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Abstract. We study a Lie splitting scheme for a nonlinear Schrödinger-type equation with random
dispersion. The main result is an approximation of the local error. Then we can deduce sharp order
estimates, for instance in the case of a white noise dispersion.
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1. Introduction
We consider the nonlinear Schrödinger equation with white noise dispersion. It can

be written as

u(t,x) =u0(x)+ i

∫ t

0

∂2u

∂x2
(θ,x)◦dW (θ)+

∫ t

0

g(u(θ,x))dθ, (t,x)∈ [0,1]×R, (1.1)

where u0∈L2(R,C), W is a Brownian motion and g is a complex nonlinear function.
The existence and the uniqueness of the solution are established for instance for a
Lipschitz nonlinearity in [15], for a cubic nonlinearity in [7], and for a quintic nonlinearity
in [8]. Regarding its numerical analysis, several schemes have been studied (for example
in [3, 5, 6, 10, 15]). In particular, a Lie splitting scheme is analyzed in [15]. Among
other results, it is proven that the order of the scheme is at least 1/2 and numerical
experiments show that this order is 1 (also shown in [5] and [3]). In addition, order
estimates have been established when the Brownian motion W in (1.1) is replaced by
another process. For instance, if W is an α-Hölder function (α∈ (0,1)) then the order
is α (see [15]), or if W is a fractional Brownian motion with Hurst index H ∈ (0,1) then
the order is H (see [9]). As in many other works dealing with splitting schemes for other
deterministic or random equations (see for instance [1, 2, 4, 9, 15, 17]), the study of the
order crucially involves estimates of the local error.

In this paper we consider a Lie splitting scheme for a nonlinear Schrödinger-type
equation with random dispersion. This equation has the same form as (1.1) but W is
a random process (or eventually a continuous function) and i∂2/∂x2 is replaced by a
more general operator.

Under assumptions on the moments of the random dispersion term, we establish
an expansion of the local error, which gives us more information than the usual esti-
mates. As a corollary, if the dispersion term is defined from a process with independent
increments and mean zero, we deduce a sharp order estimate. In the particular case
of a white noise dispersion, we show that the order of convergence of the scheme is 1.
This has been theoretically or numerically observed for splitting or other schemes (for
instance [3, 5, 15]) for Equation (1.1).

The paper is organized as follows. We present the framework in Section 2. The
main result about the approximation of the local error is given in Section 3. Section 4
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is devoted to the proofs. In Section 5 we discuss an application to order estimates. In
Section 6 we study another splitting scheme. Numerical results are presented in Section
7.

Throughout the paper we denote by L2 the space L2(R,C), by ‖·‖L2 its norm and
by 〈·,·〉L2 its inner product. For every σ∈N, we denote by Hσ the Sobolev space of func-
tions f ∈L2 such that ξ 7→ (1+ |ξ|2)σ/2F(f)(ξ)∈L2 where F is the Fourier transform.
The norm is denoted by ‖·‖Hσ and the inner product by 〈·,·〉Hσ .

In this paper we consider a probability space (Ω,T ,P). The expectation is E and if
q≥1 and M is a random variable taking its values in a normed space F = (F,‖·‖F ), we
denote q

√
E[‖M‖qF ] by ‖M‖LqΩ(F ) when it is well defined.

2. Framework

2.1. Nonlinear Schrödinger-type equation with random dispersion. Let
u0 be a function in L2, g be a function from C to C, a be a function from R to R and W
be a continuous stochastic process. We assume that there exist Ca>0 and σ∈N such
that for all ξ∈R,

|a(ξ)|≤Ca(1+ |ξ|2)σ/2. (2.1)

We consider the following nonlinear Schrödinger-type equation

u(t,x) =u0(x)+

∫ t

0

Au(θ,x)◦dW (θ)+

∫ t

0

g(u(θ,x))dθ, (t,x)∈ [0,1]×R (2.2)

where ◦dW stands for a Stratonovich-type differentiation we explain below and A is the
operator on Hσ such that for all f ∈Hσ,

Af =F−1(ξ→ ia(ξ)F(f)(ξ)) (2.3)

where F is the Fourier transform with respect to x.
We define

∆ ={(s,t)∈ [0,1]2 |s≤ t}. (2.4)

Equation (2.2) is rewritten as

u(t,x) =X(0,t)u0(x)+

∫ t

0

X(θ,t)g(u(θ,x))dθ, (t,x)∈ [0,1]×R (2.5)

where the family of operators {X(t0,t)}(t0,t)∈∆ is defined such that for every v∈L2 and
every (t0,t)∈∆,

X(t0,t)v=F−1(exp(ia(·)(W (t)−W (t0)))F(v)). (2.6)

Notice that for all p∈N, ‖X(t0,t)v‖Hp =‖v‖Hp because a and W are real.

Remark 2.1. This framework includes deterministic or stochastic nonlinear
Schrödinger-type equations which have many applications to physics. If W (t) = t for
all t∈ [0,1] and a(ξ) = |ξ|p for all ξ∈R with p>0, then (2.2) is a deterministic non-
linear Schrödinger-type equation such as a fractional Schrödinger equation (see for in-
stance [13, 14]) or a high-order Schrödinger equation (see for instance [11, 12]). If W
is a Brownian motion and a(ξ) = ξ2 for all ξ∈R, then (2.2) is a nonlinear Schrödinger
equation with white noise dispersion.
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Throughout the paper, when g : (<z,=z) 7→g(z) is considered as a function of two
real variables, we assume that for all k∈N∗ its partial derivatives of order k exist and are
bounded. This implies that g and all its derivatives are Lipschitz functions. Therefore,
for every k∈N∗ its differential of order k denoted by ∇kg is bounded. Moreover, we
assume that g(0) = 0 and (∇g)(0) = (0,0).

Remark 2.2. Let M be a positive constant and f :R+→R+ be a smooth and
increasing function satisfying f(x) =x if x≤2M and f(x) = 3M if x≥4M . If we define
g as g(z) = izf(|z|2), then g satisfies the assumptions above. With such a function g, if
M is large enough then Equation (2.2) has locally the same solution as in the case of a
cubic nonlinearity, which is more usual in applications to physics.

