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INTERIOR EIGENSOLVER FOR SPARSE HERMITIAN DEFINITE
MATRICES BASED ON ZOLOTAREV’S FUNCTIONS∗

YINGZHOU LI† AND HAIZHAO YANG‡

Abstract. This paper proposes an efficient method for computing selected generalized eigenpairs
of a sparse Hermitian definite matrix pencil (A,B). Based on Zolotarev’s best rational function ap-
proximations of the signum function and conformal mapping techniques, we construct the best rational
function approximation of a rectangular function supported on an arbitrary interval via function com-
positions with partial fraction representations. This new best rational function approximation can be
applied to construct spectrum filters of (A,B) with a smaller number of poles than a direct construction
without function compositions. Combining fast direct solvers and the shift-invariant generalized mini-
mal residual method, a hybrid fast algorithm is proposed to apply spectral filters efficiently. Compared
to the state-of-the-art algorithm FEAST, the proposed rational function approximation is more efficient
when sparse matrix factorizations are required to solve multi-shift linear systems in the eigensolver,
since a smaller number of matrix factorizations is needed in our method. The efficiency and stability
of the proposed method are demonstrated by numerical examples from computational chemistry.
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1. Introduction
Given a sparse Hermitian definite matrix pencil (A,B) (i.e., A and B are Hermitian

and B is positive-definite) in FN×N , where F=R or F=C, and an interval (a,b) of
interest, this paper aims at identifying all the eigenpairs {(λj ,xj)}1≤j≤nλ 1 of (A,B) in
(a,b), i.e.,

Axj =λjBxj and a<λj<b, j= 1,2,. ..,nλ. (1.1)

The interior generalized eigenvalue problem not only can be applied to solve the full
generalized eigenvalue problem via the spectrum slicing idea [3,10,22,24,25,27,29,32,34],
but also is a stand-alone problem encountered in many fields in science and engineering
(such as computational chemistry, control theory, material science, etc.), where a partial
spectrum is of interest.

1.1. Related work. A powerful tool for solving the interior generalized eigen-
value problem is the subspace iteration method accelerated by spectrum filters. Let
Pab(A,B) be an approximate spectrum projector onto the eigen-subspace of the ma-
trix pencil (A,B) corresponding to the desired eigenvalues in (a,b). A possible way
to construct Pab(A,B) is to design a filter function Rab(x) as a good approximation
to a rectangular function with a support on (a,b) (denoted as Sab(x)), and define
Pab(A,B) =Rab(B

−1A). There are mainly two kinds of filter functions: polynomial
filters [10, 27] and rational filters [3, 22, 24, 25, 29, 30, 32, 34]. The difficulty in designing
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an appropriate filter comes from the dilemma that: An accurate approximation to the
spectrum projector requires a polynomial of high degree or a rational function with
many poles; however this in turn results in expensive computational cost in applying
the spectrum projector Rab(B

−1A).
In general, a rational filter can be written as follows

Rab(x) =α0 +

p∑
j=1

αj
x−σj

, (1.2)

where {αj}0≤j≤p are weights, {σj}1≤j≤p are poles, and p is the number of poles. Hence,
applying the spectrum projector Rab(B

−1A) to a vector v requires solving p linear
systems {(A−σjB)−1Bv}1≤j≤p. Therefore, a large number p makes it expensive to
apply the approximate spectrum projector Rab(B

−1A). A natural idea is to solve the
linear systems {(A−σjB)−1Bv}1≤j≤p in parallel. However, for the purposes of energy
efficiency and numerical stability, an optimal p is always preferred. Extensive effort has
been made to develop rational functions with p as small as possible while keeping the
accuracy of the approximation.
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Fig. 1.1: (a) An example of a unit circle contour Γ centered at the origin, i.e., the desired spectrum
range is (−1,1), together with eight Gauss-Legendre quadrature points (solid blue circle) and eight
Trapezoid quadrature points (red circle). The desired eigenvalues (pink up triangular) are inside the
contour whereas the unwanted eigenvalues (black down triangular) are outside. (b) A rectangular
function in solid black line with rational functions corresponding to the quadratures from (a).

Many rational filters in the literature were constructed by discretizing the contour
integral on the complex plane,

π(x) =
1

2πı

∮
Γ

1

x−z
dz, x /∈Γ (1.3)

with an appropriate quadrature rule (e.g., the Gauss-Legendre quadrature rule [22], the
trapezoidal quadrature rule [28, 34], and the Zolotarev quadrature rule [7]). Here Γ is
a closed contour on the complex plane intersecting the real axis at z=a and z= b with
all desired eigenvalues inside (a,b) and other eigenvalues outside (See Figure 1.1 (left)
for an example). Suppose {σj}1≤j≤p and {wj}1≤j≤p are the quadrature points and
weights in the discretization of the contour Γ, respectively, the contour integral (1.3) is
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discretized as a rational function

R(x) =

p∑
j=1

wj
2πı(x−σj)

=α0 +

p∑
j=1

αj
x−σj

, (1.4)

where α0 = 0, and αj =
wj
2πı for j= 1,2,. ..,p. Some other methods advanced with con-

formal maps [8, 12] and optimization [29,32] can also provide good rational filters.

1.2. Contribution. Based on Zolotarev’s best rational function approximations
of the signum function and conformal maps, we construct the best rational function
Rab(x) approximating a rectangular function supported on an arbitrary interval (a,b).
The optimality in this paper is in terms of the uniform approximation error among
the class of rational functions of the same type. Combining fast direct solvers and the
shift-invariant generalized minimal residual method (GMRES), a hybrid fast algorithm
is proposed to apply the spectrum filter Rab(B

−1A) to given vectors.
Suppose a∈ (a−,a+) and b∈ (b−,b+) respectively, and no eigenvalue lies in (a−,a+)

and (b−,b+). The proposed rational filter Rab(x) is constructed via the composition of
Zolotarev’s functions as follows

Rab(x) =
Z2r(Ẑ2r(T (x);`1);`2)+1

2
, (1.5)

where Z2r(x;`) is the Zolotarev’s function of type (2r−1,2r), Ẑ2r(x;`) is the scaled
Zolotarev’s function

Ẑ2r(x;`) =
Z2r(x;`)

maxx∈[`,1]Z2r(x;`)
, (1.6)

and T (x) is a Möbius transformation of the form

T (x) =γ
x−α
x−β

(1.7)

with α∈ (a−,a+) and β∈ (b−,b+) such that

T (a−) =−1, T (a+) = 1, T (b−) = `1, and T (b+) =−`1. (1.8)

In the above construction, the variables α, β, γ, `1, and `2 are all determined by a−,
a+, b−, and b+.

The novelty of the proposed rational filter in (1.5) is to construct a high-order ra-
tional function for an arbitrary interval via the composition of two Zolotarev’s functions
and a Möbius transformation. This new construction can significantly improve the ap-
proximation accuracy for a rectangular function approximation even if r is small, as
compared to other methods via a single Zolotarev’s function in [7]. Similar composition
ideas have been applied to the signum function approximation (e.g., polar decompo-
sition of matrices [16], full diagonalization of matrices [17], and the density matrix
purification [15, 18, 20]), and the square root function approximation for accelerating
Newton’s iteration [4, 19]. After the completion of the investigation described in this
paper the authors became aware of a work [7] that addresses a similar question about
the optimal rational filter via Zolotarev’s functions. The main difference is that we
propose to construct high-order rational functions via function compositions, while [7]
directly constructs the rational function without compositions. Function composition
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can reduce the number of direct matrix factorizations needed in the computation and
hence would reduce the computational time. This idea has not been explored yet for
computing interior eigenpairs and is the main contribution of our paper.

