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MICROSCOPIC AND MACROSCOPIC TRAFFIC FLOW MODELS
INCLUDING RANDOM ACCIDENTS∗
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Abstract. We introduce microscopic and macroscopic stochastic traffic models including traffic
accidents. The microscopic model is based on a Follow-the-Leader approach whereas the macroscopic
model is described by a scalar conservation law with space-dependent flux function. Accidents are
introduced as interruptions of a deterministic evolution and are directly linked to the traffic situation.
Based on a Lax-Friedrichs discretization, convergence of the microscopic model to the macroscopic
model is shown. Numerical simulations are presented to compare the above models and show their
convergence behaviour.
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1. Introduction
Throughout the world, traffic accidents are a serious problem and cause consider-

able societal costs. So there is a great interest in understanding how accidents may
happen and how they may be reduced. Mathematical models can help at least to an-
alyze traffic scenarios and probably allow for a reliable prediction. In particular, there
exist a variety of different mathematical approaches to model traffic accidents, for in-
stance ordinary differential equations [6], kinetic models [11], conservation laws [26,27],
queuing theory [22], and statistical methods [1,24,31]. Recently, some works have been
published dealing with the question how to reduce the risk of an accident. Especially, by
introducing autonomous vehicles it is suggested to reduce the variation in the vehicles’
velocities to decrease the likeliness of an accident [28,34].

For the detailed description of the traffic dynamics, we distinguish between two
scales, i.e. microscopic and macroscopic. In a microscopic setting each vehicle is con-
sidered as a particle that moves on a road and adjusts its velocity according to the
behaviour of other vehicles in front. Such models have been introduced by Pipes [29]
in 1953. The dynamics are governed by ordinary differential equations (ODE) for each
vehicle depending on the distance of the vehicle in front and therefore called Follow-
the-Leader models [2, 14, 20, 33]. On the other hand, a macroscopic approach considers
traffic as a density that floats on the road. These kind of traffic models were introduced
by Lighthill-Whitham-Richards (LWR) in [25, 30] and have been further extended e.g.
in [12, 13, 21, 32]. Several works also covered the problem of convergence of the micro-
scopic to the macroscopic model, for instance [3, 5, 7, 10,19,20].

In this paper, we introduce two models based on deterministic traffic dynamics
which face accidents as a stochastic disturbance. Similar ideas of a deterministic sys-
tem that is interrupted by random events have been considered in production networks,
e.g. [8,18]. They have been also extended to a model with production-dependent break-
downs [15]. A similar model for pedestrians was developed in [17] where individuals
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switch randomly between stop and go. Here, we adapt the idea of process-dependent
interruptions to a hierarchy of traffic models and investigate their relation applying a
convergence analysis. Specifically, we focus on two types of accidents: First, we con-
sider accidents due to high traffic flux which correspond to the idea that accidents are
more likely having both, a high density and high velocity of the vehicle. Second, we
investigate rear-end collisions which for example can be observed at tailbacks.

In contrast to other accident models, we consider a framework in which traffic and
accidents are connected in a bi-directional relation. More precisely, for the microscopic
model we add traffic accidents by adjusting the velocity function of the piecewise de-
terministic ODE-system in the area where an accident happens (characterized by an
accident position and an accident size). On the other hand, the probability measures
governing the accident evolution are determined by the vehicle positions. The macro-
scopic model under consideration was developed in [16] and presents a deterministic
dynamic that is interrupted by random accidents. The time and the position of an
accident are modeled dependent on the traffic situations that are observed. An accident
then influences the flux function and reduces the capacity of the system in the area of
the accident. So the flux function may be space dependent, see for example [23,36,37].
We also study the convergence in this framework. Concentrating on a microscopic sub-
model in which the stochastic influences are governed by the macroscopic model, we use
Lagrangian variables and show their convergence to a related conservation law based on
a Lax-Friedrichs discretization. An equivalence theorem then provides a limit for the
conservation law whose weak solution is just the macroscopic traffic density in Eulerian
variables.

This paper is organized as follows: In Section 2.1 we introduce a microscopic traf-
fic accident model based on a Follow-the-Leader approach and provide the conditional
transition probabilities for a stochastic process. Afterwards in Section 2.2, we present
the corresponding LWR-type macroscopic traffic model. Using the macroscopic stochas-
tic components regarding the accidents for a microscopic model we define a third model
and investigate this micro-macro-limit in the Sections 2.3 and 3. In Section 4, we pro-
vide the numerical treatment for both, the microscopic and macroscopic model, and
additionally present a numerical convergence analysis using different error measures.

2. Traffic accident models
In this section we present the microscopic and macroscopic traffic accident models

and describe how accidents can be incorporated.

2.1. Microscopic model. We introduce a standard deterministic Follow-the-
Leader microscopic traffic model (see e.g. [20]) and consider one lane of a one-way-street
with a total number of N ∈N cars. The road is modelled by an interval [a,b], a<b
on which we assume periodic boundary conditions. Let xi(t) denote the position of
vehicle i∈{1,...,N} at time t>0. The development of the position of any vehicle with
respect to the time is given by the following system of ordinary differential equations
for i= 1,...,N−1

ẋi(t) =v

(
L

∆xi(t)

)
, ẋN (t) =v

(
L

x1−xN +(b−a)

)
. (2.1)

The parameter L>0 denotes the length of the cars and ∆xi(t) =xi+1(t)−xi(t) the
distance between the fronts of vehicle i and i+1 at time t. Note that ∆xi(t) is always
at least L, such that the argument in the velocity function in (2.1) is smaller or equal
to 1. We assume v :R→R to be a Lipschitz continuous function modeling the velocity.
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In the case of a Follow-the-Leader model a reasonable choice is v(ρ) = 1−ρ for ρ∈ [0,1].
Cars are not allowed to overtake each other such that they move in a fixed order.

To adapt to different road capacities one may add a road capacity function croad :
R→R depending on the position of a vehicle. In our particular case this function will
be uniformly bounded, piecewise constant and have at most finitely many jumps. Using
this coefficient we may incorporate different speed limits at different locations on the
road. Then for i= 1,...,N−1 the Equation (2.1) expands to

ẋi(t) = croad(xi(t))v

(
L

∆xi(t)

)
, ẋN (t) = croad(xN (t))v

(
L

x1−xN +(b−a)

)
. (2.2)

In the model, accidents consist of three components: The location, the size and
the capacity reduction of an accident. The location represents the exact position where
the accident happens and then starts to affect the system. The size is the parameter
that models to which length it affects the system of vehicles. Combining the accident
location and the accident size we obtain an interval on which the accident has some
influence. The extent of the accident, now considered in a fraction of how much of
the road capacity is being reduced by the accident, is given in the last component, the
capacity reduction.

If there is more than only one accident, the leftover road capacities are multiplied
to obtain the resulting road capacity. In the model an accident has the same impact on
the road as an additional speed limit which also reduces the number of vehicles passing
a certain position on the road.

To incorporate the accidents in the system of vehicle positions, we introduce an
accident capacity function. Assume M ∈N0 to be the number of accidents being active.
We equip each accident with an index j∈{1,...,M} and use the vectors p∈RM for the
positions, s∈RM+ for the sizes and c∈ [0,cmax]M for the capacity reductions of each
accident, for cmax∈ [0,1). Then the accident capacity function is given by

cac :R→R, x 7→
M∏
j=1

(
1−cj1[

pj−
sj
2 ,pj+

sj
2

](x)
)
.

The index of the accident capacity function is meant to contain all the necessary infor-
mation about the current accident situation. Then the system (2.2) extends to

ẋi(t) = croad(xi(t))cac(xi(t))v

(
L

∆xi

)
, i= 1,...,N−1

ẋN (t) = croad(xN (t))cac(xN (t))v

(
L

x1−xN +(b−a)

)
.

(2.3)

To obtain a well defined model, we assume that for the initial vehicle positions it holds

L< |xi+1(0)−xi(0)|, L< |x1(0)−xN (0)+b−a|
a≤x1<...<xN <b, for i= 1,...,N−1.

(2.4)

This condition ensures that the distance between any two cars at the initial state is
bounded from below by the vehicle length and that the cars are ordered according to
their indices in a road segment with finite length.

In this model we do not actually want to have a vehicle crashing into the other,
in terms that their position overlap. To ensure that our model is well defined in that
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sense and does not generate collisions, we require the following condition on the time
grid (tj)j∈N: Let for any vehicle i= 1,...,N−1, and any time with tj+1 = tj+∆t hold
true

xi+1(tj+1)−xi(tj+1)−L≥0, x1(tj+1)−xN (tj+1)−L+(b−a)≥0

assuming that xi+1(tj)−xi(tj)−L≥0. This condition makes sure that the difference
between the front of two vehicles is at least the vehicle length, such that the rear vehicle
does not cause a collision. The inequality can be achieved by setting the step size ∆t
small enough. We use an Euler approximation to derive a condition for ∆t:

xi+1(tj+1)−xi(tj+1)−L= xi+1(tj)+∆tc(xi+1(tj))

(
1− L

xi+2(tj)−xi+1(tj)

)
−
(
xi(tj)+∆tc(xi(tj))

(
1− L

xi+1(tj)−xi(tj)

))
−L

≥ xi+1(tj)−xi(tj)−∆tvmax

(
1− L

xi+1(tj)−xi(tj)

)
−L

≥ (xi+1(tj)−xi(tj)−L)︸ ︷︷ ︸
≥0

(
1−∆tvmax

L

)
.

The first factor is non-negative per assumption. Thus, the whole product remains
positive if (

1−∆tvmax
L

)
≥0 ⇔ ∆t≤ L

vmax
. (2.5)

Nevertheless, our model will capture accidents, but they are rather generated artificially
by some probability distributions that model the likeliness of an accident. We assume
that there are basically two types of accidents. The first type consists of accidents due
to both, high traffic density and high velocity of the vehicles. For the second type one
may also think of a higher likeliness of accidents when a driver faces an increase of the
traffic density (e.g. at the end of a traffic jam). Such a rear-end collision at the end of a
traffic jam often is caused by drivers misjudging the distance and speed of the vehicles
in front of them.