Under these assumptions, we can prove (as in [15] for instance) that there exists a
unique solution to (2.5) denoted by u and almost surely in C([0,1],L2). We denote by
S={S(t0,t)}(t0,t)∈∆ the family of operators on L2 satisfying S(t0,t2) =S(t1,t2)S(t0,t1)
if t0≤ t1≤ t2 and such that the solution u is given by u(t,x) =S(0,t)u0(x). Moreover, we
denote by Y ={Y (t)}t∈[0,1] the family of operators such that for every u0 the function
w : (t,x) 7→w(t,x) =Y (t)u0 is solution of

w(t,x) =u0(x)+

∫ t

0

g(w(θ,x))dθ, (t,x)∈ [0,1]×R. (2.7)

2.2. Lie splitting scheme. We define

δ :={(n,h)∈N×(0,1]|nh≤1}.

For all t0∈ [0,1] we denote by ut0 the (random) function u(t0,·) :x 7→u(t0,x). In order
to approximate unh for all (n,h)∈ δ, we define the (Lie) splitting scheme as

uhn :=Zhn ·· ·Zh1 u0 (2.8)

where Zhk :=Z((k−1)h,kh) for all k∈{1,·· · ,n} and Z(t0,t) :=Y (t− t0)X(t0,t) for all
(t0,t)∈∆. We also define Shk :=S((k−1)h,kh) for all k∈{1,·· · ,n} such that

unh :=Shn ·· ·Sh1 u0.

We fix two real numbers β≥1 and α>0. We assume that W is a stochastic process
with continuous sample paths and finite moments of order β, and such that there exists
C>0 such that for all (s,t),

E[|W (t)−W (s)|β ]≤C|t−s|βα. (2.9)

Remark 2.3. For instance, a fractional Brownian motion (see [16]) with Hurst index
α∈ (0,1) satisfies (2.9) with β= 2.

The following theorem generalizes error estimates proven in [15].

Theorem 2.1. Let m∈N and u0∈Hm+σ. If β, α and W satisfy (2.9) then there
exists a constant C>0 such that for all (n,h)∈ δ,

‖unh−uhn‖LβΩ(Hm)≤Ch
α. (2.10)

Proof. The proof is a consequence of Lemmas 2.1 and 2.2, and similar to the proof
of Theorem 4.1 in [15].
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The following lemma gives the uniform boundedness of the Lie splitting scheme
defined by (2.8).

Lemma 2.1. Let k∈N and u0∈Hk. There exists a (deterministic) positive constant
Ck, which depends only on g, k and ‖u0‖Hk , and such that almost surely and for all
(n,h)∈ δ,

‖ZhnZhn−1 ·· ·Zh1 u0‖Hk =‖uhn‖Hk ≤Ck.

Proof. The proof is similar to the proof of Lemma 4.4 in [15] and uses (4.13).

The following lemma establishes an upper bound for the local error of the scheme.

Lemma 2.2. Let m∈N and u0∈Hm+σ. If β, α and W satisfy (2.9) then there exists
a constant C such that for every (t0,t)∈∆,

‖S(t0,t)ut0−Z(t0,t)ut0‖LβΩ(Hm)≤C(t− t0)1+α.

Proof. We have

S(t0,t)ut0−Z(t0,t)ut0 =

∫ t

t0

X(θ,t){g(S(t0,θ)ut0)−g(Z(t0,θ)ut0)}dθ

+

∫ t

t0

X(θ,t)g(Z(t0,θ)ut0)−g(Z(t0,θ)ut0)dθ

+

∫ t

t0

(g(Z(t0,θ)ut0)−g(Y (θ− t0)X(t0,t)ut0))dθ.

By the Cauchy-Schwarz inequality, (2.9), Lemmas 4.9, 4.6 and 4.10, we get

‖S(t0,t)ut0−Z(t0,t)ut0‖
β

LβΩ(Hm)
≤C(t− t0)β−1

∫ t

t0

‖S(t0,θ)ut0−Z(t0,θ)ut0‖
β

LβΩ(Hm)
dθ

+C(t− t0)β(1+α).

The proof is completed with the Gronwall lemma.

3. Local error

The local error estimate given in Lemma 2.2 is a crucial step of the proof of Theorem
2.1. In this section we establish an expansion of the local error. As a consequence, in
Section 5 we improve the error estimate of Theorem 2.1 if W has independent increments
and mean zero.

Throughout the paper we use the notation

〈(∇g)◦φ0 |φ1〉=
(
∂g

∂<z
◦φ0

)
<φ1 +

(
∂g

∂=z
◦φ0

)
=φ1

for all φ0 and φ1∈L2, where
∂g

∂<z
and

∂g

∂=z
are the first partial derivatives of g. Notice

that 〈(∇g)◦φ0 |φ1〉 is then in L2.

For every v∈Hσ we define

Gv=A(g◦v)−〈(∇g)◦v |Av〉. (3.1)
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We fix two real numbers β≥1 and α∈ (0,1]. In this section we assume that W is a
stochastic process with continuous sample paths and finite moments of order 2β, and
such that there exists C>0 such that for all (s,t),

E[|W (t)−W (s)|2β ]≤C|t−s|2βα. (3.2)

As a consequence, by the Cauchy-Schwarz inequality we also have

E[|W (t)−W (s)|β ]≤
√
C|t−s|βα and E[(W (t)−W (s))2]≤ β

√
C|t−s|2α. (3.3)

For all (t0,t)∈∆ we define

I(t0,t) =

∫ t

t0

(W (t)−W (θ))dθ. (3.4)

The following theorem establishes an expansion of the local error.

Theorem 3.1. Let m∈N and u0∈Hm+2σ. If β, α and W satisfy (3.2) then there
exists a constant C>0 such that for every (t0,t)∈∆,

‖S(t0,t)ut0−Z(t0,t)ut0−I(t0,t)Gut0‖LβΩ(Hm)≤C(t− t0)2α+1. (3.5)

Hence, the local error Shnu(n−1)h−Zhnu(n−1)h can be approximated by IhnGu(n−1)h

where Ihn = I((n−1)h,nh). Notice that in the case of a white noise dispersion (if W is
a Brownian motion), we have

E[IhnGu(n−1)h] = 0 (3.6)

because the Brownian motion has independent increments with mean zero. This is
important in Section 5 in order to improve the order estimate of the scheme.