An immediate challenge arises from applying the composition of functions
Rab(B

−1A) in (1.5) to given vectors when A and B are sparse matrices. Directly com-
puting Rab(B

−1A) will destroy the sparsity of A and B since Rab(B
−1A) is dense. Fortu-

nately, the function composition structure in (1.5) admits a hybrid fast algorithm for the
matrix-vector multiplication (matvec) Rab(B

−1A)V , where A and B are sparse Hermi-
tian matrices of size N with O(N) nonzero entries, B is positive definite, and V is a tall
skinny matrix of size N by O(1). We apply the multifrontal method [5,13] to solve the

sparse linear systems involved in Ẑ2r(T (B−1A);`1)V . The multifrontal method consists
of two parts: the factorization of sparse matrices and the application of the factorization.
Once sparse factors have been constructed, evaluating Ẑ2r(T (B−1A);`1)V is efficient;

in this sense, the multifrontal method converts the dense matrix Ẑ2r(T (B−1A);`1) into
an operator with a fast application. Since the Zolotarev’s function well approximates
the signum function, the matrix Ẑ2r(T (B−1A);`1) has a condition number close to 1.

Therefore, the computation Z2r(Ẑ2r(T (B−1A);`1);`2)V can be carried out efficiently
by the GMRES iterative method. As we shall see later, by the shift-invariant property
of Krylov subspace, the computational time can be further reduced in the GMRES.

When we incorporate the above hybrid fast algorithm into the subspace iteration
method, the factorization time of the multifrontal method can be treated as precom-
putation, since all the multi-shift linear systems in every iteration remain unchanged.
Since Z2r(Ẑ2r(T (B−1A);`1);`2) is able to approximate the desired spectrum projector
of (A,B) accurately, the subspace iteration method usually needs only one or two iter-
ations to identify desired eigenpairs up to a 10−10 relative error. Hence, the dominant
computing time in the proposed interior eigensolver is the factorization time in the
multifrontal method.

1.3. Organization. In what follows, we introduce the subspace iteration, the
best rational filter, and the hybrid fast algorithm in Section 2. In Section 3, extensive
numerical examples of a wide range of sparse matrices are presented to demonstrate
the efficiency of the proposed algorithms. Finally, we conclude this paper with a short
discussion in Section 4.

2. Algorithm
First, we recall a standard subspace iteration accelerated by a rational filter for

interior generalized eigenvalue problems in Section 2.1. Second, we introduce the best
rational filter Rab(x) in (1.5) and show its efficiency of approximating the rectangular
function Sab(x) on the interval

(−∞,a−]∪ [a+,b−]∪ [b+,∞), (2.1)

where (a−,a+) and (b−,b+) are eigengaps around a and b, i.e., there is no eigenvalue
inside these two intervals. Third, the hybrid fast algorithm for evaluating the matvec
Rab(B

−1A)V is introduced in Section 2.3.
Throughout this paper, we adopt MATLAB notations for submatrices and indices.

Besides usual MATLAB notations, we summarize a few notations that would be used
in the rest of the paper without further explanation, in Table 2.1.

2.1. Subspace iteration with rational filters. Various subspace iteration
methods have been proposed and analyzed in the literature. For the completeness of
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the presentation, we introduce a standard one in conjunction of a rational filter in
Algorithm 1 for the interior generalized eigenvalue problem for a matrix pencil (A,B)
on a spectrum interval (a,b).

Notation Description

N Size of the matrix
F Either R or C
A,B Sparse Hermitian definite matrix of size N×N
(A,B) Matrix pencil
(a,b) Interval of interest on the spectrum of (A,B)
(a−,a+),(b−,b+) Eigengaps around a and b respectively
nλ Number of eigenvalues in the interval
k Oversampling constant

Table 2.1: Commonly used notations.

Algorithm 1: A standard subspace iteration method

input : Sparse Hermitian matrix pencil (A,B), a spectrum range (a,b), the
number of eigenpairs nλ, and a rational filter Rab(x)

output: A diagonal matrix Λ with diagonal entries being the eigenvalues of
(A,B) on (a,b), V are the corresponding eigenvectors

1 Generate orthonormal random vectors Q∈FN×(nλ+k).
2 while not convergenta do
3 Y =Rab(B

−1A)Q

4 Compute Ã=Y ∗AY and B̃=Y ∗BY

5 Solve ÃQ̃=Λ̃B̃Q̃ for Λ̃ and Q̃

6 Update Q=Y Q̃

7 end

8 I={i |a< Λ̃(i,i)<b}
9 Λ =Λ̃(I,I)

10 V =Q(:,I)

aLocking can be applied in the iteration.

The main cost in Algorithm 1 is to compute Y =Rab(B
−1A)Q, since any other steps

scale at most linearly in N or even independent of N . If the rational function Rab(x)
is not a good approximation to the rectangular function Sab(x), it might take many
iterations for Algorithm 1 to converge. Our goal is to get an accurate rational function
approximation Rab(x) so that only a small number of iterations is sufficient to estimate
the eigenpairs of (A,B) with machine accuracy. The method to achieve the goal will be
discussed in the next two subsections.

2.2. Best rational filter by Zolotarev’s functions. In what follows, we
introduce basic definitions and theorems for rational function approximations. Let Pr
denote the set of all polynomials of degree r. A rational function R(x) is said to be of

type (r1,r2) if R(x) = P (x)
Q(x) with P (x)∈Pr1 and Q(x)∈Pr2 . We denote the set of all

rational functions of type (r1,r2) as Rr1,r2 . For a given function f(x) and a rational
function R(x), the approximation error in a given domain Ω is quantified by the infinity
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norm

‖f−R‖L∞(Ω) = sup
x∈Ω
|f(x)−R(x)|. (2.2)

A common problem in the rational function approximation is the minimax problem that
identifies R(x)∈Rr1,r2 satisfying

R= arg min
g∈Rr1,r2

‖f−g‖L∞(Ω) . (2.3)

More specifically, the minimax problem of interest for matrix computation is either

R= arg min
g∈R2r−1,2r

‖sign(x)−g(x)‖L∞([−1,−`]∪[`,1]) , (2.4)

where r is a given integer and `∈ (0,1) is a given parameter, or

R= arg min
g∈R(2r)2,(2r)2

‖Sab(x)−g(x)‖L∞((−∞,a−)∪(a+,b−)∪(b+,∞)) , (2.5)

where r is a given integer, a−<a and a+>a are two parameters around a, b−<b and
b+>b are two parameters around b. The problem in (2.4) with g of the particular
type R2r−1,2r, has a unique solution and the explicit expression of the solution is given
by Zolotarev [35]. We denote this best rational approximation to the signum function
by Z2r(x;`). To be more precise, the following theorem summarizes one of Zolotarev’s
conclusions which is rephrased by Akhiezer in Chapter 9 in [2], and by Petrushev and
Popov in Chapter 4.3 in [21].