To model the first type of accidents we note that in general at a higher speed of the
cars an accident is more likely. Additionally, a higher density of cars leads to a higher
likelihood of an accident. Thus, it is reasonable to use the product of both to define
a measure for the probability of an accident given a time and a range in space. This
choice also reflects that if we have only one vehicle on our road (density of 0) and even
the speed is vmax, we do not expect any accidents of this type. The same effect applies
to the situation where we have a maximum density, and we face a bumper-to-bumper
situation (i.e. cars have no buffer between them). Then, the velocity is zero and thus
an accident will not be possible.

To be more precise about the measure for the accident location we introduce some
definitions. For each vehicle i= 1,...,N−1 we define a local density by

ρi(t) =
L

xi+1(t)−xi(t)
, ρN (t) =

L

x1(t)−xN (t)+(b−a)
.
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Taking into account periodic boundary conditions, we define a piecewise-constant func-
tion hac :R×R+→R for i= 1,...,N−1 by

hac(x,t) =


croad(xi(t))cac(xi(t))ρi(t)v(ρi(t)), xi(t)≤x<xi+1(t)

croad(xN (t))cac(xN (t))ρN (t)v(ρN (t)), x∈ [xN (t),b]∪ [a,x1(t))

0, else.

A time and accident situation dependent constant is defined by

CFac(t) =

∫
R
hac(x,t)dx

=

N−1∑
i=1

croad(xi(t))cac(xi(t))ρi(t)v(ρi(t))(xi+1(t)−xi(t))

+croad(xN (t))cac(xN (t))ρN (t)v(ρN (t))(x1(t)−xN (t)+(b−a)). (2.6)

Here, CFac(t) is finite if (2.4) holds because the road capacities, local densities and
velocities are finite and the sum of the vehicle distances can at most amount to the
length of the road.

Using (2.6), we construct a family of probability measures (µFact )t≥0 on (R,B(R))
for the position of an accident of type 1 at time t and a given accident situation by

µFact (B) =

∫
B
hac(x,t)dx

CFac(t)
(2.7)

for B∈B(R), the Borel σ-algebra over R.
A probability measure can also be defined for accident type 2. This should be

reflecting situations where accidents occur at the tail of a traffic jam or any other
increase in the traffic density. Mathematically, this can be expressed by considering
the difference of the local densities of two consecutive vehicles. If such a difference is
positive we observe an increase in the local densities which corresponds to denser traffic
in front of a vehicle. Denser traffic also corresponds to vehicles with lower speed and
thus evokes the risk of a rear-end collision. Therefore, we set

Dρ+(t) =

N−1∑
i=1

(ρi+1(t)−ρi(t))+ +(ρ1(t)−ρN (t))+, (2.8)

where (x)+ = max{x,0}. A family of probability measures (µDt )t≥0 on (R,B(R)) for the
position of an accident type 2 can then be constructed by

µDt (B) =

∑N−1
i=1 εxi(t)(B)(ρi+1(t)−ρi(t))+ +εxN (t)(B)(ρ1(t)−ρN (t))+

Dρ+(t)
(2.9)

for B∈B(R) and εx(B) being the Dirac measure in x for B.
To combine both accident types, we choose a parameter β∈ [0,1] which describes the

share of accidents of type 1. Accordingly, accidents of type 2 occur with share (1−β).
The family of probability measures (µpost,ac)t≥0 on (R,B(R)) reflecting the position of an
accident is given by

µpost,ac(B) =βµFact (B)+(1−β)µDt (B) (2.10)



1584 TRAFFIC MODELS INCLUDING RANDOM ACCIDENTS

for B∈B(R).
As the accident avoidance plays an important role, we remark that for accidents

of type 2, the accident risk can be decreased if the distances between the individual
vehicles are of similar length. This reduces large oscillations in the local density functions
and therefore decreases Dρ+. Such an effect can be achieved by aligning the vehicle
velocities. On the other hand accidents of type 1 can be considered as a background
accident noise which is not directly influenced by certain driver behaviours. Therefore,
an accident prevention strategy is not that obvious for this type of accidents.

So far only the probability distribution for the position of an accident has been
investigated. To model an accident properly, we also assign a size and a road capacity
reduction. We introduce the probability measures µs and µcap on (R,B(R)) for the size
and the capacity reduction of the accident respectively. For instance, for both measures
one could choose a uniform distribution on some appropriate interval.

In a next step we define a time-discrete stochastic process that models the whole
accident traffic model. Therefore, let us now consider an equidistant time grid (tn)n∈N
with step size ∆t>0. We introduce a stochastic process X= (Xn,n∈N) in a state space
E(N,K), where

Xn= (xn,Mn,pn,sn,cn,un,ln)∈E(N,K),

E(N,K) =RN ×N0×RK×RK×RK×{−1,0,1}×N

on some probability space (Ω,A,P ). Set K ∈N large enough to capture all accidents
that may happen. As before, N ∈N determines the total number of vehicles.

We denote for any time tn, xni the position of vehicle i, Mn the total number of
accidents at tn, pnj the position of accident j, snj the size of accident j and cnj the
capacity reduction of accident j. Let un be the component that indicates the kind of
event that happens. We assign un=−1 in the case that an accident dissolves, whereas
un= 1 indicates when a new accident is going to occur and un= 0 in the case neither
of these happen in tn. The component ln is an additional parameter for the accident
index that is going to dissolve, in case an accident dissolves at tn.

To determine when and which event occurs, we use rate functions that describe
the likeliness of an event given the current traffic situation. The ideas for these rate
functions are based on concepts introduced in [16]. We choose an appropriate rate
function ψ :E×R+→R+. The rate depends on two given parameters λF >0 and λD>0
for the likeliness of an accident due to high flux or ends of tailbacks, respectively. They
both may depend on β, i.e. λF =βk1 and λD = (1−β)k2 with two constants k1,k2∈R+.

Additionally, the rate function takes the two constants CFac defined as in (2.6) and
Dρ+ defined as in (2.8) into account. The larger CFac the higher the risk of an accident
of type 1. The larger Dρ+ the more increases in the local density functions can be
observed (which more or less correspond to ends of traffic jams) and thus increases the
general risk of an accident of type 2. The rate function for a new accident is given by
the function λA :E×R+→R and

λA(y,t) =λFCFac(t)+λDDρ+(t).

The accident situation is now incorporated into CFac via information out of the stochas-
tic process. We extend λA by introducing a rate λR>0 for the dissolution of an accident
weighted by the number of accidents in

ψ(y,t) =λFCFac(t)+λDDρ+(t)+λRM(t). (2.11)
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This enables us to define the transition probabilities of the stochastic process. Let ∆t>0
satisfy (2.5). The probabilities for the family (un)n∈N describing the kind of event which
is going to happen is given by (2.12) - (2.14) using the rate function introduced in (2.11)

P (un+1 = 0 |Xn) =1−∆tψ(Xn) (2.12)

P (un+1 = 1 |Xn) =∆tψ(Xn)
λA

λA+MnλR
(2.13)

P (un+1 =−1 |Xn) = ∆tψ(Xn)
MnλR

λA+MnλR
. (2.14)

Using the family of parameters (un)n∈N we can directly specify the conditioned transi-
tion probabilities for the number of accidents in a next time step

P (Mn+1 =Mn |Xn) =10(un) (2.15)

P (Mn+1 =Mn+1 |Xn) =11(un) (2.16)

P (Mn+1 =Mn−1 |Xn) =1−1(un). (2.17)

After having chosen un there obviously is no uncertainty in the development of the
evolution of the number of accidents. Another family of random variables (ln)n∈N is
used to determine which accident is going to be dissolved at time tn if this case occurs.
As we want to ensure that there is no underlying pattern in the dissolving accidents we
uniformly pick an index of the currently active accidents in (2.18)

P (ln+1 =k |Xn) =1[0,Mn](k)
1

Mn
. (2.18)

The Equations (2.19) and (2.20) correspond to Euler approximations of the system of
ordinary differential equations in (2.3) and model the position of each vehicle

P
(
xn+1
i =xni +∆tcroad(x

n
i )cac(x

n
i )v

(
L

∆xni

)
|Xn

)
= 1, i= 1,...,N−1 (2.19)

P
(
xn+1
N =xnN +∆tcroad(x

n
N )cac(x

n
N )v

(
L(N)

xn1 −xnN +(b−a)

)
|Xn

)
= 1. (2.20)

As a next step we consider the transition probabilities of the three accident parameters

P (pn+1
k =pnk |Xn) =10(un)+11(un)(1−1Mn+1(k))+1−1(un)(1−1ln(k)) (2.21)

P (pn+1
k = 0 |Xn) =1−1(un)1ln(k) (2.22)

P (pn+1
k ∈B1 |Xn) =11(un)1Mn+1(k)µpostn,a(B1) (2.23)

P (sn+1
k =snk |Xn) =10(un)+11(un)(1−1Mn+1(k))+1−1(un)(1−1ln(k)) (2.24)

P (sn+1
k = 0 |Xn) =1−1(un)1ln(k) (2.25)

P (sn+1
k ∈B2 |Xn) =11(un)1Mn+1(k)µs(B2) (2.26)

P (cn+1
k = cnk |Xn) =10(un)+11(un)(1−1Mn+1(k))+1−1(un)(1−1ln(k)) (2.27)

P (cn+1
k = 0 |Xn) =1−1(un)1ln(k) (2.28)

P (cn+1
k ∈B3 |Xn) =11(un)1Mn+1(k)µcap(B3) (2.29)



1586 TRAFFIC MODELS INCLUDING RANDOM ACCIDENTS

for all k= 1,...,K and B1,B2,B3∈B(R). In the Equations (2.21) - (2.23) the transition
of the position of the accidents from time step n to n+1 is modeled. The first case (2.21)
is the steady state where either no event occurs (un= 0) or the considered line does not
correspond to the one in which a new accident would be denoted (un= 1) or an old
one dissolved (un=−1). The dissolution of an accident in a certain line is represented
in the second expression (2.22) whereas the position of a new accident is introduced
in the third Equation (2.23). In the case where an accident dissolves we check for the
variables un (which event occurs) and ln (which accident potentially dissolves). In the
latter we used the probability measure µpostn,ac from (2.10) in the (n+1)-st accident entry
to determine a new accident’s position.

The treatment of the accident size variables (2.24) - (2.26) follows exactly the same
pattern as with the accident positions. The same applies to the capacity reduction in
(2.27) - (2.29).

