of
this functional. The second difficulty is to obtain a sharp convergence rate. Such a
sharp rate is important to understand the influence of the asynchrony quantitatively.
Though our analysis is based on the framework introduced by [2], the current case is
more complicated because one has to bound extra terms introduced by the perturbed
loss function around the quadratic function. The main contributions of this paper are
the following:

• We give a sharp convergence rate for ASGD when the loss function is a per-
turbed quadratic function.

• For a fixed learning rate, longer delays result in slower convergence rate.

• The learning rate should not be smaller than a threshold and the threshold is
inversely proportional to the staleness rate. See Remark 3.1 for details.

• When the number of local workers is larger than the expectated staleness, then
ASGD is more efficient than SGD. See Remark 3.2 for details.

The rest of the paper is organized as follows. Section 2 summarizes the results of [1]
and derives the PDE for the probability density function (PDF) of ASGD based on
these results. Section 3 presents the main results, while the proof of the main theorem
is given in Section 4.

2. PDE for the probability density function of ASGD

We consider the minimization problem,

min
θ∈Rd

f(θ) :=
1

n

n∑
i=1

fi(θ). (2.1)

where θ represents the model parameters, fi(θ) denotes the loss function at the i-th
training sample and n is the size of the training sample set. In the asynchronous
stochastic gradient descent (ASGD) algorithm, the parameter θ is updated with

θk+1 =θk−η∇θfγk(θk−τk),
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where γk is i.i.d. uniform random variable from {1,2, ·· · ,n} and θk−τk is the delayed
read of the parameter θ used to update θk+1 with a random staleness τk.

In [1], An et al. derived the modified stochastic differential equation for the algo-
rithm, under the assumption that τk follows the geometric distribution, i.e., τk = l with
probability (1−κ)κl for κ∈ (0,1). We call κ the staleness rate. Note that if κ is larger,
then there is a longer delay. Besides, the expectation of the random staleness τk is 1

1−k ,

so we call 1
1−k the expected staleness. By introducing

yk =−
√

η

1−κ
Eτk∇f(θτk),

when the learning rate η is small, (θk,yk) can be approximated by time discretizations
of a continuous-time stochastic process (Θkδt ,Ykδt) for δt=

√
η(1−κ). (Θt,Yt) satisfies

the stochastic differential equation (SDE)

dΘt=Ytdt+τdBt,

dYt=−∇f(Θt)dt−γYtdt,
(2.2)

where τ =η3/4/(1−κ)1/4Σ, γ=
√

((1−κ)/η), and Σ is the covariance matrix condi-
tioned on τk, that is, Σ is the covariance between Θt and Yt. We refer to [1] for more
details of the above SDE. In this paper, we assume Σ is a constant for simplicity. Note
that although the theoretical upper bound of the approximation error of the above
SDE increases in time, the numerical experiments in [1] show that the approximation
error remains small until ASGD converges. So we think it is meaningful to analyze the
convergence rate of the continuous form.

We first formally derive the partial differential equation for the probability density
function ψ(t,θ,y) of (Θt,Yt). For any compactly supported C∞ function φ(Θt,Yt), by
Itô’s formula,

dφ(Θt,Yt) =

(
Yt ·∇θφ+(−∇f(Θt)−γYt) ·∇yφ+

1

2
τ2∇θ ·∇θφ

)
dt+τ∇θφdBt.

Taking expectation of this equation and integrating over [t,t+h] leads to

1

h
E(φ(Θt+h,Yt+h)−φ(Θt,Yt))

=
1

h

∫ t+h

t

E
(
Ys ·∇θφ+(−∇f(Θs)−γYs) ·∇yφ+

τ2

2
∇θ ·∇θφ

)
ds,

which further gives,

1

h

∫
φ(θ,y)(ψ(t+h,θ,y)−ψ(t,θ,y)) dθdy

=
1

h

∫ t+h

t

∫ (
y ·∇θφ+(−∇f(θ)−γy) ·∇yφ+

τ2

2
∇θ ·∇θφ

)
ψ(t,θ,y)dθdyds.

