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LONG TIME EXISTENCE OF
THE BOUSSINESQ EQUATION WITH LARGE INITIAL DATA IN RN ∗

GUOWEI LIU† AND WENLONG SUN‡

Abstract. In this paper, we study the long-time existence of smooth solutions to the Cauchy
problem for the Boussinesq equation with large initial data in Rn. Due to the strong dispersive effect
in the Boussinesq equation, the method of combining the blowup criterion and Strichartz estimate are
used to show that the lifespan of the solutions can be taken arbitrarily large provided that the dispersive
coefficient is large enough.
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1. Introduction
In this paper, the following Cauchy problem of the Boussinesq equation in Rn is

studied {
utt−α2∆u+α2∆2u= ∆f(u), (x,t)∈Rn×R+,

u(x,0) =u0(x), ut(x,0) =u1(x),
(1.1)

where the dispersive coefficient α is a constant and f(u) =±up or f(u) =±u|u|p−1 is the
general nonlinear term with an integer p>2. The first equation of (1.1) was first derived
to describe shallow water waves by Boussinesq [1] in 1872. It also covers other various
physical phenomena. For example, it was used to model the nonlinear vibrations along
a string in [3,38] and describe two-dimensional irrotational flows of an inviscid liquid in
a rectangular channel in [22].

The Cauchy problem (1.1) has been studied by many mathematicians. Various local
existence theories in different spaces were established in [2, 3, 10, 11, 19, 22, 33, 35]. For
small initial data, the papers [3,7,11,22,24,26] established the global smooth existence
of solutions. The asymptotic behavior and scattering of solutions were established
in [7,24–26]. For large initial data, the papers [8,16,20,21,23,27–31,37] studied the blow
up and singularity. Later, Liu and Xu [28] and Yang and Guo [37] obtained global weak
solutions. Farah and Linares [13] got the global mild solutions and Farah [9], Farah and
Ferreira [12] established the scattering of mild solutions. Since the Boussinesq equation
actually is a nonlinear hyperbolic equation, as it is well known, it is difficult to obtain
the global existence of smooth solutions because of the possible singularities. As far as
we know, the global existence of smooth solutions to (1.1) for large initial data is still
open.

This paper will make a forward step in this direction to get the long-time existence of
smooth solutions for large initial data. More precisely, we shall show that for given initial
data (u0,u1)∈Hs×(Hs−2∩Ḣ−1) with s> n

2 +2 and time T , there exists a positive
number α(u0,u1,T ) such that the Boussinesq equation admits a unique smooth solution
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on the time interval [0,T ] provided α≥α(u0,u1,T ). This also gives a lower bound for
the maximal existence time of solutions to (1.1) in terms of the dispersive coefficient α
and initial data.

Since the operator ∆
|∇|
√

1−∆
is a zero order Fourier multiplier, there is no difficulty of

loss of derivatives of the nonlinear term while using the contractive mapping argument
to get the following local existence of solutions uniformly with respect to α.

Theorem 1.1. Let s∈R satisfy s> n
2 (n≥1) and X=Hs×(Hs−2∩Ḣ−1). Then for

any given α>1 and −→u 0 = (u0,u1)∈X, there exists a T0∈ (0,∞) uniformly with respect
to α such that (1.1) admits a unique smooth solution satisfying

u∈C([0,T0];Hs).

In order to extend the local solutions to be global ones, we derive the high energy
estimate

‖u(t)‖2Hs ≤C(‖u1‖2Hs−2 +‖u0‖2Hs)exp
(∫ T

0

‖u(τ)‖p−1
L∞ dτ

)
.

Inspired by the works [17, 32] on the Euler equations in the rotational framework (see
also [4–6, 15, 34, 36] for other fluid dynamics models in different settings), we will take
full advantage of the dispersive effect in the Boussinesq equation to give the control of

the time integration
∫ T

0
‖u(τ)‖p−1

L∞ dτ by means of a bootstrap argument with the help
of Strichartz estimate (space-time norm). Eventually, we obtain our main result in the
present paper by the continuous argument.