Theorem 2.1 (Zolotarev’s function). The best uniform rational approximant of type
(2r,2r) for the signum function sign(x) on the set [−1,−`]∪ [`,1], 0<`<1, is given by

Z2r(x;`) :=Mx

∏r−1
j=1(x2 +c2j)∏r
j=1(x2 +c2j−1)

∈R2r−1,2r, (2.6)

where M>0 is a unique constant such that

min
x∈[−1,−`]

Z2r(x;`)+1 = min
x∈[`,1]

Z2r(x;`)−1. (2.7)

The coefficients c1,c2,. ..,c2r−1 are given by

cj = `2
sn2
(
jK′

2r ;`′
)

cn2
(
jK′

2r ;`′
) , j= 1,2,. ..,2r−1, (2.8)

where sn(x;`′) and cn(x;`′) are the Jacobi elliptic functions (see [1, 2]), `′=
√

1−`2,

and K ′=
∫ π/2

0
dθ√

1−(`′)2 sin2 θ
.

By Add. E in [1], the maximum approximation error δ(2r,`) :=
‖sign(x)−Z2r(x;`)‖L∞ is attained at 2r+1 points x1 := `<x2< ·· ·<x2r<x2r+1 := 1
on the interval [`,1] and also 2r+1 points x−j :=−xj , j= 1,2,. ..,2r+1, on the interval
[−1,−`]. The function sign(x)−Z2r(x;`) equioscillates between the xj ’s; in particular,

1−Z2r(xj ;`) = (−1)j+1δ(2r,`), j= 1,2,. ..,2r+1. (2.9)
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The approximation error of Zolotarev’s functions as an approximant to sign(x)
decreases exponentially with degree 2r ([21] Section 4.3), i.e.

δ(2r,`)≈Cρ−2r (2.10)

for some positive C and ρ>1 that depends on `. In particular, Gončar [6] gave the
following quantitative estimation on the approximation error, δ(2r,`):

2

ρ2r+1
≤ δ(2r,`)≤ 2

ρ2r−1
, (2.11)

where

ρ= exp

(
πK(µ′)

4K(µ)

)
, (2.12)

µ= 1−
√
`

1+
√
`
, µ′=

√
1−µ2, and K(µ) =

∫ π/2
0

dθ√
1−(µ)2 sin2 θ

is the complete elliptic integral

of the first kind for the modulus µ.
Even though the approximation error δ(2r,`) decreases exponentially in r, the decay

rate of δ(2r,`) in r might still be slow if ρ is small. In fact, ρ could be small in many
applications when eigengaps are small. As we shall see later, if the eigenvalues cluster
together, ` should be very small and hence ρ is small by (2.12). As we have discussed
earlier in the introduction of this paper, it is not practical to use a large r due to the
computational expense and numerical instability. This motivates the study of the com-
position of Zolotarev’s functions in R2r−1,2r, which constructs a high order Zolotarev’s
function in R(2r)2−1,(2r)2 . Such a composition has a much smaller approximation error

δ(4r2,`)≈Cρ−4r2

. (2.13)

For simplicity, let us use the rescaled Zolotarev’s function defined by

Ẑ2r(x;`) =
Z2r(x;`)

maxx∈[`,1]Z2r(x;`)
. (2.14)

Note that maxx∈[`,1] Ẑ2r(x;`) = 1, and Ẑ2r(x;`) maps the set [−1,−`]∪ [`,1] onto

[−1,−Ẑ2r(`;`)]∪ [Ẑ2r(`;`),1]. Hence, if one defines a composition via

S(x;`1) =Z2r(Ẑ2r(x;`1);`2), (2.15)

where `2 = Ẑ2r(`1;`1), then S(x;`1)∈R(2r)2−1,(2r)2 is the best uniform rational approx-
imant of type ((2r)2,(2r)2) for the signum function sign(x) on the set [−1,−`1]∪ [`1,1].
This optimal approximation is an immediate result of a more general theorem as follows.

Theorem 2.2. Let Ẑ2r1(x;`1)∈R2r1−1,2r1 be the rescaled Zolotarev’s function cor-
responding to `1∈ (0,1), and Z2r2(x;`2)∈R2r2−1,2r2 be the Zolotarev’s function corre-

sponding to `2 := Ẑ2r1(`1;`1). Then

Z2r2(Ẑ2r1(x;`1);`2) =Z(2r1)(2r2)(x;`1). (2.16)

The proof of Theorem 2.2 is similar to Theorem 3 in [17]. Hence, we leave it to
readers.

Finally, given a desired interval (a,b) and the corresponding eigengaps, (a−,a+) and
(b−,b+), to answer the best rational function approximation in (2.5), we construct a
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uniform rational approximant Rab(x)∈R(2r)2,(2r)2 via the Möbius transformation T (x)
as follows

Rab(x) =
S(T (x);`1)+1

2
=
Z2r(Ẑ2r(T (x);`1);`2)+1

2
, (2.17)

where `2 = Ẑ2r(`1;`1) and

T (x) =γ
x−α
x−β

(2.18)

with α∈ (a−,a+) and β∈ (b−,b+) such that

T (a−) =−1, T (a+) = 1, T (b−) = `1, and T (b+) =−`1. (2.19)

We would like to emphasize that the variables α, β, γ, `1, and `2 are determined by a−,
a+, b−, and b+ via solving the equations in (2.19) in the above construction. In practice,
a−, a+, b−, and b+ can be easily calculated from a and b. We fixed the buffer region
(a−,a+)∪(b−,b+) first according to the eigengaps of target matrices and construct a
Möbius transformation adaptive to this region. This adaptive idea is natural but does
not seem to have been considered before in the literature. Following Corollary 4.2 in [7]
one can easily prove that when a−=− 1

c , a+ =−c, b−= c, and b+ = 1
c for some c>0,

the rational function in (2.17) is the best rational function approximation to the step
function S−cc(x) among all the rational functions in {R(T (x)) :R(x)∈R(2r)2−1,(2r)2}⊂
R(2r)2,(2r)2 , where T (x) is the Möbius transformation satisfying (2.19). The following
theorem shows that Rab(x) in (2.17) is indeed the best uniform rational approximant of
type ((2r)2,(2r)2) for more general a−, a+, b−, and b+ among a larger class of rational
functions. [7] proved a similar theorem very briefly and our proof of Theorem 2.3 is
different to that of [7]. The main purpose of our proof below is to make the paper
self-contained.

Theorem 2.3. The rational function Rab(x) given in (2.17) satisfies the following
properties:

(1) Rab(x) is the best uniform rational approximant of type ((2r)2,(2r)2) of the rectan-
gular function Sab(x) on

Ω = (−∞,a−]∪ [a+,b−]∪ [b+,∞), (2.20)

where (a−,a+) and (b−,b+) are eigengaps.