Integrating by parts and letting h→0 results in∫
φ(θ,y)∂tψdθdy=

∫
φ

(
−y ·∇θψ+∇f(θ) ·∇yψ+∇y ·(γyψ)+

τ2

2
∇θ ·∇θψ

)
dθdy,
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which is true for any test function. Therefore, the PDF ψ(t,θ,y) satisfies

∂tψ+y ·∇θψ−∇f(θ) ·∇yψ=∇y ·(γyψ)+
τ2

2
∇θ ·∇θψ. (2.3)

In what follows, we consider the case where ∇f is a perturbed linear function,

∇f(θ) =ω2
0θ+ε(θ).

A further change-of-variable of

x=y, v=−ω2
0θ−γy,

turns (2.3) into

∂tg+v ·∇xg−ω2
0x ·∇vg=γ∇v ·

(
vg+

1

β
∇vg

)
+ε

(
− 1

ω2
0

(v+γx)

)
·(∇xg−γ∇vg)

(2.4)

with g(t,x,v) =ψ
(
t,− 1

ω2
0
(v+γx),x

)
, β= 2γ

τ2ω4
0
.

General loss functions are much harder than the quadratic loss in the SDE for
ASGD. First, different from the PDE for the SGD, or SGD with momentum, which
is a Fokker-Planck equation or a Vlasov-Fokker-Planck equation, the steady-state is
explicitly given for general loss function. The steady-state of (2.3) cannot be explicitly
calculated except for the case where f is a quadratic loss. Second, the sharp decay
rate for general potentials is still an open question even for Fokker-Planck equations
or Vlasov-Fokker-Planck equations, so it is even harder for the sharp decay rate for
equations like (2.3) . In this paper, we use the sharp decay rate to study the difference
between ASGD compared with SGD. If the decay rate is not sharp, then the relationship
between the parameters will be unclear.

3. Main results and proof sketch
When ε= 0, the steady state M(x,v) of (2.4),

M(x,v) =MxMv :=

(
1

Z1
e−

βω2
0

2 |x|
2

)(
1

Z2
e−

β
2 |v|

2

)
, (3.1)

where Z1,Z2 are the normalization constants such that
∫
Mvdv=

∫
Mxdx= 1. However,

for general f(θ), unfortunately there is no explicit form of the steady state. By denoting
F (x,v) as the steady state of (2.4), the weighted fluctuation function

h(t,x,v) =
1

M
[g(t,x,v)−F (x,v)]

satisfies the following equation,

∂th+Th=Lh+Rh, (3.2)

where

T =v ·∇x−ω2
0x ·∇v is the transport operator;

L=
γ

β

1

M
∇v ·(M∇v) is the linearized Fokker-Planck operator;

Rh=ε ·(∇xh−γ∇vh)−βε ·
(
ω2
0x−γv

)
h are the perturbation terms.

(3.3)
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The above Equation (3.2) is typically called the microscopic equation in the literature.
It is also convenient for the forthcoming analysis to define the inner product 〈·, ·〉 and
the norm ‖·‖∗ as

〈h,g〉∗=

∫
hgM dxdv, ‖h‖2∗= 〈h,h〉∗ . (3.4)

In addition, ‖·‖2 is the standard L2 norm with respect to the Lebesgue measure.
Under the above Gaussian measure M , the following Poincare inequality holds

‖h‖2∗≤
1

dβmin{ω2
0 ,1}

(
‖∇xh‖2∗+‖∇vh‖2∗

)
, for ∀h s.t.

∫
hMdxdv= 0 (3.5)

The following key assumption ensures various bounds of the perturbation ε(θ).

Assumption 3.1. There exists a small constant ε0>0, such that,

max
i
‖εi‖L∞ ,‖ε ·x‖L∞ ,‖ε ·v‖L∞ ,dmax

i
‖ε′i‖L∞ ,

∑
i

‖ε′i‖L∞ ,‖ε′ ·x‖L∞ ,‖ε′ ·v‖L∞ ≤ ε0,

where ε′(θ) is the derivative of ε(θ).

The following theorem states an exponential decay bound for the fluctuation h.