Theorem 1.2. Let s∈R satisfy s> n
2 and X=Hs×(Hs−2∩Ḣ−1). Then for any

T ∈ (0,∞) and −→u 0 = (u0,u1)∈X, there exists a positive α0 =α0(s,T,‖−→u 0‖X) such that
if α>α0, the Cauchy problem (1.1) possesses a unique smooth solution satisfying

u∈C([0,T ];Hs).

In particular, for q≥max{4,p−1} there exist a positive constant C0(q) and a positive
constant C1 =C1(s,q) such that the parameter α0 can be taken so that

α0≥C0

[
1+‖−→u 0‖p−1

X T exp{C1T
1− p−1

q ‖−→u 0‖p−1
X }

]q
. (1.2)

Remark 1.1. Theorem 1.2 shows that the smooth solution to (1.1) uniquely exists on
any arbitrary finite time interval [0,T ] for large initial data −→u 0∈X with large dispersive
coefficient α.

Remark 1.2. Suppose that the dispersive coefficient α is fixed, from the character-
ization of (1.2), the maximal existence time Tα of the solutions to (1.1) has the lower
bound

Tα≥
C ′1

‖−→u 0‖p−1
X

ln(
α

C ′0
),

with some positive constants C ′0(q) and C ′1(s,q).

The outline of this paper is as follows. Section 2 is to prove the local existence.
Section 3 aims to derive a Strichartz estimate for the dispersive operator and Section
4 is to establish the blowup criterion for the Boussinesq equation. In Section 5, we
establish the long-time existence of smooth solutions.
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Throughout this paper, the letter C denotes arbitrary constants which may differ
from line to line. In particular, C=C(·,·,·) will denote the constant which depends
only on the quantities appearing in parenthesis. The symbols Lp(1≤p≤∞), Hs(s∈R)
and Ḣs(s∈R) denote the Lebesgue spaces, inhomogeneous and homogeneous Sobolev
spaces, respectively. The Fourier transform and its inverse are denoted by F ,F−1 or
·̂, ·̌, respectively.

2. Local existence
Now we derive the explicit representation of the solutions by the method of the

Green function. Consider the fundamental solution to the Cauchy problem{
∂ttG−α2∆G+α2∆2G= 0,

G(x,0) = 0, ∂tG(x,0) = δ.
(2.1)

Taking the Fourier transform in (2.1), we get{
∂ttĜ+α2|ξ|2Ĝ+α2|ξ|4Ĝ= 0.

Ĝ(ξ,0) = 0, ∂tĜ(ξ,0) = 1.
(2.2)

The symbol of the Equation (2.2) is

τ2 +α2|ξ|2 +α2|ξ|4 = 0.

By a direct calculation, we obtain

τ =±iαp(|ξ|), p(|ξ|) = |ξ|
√

1+ |ξ|2, (2.3)

which reflects the dispersive relation associated to the first equation of (1.1). Then
solving the Cauchy problem (2.2), we get

Ĝ(ξ,t) =
sin(αp(|ξ|)t)
αp(|ξ|)

=
1

2αip(|ξ|)
(eiαp(|ξ|)t−e−iαp(|ξ|)t),

∂tĜ(ξ,t) = cos(αp(|ξ|)t) =
1

2
(eiαp(|ξ|)t+e−iαp(|ξ|)t).

By the Duhamel principle, we obtain the solutions of Cauchy problem (1.1) in the
integral form as follows

u(x,t) =∂tG(x,t)∗u0 +G(x,t)∗u1 +

∫ t

0

G(x,t−τ)∗∆f(u)dτ. (2.4)

In what follows, we will use the symbols |∇|s,g(|∇|) defined by F(|∇|sf)(ξ) =
|ξ|sF(f)(ξ) and F(g(|∇|)f)(ξ) =g(|ξ|)F(f)(ξ), respectively. We first recall some useful
results in order to control the nonlinear term, see [7,26].

Lemma 2.1.

(i) For any s∈R, r1∈ (1,∞],r2∈ (1,∞), 1
r = 1

r1
+ 1
r2

, then we have

‖∇sf(u)‖Lr ≤C‖u‖p−1

L(p−1)r1
‖∇su‖Lr2 .