(2) The error curve e(x) :=Sab(x)−Rab(x) equioscillates on Ω with the maximal error

δ0 := max
x∈Ω
|e(x)|= min

g∈R(2r)2,(2r)2

‖Sab(x)−g(x)‖L∞(Ω) (2.21)

and

2

ρ(2r)2 +1
≤ δ0≤

2

ρ(2r)2−1
, ρ=ρ(`1)>1, (2.22)

where

ρ(`1) = exp

(
πK(µ′)

4K(µ)

)
,

µ= 1−
√
`1

1+
√
`1

, µ′=
√

1−µ2, and K(µ) =
∫ π/2

0
dθ√

1−µ2 sin2 θ
is the complete elliptic inte-

gral of the first kind for the modulus µ.
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Proof. Note that inserting a rational transformation of type (1,1) into a rational
function of type ((2r)2−1,(2r)2) results in a rational function of type ((2r)2,(2r)2).
Since S(x;`1)∈R(2r)2−1,(2r)2 and Möbius transform T (x)∈R1,1, we know Rab(x)∈
R(2r)2,(2r)2 . In the following proof, we will first show that Rab(x) is the best uni-
form rational approximant of type ((2r)2,(2r)2) to the rectangular function on Ω and
then derive the error estimator.

Suppose Rab(x) is not the best uniform rational approximant of type ((2r)2,(2r)2)
of the rectangular function Sab(x) on

Ω = (−∞,a−]∪ [a+,b−]∪ [b+,∞), (2.23)

then there exists another rational function R̃(x) in R(2r)2,(2r)2 such that∥∥∥Sab(x)−R̃(x)
∥∥∥
L∞(Ω)

<‖Sab(x)−Rab(x)‖L∞(Ω) .

Let T−1(x) denote the inverse transform of the Möbius transformation T (x) in (2.18),
and we have T−1∈R1,1. Note that inserting a rational transformation of type (1,1)
into a rational function of type ((2r)2,(2r)2) results in a rational function of type
((2r)2,(2r)2). Hence, 2R̃(T−1(x))−1 is a rational function approximant in R(2r)2,(2r)2

of the signum function sign(x) on the set [−1,−`1]∪ [`1,1]. Noting that the Möbius
transformations T (x) and T−1(x) are bijective maps that do not change the approxi-
mation errors, we have∥∥∥sign(x)−(2R̃(T−1(x))−1)

∥∥∥
L∞([−1,−`1]∪[`1,1])

= 2
∥∥∥Sab(x)−R̃(x)

∥∥∥
L∞(Ω)

<2‖Sab(x)−Rab(x)‖L∞(Ω) =‖sign(x)−S(x;`1)‖L∞([−1,−`1]∪[`1,1]) .

The inequality∥∥∥sign(x)−(2R̃(T−1(x))−1)
∥∥∥
L∞([−1,−`1]∪[`1,1])

<‖sign(x)−S(x;`1)‖L∞([−1,−`1]∪[`1,1])

conflicts with the fact that S(x;`1)∈R(2r)2−1,(2r)2 is the best rational approximant
(among all rational functions of type ((2r)2,(2r)2)) of the signum function on [−1,−`1]∪
[`1,1] by (2.15) and (2.16). Hence, our previous assumption that Rab(x) is not the best
uniform rational approximant of type ((2r)2,(2r)2) of the rectangular function Sab(x)
on Ω is false. This proves the first statement of Theorem 2.3.

The error inequalities in Property (2) follow from Gončar’s quantitative estimation
on the approximation error of Zolotarev’s functions in [6] and the bijective transforma-
tion in (2.18).

An immediate result of Theorem 2.3 is

δ0 =‖Sab(x)−R(x)‖L∞(Ω) =C4r2ρ−4r2

, (2.24)

with 1≤ 2
1+ρ−(2r)2

≤C4r2 ≤ 2
1−ρ−(2r)2

.

To illustrate this improvement, we compare the performance of the proposed ratio-
nal filter in (2.17) with other existing rational filters that are constructed by discretizing
the complex-valued contour integral

π(x) =
1

2πı

∮
Γ

1

x−z
dz, x /∈Γ (2.25)
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(a) (b)

Fig. 2.1: This figure shows the approximation error of various rational filters as an approximation
of the rectangular function supported on (−1,1). The eigengaps around 1 and −1 are set to be 10−2.
These functions include: the trapezoidal filter [28, 34] (denoted as CITZ(r), where r is the number
of poles), the Gauss-Legendre filter [22] (denoted as CIGQ(r), where r is the number of poles), the
Zolotarev approximation (denoted as Zolo(r), where r is the degree), and the proposed Zolotarev fil-
ter via compositions (denoted as Zolo(r,r), where r is the degree). (a) shows the approximation on
[−2.5,2.5] and (b) zooms in on [0.99,1.01]. Light purple areas are the buffer areas in which it is not
necessary to consider the approximation accuracy because of the eigengaps.
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Fig. 2.2: This figure shows the approximation error against degree r for various rational functions
as an approximation of the rectangular function supported on (−1,1). The eigengaps around −1 and
1 are set to be 10−2 in (a) and 10−6 in (b). The approximation errors of Zolo(r,r) decay significantly
faster than other methods. In (b), the line for CITZ is overwritten by that of CIGQ.

with an appropriate quadrature rule (e.g., the Gauss-Legendre quadrature rule [22] and
the trapezoidal quadrature rule [28, 34]). Since the dominant cost of applying all these
filters is the sparse matrix factorization, we fix the number of matrices to be factorized
and compare the approximation error of various filters. The results in Figure 2.1 verify
the advantage of the proposed rational filter over existing rational filters and show
that 6 matrix factorizations are enough to construct the composition of Zolotarev’s
rational function approximating a rectangular function within machine accuracy. Here
the eigengaps are 10−2. Figure 2.2 further explores the decay for the errors in L∞ norm
for different methods. Figure 2.2a is the decay property for problem with eigengaps
10−2 whereas Figure 2.2b shows the decay property for problem with eigengaps 10−6.
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2.3. A hybrid algorithm for applying the best rational filter. In this
section, we introduce a hybrid algorithm for applying the best rational filter Rab(x)
constructed in Section 2.2, i.e., computing the matvec Rab(B

−1A)V when A and B are
sparse Hermitian matrices in FN×N and V is a vector in FN . Recall that the rational
filter Rab(x) is constructed by

Rab(x) =
Z2r(Ẑ2r(T (x);`1);`2)+1

2
. (2.26)

Hence, it is sufficient to show how to compute Z2r(Ẑ2r(T (B−1A);`1);`2)V efficiently.
For the sake of numerical stability and parallel computing, a rational function is

usually evaluated via a partial fraction representation in terms of a sum of fractions
involving polynomials of low degree. For the Zolotarev’s function Z2r(x;`) introduced
in (2.6), we have the following partial fraction representation2. The reader is referred
to Appendix for the proof.

Proposition 2.1. The function Z2r(x;`) as in (2.6) can be reformulated as

Z2r(x;`) =Mx

∏r−1
j=1(x2 +c2j)∏r
j=1(x2 +c2j−1)

=Mx

 r∑
j=1

aj
x2 +c2j−1

 , (2.27)

where

aj =
bj

c2r−1−c2j−1
(2.28)

for j= 1,. ..,r−1, and

ar = 1−
r−1∑
j=1

bj
c2r−1−c2j−1

. (2.29)

Here

bj = (c2j−c2j−1)
r−1∏

k=1,k 6=j

c2k−c2j−1

c2k−1−c2j−1
(2.30)

for j= 1,. ..,r−1, {cj} and M are given in (2.8).