Theorem 3.1. Under Assumption 3.1 with ε0 small enough, the fluctuation h decays
exponentially as follows,

‖h(t)‖2∗.e
−2(µ−ε)tH(0),

where H(0) =‖∇xh(0)‖2∗+C ‖∇vh(0)‖2∗+2Ĉ 〈∇xh(0),∇vh(0)〉∗, ε= ε0C1 for a constant
C1 depending on ω0,γ and

when γ<2ω0 : µ=γ, C=ω2
0 , Ĉ=γ/2;

when γ>2ω0 : µ=γ−
√
γ2−4ω2

0 , C=γ2/2−ω2
0 , Ĉ=γ/2;

when γ= 2ω0 : ∀δ>0, there exists C(δ),Ĉ(δ), such that the decay rate µ=γ−δ.
(3.6)

More specifically C1 =
(

11+11C+15Ĉ
)
ε0 ·C2

2 ·
max{1,C}
C−Ĉ2

,

where C2 =
max{1,γ,γ2,βγ,βω2

0}
min{1,ω2

0}
.

Remark 3.1. How the learning rate and staleness affect the convergence
rate? When the perturbation ε0 is small, the decay rate is dominated by e−2µt. By the
definition of δt, one has t=kδt=k

√
η(1−κ) with k the number of steps, η the learning

rate and κ the staleness rate. Inserting the definition of γ=
√

((1−κ)/η) into (3.6), the
dominated decay rate e−2µt can also be written as,

when η>
1

4ω2
0

(1−κ) : µt= (1−κ)k;

when η<
1

4ω2
0

(1−κ) : µt= (1−κ)k−
(√

(1−κ)2−4ω2
0(1−κ)η

)
k.

(3.7)

From the above discussion, we make two observations:
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– The learning rate should not be smaller than 1
4ω2

0
(1−κ). For a fixed staleness

rate κ, when the learning rate is larger than the threshold 1
4ω2

0
(1−κ), the con-

vergence rate is a constant only depending on (1−κ). While the learning rate
is smaller than this threshold, the convergence rate will become slower as the
learning rate becomes smaller.

– Longer delays result in slower convergence rate. For a fixed learning rate, the
optimal decay rate e−2(1−κ)k only relates to the staleness of the system. If the
system has more delayed readings from the local workers, i.e., (1−κ) is smaller,
then the convergence rate is slower.

All the above discussion is based on the assumption that η is small enough so that the
SME-ASGD is a good approximation for ASGD. In other words, we assume ω0 is large
here, hence the threshold 1

4ω2
0
(1−κ) is still in the valid regime.

Remark 3.2. When is ASGD more efficient than SGD? Assume we have m
local workers and the learning rate is larger than the threshold η> 1

4ω2
0
(1−κ). When

the perturbation ε0 is small, for single batch SGD, the decay rate is e−2k after k steps,
while for ASGD, the decay rate is e−2(1−κ)k after calculating k gradients. Since now we
have m local workers, for the same amount of time, the decay rate for ASGD becomes
e−2(1−κ)mk. Therefore, as long as (1−κ)m>1, ASGD will be more efficient than SGD.
Since the expectation of the random staleness τk is 1

1−κ , in other words, when the number
of local workers is larger than the expected staleness, then ASGD is more efficient than
SGD.

We run a simple numerical experiment in Figure 3.1 to verify the above conclusions.
(a) When κ= 0.98, the threshold for the learning rate is (1−κ)/4 = 0.005. One can see
that the blue and red lines spend similar time to converge, which verifies that the
convergence rate is the same when the learning rate is above the threshold. When
the learning rate is below the threshold, as the learning rate becomes smaller, the
convergence of ASGD becomes slower. (b) When the learning rates are all above the
threshold, as the staleness rate becomes larger, it takes a longer time for the ASGD
to converge. (c) When the staleness rate is 0.96, it takes 2 local workers for ASGD to
converge faster than SGD in time. Remark 3.2 gives a conservative estimate for the
number of local workers. In practice, it actually requires fewer local workers for ASGD
to be more efficient than SGD.