(ii) If u,v∈Hs∩L∞ and ‖u‖L∞ 6M,‖v‖L∞ 6M , then

‖f(u)−f(v)‖Hs ≤C
[
‖u−v‖L∞(‖u‖Hs +‖v‖Hs)(‖u‖p−2

L∞ +‖v‖p−2
L∞ )

+‖u−v‖Hs(‖u‖p−1
L∞ +‖v‖p−1

L∞ )
]
,

where C depends only on M .
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Then with the help of Lemma 2.1, we can establish the local existence by means of
the contractive mapping argument.

Proof. (The proof of Theorem 1.1.) To begin with, we construct a suitable
metric space

Y :={u(t)∈C(0,T0;Hs),‖u‖L∞(0,T0;Hs)≤2‖−→u 0‖},

with the natural metric d(u,v) =‖u−v‖L∞(0,T0;Hs). Then the metric space (Y,d) is
complete, which can be proved by using the standard way, one can refer to [7].

According to the representation (2.4) of solutions to (1.1), we introduce the mapping
N as follows

N(u)(x,t) =∂tG(x,t)∗u0 +G(x,t)∗u1 +

∫ t

0

G(x,t−τ)∗∆f(u)dτ.

Next we are going to prove that the mapping N(u) :Y 7→Y is a contractive one.

Step one: We show N :Y 7→Y . For any u∈Y , by the Plancherel identity, α>1,
Lemma 2.1 and the embedding Hs ↪→L∞ for s> n

2 , we have

‖N(u)‖Hs ≤‖∂tG(x,t)∗u0‖Hs +‖G(x,t)∗u1‖Hs +

∫ t

0

‖G(x,t−τ)∗∆f(u)‖Hsds

=‖(1+ |ξ|2)s/2 cos(αp(|ξ|)t)û0‖L2 +α−1‖(1+ |ξ|2)s/2
sin(αp(|ξ|)t)

p(|ξ|)
û1‖L2

+α−1

∫ t

0

‖(1+ |ξ|2)s/2
sin(αp(|ξ|)t)

p(|ξ|)
|ξ|2F(f(u))‖L2ds

≤‖u0‖Hs +‖ 1

|∇|
u1‖Hs−1 +

∫ t

0

‖f(u)‖Hsds

≤‖−→u 0‖X +C

∫ T

0

‖u‖p−1
L∞ ‖u‖Hsds

≤‖−→u 0‖X +C

∫ T

0

‖u‖pHsds. (2.5)

It follows from (2.5) and u∈Y that

‖N(u)‖L∞(0,T0;Hs)≤‖−→u 0‖X +C

∫ T0

0

‖u‖pL∞(0,T0;Hs)ds≤‖
−→u 0‖X +CT0‖u‖pL∞(0,T0;Hs)

≤‖−→u 0‖X +2pCT0‖−→u 0‖X . (2.6)

By choosing T0 such that 2pCT0<1, we get from (2.6) that

‖N(u)‖L∞(0,T0;Hs)≤2‖−→u 0‖X ,

which implies N :Y 7→Y.

Step two: We verify that the mapping N is contractive. For any u,v∈Y , it follows
from the Plancherel identity and Lemma 2.1 that

‖N(u)−N(v)‖Hs

≤
∫ t

0

‖G(·,t−τ)∗∆(f(u)−f(v))‖Hsdτ ≤
∫ t

0

‖f(u)−f(v)‖Hsdτ
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≤C
∫ t

0

[‖u−v‖L∞(‖u‖Hs +‖v‖Hs)(‖u‖p−2
L∞ +‖v‖p−2

L∞ )+‖u−v‖Hs(‖u‖p−1
L∞ +‖v‖p−1

L∞ )]ds.