If complex coefficients are allowed, the following corollary can be derived from
Proposition 2.1 directly.

Corollary 2.1. The function Z2r(x;`) as in (2.6) can be reformulated as

Z2r(x;`) =
M

2

r∑
j=1

(
aj

x+ ı
√
c2j−1

+
aj

x− ı√c2j−1

)
, (2.31)

where aj and c2j−1 are as defined in Proposition 2.1.

2The existence of the partial fraction representation is well-known. We present our formulas for
the representation for the purpose of making our algorithm easier to implement for researchers who are
interested in our work.
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By Proposition 2.1, we obtain the partial fraction representation of Z2r(T (x);`) as
follows, where T (x) is a Möbius transformation T (x) =γ x−αx−β . The reader is referred to
Appendix for the proof.

Proposition 2.2. The function Z2r(T (x);`) can be reformulated as

Z2r(T (x);`) =M
r∑
j=1

ajγ

γ2 +c2j−1
+M

r∑
j=1

(
wj

x−σj
+

w̄j
x− σ̄j

)
, (2.32)

where

σj =
γα+ ı

√
c2j−1β

γ+ ı
√
c2j−1

, wj =
aj(σj−β)

2(γ+ ı
√
c2j−1)

. (2.33)

Remark 2.1. In the rest of this paper, we denote the constants associated with
Z2r(x;`2) as aj ,c2j−1,σj , and wj for j= 1,. ..,r; and the constants associated with

Ẑ2r(x;`1) as âj , ĉ2j−1,σ̂j , and ŵj for j= 1,. ..,r.
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Fig. 2.3: The corresponding contour integral discretization of Zolotarev’s function composed with
Möbius transformation. The eigengaps here are (−1.1,−0.9) and (0.9,1.1) and the contour is a circle
centered at origin with radius 0.998749. The discretization points are calculated as Proposition 2.2.
(a) r= 9 provides 18 poles; (b) r= 16 provides 32 poles.

Proposition 2.2 can be viewed as a discretization of a contour at poles, σj and σ̂j
with weights wj and ŵj for j= 1,. ..,r. The contour is a circle centered on the real
axis cutting through the eigengaps. Figure 2.3 demonstrate an example with eigengaps
(−1.1,−0.9) and (0.9,1.1). The calculated contour is a circle centered at origin with
radius 0.998749. Meanwhile, the pole locations and the corresponding weights are pro-
vided by Proposition 2.2. Figure 2.3a adopts r= 9 which is also the composition of two
Zolotarev’s functions with degree 3 whereas Figure 2.3b adopts r= 16 which is also the
composition of two Zolotarev’s functions with degree 4.

With these propositions ready, we now introduce the hybrid algorithm for com-
puting the matvec Rab(B

−1A)V =Z2r(Ẑ2r(T (B−1A);`1);`2)V . This hybrid algorithm
consists of two parts of linear system solvers: an inner part and an outer part. The inner
part implicitly computes the matvec Ẑ2r(T (B−1A);`1)V :=GV via fast direct solvers.



YINGZHOU LI AND HAIZHAO YANG 1125

Once GV has been implicitly computed, the matrix G can be viewed as an operator
with fast application algorithm, where each application costs nearly O(N) operations
in many applications. The outer part computes Z2r(G;`2)V using a GMRES method
when the fast matvec GV is available. Since the matrix G has singular values greater
than `2 = Ẑ2r(`1;`1), which is a number close to 1, a few steps of iterations in GMRES
method are enough to solve the linear systems in the matvec Z2r(G;`2)V accurately. In
practice, the iteration number varies from 6 to 25.

In particular, by Proposition 2.2,

GV =Ẑ2r(T (B−1A);`1)V

=M̂
r∑
j=1

âjγ

γ2 + ĉ2j−1
V +M̂

r∑
j=1

((
ŵj (A− σ̂jB)

−1
BV

)
+

(
ŵj

(
A− σ̂jB

)−1

BV

))

=M̂

r∑
j=1

âjγ

γ2 + ĉ2j−1
V +M̂

r∑
j=1

((
ŵj (A− σ̂jB)

−1
BV

)
+
(
ŵj (A− σ̂jB)

−∗
BV

))
.

(2.34)

The third equality holds since A and B are Hermitian matrices. Hence, evaluating
Ẑ2r(T (B−1A);`1)V boils down to solving r linear systems of the form

(A− σ̂jB)x=y (2.35)

for j= 1,. ..,r. This is a set of r sparse linear systems. Since the operator G is involved
in an outer function, where it is repeatedly applied, a fast and efficient algorithm for
applying G is necessary. This can also be rephrased as “a fast and efficient algorithm
for solving (2.35) is necessary”. There are two groups of efficient algorithms for solving
(2.35): direct solvers and iterative solvers with efficient preconditioners.

Fast direct solvers for sparse linear system as A− σ̂jB usually contains two phases.
The first phase (termed as the pre-factorization phase) factorizes the sparse matrix into
a product of a sequence of lower and upper triangular sparse matrices. The second phase
(termed as the solving phase) solves the sequence of triangular sparse matrices efficiently
against vectors. The computational complexities for both the pre-factorization and the
solving phase vary from method to method, also heavily rely on the sparsity pattern
of the matrix. For simplicity, we denoted the computational complexity for the pre-
factorization and the solving phase as FN and SN respectively for matrices of size
N×N . Usually, FN is of higher order in N than SN . Particularly, we adopt the
multifrontal method (MF) [5, 13] as the general direct sparse solver for all numerical
examples in this paper. For sparse matrices of size N×N from two-dimensional PDEs,
the computational complexities for MF are FN =O(N3/2) and SN =O(N logN). While,
for three-dimensional problems, MF requires FN =O(N2) and SN =O(N4/3) operations.

Iterative solvers with efficient preconditioners is another efficient way to solve
sparse linear systems. The construction of preconditioners is the pre-computation phase
whereas the iteration together with applying the preconditioner is the solving phase.
Similarly to the direct solver, the choices of iterative solvers and preconditioners highly
depend on sparse matrices. For elliptic PDEs, GMRES could be used as the itera-
tive solver for A− σ̂jB, and MF with reduced frontals [9, 11, 26, 33] could provide good
preconditioners.

Once the fast application of G is available, we apply the classical GMRES to-
gether with the shift-invariant property of the Krylov subspace (See [23] Section 7.3)
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to evaluate Rab(B
−1A)V =Z2r(Ẑ2r(T (B−1A);`1);`2)V =Z2r(G;`2)V . In particular, by

Corollary 2.1, we have

Z2r(G;`2)V =M
r∑
j=1

aj
2

((
G+ ı

√
c2j−1I

)−1
V +

(
G− ı√c2j−1I

)−1
V
)
, (2.36)

where I is the identify matrix. Hence, to evaluate Z2r(G;`2)V , we need to solve multi-
shift linear systems of the form

(G± ı√c2j−1I)x=y (2.37)

with 2r shifts ±ı√c2j−1 for j= 1,. ..,r. These systems are solved by the multi-shift
GMRES method efficiently. In each iteration, only a single evaluation of GV is needed
for all shifts. Meanwhile, since G has a condition number close to 1, only a few itera-
tions are sufficient to solve the multi-shift systems to a high accuracy. Let the number
of columns in V be O(nλ) and the number of iterations be m. The complexity for
evaluating the rational filter Rab(B

−1A)V is O(mnλSN ).