2.2. Macroscopic model. In contrast to the microscopic model, in the macro-
scopic model we do not describe the behavior of each vehicle. The variable of interest is
the traffic density function and the dynamics are based on the LWR model (e.g. [25]).
Basically the macroscopic model can be described by a conservation law with the fol-
lowing space dependent flux

Fac(x,ρ) = cac(x)croad(x)f(ρ), (2.30)

where f : [0,1]→ [0,∞) is a twice continuously differentiable LWR-type function (i.e.
f(ρ) =ρv(ρ) with v(ρ) = 1−ρ) that satisfies:

f(0) = 0 =f(1), f ′′≤ c<0, for some c≤0, ∃! ρ∗∈ (0,1) s.t. f ′(ρ∗) = 0. (2.31)

Similarly to the microscopic model the function croad :R→R+ represents the general
road capacity. We use the function cac :R→R+ to model the accidents in the traffic
model. The index ac provides information about the current active accidents. In the
case of several accidents, say M ∈N0, we assign each of them an index j∈{1,...,M}.
For accident j we denote the position pj ∈R, the size sj ∈R+ and the capacity reduction
by cj ∈ [0,cmax], where cmax∈ [0,1). Then cac is given by

cac(x) =

M∏
j=1

(
1−cj1[pj−

sj
2 ,pj+

sj
2 ]

(x)
)
.

All together we end up with the following Cauchy problem

ρt+(Fac(x,ρ))x= 0, ρ(x,0) =ρ0(x), (2.32)

where ρ0 describes the initial density on the road. Under some assumptions on these
functions we obtain a unique entropy solution to the Cauchy problem (2.32) in the sense
of a function in BV (R). As it turns out we achieve this entropy solution if we demand
that

• f is a LWR flux, i.e. it fulfills the conditions (2.31) and f,f ′∈L∞(R)

• ρ0∈BV (R), cac(x)croad(x)∈C2(R)∩TV (R)∩L∞(R)

• (cac(x)croad(x))′∈L∞(R)∩L1(R), (cac(x)croad(x))′′∈L1(R)

For a proof we refer to [16].
This section is proceeded quite similarly to what was done for the microscopic

model. First we are interested in where an accident is going to occur. We consider two
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different scenarios for an accident. Accidents according to type 1 are caused by a high
value of the flux (2.30). Therefore, we define a time- and accident-dependent constant

CMac
Fac (t) =

∫ b

a

Fac(x,ρ(x,t))dx,

where a<b and are also allowed to be −∞ and ∞. The integral is well defined if Fac
fulfills the conditions for the existence of an entropy solution since

|CMac
Fac (t)|≤

∫ b

a

|Fac(x,ρ(x,t))|dx≤‖croad‖∞‖v‖∞
∫ b

a

ρ(x,t)dx.

For any B∈B([a,b]) and ρ∈BV ([a,b]×R+), this allows to define the following family

of probability measures (µFac,Mac
t )t≥0 on ([a,b],B([a,b])) by

µFac,Mac
t (B) =

∫
B
Fac(x,ρ(x,t))dx

CMac
Fac

(t)
. (2.33)

The latter measure models the probability of having an accident of type 1 in the given
Borel set.

Accidents of type 2 were modelled due to tailbacks of traffic jams in the microscopic
model using increases in the local density functions. The corresponding way to model
this in a macroscopic model, would be by considering the derivative of the traffic density
function. Since we have to work with weak solutions and functions of bounded variation
(BV) it is not possible to use classical derivatives. Fortunately, as shown for example
in [9], derivatives of BV functions correspond to signed Radon measures Dρ given by
the total variation TVρ on B∈B([a,b])

|Dρ|Mac(B,t) = sup

{∫
B

ρ(x,t)φ′(x)dx |φ∈C1
c (B), |φ|≤1

}
.

We can split this measure up into a positive and a negative part using the Hahn decom-
position (see e.g. [9]) constituting an increase or a decrease in the density respectively
by

|Dρ|Mac(B,t) =Dρ+,Mac(B,t)+Dρ−,Mac(B,t).

We are particularly interested in the positive part since we want to detect tailbacks of
traffic jams that can be characterized by increasing values of the flux. This leads us to
the following family of probability measures (µD,Mac

t )t≥0 on ([a,b],B([a,b]))

µD,Mac
t (B) =

Dρ+,Mac(B,t)

Dρ+,Mac([a,b],t)
(2.34)

for the probability of an accident of type 2 in B∈B([a,b]).

If we assume that accidents of type 1 and type 2 occur with a probability of βMac∈
[0,1] and 1−βMac respectively, we end up with the following overall family of probability

measures (µpos,Mac
t,ac )t≥0 on ([a,b],B([a,b])) for the position of an accident

µpos,Mac
t,ac (B) =βMacµFac,Mac

t (B)+(1−βMac)µD,Mac
t (B) (2.35)

for B∈B([a,b]).
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After having investigated the position of an accident, we will now care about whether
an accident happens. Therefore, we consider a stochastic process containing all neces-
sary information of our system. As in [16] we define a state space for the stochastic
process

EMac=RN×RN× [0,1]N×BV (R),

and set EMac=σ(EMac) the smallest σ-algebra over EMac. Here, EMac models the
whole state of the accident model and consists of variables E3z= (p,s,c,ρ). The posi-
tion of accident j is denoted in pj , whereas the size and capacity reduction are expressed
by sj and cj . The traffic density ρ denotes the weak unique entropy solution of (2.32).

We set µs,Mac and µcap,Mac as two probability measures on (R,B(R)) modeling the
sizes and capacity reductions of accidents, respectively.

Furthermore, let λMac
R >0 be the rate of dissolving an accident, λMac

F >0 the rate
of an accident type 1 and λMac

D >0 the rate of an accident type 2. Then we define the
overall rate for the occurrence of an accident for a given state z∈EMac as

λMac
A (z,t) =λMac

F CMac
Fac (t)+λMac

D Dρ+(R,t).

Also allowing for the dissolution of an accident the rate of an event (new accident or
dissolution of an accident) for a given state z∈EMac is defined by

ψ(z,t) =λMac
F CMac

Fac (t)+λMac
D Dρ+(R,t)+λMac

R M(t),

where M(t)∈N describes the number of currently active accidents in z. Again ac is
dependent on the state of the process. To include and exclude accidents in our model,
we define two functions

m(c) = min{i∈N | ci= 0}
πi(u,v) = (v1,...,vi−1,u,vi+1,...)∈RN.

For z∈EMac and B∈EMac the transition probability of moving from state z into any
state of B can be given as

η(z,B) =
1

λMac
R

∑
i∈N1{ci>0}+λMac

A

(
λMac
R

∑
i∈N

1{ci>0} ε(p,s,πi(0,c),ρ)(B)

+λMac
A

∫
R2×[0,1)

ε(πm(c)(p̃,p),πm(c)(s̃,s),πm(c)(c̃,c),ρ)(B)

d(µpos,Mac⊗µs,Mac⊗µcap,Mac)(p̃, s̃, c̃)
)
.

Between the stochastic jumps given by new events, the system evolves in a deterministic
way. We denote the deterministic evolution of the system as

φt(p0,s0,c0,ρ0) = (p0,s0,c0,ρ(t)),

where ρ is the unique entropy solution to (2.32) and p0, s0, c0 and ρ0 are given initial
data. To construct the stochastic process, we now use the idea of a thinning algorithm
similarly applied as in [15] to construct a sequence of event times (Tn)n∈N. For tn∈ [0,T ]
and zn∈EMac we then have

P (Tn+1≤ t) = 1−e−
∫ t
tn
ψ(φτ−tn (zn),τ)dτ

P (Zn+1∈B|Tn+1 = t) =η(φt−tn(zn),B)
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for t≥ tn and B∈EMac.
Let us now define the stochastic process X= (X(t))t∈[0,T ] having values in EMac as

X(t) =Zn, for t∈ [Tn,Tn+1),

where (Tn)n∈N and (Zn)n∈N are a sequence of event times and of states generated by
the transition measure η, respectively.

2.3. A microscopic model with macroscopic accidents. In the following
sections we will be interested in whether we obtain some convergence of the microscopic
model against the macroscopic model if we increase the number of vehicles on the road.
To show such a convergence, we create another third model in between, which still
will be of a microscopic nature but will have accidents according to the corresponding
macroscopic model. This allows for a separation of the proof. One step will be to show
convergence of the two microscopic models, where we have to treat the randomness of the
occurrence of accidents. In the second part of the proof any stochastic components can
be left out, and we only have to care about the micro-macro limit of the microscopic
model with macroscopic accidents and the macroscopic model (see Section 3). All
variables concerned with this third model will be marked with a tilde symbol.

Therefore, let us define a state space for the third stochastic process using the state
space EMac from the macroscopic model

ẼN =EMac×RN ,

depending on the total number of vehicles in the system. We denote ẼN 3 ỹ= (y,x̃)
where y is taken from the macroscopic state space and x̃ is the vector of the positions
of all N cars, where the i-th entry represents the position of vehicle i. Let us define
a discrete-time stochastic process X̃= (X̃n)n∈N on a time grid (tn)n∈N satisfying ∆t=
tj+1− tj , j∈N, with

X̃n= (XMac(tn),x̃n).

For the vehicle position x̃ we consider similar equations as in Section 2.1 but now
using the accidents from the macroscopic model. To be specific, the system of ordinary
differential equations for the positions of the cars are now given by

˙̃xi(t) = croad(x̃i(t))c̃ac(x̃i(t))v

(
L

x̃i+1(t)− x̃i(t)

)
, i= 1,...,N−1

˙̃xN (t) = croad(x̃N (t))c̃ac(x̃N (t))v

(
L

x̃1− x̃N +(b−a)

)
.

(2.36)

Assume that M denotes the number of currently active accidents in the macroscopic
model. Then the function that regulates the capacity reductions due to accidents is
given by

c̃ac :R→R, x 7→
M∏
j=1

(
1−cMac

j 1[
pMacj −

sMac
j
2 ,pMacj +

sMac
j
2

](x)
)
,

where the accident parameters pMac
j ,sMac

j ,cMac
j for the position, size and capacity reduc-

tion are the ones taken from the macroscopic model for accident j. Instead of mentioning
pMac
j , sMac

j and cMac
j , we use the notation of an index ac that represents the accident
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situation. The transition probabilities for the vehicle positions x̃ for i= 1,...,N−1 on
the given time grid are computed by

P
(
x̃n+1
i = x̃ni +∆tcroad(x̃

n
i )c̃ac(x̃

n
i )v

(
L(N)

x̃i+1(t)− x̃i(t)

)
| X̃n

)
= 1

P
(
x̃n+1
N = x̃nN +∆tcroad(x̃

n
N ) ˜cac(x̃

n
N )v

(
L(N)

x̃1(t)− x̃N (t)+(b−a)

)
| X̃n

)
= 1.