(2.7)

From (2.7), the embedding Hs ↪→L∞ for s> n
2 and the fact u,v∈Y , we obtain

d(N(u),N(v)) =‖N(u)−N(v)‖L∞(0,T0;Hs)≤C2p+1‖−→u 0‖p−1
X

∫ T0

0

‖u−v‖L∞(0,T0;Hs)ds

≤CT02p+1‖−→u 0‖p−1
X d(u,v),

which implies that, by choosing T0 such that CT02p+1‖−→u 0‖p−1
X <1, the mapping N is

contractive in the complete metric space (Y,d).
To summarize, it follows from Step one and Step two that, by choosing T0 indepen-

dently of α and small enough, the existence and uniqueness of solutions u∈C(0,T0;Hs)
to the Cauchy problem (1.1) are obtained directly by the contractive mapping principle.

3. Strichartz estimate
We first recall the definition of the Littlewood-Paley decomposition. The

Littlewood-Paley multipliers ∆j∈Z are defined by

∆jf =F−1
(
ψ(

ξ

2j
)f̂
)

where ψ∈C∞0 (Rn),suppψ⊂{ξ∈Rn|1/2≤|ξ|≤2} such that

∀ξ 6= 0,
∑
j∈Z

ψ(
ξ

2j
) = 1.

The low frequency multiplier χ(∇) is defined by

χ(∇)f =F−1[(1−
∑
j≥1

ψ(
ξ

2j
))f̂ ].

Then, we recall the definition of the inhomogeneous Besov space.

Definition 3.1. For s∈R and 1≤p,q≤∞, the inhomogeneous Besov space Bsp,q(Rn)
is defined to be the set of all tempered distributions such that the following norm is finite

‖f‖Bsp,q =‖χ(∇)f‖Lp +‖{2sj‖∆jf‖Lp}∞j=1‖lq .

According to the representations of G(x,t) and ∂tG(x,t) in the equalities above
(2.4), it is necessary to study the dispersive property of the linear propagator e±itαp(|∇|),
which was obtained by Liu and Wang in [26] in the case of α= 1.

Lemma 3.1. There exists a positive constant C independent of (t,x)∈R1+n such that∣∣∫
Rn
eixξ±itp(|ξ|)Φ(ξ)dξ

∣∣≤C(1+ |t|)−n2 ,

where Φ(ξ) is a Schwartz function satisfying supp Φ⊂{ξ∈Rn|2−2≤|ξ|≤22} and Φ = 1
on {ξ∈Rn|2−1≤|ξ|≤2}.

As an immediate consequence of Lemma 3.1, we have the following lemma.
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Lemma 3.2. For all f ∈L1(Rn), it holds that

‖e±itp(|∇|)∆0f‖L∞ ≤C(1+ |t|)−n2 ‖∆0f‖L1 .

Proof. Since Φ(ξ) = 1 on the support of ψ, we have

e±itp(|∇|)∆0f(x) =

∫
Rn
eixξ±itp(|ξ|)Φ(ξ)ψ(ξ)f̂dξ=F−1(e±itp(|ξ|)Φ(ξ)ψ(ξ)f̂).

By the Young inequality, the Hausdorff-Young inequality and Lemma 3.1, we have

‖e±itp(|∇|)∆0f(x)‖L∞ ≤C‖F−1(e±itp(|ξ|)Φ(ξ))‖L∞‖F−1(ψ(ξ)f̂)‖L1

≤C(1+ |t|)−n2 ‖∆0f‖L1 .

Thus, we complete the proof of Lemma 3.2.

With the help of the dispersive estimate of the linear propagator e±itp(|∇|), namely
Lemma 3.2, we can derive a suitable Strichartz-type estimate for the linear propagator
e±itαp(|∇|). Firstly, we recall the following classical result obtained by Keel and Tao [18].

Lemma 3.3. Let S(t),t∈R, be a family of operators. Suppose that, for all t,s∈R,

‖S(s)S∗(t)f(x)‖L∞ ≤ (1+ |t−s|)−σ‖f‖L1 ,

‖S(s)S∗(t)f(x)‖L2 ≤‖f‖L2 .

Then the estimate

‖S(t)f(x)‖LqtLrx ≤‖f‖L2 ,

holds for all 2≤ q,r≤∞ with (q,r,σ) 6= (2,∞,1) satisfying

1

q
+
σ

r
≤ σ

2
.

Now we can obtain the following lemma.