The proof of the theorem is given in Section 4. The main ingredient of the proof is
the following Lyapunov functional H(t),

H(t) =‖∇xh‖2∗+C ‖∇vh‖2∗+2Ĉ 〈∇xh,∇vh〉∗ (3.8)

where C,Ĉ are constants to be determined later. Note that,

d

dt
H(t) =

d

dt

(
‖∇xh‖2∗+C ‖∇vh‖2∗

)
+2Ĉ

d

dt
〈∇xh,∇vh〉∗ . (3.9)

The first two terms can be estimated with an energy estimation given in Lemma 4.1 of
∇x(3.2), ∇v(3.2), while the estimation of the last term is given in Lemma 4.2. Actually,
d
dt ‖∇vh‖

2
∗ will give the dissipation of ‖∇vh‖2∗, and d

dt 〈∇xh,∇vh〉∗ will give the dissipa-

tion of ‖∇xh‖2∗. The term ‖∇xh‖2∗ and the constants C,Ĉ in the Lyapunov functional
are to make sure the functional is always positive and after combining the results in
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Fig. 3.1. Apply ASGD to minimize the quadratic function f(θ) =θ2 with two components f1(θ) =
(θ−1)2−1 and f2(θ) =(x+1)2−1. All the plots are averaged results over 1000 simulations with
initialization θ0 = 1. (a) Compare the convergence of ASGD with different learning rate when the
staleness rate is κ. (b) Compare the convergence of ASGD with different staleness rate when the
learning rate is η= 0.01. (c) Compare the convergence of ASGD and SGD in time.

Lemmas 4.1 and 4.2, one could have,

1

2
∂tH(t)+ C̃H(t)≤0. (3.10)

Finally, the exponential decay of ‖h(t)‖2∗ can be derived from this inequality and the

relationship between H(t) and ‖h(t)‖2.

4. Proof of Theorem 3.1
The following proposition summarizes a few equalities and inequalities, which will

be used frequently in the proof of the main theorem. The proofs are provided in the
Appendix.

Proposition 4.1. For ∀g(t,x,v),h(t,x,v), the following statements hold

(a) 〈Tg,h〉∗=−〈g,Th〉∗ , 〈Th,h〉∗= 0.

(b) 〈Lg,h〉∗=−γ
β
〈∇vg,∇vh〉∗ .

(c) 〈Rg,g〉∗≤ ε0C2‖g‖2∗ , 〈Rg,h〉∗+〈Rh,g〉∗≤ ε0C2

(
‖g‖2∗+‖h‖2∗

)
,

where C2 =
max{1,γ,γ2,βγ,βω2

0}
min{1,ω2

0}
.

(d) 〈∇x(Rh),∇xh〉∗≤
11

2
ε0C

2
2 ‖∇xh‖

2
∗+2ε0C

2
2 ‖∇vh‖

2
∗ .

(e) 〈∇v(Rh),∇vh〉∗≤
11

2
ε0C

2
2 ‖∇vh‖

2
∗+2ε0C

2
2 ‖∇xh‖

2
∗.

(f) 〈∇x(Rh),∇vh〉∗+〈∇v(Rh),∇xh〉∗≤
15

2
ε0C

2
2 ‖∇xh‖

2
∗+

15

2
ε0C

2
2 ‖∇vh‖

2
∗.

The following lemma is the energy estimation of ∇x(3.2) and ∇v(3.2).

Lemma 4.1. The weighted fluctuation function h(t,x,v) satisfies

d

dt

(
‖∇xh‖2∗+C ‖∇xh‖2∗

)
+2

γ

β

∑
i

∫
M(|∂vi∇xh|

2
+C |∂vi∇vh|

2
)dv

≤−2(C−ω2
0)〈∇xh,∇vh〉∗−2γC ‖∇vh‖2∗

+(11+4C)ε0C2‖∇xh‖2∗+(4+11C)ε0C2‖∇vh‖2∗ .
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Proof. After taking ∇x and ∇v to (3.2), multiplying them with ∇xhM and ∇vhM
respectively, and integrating over dxdv, one obtains

1

2

d

dt
‖∇xh‖2∗+〈T∇xh,∇xh〉∗−ω

2
0 〈∇vh,∇xh〉∗= 〈L∇xh,∇xh〉∗+〈∇x(Rh),∇xh〉∗ .

