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SELECTION AND MUTATION IN
A SHIFTING AND FLUCTUATING ENVIRONMENT∗

SUSELY FIGUEROA IGLESIAS† AND SEPIDEH MIRRAHIMI‡

Abstract. We study the evolutionary dynamics of a phenotypically structured population in a
changing environment, where the environmental conditions vary with a linear trend but in an oscillatory
manner. Such phenomena can be described by parabolic Lotka-Volterra type equations with non-local
competition and a time-dependent growth rate. We first study the long-time behavior of the solution
to this problem. Next, using an approach based on Hamilton-Jacobi equations we study asymptotically
such long-time solutions when the effects of the mutations are small. We prove that, as the effect of
the mutations vanishes, the phenotypic density of the population concentrates on a single trait which
varies linearly with time, while the size of the population oscillates periodically. In contrast with the
case of an environment without linear shift, such dominant trait does not have the maximal growth rate
in the averaged environment and there is a cost on the growth rate due to the environmental shift. We
also provide an asymptotic expansion for the average size of the population and for the critical speed
above which the population goes extinct, which is closely related to the derivation of an asymptotic
expansion for the Floquet eigenvalue in terms of the diffusion rate. By mean of a biological example,
this expansion allows to show that the fluctuations on the environment may help the population to
follow the environmental shift in a better way.
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1. Introduction

1.1. Model and motivations. The goal of this article is to study the evolu-
tionary dynamics of a phenotypically structured population in an environment which
varies with a linear trend but in an oscillatory manner. We study the following non-local
parabolic equation

∂tñ−σ∂xxñ= ñ[a(e(t),x− c̃t)− ρ̃(t)], (t,x)∈ [0,+∞)×R,

ρ̃(t) =

∫
R
ñ(t,x)dx,

ñ(t= 0,x) = ñ0(x).

(1.1)

This equation models the dynamics of a population which is structured by a phenotypic
trait x∈R. Here, ñ corresponds to the density of individuals with trait x. We denote
by a(e(t),x− c̃t) the intrinsic growth rate of an individual with trait x at time t. The
term −c̃t has been introduced to consider a shifting of the fitness landscape with a
linear trend. The function e(t) :R+→E, represents the environmental state at time t
(for instance, the temperature) and is assumed to be periodic, with E corresponding to
the set of the states of the environment, for instance an interval corresponding to the
possible temperatures. The variation of the environmental state e may have an impact
on the optimal trait (the trait that maximizes a(e,x)) or other parameters of selection as
for instance the pressure of selection (corresponding to the curvature of a(e,x) around
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1762 ADAPTATION IN A TIME-VARYING ENVIRONMENT

its maximum point, see Section 6 for some examples). The term ρ̃ which corresponds
to the total size of the population represents a competition term. Here, we assume
indeed a uniform competition between all the individuals. The diffusion term models
the mutations, with σ the mutation rate.

A natural motivation to study such type of problem is the fact that many natural
populations are subject both to a directional change of the phenotypic optimum and
fluctuations of the environment [13]. Such fluctuations may be periodic, due, for in-
stance, to seasonal effects, or stochastic due to the random change of the environment.
Here we consider a deterministic growth rate that varies with a linear trend but in an
oscillatory manner. Our study also provides insights for the case of random environ-
ments since it is based on some homogenization techniques that could also be used to
study the random case. However, the study of the random fluctuations would still need
considerable work and is out of the scope of this article.

Will the population be able to adapt to the environmental change? Is there a
maximal speed above which the population will get extinct? How is such maximal
speed modified due to the fluctuations?

1.2. Related works. The impact of changing environments on the evolution of
quantitative traits has been studied using closely related quantitative genetics models in
the biological literature (see for instance [11, 22, 23, 26, 27]). In these works one usually
assumes that the growth rate a has a particular form of quadratic type and that the
environmental change has only an impact on the optimal trait. However, the environ-
mental variations may also modify other parameters of selection, as for instance the
pressure of selection [17]. Finally, the works studying a periodic environment, consider
only a particular sinusoidal form of periodic variation [23,27].