Lemma 3.4. For 4≤ q≤∞ and 2≤ r≤∞ satisfying

1

q
+
n

2r
≤ n

4
,

we have the Strichartz estimate

‖∆je
±itαp(|∇|)f‖LqtLrx ≤Cα

−1/q(2j)n(1/2−1/r)‖∆jf‖L2 .

Proof. By Lemma 3.2, the Plancherel’s theorem and Lemma 3.3, we obtain

‖e±itp(|∇|)∆0f‖LqtLrx ≤C‖∆0f‖L2 . (3.1)

By the change of variable ξ 7→2jξ, we have for j∈Z

e±itp(|∇|)∆jf =

∫
Rn
ei2

jxξ±itp(|ξ|)ψ(ξ)F [f(
·

2j
)](ξ)dξ=e±itp(|∇|)∆0[f(

·
2j

)](2jx). (3.2)

Hence by (3.1) and (3.2), we have

‖∆je
±itp(|∇|)f(x)‖LqtLrx ≤C(2j)−n/r‖∆0[f(

·
2j

)]‖L2 =C(2j)n(1/2−1/r)‖∆jf‖L2 . (3.3)

The scaling in time t 7→αt and (3.3) give the desired estimate.
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4. Blowup criterion
In order to extend the local solutions to be global ones, we derive the blowup

criterion by the classical energy method.

Lemma 4.1. Let α>1 and u(t) be a solution of (1.1) defined on a time interval
containing [0,T ]. Then for any s>2 we have the estimate

‖u(t)‖2Hs ≤C(‖u1‖2Hs−2 +‖u0‖2Hs)exp
(∫ T

0

‖u(τ)‖p−1
L∞ dτ

)
.

Proof. We apply the operator ∇s−2 on the first equation of (1.1), then multiply
the resulting equation by ∇s−2ut and integrate to obtain

1

2

d

dt

∫
Rn

(
|∂t∇s−2u|2 +α2|∇s−2∇u|2 +α2|∇s−2∆u|2

)
dx=

∫
Rn
∇s−2(∆f(u))∇s−2utdx.

(4.1)

By the Hölder inequality, Lemma 2.1 and the Cauchy inequality, we have∫
Rn
∇s−2(∆f(u))∇s−2utdx≤C‖∇s−2(∆f(u))‖L2‖∇s−2ut‖L2

≤C‖∇sf(u)‖L2‖∇s−2ut‖L2

≤C‖u‖p−1
L∞ ‖∇

su‖L2‖∇s−2ut‖L2

≤C‖u‖p−1
L∞

(
‖∇su‖2L2 +‖∇s−2ut‖2L2

)
. (4.2)

It follows from (4.1)-(4.2) and α>1 that

d

dt

(
‖∂tu‖2Hs−2 +α2‖u‖2Hs−1 +α2‖u‖2Hs

)
≤C‖u‖p−1

L∞

(
‖∂tu‖2Hs−2 +α2‖u‖2Hs−1 +α2‖u‖2Hs

)
. (4.3)

Applying the Gronwall inequality to (4.3), we obtain

‖∂tu‖2Hs−2 +α2‖u‖2Hs−1 +α2‖u‖2Hs ≤C
(
‖u1‖2Hs−2 +α2‖u0‖2Hs

)
exp

(∫ t

0

‖u(τ)‖p−1
L∞ dτ

)
,

which implies

‖u‖2Hs ≤C(‖u1‖2Hs−2 +‖u0‖2Hs)exp(

∫ t

0

‖u(τ)‖p−1
L∞ dτ).

5. Long-time existence
To end this paper, we give the proof of Theorem 1.2 in this section. We first recall

an important estimate on the Littlewood-Paley multipliers, namely Bernstein inequality
(see [14])

‖∇s∆jf‖Ll ≤C2js‖∆jf‖Ll ≤C2js‖f‖Ll ,

for all s≥0, and all 1≤ l≤∞.
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Proof. (The proof of Theorem 1.2.) By Lemma 3.4, we find that for q≥4,

‖∆je
±iαtp(|∇|)f‖LqtL∞x ≤Cα

− 1
q (2j)

n
2 ‖∆jf‖L2 . (5.1)

In the following, for β>0, we are going to derive an estimate for

‖u‖LqtBβ∞,∞ =
∥∥∥‖χ(∇)u‖L∞x +sup

j≥1

(
2jβ‖∆ju‖L∞x

)∥∥∥
Lqt

.