Algorithm 2: A hybrid algorithm for the rational filter Rab(B
−1A)

input : A sparse Hermitian definite matrix pencil (A,B), a spectrum range
(a,b), vectors V , tolerance ε

output: Rab(B
−1A)V as defined in (2.26)

1 Estimate eigengaps (a−,a+) and (b−,b+) for a and b respectively.
2 Solve (2.19) for `1 and Möbius transformation parameter γ,α,β.
3 Given ε, find the smallest order of Zolotarev’s functions, r, such that our

rational function approximates Sab within the target accuracy ε by gradually
increasing r.

4 Calculate function coefficients, M̂,âj ,ŵj ,σ̂j , ĉ2j−1 and `2,M,aj ,c2j−1 for
j= 1,. ..,r.

5 for j= 1,2,. ..,r do
6 Pre-factorize A− σ̂jB as Kj

7 end
8 Generate algorithm for operator

GV =M̂
r∑
j=1

âjγ

γ2 + ĉ2j−1
V +M̂

r∑
j=1

(
ŵjK

−1
j BV + ŵjK

−∗
j BV

)
.

9 Apply the multi-shift GMRES method for solving linear systems
(G± ı√c2j−1I)−1V with j= 1,. ..,r.

10 Rab(B
−1A)V = M

2

∑r
j=1

aj
2

((
G+ ı

√
c2j−1I

)−1
V +

(
G− ı√c2j−1I

)−1
V
)

+ 1
2V

Algorithm 2 summarizes the hybrid algorithm introduced above for applying the
rational filter Rab(B

−1A) in (2.26) to given vectors V . By taking Line 1-8 in Algorithm 2
as precomputation and inserting Line 9-10 in Algorithm 2 into Line 3 in Algorithm 1,
we obtain a complete algorithm for solving the interior generalized eigenvalue problem
on a given interval (a,b). When the matrix pencil (A,B) consists of sparse complex
Hermitian definite matrices, the dominant cost of the algorithm is the pre-factorization
of r matrices in (2.35) or Line 6 in Algorithm 2.

Remark 2.2. Given a desired accuracy ε and the parameter `1 computed from the
estimated eigengaps, we can estimate the order of Zolotarev’s functions efficiently, which
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corresponds to the third line in Algorithm 2. Notice that the L∞ error of S(x;`1), as in
(2.15), approximating the signum function is achieved at x= `1. Therefore, in practice,
we evaluate S(`1;`1) for a sequence of rs and choose the smallest r such that the error
is bounded by ε. Since the evaluation of S(`1;`1) does not involve any matrix, the
estimation of the order r can be done efficiently. If different r1 and r2 are of interest,
a small table of S(`1;`1) can be computed as a reference for users to select a pair of
(r1,r2) from it.

3. Numerical examples
In this section, we will illustrate three examples based on different collections of

sparse matrices. The first example aims to show the scaling of the proposed method; the
second example shows the comparison with the state of the art algorithm for spectrum
slicing problem, FEAST [7, 22]; the last example shows the efficiency of the proposed
method for various kinds of sparse matrices. All numerical examples are performed on a
desktop with Intel Core i7-3770K 3.5 GHz, 32 GB of memory. The proposed algorithm
in this paper is implemented in MATLAB R2017b, which is shortened as “ZoloEig” or
“Zolo” in this section and the FEAST v3.0 compiled with Intel compiler produces the
results in the part of “FEAST”. To make the numerical results reproducible, the codes
for the numerical examples can be found on the authors’ personal homepages.

Throughout the numerical section, a relative error without knowing the underlying
ground true eigenpairs is used to measure the accuracy of both ZoloEig and FEAST.
The relative error of the estimated interior eigenpairs in the interval (a,b) is defined as

eΛ,X = max
1≤i≤k

‖AXi−BXiλi‖2
‖max(|a|,|b|)BXi‖2

, (3.1)

where (A,B) is the matrix pencil of size N by N ; Λ∈Rk×k is a diagonal matrix with
diagonal entries being the estimated eigenvalues in the given interval, {λ1,λ2,. ..,λk};
and Xi∈FN×1 denotes the i-th eigenvector for 1≤ i≤k. This relative error of the
eigenvalue decomposition is also used in ZoloEig as the stopping criteria. Besides the
error measurement, we also define a measurement of the difficulty of the problem as the
relative eigengap,

δλ=
min(a+−a−,b+−b−)

b−−a+
. (3.2)

Such a relative eigengap, δλ can measure the intrinsic difficulty of the spectrum slicing
problem for all existing algorithms based on polynomial filters and rational function
filters.

Notation Description

nss Size of subspace used in ZoloEig or FEAST.
niter Number of subspace iterations used by ZoloEig or FEAST.
ngmres Number of GMRES iterations used by ZoloEig.
nsolv Total number of linear system solves used by ZoloEig or FEAST.
Tfact Total factorization time used by ZoloEig in second.
Titer Total iteration time used by ZoloEig in second.
Ttotal Total runtime used by ZoloEig in second.

Table 3.1: Notations used in numerical results.
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Other notations are listed in Table 3.1. The total number of linear system solves in
ZoloEig can be calculated as,

nsolv = r ·nss ·niter ·ngmres, (3.3)

whereas the one in FEAST is

nsolv = r ·nss ·niter. (3.4)

3.1. Spectrum of Hamiltonian operators. The first example is a three-
dimensional Hamiltonian operator,

H=−1

2
∆+V, (3.5)

on [0,1)3 with a Dirichlet boundary condition. Here V is a three-dimensional potential
field containing three Gaussian wells with random depths uniformly chosen from (0,1]
and fixed radius 0.2. Figure 3.1 shows the isosurface of an instance of the 3D random
Gaussian well. This example serves the role of illustrating the efficiency and complexity
of the proposed new algorithm. We first discretize the domain [0,1)3 by a uniform grid
with n points on each dimension and the operator is discretized with 7-point stencil finite
difference method that results in a sparse matrix. The multifrontal method is naturally
designed for inverting such sparse matrices. In this section, we adopt Matlab “eigs”
function to evaluate the smallest 88 eigenpairs as the reference. Due to the randomness
in the potential, the relative eigengap of the smallest 88 eigenvalues varies a lot. In order
to obtain the scaling of the algorithm, we prefer to have problems of different sizes but
with similar difficulty. Therefore, we generate random potential fields until the problem
has a relative eigengap between 10−3 and 10−4. In such cases, the claimed complexity
of the ZoloEig algorithm can be rigorously verified for the discretized operator of (3.5).
In this example, the tolerance is set to be 10−8, r is set as (4,4) for all matrices, and
subspaces with dimension 89 are used to recover the 88 eigenpairs.