4. Proof of Theorem 3.1
In Subsection 4.1 we present the main steps of the proof of Theorem 3.1. Technical

Lemmas are postponed to Subsection 4.2.

4.1. Main steps of the proof of Theorem 3.1. For all φ1 and φ2 in L2, we
define

R(φ1,φ2) =g◦φ2−g◦φ1−〈(∇g)◦φ1 |φ2−φ1〉. (4.1)

Hence, for every v∈L2 and every (t0,t)∈∆,

S(t0,t)v−Z(t0,t)v=

∫ t

t0

(X(θ,t)− Id)(g◦v)dθ

+

∫ t

t0

〈(∇g)◦v |S(t0,θ)v−Y (θ− t0)X(t0,t)v〉dθ

+

∫ t

t0

(X(θ,t)− Id)〈(∇g)◦v |S(t0,θ)v−v〉dθ

+

∫ t

t0

(X(θ,t)R(v,S(t0,θ)v)−R(v,Y (θ− t0)X(t0,t)v))dθ. (4.2)

The proof of Theorem 3.1 is based on lemmas dealing with the terms of (4.2).
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We fix m∈N and u0∈Hm+2σ. For simplicity, in this subsection the function ut0 is
denoted by v, and the letter C stands for a (deterministic) positive constant which is
independent of (t0,t) and may change from line to line. We recall that we assume that
β, α and W satisfy (3.2).

Lemma 4.1. There exists a constant C such that for every (t0,t)∈∆,∥∥∥∥∫ t

t0

(X(θ,t)− Id)(g◦v)dθ−I(t0,t)A(g◦v)

∥∥∥∥
LβΩ(Hm)

≤C(t− t0)1+2α.

Proof. Using the Cauchy-Schwarz inequality and Lemma 4.6, we get∥∥∥∥∫ t

t0

(X(θ,t)− Id)(g◦v)dθ−I(t0,t)A(g◦v)

∥∥∥∥
Hm

≤
∫ t

t0

‖(X(θ,t)− Id)(g◦v)−(W (t)−W (θ))A(g◦v)‖Hmdθ

≤
∥∥A2(g◦v)

∥∥
Hm

∫ t

t0

|W (t)−W (θ)|2dθ≤C
∫ t

t0

|W (t)−W (θ)|2dθ.

Then Lemma 4.10 and (3.3) complete the proof.

Lemma 4.2. There exists a constant C such that for every (t0,t)∈∆,∥∥∥∥∫ t

t0

〈(∇g)◦v |S(t0,θ)v−Y (θ− t0)X(t0,t)v〉dθ+I(t0,t)〈(∇g)◦v |Av〉
∥∥∥∥β
LβΩ(Hm)

≤C
(

(t− t0)β(1+2α) +(t− t0)β−1

∫ t

t0

‖S(t0,θ)v−Z(t0,θ)v‖β
LβΩ(Hm)

dθ

)
.

Proof. We have∫ t

t0

〈(∇g)◦v |S(t0,θ)v−Y (θ− t0)X(t0,t)v〉dθ+I(t0,t)〈(∇g)◦v |Av〉

=

∫ t

t0

〈(∇g)◦v |X(t0,θ)v−X(t0,t)v〉dθ+I(t0,t)〈(∇g)◦v |Av〉

+

∫ t

t0

〈(∇g)◦v |(Y (θ− t0)− Id)X(t0,θ)v−(Y (θ− t0)− Id)X(t0,t)v〉dθ

+

∫ t

t0

〈(∇g)◦v |S(t0,θ)v−Z(t0,θ)v〉dθ. (4.3)

We then study the terms of the right-hand side of (4.3). By (4.12) and Lemma 4.6, we
have ∥∥∥∥∫ t

t0

〈(∇g)◦v |X(t0,θ)v−X(t0,t)v〉dθ+〈(∇g)◦v |Av〉I(t0,t)

∥∥∥∥
Hm

≤
∫ t

t0

‖〈(∇g)◦v |X(t0,θ)v−X(t0,t)v+(W (t)−W (θ))Av〉‖Hmdθ

≤C‖(∇g)◦v‖Hm+1

∫ t

t0

‖X(t0,θ)v−X(t0,t)v+(W (t)−W (θ))Av‖Hmdθ
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≤C‖A2v‖Hm
∫ t

t0

|W (t)−W (θ)|
√
|W (t)−W (θ)|2 + |W (θ)−W (t0)|2dθ.

Then by Lemma 4.10 and (3.2) we get∥∥∥∥∫ t

t0

〈(∇g)◦v |X(t0,θ)v−X(t0,t)v〉dθ+〈(∇g)◦v |Av〉I(t0,t)

∥∥∥∥
LβΩ(Hm)

≤C(t− t0)1+2α.

(4.4)

By (4.12) and Lemma 4.10, we also have∥∥∥∥∫ t

t0

〈(∇g)◦v |(Y (θ− t0)− Id)X(t0,θ)v−(Y (θ− t0)− Id)X(t0,t)v〉dθ
∥∥∥∥
LβΩ(Hm)

≤C
∫ t

t0

‖(Y (θ− t0)− Id)X(t0,θ)v−(Y (θ− t0)− Id)X(t0,t)v‖LβΩ(Hm)dθ

≤C
∫ t

t0

‖
∫ θ

t0

(g(Y (σ− t0)X(t0,θ)v)−g(Y (σ− t0)X(t0,t)v))dσ‖LβΩ(Hm)dθ

≤C(t− t0)

∫ t

t0

‖X(t0,θ)v−X(t0,t)v‖LβΩ(Hm)dθ

≤C(t− t0)(2+α)≤C(t− t0)(1+2α), (4.5)

and ∥∥∥∥∫ t

t0

〈(∇g)◦v |S(t0,θ)v−Z(t0,θ)v〉dθ
∥∥∥∥β
LβΩ(Hm)

≤C(t− t0)β−1

∫ t

t0

‖S(t0,θ)v−Z(t0,θ)v‖β
LβΩ(Hm)

dθ. (4.6)

By (4.3), (4.4), (4.5) and (4.6), we prove the lemma.