By (5.1) and the Bernstein inequality, we have for j≥1∥∥∥2jβ‖∆je
±iαp(|∇|)tu0‖L∞x

∥∥∥
Lqt

≤Cα−
1
q 2j(

n
2 +β)‖∆ju0‖L2 ≤Cα−

1
q ‖u0‖H n

2
+β . (5.2)

Similarly,∥∥∥2jβ‖∆je
±iαp(|∇|)t 1

α|∇|
√

1+ |∇|2
u1‖L∞x

∥∥∥
Lqt

≤Cα−1− 1
q 2j(

n
2 +β)‖∆ju1‖L2

≤Cα−1− 1
q ‖u1‖H n

2
+β . (5.3)

On the other hand, we have from the Minkowski inequality, (5.1) and the Cauchy
inequality that

‖χ(∇)e±iαp(|∇|)tu0‖LqtL∞x ≤C

∥∥∥∥∥∥
2∑

j=−∞
‖∆je

±iαp(|∇|)tu0‖L∞x

∥∥∥∥∥∥
Lqt

≤C
2∑

j=−∞
‖∆je

±iαp(|∇|)tu0‖LqtL∞x

≤Cα−
1
q

2∑
j=−∞

2
n
2 j‖∆ju0‖L2

≤Cα−
1
q (

2∑
j=−∞

2nj)
1
2 (

2∑
j=−∞

‖∆ju0‖2L2)
1
2 ≤Cα−

1
q ‖u0‖L2 .

(5.4)

Similarly,

‖χ(∇)e±iαp(|∇|)t
1

α|∇|
√

1+ |∇|2
u1‖LqtL∞x ≤Cα

−1− 1
q (

2∑
j=−∞

2nj)
1
2 (

2∑
j=−∞

‖∆j
1

|∇|
u1‖2L2)

1
2

≤Cα−1− 1
q ‖u1‖Ḣ−1 . (5.5)

Thus (5.2)-(5.5) and α>1 give

‖∂tG(x,t)∗u0 +G(x,t)∗u1‖LqtBβ∞,∞ ≤Cα
− 1
q ‖−→u 0‖X . (5.6)

By the Minkowski inequality and (4.1), the property of zero order pseudo-differential
operator, Lemma 2.1 and the embedding H

n
2 +β ↪→L∞, we have, for t∈ [0,T ],∥∥∥2jβ‖∆j

∫ t

0

e±iαp(|∇|)(t−τ) ∆

α|∇|
√

1+ |∇|2
f(u)dτ‖L∞x

∥∥∥
Lqt
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≤α−1

∫ T

0

∥∥∥2jβ‖∆je
±iαp(|∇|)(t−τ) ∆

|∇|
√

1+ |∇|2
f(u)‖L∞

∥∥∥
Lqt

dτ

≤Cα−1

∫ T

0

2j(
n
2 +β)α−

1
q ‖∆je

∓ip(|∇|)τ ∆

|∇|
√

1+ |∇|2
f(u)(τ)‖L2dτ

≤Cα−1− 1
q

∫ T

0

‖f(u)(τ)‖
H
n
2

+βdτ ≤Cα−1− 1
q

∫ T

0

‖u(τ)‖p−1
L∞ ‖u(τ)‖

H
n
2

+βdτ

≤Cα−1− 1
q

∫ T

0

‖u(τ)‖p
H
n
2

+βdτ. (5.7)

By the Minkowski inequality, Lemma 2.1, the Cauchy inequality and the property of
zero order pseudo-differential operator, we have, for t∈ [0,T ],

‖χ(∇)