(2.37)

All other transition conditions are not relevant for our microscopic model with macro-
scopic accidents since the accident situation is fully governed by the corresponding
macroscopic model.

3. Convergence analysis
In this section, we analytically investigate the behavior of the local densities from

the microscopic model with macroscopic accidents if we increase the number of vehicles,
i.e. N→∞. Especially, we want to compare this limit to the traffic density function
from the macroscopic model. Several approaches to this micro-macro limit have been
considered (e.g. [7, 10, 19, 20]). Most of them admit only for flux functions that do not
depend on an additional spatial component. Therefore, we use ideas from [20] and
proceed as follows:

First, we carry out a coordinate transform to Lagrangian coordinates and set up
the definition of local inverse densities. These are required because, unfortunately, we
are not directly able to show convergence for the local densities. For those local inverse
densities, we set up a Cauchy problem which will be related to the Cauchy problem
from the macroscopic model. Afterwards, we show that the local inverse densities
converge to a weak solution of the related Cauchy problem. In the end, one can prove
a correspondence between the weak solutions of these two Cauchy problems.

3.1. Lagrangian coordinates and derivation of a Lax-Friedrichs scheme.
So far, the microscopic model was considered in Eulerian coordinates in (2.3). We

now introduce the connected Lagrangian setting. In Eulerian coordinates we assigned
a unique index to each vehicle on the road. Depending on the time we denoted the
position of each vehicle by the variable xi(t).

Another way to consider the setting would be by taking y∈ (0,1) as a continuous
number of a vehicle. This so-called Lagrangian variable depends on a given position and
the time, such that y(x,t) gives the infinitesimal number of the vehicle that is located
at x at time t. On the other hand we are able to understand the Eulerian coordinate x
depending on the Lagrangian coordinate y and the time, such that x(y,t) represents the
position of vehicle y at time t. A further and more formal derivation of the connection
between Eulerian and Lagrangian coordinates can be found in Theorem 3.3.

We introduce some additional definitions for the microscopic model with macro-
scopic accidents. On a road with N ∈N vehicles we define the local density of vehicle
i= 1,...,N−1 in the new microscopic model with accidents depending on the macro-
scopic model at time t>0 to be

ρ̃
(N)
i (t) =

L(N)

x̃i+1(t)− x̃i(t)
, ρ̃

(N)
N (t) =

L(N)

x̃1(t)− x̃N (t)+b−a
. (3.1)

For the inverse of the local density function, let us define for i= 1,...,N

w
(N)
i (t) =

1

ρ̃
(N)
i (t)
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as well as a Lagrangian velocity function ṽ : (0,1]→R with ṽ(x) =v( 1
x ). Assuming v(ρ) =

max{0,1−ρ}, ṽ is bounded for arguments x≥1 and Lipschitz continuous. To ensure
mass conservation in the limit we allow the vehicle length L to be dependent on N .
Throughout this section we additionally assume that there exist ε>0 and 1+ε≤K<∞
such that

1+ε≤w(N)
i (0)≤K, i= 1,...,N

N−1∑
i=1

|w(N)
i+1(0)−w(N)

i (0)|+ |w(N)
1 (0)−w(N)

N (0)|≤K.
(3.2)

Both assumptions seem quite reasonable. The first ensures that all inverses of the local
densities are uniformly bounded at the initial time. Additionally, we require some kind
of safety distance between the vehicles and assume that they do not start in a bumper-
to-bumper situation. The second assumption is basically a bound on the total variation
on the inverses of the local densities at initial time.

We now introduce the Lagrangian way of describing the positions of the vehicles.
It can be used to construct a Lax-Friedrichs-type sequence of local inverse density func-
tions. In Eulerian coordinates we define the function c :R×R+→R

c(x,t) = c̃ac(x)croad(x).

The time dependency of this function is incorporated via the accident dependency.

We define a Lagrangian grid
{
yi− 1

2

}N
i=1

where yi− 1
2

= (i−1)L(N). To adjust the

capacity function, we define c̃ : [0,1]×R+→R as the Lagrangian capacity function. On
a grid point of the Lagrangian grid it is defined for i= 1,...,N by

c̃(yi− 1
2
,t) = c(xi(t),t).

Between the grid points we define the function using a linear interpolation:

c̃(y,t) = c
(
(y−yi− 1

2
)xi+1(t)+(yi+ 1

2
−y)xi(t)

)
, for y∈ [yi− 1

2
,yi+ 1

2
].

Using these definitions for the local inverse densities, the initial system of ordinary
differential equations describing the position of a vehicle for i= 1,...,N−1 transforms
into

ẇ
(N)
i (t) =

˙̃xi+1(t)− ˙̃xi(t)

L(N)
=
c(x̃i+1(t),t)v(ρ̃i+1(t))−c(x̃i(t),t)v(ρ̃i(t))

L(N)

(2.36)
=

c̃(yi+ 1
2
,t)ṽ(w

(N)
i+1(t))− c̃(yi− 1

2
,t)ṽ(w

(N)
i (t))

L(N)
.

Equivalently for the N -th vehicle we have

ẇ
(N)
N (t) =

c̃(y 1
2
,t)ṽ(w

(N)
1 (t))− c̃(yN− 1

2
,t)ṽ(w

(N)
N (t))

L(N)
.

The solutions to this system of ordinary differential equations can be used to develop a
numerical scheme for the local inverse densities for the approximation of a weak solution
of (3.8).
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Consider an equidistant time grid (tj)j∈N, with ∆t= tj+1− tj . Using a modified
Euler approximation we approximate for i= 2,...,N−1

x̃i(tj+1) =
1

2
(x̃i+1(tj)+ x̃i−1(tj))+∆t c(x̃i(tj),tj)v

(
L(N)

x̃i+1(tj)− x̃i(tj)

)
. (3.3)

For the first and the last vehicle we add

x̃1(tj+1) =
1

2
(x̃2(tj)+ x̃N (tj)−(b−a))+∆t c(x̃1(tj),tj)v

(
L(N)

x̃2(tj)− x̃1(tj)

)
x̃N (tj+1) =

1

2
(x̃1(tj)+ x̃N−1(tj)+(b−a))

+∆t c(x̃N (tj),tj)v

(
L(N)

x̃1(tj)− x̃N (tj)+(b−a)

)
. (3.4)

Using this for the local inverse density in the Lagrangian setting and for i= 2,...,N−1,
j= 0,1,2,... we get

w
(N)
i (tj+1) =

1

ρ
(N)
i (tj+1)

=
x̃i+1(tj+1)− x̃i(tj+1)

L(N)

(3.3)
=

1

L(N)

[
x̃i+2(tj)+ x̃i(tj)

2
+∆t c(x̃i+1(tj),tj)ṽ(w

(N)
i+1(tj))

−
( x̃i+1(tj)+ x̃i−1(tj)

2
+∆t c(x̃i(tj),tj)ṽ(w

(N)
i (tj))

)]
=
w

(N)
i+1(tj)+w

(N)
i−1(tj)

2

+
∆t

L(N)

(
c̃(yi+ 1

2
,tj)ṽ(w

(N)
i+1(tj))− c̃(yi− 1

2
,tj)ṽ(w

(N)
i (tj))

)
.

Let us make one further approximation and substitute

c̃(yi− 1
2
,tj)ṽ(w

(N)
i (tj)) =

c̃(yi+ 1
2
,tj)ṽ(w

(N)
i+1(tj))+ c̃(yi− 3

2
,tj)ṽ(w

(N)
i−1(tj))

2
.

Then, we obtain an expression known from the Lax-Friedrichs scheme by

w
(N)
i (tj+1) =

w
(N)
i+1(tj)+w

(N)
i−1(tj)

2

+
∆t

2L(N)

(
c̃(yi+ 1

2
,tj)ṽ(w

(N)
i+1(tj))− c̃(yi− 3

2
,tj)ṽ(w

(N)
i−1(tj))

)
. (3.5)

Similar computations can be made for the first and the last vehicle which yield

w
(N)
1 (tj+1) =

w
(N)
2 (tj)+w

(N)
N (tj)

2

+
∆t

2L(N)

(
c̃(y 3

2
,tj)ṽ(w

(N)
2 (tj))− c̃(yN− 1

2
,tj)ṽ(w

(N)
N (tj))

)
,

w
(N)
N (tj+1) =

w
(N)
1 (tj)+w

(N)
N−1(tj)

2

+
∆t

2L(N)

(
c̃(y 1

2
,tj)ṽ(w

(N)
1 (tj))− c̃(yN− 3

2
,tj)ṽ(w

(N)
N−1(tj))

)
.

(3.6)



S. GÖTTLICH AND T. SCHILLINGER 1593

Only information from the microscopic model with macroscopic accidents was used to
construct this scheme. As we have been working with single vehicles so far, we define a
piecewise-constant function for the initial density by

w
(N)
0 (y) =w

(N)
i (0), for y∈ [yi− 1

2
,yi+ 1

2
). (3.7)

3.2. Convergence to a weak solution. Under some assumptions we are going
to show that such a Lax-Friedrichs scheme approximates a weak solution w : [0,1]×R+→
R of the following conservation law

wt−(c̃(y,t)ṽ(w))y = 0, w(0,y) =w0(y) (3.8)

for some initial local inverse density w0. First, we present a result that states under
which conditions we achieve convergence of a sequence to a weak solution of a Cauchy
problem having a space- and time-dependent flux function. Afterwards, we develop
some results that will help to apply Theorem 3.1 to our setting.