Lemma 4.3. There exists a constant C such that for every (t0,t)∈∆,∥∥∥∥∫ t

t0

(X(θ,t)− Id)〈(∇g)◦v |S(t0,θ)v−v〉dθ
∥∥∥∥
LβΩ(Hm)

≤C(t− t0)1+2α.

Proof. By Lemma 4.6, (4.12) and Lemma 4.10, we have∥∥∥∥∫ t

t0

(X(θ,t)− Id)〈(∇g)◦v |S(t0,θ)v−v〉dθ
∥∥∥∥
Hm

≤
∫ t

t0

|W (t)−W (θ)|‖〈(∇g)◦v |S(t0,θ)v−v〉‖Hm+σdθ

≤C‖(∇g)◦v‖Hm+σ+1

∫ t

t0

|W (t)−W (θ)|‖S(t0,θ)v−v‖Hm+σdθ

≤C(t− t0)β−1

∫ t

t0

|W (t)−W (θ)|β‖S(t0,θ)v−v‖βHm+σdθ. (4.7)

From Lemmas 4.11 and 4.10 and (3.2), we deduce∥∥∥∥∫ t

t0

(X(θ,t)− Id)〈(∇g)◦v |S(t0,θ)v−v〉dθ
∥∥∥∥β
LβΩ(Hm)
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≤C(t− t0)β−1

∫ t

t0

E
[
(W (t)−W (θ))β

(
(W (θ)−W (t0))2 +(θ− t0)2

)β/2]
dθ

≤C(t− t0)βmin{1+2α;2+α}≤C(t− t0)β(1+2α),

which completes the proof.

Lemma 4.4. There exists a constant C such that for every (t0,t)∈∆,∥∥∥∥∫ t

t0

X(θ,t)R(v,S(t0,θ)v)dθ

∥∥∥∥
LβΩ(Hm)

≤C(t− t0)1+2α

where R is defined by (4.1).

Proof. We have∥∥∥∥∫ t

t0

X(θ,t)R(v,S(t0,θ)v)dθ

∥∥∥∥
Hm
≤C

∫ t

t0

∥∥∥|S(t0,θ)v−v|2
∥∥∥
Hm

dθ

≤C
∫ t

t0

‖S(t0,θ)v−v‖Hm+1‖S(t0,θ)v−v‖Hmdθ.

By Lemma 4.11, we have

‖S(t0,θ)v−v‖Hm+1‖S(t0,θ)v−v‖Hm ≤C
(
|W (θ)−W (t0)|2 + |θ− t0|2

)
and by (3.2) we prove the lemma.

Lemma 4.5. There exists a constant C such that for every (t0,t)∈∆,∥∥∥∥∫ t

t0

R(v,Y (θ− t0)X(t0,t)v)dθ

∥∥∥∥
LβΩ(Hm)

≤C(t− t0)1+2α

where R is defined by (4.1).

Proof. We have∥∥∥∥∫ t

t0

R(v,Y (θ− t0)X(t0,t)v)dθ

∥∥∥∥
Hm
≤C

∫ t

t0

∥∥∥(Y (θ− t0)X(t0,t)v−v)2
∥∥∥
Hm

dθ.

Then the proof is similar to the proof of Lemma 4.4.

Finally, we give the proof of Theorem 3.1.

Proof. (Proof of Theorem 3.1.) By (4.2) and Lemmas 4.1, 4.2, 4.3, 4.4 and 4.5,
there exists a constant C such that for every (t0,t)∈∆,

‖S(t0,t)v−Z(t0,t)v−I(t0,t)Gv‖β
LβΩ(Hm)

≤C
(

(t− t0)β(1+2α) +(t− t0)β−1

∫ t

t0

‖S(t0,θ)v−Z(t0,θ)v‖β
LβΩ(Hm)

dθ

)
. (4.8)

Moreover, because of Lemma 2.2, we have

‖S(t0,t)v−Z(t0,t)v‖β
LβΩ(Hm)

≤C(t− t0)β(1+α)

and then, with (4.8),

E[‖S(t0,t)v−Z(t0,t)v−I(t0,t)Gv‖βHm ]1/β≤C(t− t0)1+2α,

which completes the proof.
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4.2. Technical lemmas. Throughout this subsection, m is a positive integer
and, unless otherwise mentioned, W is a general real continuous function.

In the following lemma we establish properties of X.

Lemma 4.6. If v∈Hm+σ then for every (t1,t2)∈∆,

‖(X(t1,t2)− Id)v‖Hm ≤|W (t2)−W (t1)|‖v‖Hm+σ . (4.9)

If v∈Hm+2σ then for all t0, t1 and t2 such that t0≤ t1≤ t2, we have

‖(X(t0,t2)−X(t0,t1))v−(W (t2)−W (t1))Av‖2Hm
≤|W (t2)−W (t1)|2

(
|W (t2)−W (t1)|2 + |W (t1)−W (t0)|2

)
‖v‖2Hm+2σ . (4.10)

In particular, if t0 = t1 then

‖(X(t1,t2)− Id)v−(W (t2)−W (t1))Av‖Hm ≤|W (t2)−W (t1)|2‖v‖Hm+2σ . (4.11)

Proof. We assume that v∈Hm+2σ. If we define r :z 7→eiz−1− iz then we can
write

(X(t1,t2)− Id)v−(W (t2)−W (t1))Av=F−1(ξ 7→ r(a(ξ)(W (t2)−W (t1)))F(v)(ξ)).

Because of (2.1), we get

‖(X(t1,t2)− Id)v−(W (t2)−W (t1))Av‖2Hm ≤|W (t2)−W (t1)|4‖v‖2Hm+2σ ,

which gives (4.11). The proof of (4.9) is similar to the proof of (4.11). We have

‖(X(t0,t2)−X(t0,t1))v−(W (t2)−W (t1))Av‖2Hm
≤C|W (t2)−W (t1))|2‖(X(t0,t1)− Id)Av‖2Hm

+C‖(X(t0,t2)−X(t0,t1))v−(W (t2)−W (t1))AX(t0,t1)v‖2Hm .