1

2

d

dt
‖∇vh‖2∗+〈T∇vh,∇vh〉∗+〈∇xh,∇vh〉∗= 〈L∇vh,∇vh〉∗−γ 〈∇vh,∇vh〉∗

+〈∇v(Rh),∇vh〉∗ .

By invoking Proposition 4.1/(a), the second term of the LHS of each equation vanishes.
Multiplying these two equations with 1 and C respectively and adding them together
gives rise to

1

2

d

dt

(
‖∇xh‖2∗+C ‖∇xh‖2∗

)
−(〈L∇xh,∇xh〉∗+C 〈L∇vh,∇vh〉∗)

≤−(C−ω2
0)〈∇xh,∇vh〉∗−γC ‖∇vh‖

2
∗+〈∇x(Rh),∇xh〉∗+C 〈∇v(Rh),∇vh〉∗ (4.1)

After applying Proposition 4.1/(b),(d),(e), one obtains

1

2

d

dt

(
‖∇xh‖2∗+C ‖∇xh‖2∗

)
+
γ

β

(∑
i

‖∂vi∇xh‖
2
∗+C ‖∂vi∇vh‖

2
∗

)
≤−(C−ω2

0)〈∇xh,∇vh〉∗−γC ‖∇vh‖
2
∗

+

(
11

2
+2C

)
ε0C2‖∇xh‖2∗+

(
2+

11

2
C

)
ε0C2‖∇vh‖2∗ .

Lemma 4.2.

d

dt
〈∇xh,∇vh〉∗+2

γ

β

∑
i

〈∂vi∇xh,∂vi∇vh〉∗

≤−γ 〈∇xh,∇vh〉∗+ω2
0 ‖∇vh‖

2
∗−‖∇xh‖

2
∗+

15

2
ε0C

2
2 ‖∇xh‖

2
∗+

15

2
ε0C

2
2 ‖∇vh‖

2
∗ .

Proof. Taking ∇x and ∇v to (3.2), multiplying them by ∇vhM and ∇xhM
respectively, and integrating over dxdv, one obtains〈

d

dt
∇xh,∇vh

〉
∗

+〈T∇xh,∇vh〉∗−ω
2
0 〈∇vh,∇vh〉∗= 〈L∇xh,∇vh〉∗+〈∇x(Rh),∇vh〉∗ .〈

d

dt
∇vh,∇xh

〉
∗

+〈T∇vh,∇xh〉∗+〈∇xh,∇xh〉∗= 〈L∇vh,∇xh〉∗−γ 〈∇vh,∇xh〉∗

+〈∇v(Rh),∇xh〉∗ .

From Proposition 4.1/(a), the sum of the second terms on the LHS of both equations
vanishes. Applying Proposition 4.1/(b) to the first term on the RHS of both equa-
tions combine them into a single term. Finally, summing the above two equations and
applying Proposition 4.1/(f) to the last terms leads to

d

dt
〈∇xh,∇vh〉∗+2

γ

β

∑
i

〈∂vi∇xh,∂vi∇vh〉∗

≤−γ 〈∇xh,∇vh〉∗+ω2
0 ‖∇vh‖

2
∗−‖∇xh‖

2
∗+

15

2
ε0C

2
2 ‖∇xh‖

2
∗+

15

2
ε0C

2
2 ‖∇vh‖

2
∗ . (4.2)



YUHUA ZHU AND LEXING YING 859

Proof. (The proof of Theorem 3.1.) By combining the results in Lemma 4.1
and Lemma 4.2, one concludes that

d

dt
H(t)+

∫
[∇xh,∇vh]K[∇xh,∇vh]>

1

M
dxdv

+

∫
2γ

β

∑
i

[∂vi∇xh,∂vi∇vh]P [∂vi∇xh,∂vi∇vh]>
1

M
dxdv

≤
(

11+4C+15Ĉ
)
ε0C

2
2 ‖∇xh‖

2
∗+
(

4+11C+15Ĉ
)
ε0C

2
2 ‖∇vh‖

2
∗ , (4.3)

where

K=

[
2ĈId (C−ω2

0 +γĈ)Id

(C−ω2
0 +γĈ)Id (2γC−2ω2

0Ĉ)Id

]
, P =

[
Id ĈId

ĈId CId

]
. (4.4)