Theorem 3.1 (Theorem 4.5 in [23]). Consider the conservation law

ut−f(c(x,t),u)x= 0, t>0, x∈R, u(0,x) =u0(x). (3.9)

Assume that for the discretization parameters in space ∆x>0 and time ∆t>0 it holds

(1) u0∈L∞(R), a≤u0(x)≤ b, for almost all x∈R,

(2) c∈L∞(R×R+)∩BVloc(R×R+), α≤ c(x,t)≤β for almost all (x,t)∈R×R+,

(3) u 7→f(c,u)∈C2([a,b]), for all c∈ [α,β],

(4) c 7→f(c,u)∈C1([α,β]), for all u∈ [a,b],

(5) for almost all (x,t)∈R×R+ : ∂2

∂u2 f(c(x,t),u) 6= 0 for almost all u∈ [a,b],

(6) the Lax-Friedrichs scheme approximation stays uniformly bounded,

(7) λLfu ≤1−κ, λ= ∆t
∆x , for some κ∈ (0,1),

where Lfu denotes the Lipschitz constant of f in the second argument.

Discretize the time domain R+ via tj = j∆t, j∈N0 and the spatial component R by

xi= i∆x, i∈Z. Define cji = lim
x↘xi

c(x,t̂j) for any t̂j ∈ [tj ,tj+1) for which the limit exists.

Then, a one-step approximation of the Lax-Friedrichs scheme writes for j >0

ui(tj+1) =
1

2
(ui+1 +ui−1)+

λ

2

(
f(cji+1,ui+1(tj))−f(cji−1,ui−1(tj))

)
.

For the initial time we set

ui(t0) =
1

2∆x

∫ xi+1

xi−1

u0(x)dx.

Using a staggered form of the Lax-Friedrichs scheme, we define the piecewise-constant
function u∆, for i+j being even, as

u∆(t,y) =ui(tj), for (t,y)∈ [tj ,tj+1)× [xi−1,xi+1).

Passing if necessary to a subsequence, we have u∆→u as ∆t→0 and ∆x→0 in
Lploc(R+×R) for any p<∞ and where u∈L∞(R+×R) is a weak solution to (3.9).
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We now try to adapt this theorem to the setting in (3.8). The only challenging
condition will be to show the uniform bound on the Lax-Friedrichs approximation.
Therefore, we introduce the following lemma.

Lemma 3.1. Assume c∈C0,1(R) uniformly bounded and v∈C1(R+). Set f(y,w) =
c(y)v(w). If (3.2) holds and the CFL condition is satisfied, the Lax-Friedrichs approxi-
mations from (3.5) and (3.6) are uniformly bounded, setting v(w) = 1− 1

w .

Proof. Using (3.2) w0 initially is bounded by K=‖w(N)(0)‖∞ from above. Set
λ= ∆t

∆y where in the Lagrangian grid ∆y just corresponds to the length of one vehicle.
We calculate the one-step increase of the Lax Friedrichs bound

|w(N)
i (tj+1)|=

∣∣∣w(N)
i−1(tj)+w

(N)
i+1(tj)

2
+
λ

2

(
f(yi+ 1

2
,w

(N)
i+1(tj))−(f(yi− 3

2
,w

(N)
i−1(tj))

)∣∣∣
=
∣∣∣w(N)

i−1(tj)+w
(N)
i+1(tj)

2
+
λ

2

(
f(yi+ 1

2
,w

(N)
i+1(tj))−f(yi+ 1

2
,w

(N)
i−1(tj))

+f(yi+ 1
2
,w

(N)
i−1(tj))−(f(yi− 3

2
,w

(N)
i−1(tj))

)∣∣∣
=
∣∣∣w(N)

i−1(tj)+w
(N)
i+1(tj)

2
+
λ

2

(
fw(yi+ 1

2
,ξ)(w

(N)
i+1(tj)−w(N)

i−1(tj))

+f(yi+ 1
2
,w

(N)
i−1(tj))−(f(yi− 3

2
,w

(N)
i−1(tj))

)∣∣∣
≤
∣∣∣1
2

(
w

(N)
i−1(tj)(1−λfw(yi+ 1

2
,ξ)+w

(N)
i+1(tj)(1+λfw(yi+ 1

2
,ξ))

)∣∣∣
+
∣∣∣∆tLc yi+ 1

2
−yi− 3

2

2∆y

∣∣∣
≤‖w(N)(tj)‖∞+∆tLc

for some ξ∈R being a convex combination of w
(N)
i−1(tj) and w

(N)
i+1(tj). Here, Lc denotes

the Lipschitz constant of c and fw the partial derivative of f with respect to w. Then,
for a finite time horizon T >0 we get

‖w(N)(T )‖∞≤‖w(N)(0)‖∞+

T
∆t∑
j=1

∆tLc≤‖w(N)(0)‖∞+T Lc<∞.

This statement seems to be sufficient to fulfill condition 6 in Theorem 3.1. But since
we are be interested in inverting the local densities later, we also require an additional
bound from below.

Lemma 3.2. Assume c∈C0,1(R) uniformly bounded, v∈C1(R+). Set f(y,w) =
c(y)v(w) and v(w) = 1− 1

w . Let ε>0 be used as in (3.2). If for the Lipschitz constant

of f in the second argument on [1,∞), Lfw , the CFL condition ∆t
∆yLfw <1 is satisfied,

then a one-step Lax Friedrichs approximation from (3.5) is bounded from below by 1+ ε̃
if

∆t≤ ε− ε̃
Lc

(3.10)

for 0<ε̃<ε and Lc>0 the Lipschitz constant of c.
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Proof. By (3.2) we know that w
(N)
i (0) is bounded from below by 1+ε. Denote

Lc>0 the Lipschitz constant of c and Lv>0 the Lipschitz constant of v. For λ= ∆t
∆y

we get

w
(N)
i (t1) =

w
(N)
i−1(t0)+w

(N)
i+1(t0)

2
+
λ

2

(
f(yi+ 3

2
,w

(N)
i+1(t0))−f(yi− 1

2
,w

(N)
i−1(t0))

)
≥
w

(N)
i−1(t0)+w

(N)
i+1(t0)

2
+
λ

2

(
c(yi+ 3

2
)v(w

(N)
i+1(t0))−(c(yi+ 3

2
)+2∆yLc)v(w

(N)
i−1(t0))

)
≥
w

(N)
i−1(t0)+w

(N)
i+1(t0)

2
− λ

2
c(yi+ 3

2
)Lv

∣∣w(N)
i+1(t0)−w(N)

i−1(t0)
∣∣−∆tLcv(w

(N)
i−1(t0)).

Using the CFL condition, the initial boundedness of w
(N)
i (t0) and the bound of the

velocity function for an argument larger than 1, we get

w
(N)
i (t1)≥ 1

2

(
2min

{
w

(N)
i+1(t0),w

(N)
i−1(t0)

})
−∆tLcv(w

(N)
i−1(t0))

≥1+ε−∆tLc≥1+ ε̃.

The result is applicable for any other time step fulfilling the mentioned conditions.
This lemma does not prove that the Lax-Friedrichs approximations can be uniformly
bounded from below for any time horizon T >0. Let (∆t)n denote the step size and εn
the safety distance in the n-th step, where ε0 =ε. Set the partition

P=
{
k∈ ((∆t)n)n∈{1,...,Nk} : (∆t)n≤

εkn−1−εkn
Lc

∀n= 1,...,Nk, εkNk ≥0,

εkn>0 ∀n= 1,...,Nk−1, εkn+1<ε
k
n ∀n= 1,...,Nk−1, Nk ∈N

}
.

We can only ensure the boundedness by 1 from below for

T ≤ sup
k∈P

(
Nk∑
i=1

(∆t)i

)
=

Nk
∗∑

i=1

εk
∗

i−1−εk
∗

i

Lc
=

ε

Lc
, (3.11)

for k∗= argmax
(

sup
k∈P

(∑Nk

i=1(∆t)i

))
.

Now we apply Theorem 3.1 to our setting with the inverse local densities.

Theorem 3.2. Consider the Cauchy problem

wt−(ĉ(y,t)ṽ(w))y = 0 y∈ [0,1], t>0

w(0,y) =w0(y).
(3.12)

Assume that for the initial conditions it holds w0∈L∞([0,1]) and (3.2). Define ĉ∈
C0,1([0,1]×R+) as the smoothed version of the bounded capacity reduction function c̃,
where at each discontinuity of c̃ we use a linear smoothing in an interval of length ε>0.
The space-dependent flux function is given by f(ĉ,w) = ĉṽ(w), where ṽ(w) = 1− 1

w . Using
the Lagrangian grid, we set

w
(N)
i (t0) =

1

yi+ 1
2
−yi− 3

2

∫ y
i+ 1

2

y
i− 3

2

w
(N)
0 (y)dy,
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where w
(N)
0 was defined as in (3.7). Discretize the time domain R+ via tj = j∆t, j∈

N0 and the spatial component [0,1] by using the Lagrangian grid and yi− 1
2

= i
N , i∈

{0,1,...,N}. Then ∆y= 1
N . For tj>0 define w

(N)
i (tj) as in (3.5) and (3.6). Assume

that the CFL condition is met, i.e. ∆t
∆y‖fu‖∞≤1 and that condition (3.10) holds. We

define the piecewise-constant local inverse density function, for i+j even, as

w
(N)
∆ (y,t) =w

(N)
i (tj), for (y,t)∈ [yi− 3

2
,yi+ 1

2
)× [tj ,tj+1).

Passing if necessary to a subsequence, we have

w
(N)
∆ →w

as ∆t,∆x→0 and N→∞ in Lploc([0,1]×R+) for any p<∞ and where w∈L∞([0,1]×
R+) is a weak solution to (3.12).

Proof. Equation (3.5) defines the Lax Friedrichs scheme from Theorem 3.1 for
(3.12). We show that the conditions of Theorem 3.1 hold. Condition 1 is fulfilled by
the boundedness of w0 and (3.2). The function ĉ is bounded per assumption and chosen
to be Lipschitz continuous and thus, belongs to the functions of bounded variation
(condition 2). The flux function is infinitely often differentiable in both arguments for
w>0 such that condition 3 and 4 are fulfilled. The second derivative with respect to

the second argument is calculated by ∂2

∂w2 f(c,w) =− 2c
w3 6= 0 for any w∈ [1,K], K >1 and

any strictly positive capacity functions and therefore condition 5 is met. Using Lemma
3.1 we obtain uniform bounds for the Lax Friedrichs approximation which directly gives
condition 6. The CFL condition is forced to hold by an additional assumption in the
theorem such that condition 7 is also satisfied.