By (4.9) and (4.11) we get (4.10).

The Sobolev inequality ‖φ1‖L∞ ≤ c‖φ‖H1 (for all φ∈H1) implies the following
lemma.

Lemma 4.7. For every m∈N, there exists cm such that for all φ1∈Hm+1 and
φ2∈Hm,

‖φ1φ2‖Hm ≤ cm‖φ1‖Hm+1‖φ2‖Hm . (4.12)

The following lemma deals with Sobolev norms of a composition of functions.

Lemma 4.8. Let p∈N∗, v∈Hp, and f :R2→R be a p times differentiable function
such that f(0) = 0 and ∇kf is bounded for all k∈{1,·· · ,p}. Then there exists a constant
Cp−1>0, which depends only on f , p and ‖v‖Hp−1 , and such that

‖f ◦v‖Hp ≤Cp−1‖v‖Hp . (4.13)

Proof. Since f(0) = 0, we have ‖f ◦v‖L2 ≤‖∇f‖∞‖v‖L2 . Let p≥1. By differenti-
ating p times, we get

‖∂px(f ◦v)‖L2 ≤C‖∇f‖∞‖∂pxv‖L2 +C

p∑
k=2

‖∇kf‖∞
∑

(l1,···,lk)∈π(k,p)

∥∥∥∥∥
k∏
r=1

∂lrx v

∥∥∥∥∥
L2
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where

π(k,p) ={(l1,·· · ,lk)|1≤ l1≤···≤ lk≤p−1,l1 + ·· ·+ lk =p}

and C is a constant which is independent of f and v, and may change from line to line.
By (4.12), we get

‖∂px(f ◦v)‖L2 ≤C‖∇f‖∞‖∂pxv‖L2 +C

p∑
k=2

‖∇kf‖∞
∑

(l1,···,lk)∈π(k,p)

‖v‖Hl1
k∏
r=2

‖v‖Hlr+1

≤C

‖∇f‖∞+

p∑
k=2

‖∇kf‖∞
∑

(l1,···,lk)∈π(k,p)

‖v‖Hl1
k−1∏
r=2

‖v‖Hlr+1

‖v‖Hp
≤C

(
‖∇f‖∞+

p∑
k=2

‖∇kf‖∞‖v‖k−1
Hp−1

)
‖v‖Hp

where

1∏
r=2

·· ·= 1. This completes the proof.

The following lemma deals with Lipschitz continuity with Sobolev norms.

Lemma 4.9. Let p∈N∗, v1,v2∈Hp, and f :R2→R be a p times differentiable function
such that f(0) = 0 and ∇kf is bounded for all k∈{1,·· · ,p+1}. Then there exists a
constant Cp>0, which depends only on f , p, ‖v1‖Hp and ‖v2‖Hp , and such that

‖f ◦v1−f ◦v2‖Hp ≤Cp‖v1−v2‖Hp . (4.14)

Proof. We use the same notation as in the proof of Lemma 4.8. Moreover, we
denote the vector (∂l1x v,·· · ,∂lkx v) by (∂l·x v)k for v=v1 or v=v2. Differentiating p times,
we get

‖∂px(f ◦v1−f ◦v2)‖L2 ≤‖(∇f)(v1)(∂pxv1)−(∇f)(v2)(∂pxv2)‖L2

+

p∑
k=2

∑
(l1,···,lk)∈π(k,p)

∥∥(∇kf)(v1)(∂l·x v1)k−(∇kf)(v2)(∂l·x v2)k
∥∥
L2 .

Using (4.12), we get

‖(∇f)(v1)(∂pxv1)−(∇f)(v2)(∂pxv2)‖L2

≤‖(∇f)(v1)(∂pxv1)−(∇f)(v2)(∂pxv1)‖L2 +‖(∇f)(v2)(∂pxv1)−(∇f)(v2)(∂pxv2)‖L2

≤‖∇2f‖∞‖v1−v2‖H1‖v1‖Hp
+‖∇f‖∞‖v1−v2‖Hp
≤(‖∇2f‖∞‖v1‖Hp +‖∇f‖∞)‖v1−v2‖Hp .

For all k≥2,

‖(∇kf)(v1)(∂l·x v1)k−(∇kf)(v2)(∂l·x v2)k‖L2

≤‖(∇kf)(v1)(∂l·x v1)k−(∇kf)(v2)(∂l·x v1)k‖L2

+‖(∇kf)(v2)(∂l·x v1)k−(∇kf)(v2)(∂l·x v2)k‖L2 .



RENAUD MARTY 1061

By (4.12), we have

‖(∇kf)(v1)(∂l·x v1)k−(∇kf)(v2)(∂l·x v1)k‖L2

≤‖∇k+1f‖∞‖v1−v2‖H1

k∏
r=1

‖v1‖Hlr+1 ≤‖∇k+1f‖∞‖v1−v2‖Hp‖v1‖kHp .

Moreover,

‖(∇kf)(v2)(∂l·x v1)k−(∇kf)(v2)(∂l·x v2)k‖L2

≤‖∇kf‖∞
k∑
j=1

∥∥∂ljx (v1−v2)
∥∥
L2

j−1∏
r=1

‖∂lrx v1‖∞
k∏

r=j+1

‖∂lrx v2‖∞

≤‖∇kf‖∞‖v1−v2‖Hp
k∑
j=1

‖v1‖j−1
Hp ‖v2‖k−jHp .

This completes the proof.

The next lemma gives an estimate for the solution u of Equation (2.5).