Note that K can be decomposed as,

K=QP +PQ>, wtih Q=

[
0Id Id

−ω2
0Id γId

]
. (4.5)

By invoking Lemma 4.3 in [2], we know that there exists a positive definite matrix P
such that,

K=QP +Q>P ≥2µP, with µ= min{Re(λ) :λ is an eigenvalue of Q}. (4.6)

The value of µ, C, and Ĉ can be separated into three cases.

- case 1: γ<2ω0 : µ=γ, C=ω2
0 , Ĉ=γ/2

- case 2: γ>2ω0 : µ=γ−
√
γ2−4ω2

0 , C=γ2/2−ω2
0 , Ĉ=γ/2

- case 3: γ= 2ω0 : For ∀δ>0, there exists µ=γ−δ,C(δ),Ĉ(δ), such that (4.6)
holds.

Inserting K≥2µP and using the fact that H(t) =
∫

[∇xh,∇vh]P [∇xh,∇vh]> 1
M dxdv, we

can bound the second term in (4.3) from below by 2µH(t). By the positive definiteness
of P , the third term is always positive. Therefore,

d

dt
H(t)+2µH(t)≤

(
11+4C+15Ĉ

)
ε0C

2
2 ‖∇xh‖

2
∗+
(

4+11C+15Ĉ
)
ε0C

2
2 ‖∇vh‖

2
∗ ,

d

dt
H(t)+2(µ−ε)H(t)≤−2εH(t)+

(
11+11C+15Ĉ

)
ε0C

2
2

(
‖∇xh‖2∗+‖∇vh‖2∗

)
,

d

dt
H(t)+2(µ−ε)H(t)≤−ε

∥∥∥∇xh+ Ĉ∇vh
∥∥∥2
∗
−ε

∥∥∥∥∥√C∇vh+
Ĉ√
C
∇xh

∥∥∥∥∥
2

∗

−ε
(
C− Ĉ2

)
‖∇vh‖2∗−

ε

C

(
C− Ĉ2

)
‖∇xh‖2∗

+
(

11+11C+15Ĉ
)
ε0C

2
2

(
‖∇xh‖2∗+‖∇vh‖2∗

)
.

The RHS is less than 0 for all ∇xh,∇vh if(
11+11C+15Ĉ

)
ε0C

2
2 ≤ ε(C− Ĉ2)min

{
1,

1

C

}
,
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which implies that as long as ε0 is sufficiently small one has

d

dt
H(t)+2(µ−ε)H(t)≤0 (4.7)

for ε=
(

11+11C+15Ĉ
)
ε0C

2
2
max{1,C}
C−Ĉ2

. By integrating (4.7) over time and applying

Grönwall’s inequality to it, we obtain

H(t)≤H(0)e−2(µ−ε)t.

By the Poincare inequality (3.5) and the positive definiteness of P , one can bound H(t)

from below by ‖h‖2∗ up to a constant,

H(t)& (‖∇xh‖2∗+‖∇vh‖2∗)&‖h‖
2
∗ .

Therefore, we can conclude

‖h(t)‖2∗.H(0)e−2(µ−ε)t.

Appendix. The proof of Proposition 4.1. Proof.
(a) The first equation can be proved via integration by parts,

〈Tg,h〉∗=

∫ (
v ·∇xg−ω2

0x ·∇vg
)
hMdxdv

=

∫ (
−v ·∇xh+ω2

0x ·∇vh
)
g+gh(−v ·∇xM+ω2

0x ·∇vM)dxdv

=−〈Th,g〉∗+

∫
gh
(
v ·(βω2

0x)−ω2
0x ·(βv)

)
dxdv=−〈Th,g〉∗ .

The second equation is directly followed by 〈Th,h〉∗=−〈Th,h〉∗.
(b) This equation can be obtained also by integration by parts,

〈Lg,h〉∗=
γ

β

∫
1

M
∇v ·(M∇vg)hMdxdv=− γ

β

∫
M∇vg ·∇vhdxdv

=− γ
β
〈∇vg,∇vh〉∗ .