3.3. Convergence of the local density functions. After having found a
convergent series of inverse local density functions to a limit w and we have that w is
bounded from below by 1 due to Lemma 3.2 for sufficiently small time horizons T >0,
we can conclude that for t∈ [0,T ] there exists a limit function ρ̃ defined by

ρ̂(y,t) =
1

w(y,t)
. (3.13)

This formulation still is given in Lagrangian coordinates. To convert the coordinates
backwards and show that the limit function suits to the solution of the initial conser-
vation law (2.32), some computations are left to be examined.

One can show that the grid functions xi(tj) can be used to construct a sequence of
functions that converges to a continuous function that returns the position of the vehicle
with infinitesimal number y∈ [0,1] at time t if NL(N) = 1. Out of the initial vehicle
position grid function, we define a piecewise-linear function of Eulerian coordinates
which we use for the limit process. For yi− 1

2
∈ [0,1] set

X̃(N)(yi− 1
2
,tp) = x̃

(N)
i (tp). (3.14)

Between those grid points we choose a linear interpolation in both components by

X̃(N)(·,t) =
1

∆t

(
(tp+1− t)X̃(N)(·,tp)+(t− tp)X̃(N)(·,tp+1)

)
, t∈ [tp,tp+1]

X̃(N)(y,·) =
1

L(N)

(
(yi+ 1

2
−y)X̃(N)(yi− 1

2
,·)+(y−yi− 1

2
)X̃(N)(yi+ 1

2
, ·)
)
, y∈ [yi− 1

2
,yi+ 1

2
].

(3.15)
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Lemma 3.3. There exists a continuous function x̂ : [0,1]×R+→R such that for a
subsequence of (X̃(N))N∈N defined as in (3.14) and (3.15), X̃(N)→ x̂ uniformly as N→
∞.

Proof. We know from (3.2) and Lemma 3.1 that all inverse local densities w
(N)
i (t)

are bounded for any N ∈N and finite t>0 using the Lax-Friedrichs approximation from

(3.5). Therefore x̃
(N)
i (t) are also bounded and due to its piecewise-linear construction

X̃(N) also stays bounded and is uniformly Lipschitz continuous in both arguments.
This allows for the theorem of Arzela-Ascoli which ensures the convergence of a subse-
quence in C([0,1]×R+) for N→∞ against some limit function x̂ which is also Lipschitz
continuous.

As a next step, we try to show L1-convergence of the constructed sequence of local
densities against the function defined in (3.13). For the vehicle positions we use the
sequences from (3.14) and (3.15). To make notation a little easier, we assume in any
step the rightmost vehicle to be located at the right border of the road interval b. In
reality this might not always be true, but by a simple shift we obtain the actual location.
Note that the leftmost vehicle will not be located at the leftmost point on the road for
a finite number of vehicles. In the limit the vehicle with infinitesimal number 0 then is
positioned at x=a.

x̂(0,t) =a, X̃(N)(1,t) = x̂(1,t) = b, ∀N ∈N.

Using Lemma 3.3 for a subsequence we get

X̃(N)(0,t)−→ x̂(0,t) =a (3.16)

uniformly as N→∞.

Note that X̃(N) can be inverted in y, since X̃(N) is constructed to be piecewise
linear, continuous and strictly monotone increasing in y. The inverse will be denoted
by Ỹ (N)(x,t).

Passing to a subsequence Lemma 3.3 showed the uniform convergence of
(X̃(N)(t, ·))N∈N. For fixed t∈ [0,T ], the functions of the sequence were defined Lipschitz
continuous and also injective since we assumed the indices of the cars to be ordered ac-
cording to their position on the road. Thus, X̃(N) is strictly monotone in y. The same
argument applies to the limit function. A result from analysis states that for a sequence
of real, injective functions, which converges uniformly against an injective function f ,
also the sequence of the inverse functions converges uniformly to f−1 (see e.g. [4]). This
statement yields the uniform convergence of a subsequence of (Ỹ (N)(·,t))N∈N to some
function ŷ(·,t).

Now we collected all necessary results for the sequences for the position of the
vehicles in both Eulerian and Lagrangian coordinates. Let us denote the density in
Eulerian coordinates by

ρ̃E,(N)(x,t) =
1

w(N)(Ỹ (N)(x,t),t)
. (3.17)

In the Lagrangian coordinates we define

ρ̂(N)(y,t) =
1

w(N)(y,t)
.
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As a last step, define

ρ̃E(x,t) = ρ̂(ŷ(x,t),t),

where ŷ denotes the inverse of the limit function x̂ with respect to the spatial variable.
This enables us to show L1([a,b])-convergence of the Eulerian density function.

Lemma 3.4. For ρ̃E,(N)(·,t) there exists a function ρ̃E(·,t) : [a,b]→R which is the
limit of ρ̃E,(N)(·,t) for N→∞ in L1([a,b]).

Proof.

‖ρ̃E(·,t)− ρ̃E,(N)(·,t)‖L1 =‖ρ̂(ŷ(·,t),t)− ρ̂(N)(Ỹ (N)(·,t),t)‖L1

≤‖ρ̂(ŷ(·,t),t)− ρ̂(Ỹ (N)(·,t),t)‖L1

+‖ρ̂(Ỹ (N)(·,t),t)− ρ̂(N)(Ỹ (N)(·,t),t)‖L1

=

∫ X̃(N)(0,t)

a

|ρ̂(ŷ(t,x),t)− ρ̂(Ỹ (N)(x,t),t)|dx (3.18)

+

∫ b

X̃(N)(0,t)

|ρ̂(ŷ(x,t),t)− ρ̂(Ỹ (N)(x,t),t)|dx (3.19)

+

∫ X̃(N)(0,t)

a

|ρ̂(Ỹ (N)(x,t),t)− ρ̂(N)(Ỹ (N)(x,t),t)|dx (3.20)

+

∫ b

X̃(N)(0,t)

|ρ̂(Ỹ (N)(x,t),t)− ρ̂(N)(Ỹ (N)(x,t),t)|dx (3.21)

−→0,

as N→∞.
Both, ρ̂ and ρ̂(N) are bounded by 1. By (3.16) the upper borders in (3.18) and

(3.20) converge to the lower borders of the integral and thus the integrals go to 0 as
N→∞.

In (3.19) the integrand is bounded by 2. Using Lemma 3.3, the arguments of ρ̂ con-
verge uniformly thus the integrand goes to zero almost everywhere. By the dominated
convergence theorem the whole integral goes to 0. In (3.21) we used Theorem 3.1 and
the boundedness of the inverse local density function that gives us L1-convergence of
ρ̂(N) to ρ̂. Thus this integral also goes to 0 for N→∞. We showed that all four integrals
tend to 0 for N→∞ which finishes the proof.

3.4. Equivalence of the solutions of the Cauchy problems. So far we
constructed a limit function of the local densities and we found a weak solution to
the Cauchy problem of local inverse densities in (3.8). Now, Theorem 3.3 claims a
connection of the weak solutions of the Cauchy problems in (2.32) and (3.8).

Theorem 3.3 (Equivalence of Weak Solutions). Let ũ∈L∞(R×R+) be a weak
solution to ( 1

ũ

)
t
−
(
ãṽ(ũ)

)
y

= 0, ũ(y,0) = ũ0(y).

Let the map T be defined by

T :

{
R×R+→ Im(y)×R+

(x,t) 7→ (y(x,t), t̄(x,t)),
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where y(x,t) =
∫ x
x(t)

ρ(z,t)dz and t̄(x,t) = t. Let x(t) be a vehicle trajectory satisfy-

ing ∂
∂tx(t) =a(x(t))v(ρ(x(t),t)). Assume that 0<δ≤ρ(x,t)≤1 for all (x,t)∈R×R+

and that v(ρ)>0 for ρ>0 and v∈L∞((δ,1]) is Lipschitz continuous. Also assume
a∈L∞(R), being Lipschitz continuous and a>0. Define ã=a◦T−1, ṽ=v◦T−1 and
ũ0 =u0 ◦T−1. Then u= ũ◦T is a weak solution to

ut+(a(x)v(u)u)x= 0, u(x,0) =u0(x).

Proof. We consider a more general framework of a Cauchy problem in Lagrangian
coordinates by D̃t−(ãG̃)y = 0 with initial condition D̃(x,0) = D̃0(x). Define D̃=D◦T−1

and G̃=G◦T−1. Consider a test function φ̃∈C0,1
0 (R×R+). Note that the convolution

of such a test function with a mollifier λε creates a uniformly convergent sequence
˜(φε)ε>0 against a function in C∞0 (R). Also the weak derivatives of the test function

converge in L1(R) as ε→0 such that∫ ∞
0

∫
R

˜(φε)tD̃− ˜(φε)y(ãG̃)dydt+

∫
R

˜(φε)(y,0)D̃0(y)dy

ε→0−→
∫ ∞

0

∫
R
φ̃tD̃− φ̃yãG̃dydt+

∫
R
φ̃(y,0)D̃0(y)dy.

Thus, the weak formulation∫ ∞
0

∫
R
φ̃tD̃− φ̃yãG̃dydt+

∫
R
φ̃(x,0)D̃0(y)dy= 0

for a Cauchy problem also holds for Lipschitz continuous test functions φ̃ with compact
support.

Define φ̃=φ◦T−1. One can show that T is a bi-Lipschitz homeomorphism and
therefore φ is also a compactly supported Lipschitz continuous test function on R×R+.
Using a change of variables we get

0 =

∫ ∞
0

∫
R
φ̃tD̃− φ̃yãG̃dydt+

∫
R
φ̃(y,0)D̃0(y)dy

=

∫ ∞
0

∫
R

(
(φ̃t ◦T )(D̃◦T )−(φ̃y ◦T )((ãG̃)◦T )

)
ρdxdt+

∫
R
φ̃◦(T (x,0))D̃0(T (y,0))dx

=

∫ ∞
0

∫
R
φtρD+φx(ρDav−aG)dxdt+

∫
R
φ(x,0)D0(x)ρ(x)dx

which is just the weak formulation for a solution of a Cauchy problem of the form

(ρD)t+(ρDav−aG)x= 0, D(x,0) =D0(x).