Lemma 4.10. Let m∈N and u0∈Hm. There exists a positive constant C, which
does not depend on W , and such that the solution u of Equation (2.5) satisfies for all
t∈ [0,1],

‖ut‖Hm +‖g(ut)‖Hm +‖(∇g)(ut)‖Hm ≤C.
Proof. In this proof, C is a constant which does not depend on W and t, and may

change from line to line. We define the sequence {vk}k∈N such that v0 =u0 and for all
k∈N,

vk+1(t,x) =X(0,t)u0(x)+

∫ t

0

X(θ,t)g(vk(θ,x))dθ, (t,x)∈ [0,1]×R. (4.15)

We recall that vk→u in C([0,1],L2) as k→∞ (see [15]). Similarly to the proof of
Lemma 3.3 of [15] and by using Lemma 4.8, we prove that there exists a constant C
such that for all k and t, ‖vk(t,·)‖Hm ≤C. As in the proof of Lemma 3.6 of [15], we
deduce that for all t, ‖u(t,·)‖Hm ≤C. We then prove that for all t, ‖g(u(t,·))‖Hm ≤C
and ‖(∇g)(u(t,·))‖Hm ≤C by using the assumptions on g and Lemma 4.8.

The next lemma establishes properties of Y , Z, and S.

Lemma 4.11. Let m∈N. If u0∈Hm, then there exists a constant C, which does not
depend on W , and such that for all (t1,t2)∈∆,

‖Y (t2− t1)ut1−ut1‖Hm ≤C(t2− t1). (4.16)

If v∈Hm+σ, then there exists a constant C, which does not depend on W , and such
that for every (t1,t2)∈∆,

‖Z(t1,t2)ut1−ut1‖2Hm ≤C
(
|W (t2)−W (t1)|2 + |t2− t1|2

)
(4.17)

and

‖S(t1,t2)ut1−ut1‖2Hm ≤C
(
|W (t2)−W (t1)|2 + |t2− t1|2

)
. (4.18)

Proof. The proof of (4.16) is a consequence of Lemma 4.8. We get (4.17) and
(4.18) by (4.16) and Lemma 4.6.
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5. Order estimate
In this section we assume that W is a random process such that for all t≥0,

W (t) =

∫ t

0

φ(θ)dBθ

where B is a standard Brownian motion and φ : (0,∞)→R is a (deterministic) function
such that there exist CW >0 and b>−1/2 such that for all t>0,

|φ(t)|≤CW tb.

This ensures that W (t) is well defined for all t. We can also deduce that there exists
C>0 such that for all (t,s)∈R2,

E[(W (t)−W (s))2]≤C|t−s|2α (5.1)

where α= 1
2 min{2b+1;1}. Following Theorem 2.1, if u0∈Hp+σ then there exists a

constant C>0 such that for all (n,h)∈ δ,

‖unh−uhn‖L2
Ω(Hp)≤Chα. (5.2)

Notice that W has independent increments with mean zero. This enables us to improve
(5.2) by applying Theorem 3.1. In Theorem 5.1 we establish that the order of the scheme
is at least 2α instead of α.

Theorem 5.1. For every p∈N, if u0∈Hp+2σ then there exists a constant C>0 such
that for every (n,h)∈ δ,

‖unh−uhn‖L2
Ω(Hp)≤Ch2α. (5.3)

In this section, the letter C stands for a constant which does not depend on (n,h),
unless otherwise mentioned, and may change from line to line. The proof of Theorem
5.1 uses Lemmas 5.1, 5.2 and 5.3 which are established at the end of this section. The
proof of Lemma 5.1 uses Theorem 3.1.

Proof. Let p∈N. For all (n,h)∈ δ we write

‖unh−uhn‖2Hp =E1(n,h)+E2(n,h)+2RE3(n,h)

where

E1(n,h) =‖Shnu(n−1)h−Zhnu(n−1)h‖2Hp ,E2(n,h) =‖Zhnu(n−1)h−Zhnuhn−1‖2Hp ,
and E3(n,h) = 〈Shnu(n−1)h−Zhnu(n−1)h,Z

h
nu(n−1)h−Zhnuhn−1〉Hp ,

and we define

Ehn :=E[‖unh−uhn‖2Hp ] =‖unh−uhn‖2L2
Ω(Hp).

By Lemma 2.2, there exists C such that for every (n,h)∈ δ,

E[E1(n,h)]≤Ch2+2α. (5.4)

By Lemma 5.2, there exists C such that

E2(n,h)≤ exp(Ch)‖u(n−1)h−uhn−1‖2Hp ,
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and, therefore,

E[E2(n,h)]≤ exp(Ch)Ehn−1. (5.5)

From (5.4), (5.5) and Lemma 5.1, we deduce

Ehn ≤Ch2+2α+exp(Ch)Ehn−1 +Ch1+2α
√
Ehn−1

and then, because

h1+2α
√
Ehn−1≤Ch1+4α+ChEhn−1,

we get

Ehn ≤Ch1+4α+exp(Ch)Ehn−1

for all (n,h)∈ δ. Then we deduce (5.3).

The remaining part of this section is devoted to lemmas we use in the proof of
Theorem 5.1.

Lemma 5.1. Let p∈N. With the same notation as in the proof of Theorem 5.1, if
u0∈Hp+2σ then there exists C such that for all (n,h)∈ δ,

|E[RE3(n,h)]|≤Ch1+2α
√
Ehn−1. (5.6)

Proof. For all (n,h)∈ δ, we define

R1(n,h) =Shnu(n−1)h−Zhnu(n−1)h−IhnGu(n−1)h,

and

R2(n,h) =Zhnu(n−1)h−Zhnuhn−1−(Id+Wh
nA)(u(n−1)h−uhn−1)

where Wh
n =W (nh)−W ((n−1)h). We write

E3(n,h) =〈IhnGu(n−1)h,(Id+Wh
nA)(u(n−1)h−uhn−1)〉Hp

+〈IhnGu(n−1)h,R2(n,h)〉Hp

+〈R1(n,h),Zhnu(n−1)h−Zhnuhn−1〉Hp .

From the Cauchy-Schwarz inequality, Theorem 3.1 and Lemma 5.2, there exists C such
that

|E[〈R1(n,h),Zhnu(n−1)h−Zhnuhn−1〉Hp ]|≤Ch1+2α
√
Ehn−1.

By the Cauchy-Schwarz inequality and Lemmas 4.6 and 5.3, there exists C such that

|E[〈IhnGu(n−1)h,R2(n,h)〉Hp ]|≤Ch1+3α
√
Ehn−1≤Ch1+2α

√
Ehn−1.