(c) The first equation can be written as

〈Rg,g〉∗=〈ε ·(∇xg−γ∇vg) ,g〉∗−
〈
βε ·

(
ω2
0x−γv

)
g,g
〉
∗

=
1

2

〈
ε,(∇x−γ∇v)g2

〉
∗−
〈
βε ·

(
ω2
0x−γv

)
g,g
〉
∗ . (A.1)

By integrating by parts the first term and using the definition of ε=

ε
(
− 1
ω2

0
(v+γx)

)
,M = exp(−βω2

0 |x|2/2+β|v|2/2), one has

1

2

〈
ε,(∇x−γ∇v)g2

〉
∗=−1

2

〈
(∇x−γ∇v) ·ε,g2

〉
∗−

1

2

〈
ε ·(∇x−γ∇v)M,g2

〉
=− 1

2

〈
− γ

ω2
0

∇·ε−γ(− 1

ω2
0

)∇·ε,g2
〉
∗

+
1

2

〈
βε ·

(
ω2
0x−γv

)
,g2
〉
∗
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=
1

2

〈
βε ·

(
ω2
0x−γv

)
,g2
〉
∗ . (A.2)

Inserting the above equation into (A.1) gives rise to

〈Rg,g〉∗=−1

2

〈
βε ·

(
ω2
0x−γv

)
,g2
〉
∗≤

ε0
2

(βω2
0 +βγ)‖g‖2∗≤ ε0C2‖g‖2∗ ,

where we use the assumption ‖ε ·x‖L∞ ,‖ε ·v‖L∞ ≤ ε0 in Assumption 3.1 at the
first inequality.
Now we estimate 〈Rg,h〉∗+〈Rh,g〉∗. First, similar to (A.2), by the definition
of ε,M , one has

〈Rg,h〉∗= 〈ε ·(∇xg−γ∇vg) ,h〉∗−
〈
βε ·

(
ω2
0x−γv

)
g,h
〉
∗

=−〈(∇x−γ∇v)εg,h〉∗−〈εg,(∇x−γ∇v)h〉∗−〈ε(∇x−γ∇v)Mg,h〉
−
〈
βε ·

(
ω2
0x−γv

)
g,h
〉
∗

=0−〈εg,(∇x−γ∇v)h〉∗+0.

Hence,

〈Rg,h〉∗+〈Rh,g〉∗
=−〈ε(∇x−γ∇v)h,g〉∗+〈ε ·(∇xh−γ∇vh),g〉∗−

〈
βε ·

(
ω2
0x−γv

)
h,g
〉
∗

=−
〈
βε ·

(
ω2
0x−γv

)
h,g
〉
∗≤

ε0
2

(
βω2

0 +βγ
)(
‖h‖2∗+‖g‖2∗

)
≤ε0C2

(
‖h‖2∗+‖g‖2∗

)
.

(d) By the definition of R in (3.3),

〈∇x(Rh),∇xh〉∗=〈R∇xh,∇xh〉∗+〈∇xε(∇xh−γ∇vh),∇xh〉∗
−β

〈
∇xε(ω2

0x−γv)h,∇xh
〉
∗−βω

2
0 〈εh,∇xh〉∗

≤ε0C2‖∇xh‖2∗+〈∇xε(∇xh−γ∇vh),∇xh〉∗

−β
〈
∇xε(ω2

0x−γv)h,∇xh
〉
∗+

1

2
βω2

0ε0(d‖h‖2∗+‖∇xh‖2∗),
(A.3)

where we apply the inequality (c) to the first term and Assumption 3.1
maxi‖εi‖L∞ ≤ ε0 to the last term of the above inequality. We will then es-
timate the second and third terms.