Inserting D= 1
ρ and G=v leads to the trivial relation 1t+0x= 0. Using Lagrangian

coordinates, the conservation law describes conservation of volume, where instead in
Eulerian coordinates we have conservation of mass. As described in [35], to obtain
conservation of mass out of conservation of volume we set D= 1 and G= 0. Then, we
end up with the proposed relation

ρt+(a(x)v(ρ)ρ)x= 0,

where ρ= ρ̃◦T .
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All together we have shown the following theorem.

Theorem 3.4. Let T >0 and a<b. Consider the Cauchy problem

ρt+(Fac(x,t,ρ))x= 0, x∈ [a,b], t∈ [0,T ]

ρ(x,0) =ρ0(x).
(3.22)

Set Fac(x,t,ρ) = (c(x,t)f(ρ)) with f(ρ) =ρv(ρ) and where the velocity function is v(ρ) =
1−ρ. Let c :R× [0,T ]→ [0,1] be a Lipschitz continuous and uniformly bounded capacity
function. It is given by c(x,t) = cac(x,t)croad(x). Assume that there exist 0<c,c̄<∞
such that c(x,t)∈ [c,c̄] ∀(x,t)∈ [a,b]× [0,T ]. Let the microscopic model be approximated
by (3.3) and (3.4). Assume that the initial vehicle positions are chosen such that (3.2)
and (3.10) hold. For the time horizon T we impose (3.11). Define ρ̃E,(N) as in (3.17)

and the sequence of inverse densities ((w
(N)
i )i∈{1,...,N})N∈N as in (3.5) and (3.6). Denote

LFac the Lipschitz constant of the flux with respect to the second argument. Let L(N) =
1
N and assume that equidistant space and time grids are chosen such that

∆t

∆x
LFac <1.

For N→∞ and ∆t,∆x→0 (3.17) converges in C([0,T ],L1([a,b])) to a weak solution of
the Cauchy problem (3.22).

We finally showed that the local density functions from the microscopic model with
macroscopic accidents can be used to construct a convergent series against a weak
solution of (3.22) for increasing the total number of vehicles to ∞ and keeping total
mass constant.

4. Numerical results
In this section we investigate the convergence results from a numerical point of view

and use simulations to show that also the local densities from the microscopic model
converge to the traffic density of the corresponding macroscopic model.

4.1. Numerical treatment of the microscopic model. Both traffic accident
models are characterized by a deterministic evolution that is interrupted by stochastic
jumps being either new accidents or removals of an accident. For step sizes 0<∆t≤ L

vmax
between these jumps due to

P
(
xn+1
i =xni +∆tcroad(x

n
i )cac(x

n
i )v

(
L

∆xni

)
|Xn

)
= 1, i= 1,...,N−1

the vehicle positions can directly be computed by

xn+1
i =xni +∆tcroad(x

n
i )cac(x

n
i )v
( L

∆xni

)
for vehicle i= 1,...,N−1. For the last vehicle we set

xn+1
N =xnN +∆tcroad(x

n
N )cac(x

n
N )v

( L

xn1 −xnN +(b−a)

)
capturing periodic boundary conditions on a road [a,b]. To avoid numerical difficulties
the piecewise-constant capacity function, which may have up to finitely many discon-
tinuities, has to be smoothed. Simulations show that a linear smoothing is sufficient
here. Since the accident components stay constant between the jumps, we denote by

φ∆t(x
n,Mn,pn,sn,cn,un,ln) = (xn+1,Mn,pn,sn,cn,un,ln)
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the deterministic evolution of the stochastic process.
For the simulation in chronological order we proceed as follows. After initializing

the system in any time step using

P (un+1 = 0 |Xn) = 1−∆tψ(Xn),

P (un+1 = 1 |Xn) = ∆tψ(Xn)
λA

λA+MnλR
, P (un+1 =−1 |Xn) = ∆tψ(Xn)

MnλR

λA+MnλR

the presence and kind of an event can be obtained by sampling two independently
generated Bernoulli random variables. The first one chooses a new event with prob-
ability pn= ∆tψ(Xn) and the second one chooses a new accident with probability

qn= λA

λA+MnλR
. In case there is no new event we use φ∆t to compute the determin-

istic evolution of the system. In case of a new accident another Bernoulli random
variable with parameter β is used to determine whether an accident of type 1 or type 2
is observed.

For a new accident we use the inverse transformation method to sample from the
respective probability measure for the accident position. The measure for the accident
positions due to high flux can be directly computed using the piecewise-constant shape
of hac

µFt,ac(B) =

∫
B
hac(x,t)dx

CF (t,ac)
=

∑N−1
i=1 εxi(t)(B)c(xi(t)ρ(xi(t))(1−ρ(xi(t)))(xi+1(t)−xi(t))∑N−1

i=1 c(xi(t)ρ(xi(t))(1−ρ(xi(t)))(xi+1(t)−xi(t))

for B∈B([a,b]). With adequate methods we sample accident sizes from µs and accident
capacity reductions from µcap. For the removal of an accident we uniformly choose one
of the active accidents using a discrete inverse transformation method. The algorithm
is repeated in the next time step until the time horizon is reached.

4.2. Numerical treatment of the macroscopic model. A Lax-Friedrichs
scheme is used to solve the macroscopic model. For a better comparison with the
microscopic model we assume a bounded road [a,b] with periodic boundary conditions.
We use step sizes ∆t,∆x>0 such that the CFL condition is satisfied and K∆x= b−a
for some K ∈N. We set x 1

2
=a, xK+ 1

2
= b and define by

ρ0
i =

1

∆x

∫ x
i+ 1

2

x
i− 1

2

ρ0(x)dx

the initial cell means for xi=a− ∆x
2 + i∆x, i∈{1,...,K}. For the flux function f(c,ρ) =

cρ(1−ρ) the steps for the Lax-Friedrichs scheme are given by

ρj+1
i =

ρji+1 +ρji−1

2
− ∆t

2∆x

(
f(cji+1,ρ

j
i+1)−f(cji−1,ρ

j
i−1)

)
,

where cji = c(xi,tj), i∈{2,...,K−1}, j∈N0. For ρj+1
1 and ρj+1

K we have to adapt for the
periodic boundary conditions

ρj+1
1 =

ρj2 +ρjK
2

− ∆t

2∆x

(
f(cj2,ρ

j
2)−f(cjK ,ρ

j
K)
)

ρj+1
K =

ρj1 +ρjK−1

2
− ∆t

2∆x

(
f(cj1,ρ

j
1)−f(cjK−1,ρ

j
K−1)

)
.
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The probability measure for the accident positions µFac,Mac
tj for B∈B([a,b]) is approxi-

mated by

µFac,Mac
tj (B) =

∑K
i=1 c

j
iρ
j
i (1−ρ

j
i )
∫
B
1[x

i− 1
2
,x
i+ 1

2
)(x)dx∑K

i=1 c
j
iρ
j
i (1−ρ

j
i )∆x

.

The discretization of µD,Mac
tj can be computed using the piecewise-constant density

segments from the Lax-Friedrichs scheme

µD,Mac
tj (B) =

∑K
i=2εxi− 1

2

(B)(ρji −ρ
j
i−1)+ +εx 1

2

(B)(ρj1−ρ
j
K)+∑K

i=2(ρji −ρ
j
i−1)+ +(ρj1−ρ

j
K)+

.

Apart from the mentioned adaptions one can execute the simulation quite similarly to
the microscopic one. For further details we refer to [16].

4.3. Exemplary numerical comparison. For a microscopic example we
assume a finite road represented by the interval [−10,10] with periodic boundary condi-
tions such that any vehicle leaving at x= 10 just enters again at x=−10. On the road,
we set N = 1600 vehicles, each initially having the same distance to the front vehicle.
The length of a vehicle is chosen to be L(N) = 8

N .
The capacity function of the road is assumed to be croad(x) = 7−2 ·1[0,5](x). We

can interpret this as a general speed limit of 70 kilometers per hour. An exception is
made on the part of the interval [0,5] where we allow only for 50 kilometers per hour.
The capacity function is smoothed at each discontinuity by a linear interpolation on an
interval of length ε= 0.02. Accidents are incorporated by the accident capacity function
cac(x) =

∏M
j=1 1−cj1[

pj−
sj
2 ,pj+

sj
2

](x). Furthermore we assume ∆x= 1
80 , ∆t= ∆x

10 and a

time horizon of T = 10.
For the accidents we set λF = 1

160 , λD = 1
50 and λR= 0.25 and β= 0.5, such that

we allow for both types of accidents with the same likeliness. The distribution for
the accident sizes is chosen to be a uniform distribution on [0.2,1] and the capacity
reduction is chosen to be distributed according to 0.5 ·ε0.5 +0.5 ·ε0.99. Additionally, for
the macroscopic model the flux function is chosen to be f(ρ) =ρ(1−ρ) and the initial
density to be ρ0(x) = 0.4.

For one realization, we compare the local densities from the microscopic model with
the densities from the macroscopic model on the left and the probability distribution
for the accident location on the right of the following figures. For the second one we
divide the road into 10 segments of length 2. The left bars represent the microscopic
model and the right bars the macroscopic one. The lower parts of the bars show the
share of the likeliness coming from accident type 1, whereas the upper parts show the
share of accidents of type 2.

The first event is chosen to be at t= 2.72. At that time Figure 4.1a shows that both
density functions coincide almost everywhere.

The likeliness of an accident of type 1, given by the lower bars in Figure 4.1b, seems
to be distributed quite uniformly over the road in both models. This is due to quite
stable and moderate traffic densities and velocities. The upper segments in this chart
show the probability contribution of accidents of type 2. In contrast to type 1 accidents
they are far from being approximately uniformly distributed, since they depend on the
positive increases in the local density functions. There are basically two sections where
we observe an increase in the local density function. The first in the area of the interval
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Fig. 4.1: Local traffic density from the microscopic model and density function from the macroscopic
model (a) and probability distribution of the accident location for both models (b) at t= 2.72.

[−4,−2] right in front of the more restrictive speed limit and the second one being
around x=−8 where the local densities recover to their initial level after the speed
limit constraint. Therefore, we find large upper bars especially in those two sections
in Figure 4.1b. Comparing both models, also the accident position probabilities look
very similar. Indeed, in our particular example, the first accident is one of type 2 and
happens at x=−3.05 in the macroscopic model and at x=−3.13 in the microscopic
model.
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Fig. 4.2: Local traffic density from the microscopic model and density function from the macroscopic
model (a) and probability distribution of the accident location for both models (b) at t= 3.4.