∫ t

0

e±iαp(|∇|)(t−τ) ∆

α|∇|
√

1+ |∇|2
f(u)dτ‖LqtL∞x

≤C
2∑

j=−∞

∫ T

0

‖∆je
±iαp(|∇|)(t−τ) ∆

α|∇|
√

1+ |∇|2
f(u)‖LqtL∞x dτ

≤Cα−1− 1
q

∫ T

0

2∑
j=−∞

(2j)
n
2 ‖∆je

∓iαp(|∇|)τ ∆

|∇|
√

1+ |∇|2
f(u)(τ)‖L2dτ

≤Cα−1− 1
q

∫ T

0

‖f(u)(τ)‖L2dτ

≤Cα−1− 1
q

∫ T

0

‖u‖p
H
n
2

+βdτ. (5.8)

Estimates (5.7) and (5.8) give, for t∈ [0,T ],∥∥∥∥∥
∫ t

0

e±iαp(|∇|)(t−τ) ∆

α|∇|
√

1+ |∇|2
f(u)

∥∥∥∥∥
LqtB

β
∞,∞

≤Cα−1− 1
q

∫ T

0

‖u(τ)‖p
H
n
2

+βdτ. (5.9)

Combining (2.4), (5.6) and (5.9) yields, for t∈ [0,T ],

‖u‖LqtBβ∞,∞ ≤C
(
α−

1
q ‖−→u 0‖X +α−1− 1

q

∫ T

0

‖u(τ)‖p
H
n
2

+βdτ
)
. (5.10)

Define

M(T ) =

∫ T

0

‖u‖p−1
L∞ dt.

We get from the Young inequality, the embedding Bβ∞,∞ ↪→L∞, (5.10) and Lemma 4.1
that

M(T )≤T 1− p−1
q

(∫ T

0

‖u‖p−1· q
p−1

L∞ dt
) p−1

q

=T 1− p−1
q ‖u‖p−1

LqtL
∞
x

≤CT 1− p−1
q

(
α−

1
q ‖−→u 0‖X +α−1− 1

q

∫ T

0

‖u(t)‖p
H
n
2

+βdt
)p−1

≤CT 1− p−1
q

(
α−

1
q ‖−→u 0‖X +α−1− 1

q

∫ T

0

‖−→u 0‖pXe
p
2M(t)dt

)p−1
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≤CT 1− p−1
q

(
α−

1
q ‖−→u 0‖X +α−1− 1

q ‖−→u 0‖pXTe
p
2M(t)

)p−1

≤C1T
1− p−1

q α−
p−1
q ‖−→u 0‖p−1

X

(
1+‖−→u 0‖p−1

X Te
p
2M(t)

)p−1

. (5.11)

Suppose that

M(T )≤C1T
1− p−1

q ‖−→u 0‖p−1
X . (5.12)

By (5.12), we can choose α>1 sufficiently large such that

α−
p−1
q

(
1+‖−→u 0‖p−1

X Te
p
2M(T )

)p−1

≤α−
p−1
q

(
1+‖−→u 0‖p−1

X TeC1T
1− p−1

q ‖−→u 0‖p−1
X

)p−1

≤ 1

2
.

(5.13)

It follows from (5.11) and (5.13) that

M(T )≤ 1

2
C1T

1− p−1
q ‖−→u 0‖p−1

X . (5.14)

By the bootstrap principle, we deduce from (5.14) that (5.12) actually holds. Thus
from the local existence Theorem 1.1 and the blowup criterion Lemma 4.1, the Cauchy
problem (1.1) admits a unique smooth solution satisfying u∈C([0,T ];Hs).

Acknowledgements. The authors thank warmly the anonymous reviewers for
their pertinent comments and suggestions, which greatly improved this manuscript. The
first author is supported by the National Nature Science Foundation of China (Grant
No. 12001073), the Natural Science Foundation of Chongqing (Grant No. cstc2020jcyj-
msxmX0709), the Natural Science Foundation of Chongqing (Grant Nos. cstc2020jcyj-
jqX0022 and cstc2018jcyjAX0010) and the Science and Technology Research Program
of Chongqing Municipal Education Commission (Grant No. KJQN201900543). The
second author is supported by the 2020 Higher Career Development Program (Grant
No. 7010702801), the Innovation training program for college Students (Grant No.
2019367) and the National Nature Science Foundation of China (Grant No. 61673006).

REFERENCES
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