Since Brownian motion has independent increments with mean zero, we obtain

|E[〈IhnGu(n−1)h,(Id+Wh
nA)(u(n−1)h−uhn−1)〉Hp ]|
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=|E[IhnW
h
n ]E[〈u(n−1)h,A(u(n−1)h−uhn−1)〉Hp ]|

=|E[IhnW
h
n ]E[〈−Au(n−1)h,u(n−1)h−uhn−1〉Hp ]|≤Ch1+2α

√
Ehn−1.

As a consequence, we get (5.6).

Lemma 5.2. Let p∈N. With the same notation as in the proof of Theorem 5.1, if
u0∈Hp then there exists C such that almost surely and for all (n,h)∈ δ,

‖Zhnu(n−1)h−Zhnuh(n−1)‖Hp ≤ exp(Ch)‖u(n−1)h−uh(n−1)‖Hp .

Proof. It suffices to prove that for all (v1,v2) in Hp×Hp there exists a (deter-
ministic) constant C, which depends only on g, p, ‖v1‖Hp and ‖v2‖Hp , and such that
almost surely and for every (t0,t)∈∆,

‖Z(t0,t)v1−Z(t0,t)v2‖Hp ≤ exp(C(t− t0))‖v1−v2‖Hp .

We have

Z(t0,t)v2−Z(t0,t)v1 =X(t0,t)v2−X(t0,t)v1

+

∫ t

t0

(g(Y (θ− t0)X(t0,t)v2)−g(Y (θ− t0)X(t0,t)v1))dθ.

By Lemma 4.9,∥∥∥∥∫ t

t0

(g(Y (θ− t0)X(t0,t)v2)−g(Y (θ− t0)X(t0,t)v1))dθ

∥∥∥∥
Hp

≤C
∫ t

t0

‖Y (θ− t0)X(t0,t)v2−Y (θ− t0)X(t0,t)v1‖Hpdθ

and by the Gronwall lemma we get

‖Z(t0,t)v1−Z(t0,t)v2‖Hp ≤exp(C(t− t0))‖X(t0,t)(v1−v2)‖Hp
=exp(C(t− t0))‖v1−v2‖Hp .

This completes the proof.

Lemma 5.3. Let p∈N. With the same notation as in the proof of Lemma 5.1, if
u0∈Hp+2σ, then there exists a constant C such that for every (n,h)∈ δ,

‖R2(n,h)‖L2
Ω(Hp)≤Ch2α‖uhn−1−u(n−1)h‖L2

Ω(Hp).

Proof. We write

Zhnu
h
n−1−Zhnu(n−1)h

=(Id+Wh
nA)(uhn−1−u(n−1)h)+(Xh

n− Id−Wh
nA)(uhn−1−u(n−1)h)

+

∫ nh

(n−1)h

(g(Y (θ−(n−1)h)Xh
nu

h
n−1)−g(Y (θ−(n−1)h)Xh

nu(n−1)h))dθ.

The proof is completed by Lemmas 4.6 and 4.9.
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6. Another splitting scheme

6.1. Setting and results. In this section we deal with another splitting scheme
for Equation (2.2). Using the same notation as in Section 2.2 we define for all (n,h)∈ δ
the (Lie) splitting scheme

uhn :=Z
h

n ·· ·Z
h

1u0

where Z
h

k :=Z((k−1)h,kh) for all k∈{1,·· · ,n} and Z(t0,t) :=X(t0,t)Y (t− t0) for all
(t0,t)∈∆. This is another Lie splitting scheme. Under the same assumptions as in
Section 2.2 we establish an order estimate for this scheme. The proof is omitted because
it is similar to the proof of Theorem 2.1.

Theorem 6.1. Let m∈N and u0∈Hm+σ. If β, α and W satisfy (2.9) then there
exists a constant C>0 such that for all (n,h)∈ δ,

‖unh−uhn‖LβΩ(Hm)≤Ch
α. (6.1)

Under the same assumptions as in Section 3 we have the following result that we
prove in the next subsection.

Theorem 6.2. Let m∈N and u0∈Hm+2σ. If β, α and W satisfy (3.2) then there
exists a constant C such that for every (t0,t)∈∆,

‖S(t0,t)ut0−Z(t0,t)ut0 +J(t0,t)Gut0‖LβΩ(Hm)≤C(t− t0)2α+1

where J(t0,t) =

∫ t

t0

(W (θ)−W (t0))dθ.

Therefore, the local error Shnu(n−1)h−Z
h

nu(n−1)h can be approximated by

−JhnGu(n−1)h where Jhn =J((n−1)h,nh).
As a consequence, we have the following result regarding the global error if W is

Gaussian and have independent increments and mean zero.

Theorem 6.3. Let W be a process as defined in Section 5. For every p∈N, if
u0∈Hp+2σ then there exists a constant C>0 such that for every (n,h)∈ δ,

‖unh−uhn‖L2
Ω(Hp)≤Ch2α. (6.2)

We omit the proof of Theorem 6.3 because it is similar to the proof of Theorem 5.1
with −Jhn instead of Ihn . Notice also that the results of Lemmas 2.2, 5.1, 5.2 and 5.3
still hold if we replace Z with Z.

6.2. Proof of Theorem 6.2. We write

S(t0,t)v−Z(t0,t)v=

∫ t

t0

(X(θ,t)−X(t0,t))(g◦v)dθ

+

∫ t

t0

X(t0,t)〈(∇g)◦v |S(t0,θ)v−Y (θ− t0)v〉dθ

+

∫ t

t0

(X(θ,t)−X(t0,t))〈(∇g)◦v |S(t0,θ)v−v〉dθ

+

∫ t

t0

(X(θ,t)R(v,S(t0,θ)v)−X(t0,t)R(v,Y (θ− t0)v))dθ (6.3)
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where v=ut0 . By using the same tools as in the proof of Lemma 4.1 we get∥∥∥∥∫ t

t0

(X(θ,t)−X(t0,t))(g◦v)dθ+J(t0,t)A(g◦v)

∥∥∥∥
LβΩ(Hm)

≤C(t− t0)1+2α.