In both models at time t= 3.4 the next event happens which is another accident in
this example and we can already analyze the consequences of the first accident in Figure
4.2. We observe a steep increase in both densities right in front of the location of the
accident in Figure 4.2a and also a drop right after the accident. The grey area represents
the segment of the first accident in the microscopic model. The second increase is due
to the more restrictive speed limit on the interval [0,5]. Again both densities coincide
well.

We observe quite uniform likeliness for an accident of type 1 in Figure 4.2b apart
from the segment around x=−3. There, first the density is close to one, which means
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that vehicles have a velocity of almost 0 and afterwards there is a very restrictive
capacity reduction due to the accident. In both cases the flux is very small and leads
to a low contribution for high-flux accidents around x=−3. Two sections where we
observe an increase in the local density function are recognizable around x=−5 and
x=−2. Apart from some minor differences for accidents of type 2 the accident position
probabilities are similar in both models.

In our case an accident of type 1 happens at x= 4.04 in the microscopic and at
x= 4.09 in the macroscopic model.

4.4. Numerical convergence analysis. In the microscopic model we denote

ρ
(N)
i (t) as the local density of vehicle i in an environment with N ∈N cars on the road at

time t>0 defined as in (2.3). We consider the piecewise-constant local density function
defined by

ρ(N),Mic(x,t) =ρ
(N)
i (t), for x∈ [xi(t),xi+1(t)), i= 1,...,N−1.

In the periodic environment of our simulation we have to take care about the beginning
and the end separately.

ρ(N),Mic(x,t) =ρ
(N)
N (t), for x∈ [a,x1(t))∪ [xN (t),b].

In the limit of N→∞ we expect that ρ(N),Mic converges to the density function ρMac

of the macroscopic model, which is the weak solution to the Cauchy problem in (2.32).

One error measure that could be considered is the expected value of the L1-error
of the density function from the macroscopic model and a piecewise-constant version
of the local density functions from the microscopic model, if we increase the number of
vehicles in the microscopic model keeping total mass constant.

Err1 =E
[∫ b

a

|ρ(N),Mic(x,t)−ρMac(x,t)|dx
]

:=E
[
∆x

b−a
∆x∑
i=0

|ρ(N),Mic(a+ i∆x,t)−ρMac(a+ i∆x,t)|
]
.

We consider the density functions on an equidistant space grid and then use the rectan-
gular rule to calculate the integral in all segments for the spatial component. A Monte
Carlo simulation is performed to approximate the expected value.

Both models should be related in some stochastic way. More precisely in any deci-
sion in which randomness plays a role, we have to make sure to use the same element
ω∈Ω, where (Ω,A,P ) is the underlying probability space.

We also investigate how the third model introduced in Section 2.3 behaves. Defining

the local density of the microscopic model with macroscopic accidents as ρ̃
(N)
i (t) as in

(3.1) we can again define a piecewise-constant local density function for t>0 by

ρ̃(N),Mic(x,t) = ρ̃
(N)
i (t), for x∈ [x̃i(t),x̃i+1(t)), i= 1,...,N−1.

ρ̃(N),Mic(x,t) = ρ̃
(N)
N (t), for x∈ [a,x̃1(t))∪ [x̃N (t),b].

Comparing the microscopic model with accidents according to the macroscopic one to
the macroscopic one for fixed t>0 we are interested in the expected L1([a,b])-error given
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by

Err2 =E
[∫ b

a

|ρ̃(N),Mic(x,t)−ρMac(x,t)|dx
]

:=E
[
∆x

b−a
∆x∑
i=0

|ρ̃(N),Mic(a+ i∆x,t)−ρMac(a+ i∆x,t)|
]
.

Instead of using the expected value in the error measure we can also use L2(Ω) norm
which in the pure microscopic case is discretized by

Err3 =E
[(

∆x

b−a
∆x∑
i=0

|ρ(N),Mic(a+ i∆x,t)−ρMac(a+ i∆x,t)|
)2] 1

2

.

Replacing the expected value by the L2(Ω) norm for the model from Section 2.3 we
obtain another error measure

Err4 =E
[(

∆x

b−a
∆x∑
i=0

|ρ̃(N),Mic(a+ i∆x,t)−ρMac(a+ i∆x,t)|
)2] 1

2

.

To evaluate the errors numerically we performed a Monte Carlo simulation with 600
runs. If not mentioned differently, we choose the parameters as before. Set the step size
of the macroscopic space grid to ∆x= 1

160 and the length of one step in the time grid

∆t= ∆x
10 such that the CFL condition is satisfied.

First, we compare the behaviour of the errors for different numbers of vehicles in the
microscopic setting in Table 4.1 choosing N ={50,100,200,400,800,1600,3200}. Due to
the high diffusion of the Lax-Friedrichs approximation one notices numerically that in
the limit it is not as precise as the theory suggests. After a decrease in all four error
measures we are left with some kind of basic error. To increase the accuracy of the limit

N = 50 N = 100 N = 200 N = 400 N = 800 N = 1600 N = 3200
Err1 1.3712 0.7844 0.4185 0.3134 0.3287 0.3914 0.4355
Err2 0.9354 0.5066 0.2560 0.1563 0.1421 0.1589 0.1719
Err3 2.0403 1.4746 0.9149 0.8764 0.8150 0.8357 0.9116
Err4 1.1609 0.6428 0.3121 0.2090 0.2190 0.2435 0.2590

Table 4.1: Error measures for varying N and for ∆x= 1
160

using the Lax-Friedrichs scheme.

investigation we suggest to use a space-dependent Godunov scheme for the macroscopic
model and define by

ρ0
i =

1

∆x

∫ x
i+ 1

2

x
i− 1

2

ρ0(x)dx

the initial cell means for xi=a− ∆x
2 + i∆x, i∈{1,...,K}. For the flux function f(c,ρ) =

cρ(1−ρ) we observe the maximum flux at ρ∗= 1
2 . The Godunov steps are given by

ρj+1
i = ρji −

∆t

∆x

(
min

{
f(cji+1 max{ρji+1,ρ

∗}),f(cji min{ρji ,ρ
∗})
}
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−min
{
f(cji max{ρji ,ρ

∗}),f(cji−1 min{ρji−1,ρ
∗})
})
,

where cji = c(xi,tj), i∈{2,...,K−1}, j∈N0. For ρj+1
1 and ρj+1

K we have to adapt for the
periodic boundary conditions

ρj+1
1 = ρj1−

∆t

∆x

(
min

{
f(cj2 max{ρj2,ρ∗}),f(cj1 min{ρj1,ρ∗})

}
−min

{
f(cj1 max{ρj1,ρ∗}),f(cjKmin{ρjK ,ρ

∗})
})
,

ρj+1
K = ρjK−

∆t

∆x

(
min

{
f(cj1 max{ρj1,ρ∗}),f(cjKmin{ρjK ,ρ

∗})
}

−min
{
f(cjKmax{ρjK ,ρ

∗}),f(cjK−1 min{ρjK−1,ρ
∗})
})
.

Table 4.2 shows the error evolution if we use the Godunov scheme for the limit consid-
eration. In all four cases we observe a decrease in the errors for increasing number of
vehicles. The results support the idea of the model introduced in Section 2.3 being in
between the microscopic and macroscopic one because Err2 and Err4 seem to be sub
errors of Err1 and Err3, respectively.

N = 50 N = 100 N = 200 N = 400 N = 800 N = 1600 N = 3200
Err1 1.5952 1.0549 0.5405 0.3168 0.1836 0.1087 0.0453
Err2 1.0357 0.6265 0.3335 0.1831 0.1013 0.0571 0.0320
Err3 2.3392 1.8600 1.0074 0.7483 0.6217 0.4459 0.1040
Err4 1.3000 0.8149 0.4115 0.2110 0.1139 0.0637 0.0358

Table 4.2: Error measures for varying N and for ∆x= 1
160

using the Godunov-scheme.
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Fig. 4.3: Logarithm of Err1 and Err2 in (a) and of Err3 and Err4 in (b) in time for N = 3200 and
∆x= 1

160
.

We also consider the evolution of the logarithms of the errors in time for a fixed
number of vehicles N = 3200 in the microscopic model in Figure 4.3. We observe that
Err2 and Err4 stay more or less constant after they reached a certain level. The same
applies for Err1 whereas Err3 increases more steeply and even shows a slight decrease
after some time but still remains on a higher level than the other error measures. These
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Err1 Err2 Err3 Err4

∆x= 1
40 0.1112 0.0440 0.6619 0.0483

∆x= 1
80 0.0678 0.0371 0.2546 0.0479

∆x= 1
160 0.0453 0.0320 0.1040 0.0358

Table 4.3: Error measures for different step sizes ∆x and N = 3200.

Err1 Err2 Err3 Err4

∆x= 1
40 0.661 0.778 0.298 0.807

∆x= 1
80 0.802 0.821 0.580 0.819

∆x= 1
160 0.840 0.846 0.653 0.884

Table 4.4: Empirical convergence rates for different step sizes ∆x and N = 3200.

results suggest that the error measures are not expected to show a significant increase
if one considers larger time horizons.

Varying the step sizes of the space grid in the macroscopic model we obtain the
following errors and empirical convergence rates in Table 4.3 and Table 4.4, respectively.
All error measures decrease for decreasing step sizes whereas the convergence rates tend
to increase for decreasing step sizes.

5. Conclusion

We introduced a microscopic and a macroscopic traffic accident model in which
accidents interact bi-directionally with the traffic situation. Accidents were incorporated
using appropriate probability measures. We were able to prove a micro-macro limit of
the models, restricting to a microscopic model being governed by the macroscopic one.
The numerical simulations underlined this convergence and indicated that it can be
extended for the microscopic model from Section 2.1.

The analytic proof of the convergence of the two microscopic models might be
subject to future work. Additionally, a data-driven validation of the models and a
deeper investigation of the accident occurrences will be addressed in future.

Acknowledgement. This work was supported by the DAAD project “Stochastic
dynamics for complex networks and systems” (Project-ID 5744394).
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[15] S. Göttlich and S. Knapp, Load-dependent machine failures in production network models, SIAM
J. Appl. Math., 79:1197–1217, 2019. 1, 2.2
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