N δλ r eΛ,X nss niter ngmres nsolv Tfact Titer Ttotal

1728 8.6e-04 (4,4) 3.3e-15 89 1 14 4984 2.8e-01 2.2e+00 2.6e+00
8000 5.1e-04 (4,4) 3.4e-15 89 1 16 5625 1.6e+00 1.4e+01 1.6e+01
21952 4.3e-04 (4,4) 2.5e-14 89 1 15 5340 7.9e+00 4.5e+01 5.2e+01
46656 6.6e-04 (4,4) 3.7e-13 89 1 15 5340 2.9e+01 1.1e+02 1.4e+02
85184 2.4e-04 (4,4) 2.5e-12 89 1 16 5696 8.3e+01 2.4e+02 3.3e+02
140608 1.6e-04 (4,4) 4.2e-14 89 1 17 6052 2.2e+02 4.9e+02 7.1e+02

Table 3.2: Numerical results for 3D Hamiltonian operators. N is the size of the sparse matrix, r is
the order used in ZoloEig, other notations are as defined in Table 3.1.

Figure 3.2 shows the running time and the relative error of eigenvalues, eΛ,X . The
3D problem size varies from 123 to 523 and the corresponding matrix size varies from
1,728 to 140,608. The order r is (4,4) in the ZoloEig. For each matrix, we provide the
true eigenvalues λ1,λ88,λ89 as the input, a−=−∞,a+ =λ1,b−=λ88,b+ =λ89, where λ1

is the smallest eigenvalue, λ88 and λ89 are the 88th and 89th small eigenvalues. The
ZoloEig is executed 5 times with different initial random vectors for each matrix. In
Figure 3.2a and Figure 3.2b, these results are presented in a bar plot manner: the
vertical bars indicate the largest and the smallest values, whereas the trend line goes
through the mean values. Table 3.2 shows the means of the results across 5 runs. As
we can read from Figure 3.2a, the iteration time for ZoloEig scales as N4/3 while the
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Fig. 3.1: An instance of 3D random potential field using Gaussian wells. The isosurface is at level
−0.5.
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Fig. 3.2: The running time and the relative error for 3D Hamiltonian operator with Gaussian wells
solved via ZoloEig. The relative error here is the relative error of eigenpairs defined in (3.1).

factorization time scales as N2. Both of them agree with the scaling of multifrontal
method. Although for the examples here, the iteration time is more expensive than
the factorization time, as N gets larger, the total runtime will quickly be dominated by
the factorization. Therefore, reducing the number of factorizations would significantly
reduce the cost of the algorithm. Figure 3.2b shows the relative error of the eigenvalues,
which in general increases mildly as the problem size increases. All the relative errors
are achieved with only one subspace iteration. At the same time, we find that the errors
are far smaller than the tolerance 10−8. This implies that setting r= (4,4) overkills the
problem and, in practice, user could use smaller r.
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3.2. Hamiltonian of silicon bulk. The second example is a sparse Hermitian
definite matrix pencil, (A,B), generated by SIESTA (a quantum chemistry software).
For a silicon bulk in 3D with y3 supercell of cubic Si, a DZP basis set with radius 4 Å
is adopted to discretize the system, where y= 2,3,4,5. In the spectrum slicing problem,
the interval is chosen to contain the smallest 93 eigenvalues. The ZoloEig algorithm
with r= (3,3), nss= 94 is used to solve the eigenvalue problem. The tolerance for both
ZoloEig and FEAST is set to be 10−14. Here we discuss the choice of the parameters used
in FEAST, as in Table 3.4, in detail. Since we want to keep the number of factorizations
as small as possible, we test FEAST with fixed nss= 200 and gradually increasing r
starting from 3 until the first r for which FEAST converges. Later, given r, we choose
nss that minimizes nsolv. Therefore, we have tried our best to obtain the optimal
parameters for FEAST to maintain the smallest possible number of factorizations.

y N δλ r eΛ,X nss niter ngmres nsolv Tfact Titer Ttotal

2 832 9.6e-02 (3,3) 4.7e-17 94 1 10 2820 1.1e+00 2.4e+00 3.5e+00
3 2808 3.5e-01 (3,3) 9.9e-16 94 1 7 1974 9.4e+00 7.9e+00 1.7e+01
4 6656 3.3e-02 (3,3) 3.8e-15 94 1 11 3102 4.4e+01 4.2e+01 8.6e+01
5 13000 9.0e-02 (3,3) 5.9e-15 94 1 9 2538 1.6e+02 8.0e+01 2.4e+02

Table 3.3: Numerical results of ZoloEig for generalized eigenvalue problems from SIESTA. y is the
number of unit cells on each dimension and other notations are as in Table 3.2.

ZoloEig FEAST
y r eΛ,X nss niter ngmres nsolv r eΛ,X nss niter nsolv

2 (3,3) 4.7e-17 94 1 10 2820 3 8.3e-15 97 29 8439
3 (3,3) 9.9e-16 94 1 7 1974 4 3.4e-15 94 19 7144
4 (3,3) 3.8e-15 94 1 11 3102 6 8.2e-15 96 11 6336
5 (3,3) 5.9e-15 94 1 9 2538 7 9.4e-15 112 9 7056

Table 3.4: Comparison between ZoloEig and FEAST in the example of SIESTA. Notations are as in
Table 3.2.

Table 3.3 includes the detailed information of the numerical results of ZoloEig.
According to column Tfact and Titer, we find the same scaling as in the first example.
However, the factorization time is more expensive here due to the increase of the non-
zeros in the Hamiltonian and the total time is dominated by the factorization when
N = 13000. Therefore, it is worth to emphasize again that reducing the number of
factorizations is important.

Table 3.4 provides the comparison between ZoloEig and FEAST in the sequential
cases. Note that these two algorithms were implemented in different programming
languages: ZoloEig is implemented in MATLAB and FEAST is in Fortran. Direct
comparison of the runtime is unfair for ZoloEig, since MATLAB code is usually about
5x to 10x slower than Fortran code 3. Hence, we compare the total number of linear
system solves here, which is the main cost of both algorithms besides the factorizations.
Comparing two columns of nsolv’s in Table 3.4, we see that ZoloEig is about 2 to 3 times
cheaper than FEAST in terms of the number of applying the direct solver, nsolv. More

3Even though there is difference between programming languages, we find that the actual runtime
of ZoloEig is still faster than that of FEAST for large problem sizes, namely when y≥4 in Table 3.4.
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importantly, when the problem size is large, the factorization time of the direct solver
is dominanting the runtime. In this regime, ZoloEig might be also more efficient than
FEAST since it requires a smaller number of factorizations. ZoloEig requires only r= 3
factorizations in Table 3.4, while FEAST requires 3 to 7 factorizations and the number
of factorizations slightly increases as the problem size grows.