〈∇xε(∇xh−γ∇vh),∇xh〉∗=
∑
i,j

〈
∂xjεi(∂xih−γ∂vih),∂xjh

〉
∗

=− γ

ω2
0

∑
i,j

〈
ε′i(∂xih−γ∂vih),∂xjh

〉
∗

≤ γ

ω2
0

∑
i,j

‖ε′i‖L∞

(
1

2
‖∂xih‖

2
∗+

γ

2
‖∂vih‖

2
∗+
∥∥∂xjh∥∥2∗)

≤ γ

ω2
0

(
dmax

i
‖ε′i‖L∞

(
1

2
‖∇xh‖2∗+

γ

2
‖∇vh‖2∗

)
+

(∑
i

‖ε′i‖L∞

)
‖∇xh‖2∗

)

≤ γ

ω2
0

ε0

(
1

2
‖∇xh‖2∗+

γ

2
‖∇vh‖2∗+‖∇xh‖2∗

)
≤ ε0C2

(
3

2
‖∇xh‖2∗+

1

2
‖∇vh‖2∗

)
(A.4)
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where dmaxi‖ε′i‖L∞ ,
∑
i‖ε′i‖L∞ ≤ ε0, are used in the second inequality from

last. The third term in (A.3) can be bounded by,

−β
〈
∇xε(ω2

0x−γv)h,∇xh
〉
∗=−β

∑
i,j

〈
∂xjεi(ω

2
0xi−γvi)h,∂xjh

〉
∗

=−γβ
ω2
0

∑
j

〈∑
i

ε′i(ω
2
0xi−γvi)h,∂xjh

〉
∗

≤ γβ
ω2
0

ε0

(
d

2
ω2
0 ‖h‖

2
∗+

d

2
γ‖h‖2∗+‖∇xh‖2∗

)
≤ ε0C2

(
dβ‖h‖2∗+‖∇xh‖2∗

)
, (A.5)

where ‖ε′ ·x‖L∞ ,‖ε′ ·v‖L∞ ≤ ε0 are used in last inequality. Then inserting (A.4),
(A.5) into (A.3) leads to

〈∇x(Rh),∇xh〉∗≤4ε0C2‖∇xh‖2∗+
1

2
ε0C2‖∇vh‖2∗+

3

2
ε0C2

(
dβ‖h‖2∗

)
. (A.6)

Now applying the Poincare inequality (3.5) under the Gaussian measure to
(A.6) gives rise to

〈∇x(Rh),∇xh〉∗≤
(

4ε0C2 +
3

2
ε0C

2
2

)
‖∇xh‖2∗+

(
1

2
ε0C2 +

3

2
ε0C

2
2

)
‖∇vh‖2∗ .

(e) Similar to the proof of (d), one has

〈∇v(Rh),∇vh〉∗
=〈R∇vh,∇vh〉∗+〈∇vε(∇xh−γ∇vh),∇vh〉∗
−β

〈
∇vε(ω2

0x−γv)h,∇vh
〉
∗+βγ 〈εh,∇vh〉∗

≤ε0C2‖∇vh‖2∗+ε0C2

(
1

2
‖∇xh‖2∗+

3

2
‖∇vh‖2∗

)
+ε0C2

(
dβ‖h‖2∗+‖∇vh‖2∗

)
+ε0C2

(
1

2
dβ‖h‖2∗+

1

2
‖∇vh‖2∗

)
≤
(

4ε0C2 +
3

2
ε0C

2
2

)
‖∇vh‖2∗+

(
1

2
ε0C2 +

3

2
ε0C

2
2

)
‖∇xh‖2∗ .

(f) Similar to the proof of (d), one has

〈∇x(Rh),∇vh〉∗+〈∇v(Rh),∇xh〉∗
=(〈R∇xh,∇vh〉∗+〈R∇vh,∇xh〉∗)+〈∇xε(∇xh−γ∇vh),∇vh〉∗
−β

〈
∇xε(ω2

0x−γv)h,∇vh
〉
∗−βω

2
0 〈εh,∇vh〉∗+〈∇vε(∇xh−γ∇vh),∇xh〉∗

−β
〈
∇vε(ω2

0x−γv)h,∇xh
〉
∗+βγ 〈εh,∇xh〉∗

≤
(

9

2
ε0C2 +3ε0C

2
2

)
‖∇xh‖2∗+

(
9

2
ε0C2 +3ε0C

2
2

)
‖∇vh‖2∗ .
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