In the same way as for Lemma 4.2 we obtain∥∥∥∥∫ t

t0

X(t0,t)〈(∇g)◦v |S(t0,θ)v−Y (θ− t0)v〉dθ−J(t0,t)〈(∇g)◦v |Av〉
∥∥∥∥β
LβΩ(Hm)

≤C
(

(t− t0)β(1+2α) +(t− t0)β−1

∫ t

t0

‖S(t0,θ)v−Z(t0,θ)v‖β
LβΩ(Hm)

dθ

)
.

Similarly to Lemma 4.3 we can prove∥∥∥∥∫ t

t0

(X(θ,t)−X(t0,t))〈(∇g)◦v |S(t0,θ)v−v〉dθ
∥∥∥∥
LβΩ(Hm)

≤C(t− t0)1+2α.

By Lemma 4.4 we have∥∥∥∥∫ t

t0

X(θ,t)R(v,S(t0,θ)v)dθ

∥∥∥∥
LβΩ(Hm)

≤C(t− t0)1+2α

and as for Lemma 4.5 we get∥∥∥∥∫ t

t0

X(t0,t)R(v,Y (θ− t0)v)dθ

∥∥∥∥
LβΩ(Hm)

≤C(t− t0)1+2α.

Finally we deduce from above that∥∥S(t0,t)v−Z(t0,t)v+J(t0,t)Gv
∥∥β
LβΩ(Hm)

≤C
(

(t− t0)β(1+2α) +(t− t0)β−1

∫ t

t0

‖S(t0,θ)v−Z(t0,θ)v‖β
LβΩ(Hm)

dθ

)
and we complete the proof as for Theorem 3.1 and by using

‖S(t0,t)v−Z(t0,t)v‖LβΩ(Hm)≤C(t− t0)1+α

which is proven as Lemma 2.2.

7. Numerical results
In this section we present numerical simulations. We consider Equation (2.2) with

g(u) = iu|u|2. We assume that a(ξ) = ξ2, the initial condition is u0(x) = exp(−x2/2) and
W is a fractional Brownian motion with Hurst index H ∈ (0,1) (see [16]), namely a
Gaussian process with mean 0 and such that for all (s,t)∈ [0,1]2,

E(W (t)W (s)) =
1

2
(|t|2H + |s|2H−|t−s|2H). (7.1)

For all t∈ [0,1] we define L(t)u0 by

L(t)u0 =‖S(0,t)u0−Z(0,t)u0‖L2
Ω(L2). (7.2)
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Fig. 7.1. Sample paths of W , |S(0, ·)u0(0)|, |Z(0, ·)u0(0)|, and |S(0, ·)u0(0)−Z(0, ·)u0(0)| with
H = 1/3.
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Fig. 7.3. Log-log plot of t 7→L(t)u0 with H = 1/3 and H = 2/3 (solid line) and line of equation
y= (1+H)x (dashed line).

As a consequence of (7.1), for all (s,t)∈ [0,1]2,

E((W (t)−W (s))2) = |t−s|2H , (7.3)

which implies that W satisfies (3.2) with α=H and β= 1. Moreover, by Theorem 3.1
(and Remark 2.2), there exists C>0 such that, as t→0,

L(t)u0∼CtH+1, (7.4)

whereas Lemma 2.2 gives only an upper bound. We illustrate this result with the
numerical simulation of L(t)u0. This involves the computations of W , X and Y .

The process W is Gaussian, then its computation is obtained from a square root of
its covariance function given by (7.1). The family of operators X is implemented from
(2.6) with the fast Fourier transform. The nonlinearity term is g(u) = iu|u|2, then Y is
given by Y (t)v(x) =v(x)exp(it|v(x)|2) for all (t,x)∈ [0,1]×R and v∈L2. We use the
Lie splitting scheme defined by Equation (2.8) with a very small time step in order to
compute the solution u : (t,x) 7→S(0,t)u0(x) of (2.2).

Figures 7.1 and 7.2 show sample paths of W with H= 1/3 and H= 2/3, and their
corresponding |S(0,·)u0(0)|, |Z(0,·)u0(0)|, and |S(0,·)u0(0)−Z(0,·)u0(0)|. Figure 7.3
shows that L(t)u0 is approximately proportional to tH+1 with H= 1/3 and H= 2/3.
This is in good agreement with (7.4). The computational domain for the variable x is
[−24

√
2,24
√

2] with 211 points. The time step is 2−10 for the simulation of the solution
u. The mathematical expectations are computed with averages over 1000 samples.
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[4] C. Besse, B. Bidégaray, and S. Descombes, Order estimates in time of splitting methods for the
nonlinear Schrödinger equation, SIAM J. Numer. Anal., 40:26–40, 2003. 1

[5] D. Cohen and G. Dujardin, Exponential integrators for nonlinear Schrödinger equations with white
noise dispersion, Stoch. Part. Diff. Eqs. Anal. Comput., 5:592–613, 2017. 1

https://doi.org/10.1051/m2an:2004046
https://dx.doi.org/10.4310/CMS.2004.v2.n3.a9
https://link.springer.com/article/10.1007/s40072-015-0044-z
https://doi.org/10.1137/S0036142900381497
https://link.springer.com/article/10.1007/s40072-017-0098-1


RENAUD MARTY 1069

[6] J. Cui, J. Hong, Z. Liu, and W. Zhou, Stochastic symplectic and multi-symplectic methods for
nonlinear Schrödinger equation with white noise dispersion, J. Comput. Phys., 342:267–285,
2017. 1

[7] A. De Bouard and A. Debussche, The nonlinear Schrödinger equation with white noise dispersion,
J. Funct. Anal., 259:1300–1321, 2010. 1

[8] A. Debussche and Y. Tsutsumi, 1D quintic nonlinear Schrödinger equation with white noise dis-
persion, J. Math. Pures Appl., 96:363–376, 2011. 1

[9] R. Duboscq and R. Marty, Analysis of a splitting scheme for a class of random nonlinear partial
differential equations, ESAIM Probab. Stat., 20:572–589, 2016. 1
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