In the case of parallel computing, spectrum slicing algorithms including both
FEAST and ZoloEig could be highly scalable. For example, eigenpairs in different spec-
trum ranges can be estimated independently; multishift linear systems can be solved
independently; and each equation solver can be applied in parallel. If there was unlim-
ited computer resource, then the advantage of ZoloEig over FEAST in terms of a smaller
number of factorizations might be less significant, but still meaningful because the num-
ber of iterations niterngmres in ZoloEig (considering both the GMRES iterations and
subspace iterations) is smaller than the number of subspace iterations niter in FEAST,
and these iteration numbers cannot be reduced by parallel computing. Therefore, if un-
limited computer resource was used, the total parallel runtime will be dominated by the
iteration time in both ZoloEig and FEAST, and hence ZoloEig could be still faster than
FEAST. Note that in practice the computer resource might be limited. In such a case,
it is of interest to design faster parallel algorithms with a fixed number of processes.
Given a fixed number of processes, ZoloEig has less number of matrix factorizations and
hence can assign more processes to each matrix factorization and each application of
the factorization. Therefore, the runtime of parallel matrix factorization and iterative
part in ZoloEig would be shorter than that of FEAST. The parallel version of ZoloEig
is under development and it is worth to expore this benefit for large-scale eigenvalue
problems.

3.3. Florida sparse matrix collection. In the third example, the proposed
algorithm is applied to general sparse Hermitian matrices from the Florida sparse matrix
collection. In order to show the broad applicability of the algorithm, all Hermitian
matrices with size between 200 and 6,000 in the collection are tested. The full list
of these matrices can be found in the test file “test eigs Florida.m” in the MATLAB
toolbox. For each of these matrices, we randomly choose an interval (a,b) containing
96 eigenvalues.

In these examples, we compare the performance of the ZoloEig algorithm with the
FEAST algorithm based on the contour integral method with trapezoidal rule. The
subspace refinement is turned off again, aiming at testing the approximation accuracies
of the Zolotarev’s rational function and the discretized contour integral. The order r
in the Zolotarev’s rational function is 4 and the contour integral method has 16 poles.
Hence, both the ZoloEig and FEAST algorithms use the same order of rational functions
in the approximation.

Figure 3.3 visualizes the results of both the ZoloEig and the FEAST algorithms.
Figure 3.3a includes the total running time of the MATLAB default dense eigensolver
Eig, FEAST and ZoloEig. The running time of Eig aligns with the cubic scaling ref-
erence, whereas the running times of both FEAST and ZoloEig align with the linear
scaling reference. As explained in previous examples, for a problem of small size, the
iterative part in both FEAST and ZoloEig dominates the running time. The outliers
of each line in these figures are caused by different sparsity densities and patterns of
sparse matrices. According to Figure 3.3a, the running time of FEAST is constantly
larger than ZoloEig. In Figure 3.3b, the relative error of FEAST is larger than ZoloEig
for most matrices. Based on the right part of Figure 3.3b, FEAST fails for some sparse
matrices, where the relative error is close to 1. Meanwhile, the relative error of ZoloEig
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Fig. 3.3: Running time and relative error for matrices in Florida matrix collection solved via ZoloEig
and FEAST. The relative error here is the relative error of eigenvalues defined in (3.1).

is smaller than 1e-4 in all cases and the overall accuracy is about 1e-10. This observa-
tion supports that the composition of Zolotarev’s rational functions is a better way to
approximate rectangular functions.

4. Conclusion

This paper proposed an efficient method for computing selected eigenpairs of a
sparse Hermitian definite matrix pencil (A,B) in the generalized eigenvalue prob-
lem. First, based on the best rational function approximations of signum functions
by Zolotarev, the best high-order rational filter in a form of function compositions is
proposed. Second, taking advantage of the shift-invariant property of Krylov subspaces
in iterative methods and the matrix sparsity in sparse direct solvers, a hybrid fast algo-
rithm is proposed to apply the best rational filter in the form of function compositions.
Assuming that the sparse Hermitian matrices A and B are of size N×N and contains
O(N) nonzero entries, the computational cost for computing O(1) eigenpairs is O(FN ),
where FN is the operation count for solving the shifted linear system (A−σB)x= b
using sparse direct solvers.

Comparing to the state-of-the-art algorithm FEAST, the proposed ZoloEig has a
better performance in our test examples for sequential computation. The numerical
results in the sequential computation also imply that ZoloEig might also have good
performance in parallel computation, which will be left as future work.

It is worth pointing out that the proposed rational filter can also be applied effi-
ciently if an efficient dense direct solver or an effective iterative solver for solving the
multi-shift linear systems in (2.35) is available. The proposed rational function ap-
proximation can also be applied as a preconditioner for indefinite sparse linear system
solvers [31] and the orbital minimization method in electronic structure calculation [14].
These will be left as future works.
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Appendix A. Proof of Proposition 2.1.
Proof. First we prove that we have the following partial fraction representation

Mx
r−1∏
j=1

x2 +c2j
x2 +c2j−1

=Mx

1+
r−1∑
j=1

bj
x2 +c2j−1

 , (A.1)

where

bj = (c2j−c2j−1)
r−1∏

k=1,k 6=j

c2k−c2j−1

c2k−1−c2j−1
(A.2)

for j= 1,. ..,r−1. Since any rational function has a partial fraction form and the coef-
ficients {c2j−1} are distinct, Equation (A.1) holds. One can verify (A.1) by multiplying
x2 +c2j−1 to both sides and set x= ı

√
c2j−1.

By (A.1), we have

Z2r(x;`) =Mx

∏r−1
j=1(x2 +c2j)∏r
j=1(x2 +c2j−1)

=Mx

1+
r−1∑
j=1

bj
x2 +c2j−1

 1

x2 +c2r−1
. (A.3)

Hence, simple partial fraction representations of

bj
(x2 +c2j−1)(x2 +c2r−1)

=
bj

c2r−1−c2j−1

(
1

x2 +c2j−1
− 1

x2 +c2r−1

)
(A.4)

for j= 1,. ..,r−1 complete the proof of the proposition.

Appendix B. Proof of Proposition 2.2.
Proof. We further decompose (2.27) as complex rational functions,

Z2r(x;`) =M

r∑
j=1

aj
2

(
1

x+ ı
√
c2j−1

+
1

x− ı√c2j−1

)
. (B.1)

Substitute the Möbius transformation into (B.1),

Z2r(T (x);`) =M
r∑
j=1

aj
2

(
x−β

γ(x−α)+ ı
√
c2j−1(x−β)

+
x−β

γ(x−α)− ı√c2j−1(x−β)

)

=M
r∑
j=1

aj
2

 x−β
γ+ı
√
c2j−1

x− γα+ı
√
c2j−1β

γ+ı
√
c2j−1

+

x−β
γ−ı√c2j−1

x− γα−ı√c2j−1β

γ−ı√c2j−1

 . (B.2)

We denote

σj :=
γα+ ı

√
c2j−1β

γ+ ı
√
c2j−1

=
(γ2α+c2j−1β)+ ı

√
c2j−1(β−α)γ

γ2 +c2j−1
. (B.3)

Readers can verify that

σ̄j =
γα− ı√c2j−1β

γ− ı√c2j−1
, (B.4)
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where σ̄j is the complex conjugate of σj . Equation (B.2) can be rewritten as,

Z2r(T (x);`) =M
r∑
j=1

ajγ

γ2 +c2j−1
+M

r∑
j=1

(
wj

x−σj
+

w̄j
x− σ̄j

)
, (B.5)

where

wj =
aj(σj−β)

2(γ+ ı
√
c2j−1)

. (B.6)
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