Models closely related to (1.1), but with a local reaction term and no fluctua-
tion, have been widely studied (see for instance [6–9]). Such models are introduced to
study dynamics of populations structured by a space variable neglecting evolution. It
is shown in particular that there exists a critical speed of environment change c∗, such
that the population survives if and only if the environment change occurs with a speed
less than c∗. We also refer to [10] where an integro-difference model has been studied
for the spatial dynamics of a population in the case of a randomly changing environ-
ment. Moreover, in [1], both spatial and evolutionary dynamics of a population in an
environment with linearly moving optimum have been studied. While in the present
work, we don’t include any spatial structure, we take into account oscillatory change of
environment in addition to a change with linear trend.

The evolutionary dynamics of structured populations under periodic fluctuations
of the environment has been recently studied by [2, 16, 25, 29]. The works in [2, 25] are
focused on the study of a particular form of growth rate a and in particular some semi-
explicit solutions to such equations are provided. In [16, 29] some asymptotic analyses
of such equations for general growth rates are provided. The present article is closely
related to [16] where a periodically evolving environment was considered without the
linear trend. The presence of such linear trend of environment change leads to new
difficulties in the asymptotic analysis. Moreover, we go further than the results in [16]
and provide an asymptotic expansion for the average size of the population in terms of
the mutation rate. Such expansion is closely related to an asymptotic expansion of the
Floquet eigenvalue for the linear problem. Furthermore in a very recent work [12] the
authors study a closely related model, but without the linear change of the environment,
and study the impact of the different parameters of the model on the final population
size.
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In this article, we use an asymptotic approach based on Hamilton-Jacobi equations
with constraint. This approach has been developed during the last decade to study
the asymptotic solutions of selection-mutation equations, assuming small effect of the
mutations. Such equations have the property that their solution concentrate as Dirac
masses on the fittest traits. There is a large literature on this approach. We refer to [5,
14,30] for the establishment of the basis of this approach for homogeneous environments.

1.3. Mathematical assumptions. To introduce our assumptions, we first define

a(y) =
1

T

∫ T

0

a(e(t),y)dt.

We then assume that e :R+→E, a periodic function, and a∈L∞(E,C3(R)) are such
that:

e(t) =e(t+T ), ∀ t∈R+, and ∃ d0>0 :‖a(e,·)‖L∞(R)≤d0 ∀ e∈E, (H1)

and that the averaged function a attains its maximum and

max
x∈R

a(x)>0, (H2a)

which means that there exist at least some traits with strictly positive average growth
rate.

Moreover, for some of our results (Theorem 1.2 and Theorem 1.3) we assume that
this maximum is attained at a single point xm; that is

∃! xm : max
x∈R

a(x) =a(xm), (H2b)

and also

∃! x≤xm; a(x)+
c̃2

4σ
=a(xm). (H3)

Let us explain the role of the trait x in our results. We will show in Theorem 1.2 that,
as the mutation rate σ vanishes and when the speed of the environmental change c̃ is
not too high, the phenotypic density ñ concentrates around a single trait which moves
linearly with the same speed c̃. The population density concentrates indeed around the
trait x+ c̃t and follows in this way the optimum of the average environment, that is
xm+ c̃t, with a constant lag.

Finally, we make the following assumption on the initial data:

0≤ ñ0(x)≤eC1−C2|x|, ∀x∈R, (H4)

which indicates that the initial density of individuals with large traits is exponentially
small.

1.4. Preliminary results. To avoid the shift in the growth rate a, we transform
our problem with a change of variables. We introduce indeed n(t,x) = ñ(t,x+ c̃t) which
satisfies: 

∂tn− c̃∂xn−σ∂xxn=n[a(e(t),x)−ρ(t)], (t,x)∈ [0,+∞)×R,

ρ(t) =

∫
R
n(t,x)dx,

n(t= 0,x) = ñ0(x).

(1.2)
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Next, we introduce the linearized problem associated to (1.2). Let m(t,x) =

n(t,x)e
∫ t
0
ρ(s)ds, for n the solution of (1.2), then m satisfies{

∂tm− c̃∂xm−σ∂xxm=a(e(t),x)m, (t,x)∈ [0,+∞)×R,
m(t= 0,x) = ñ0(x), x∈R. (1.3)

We also introduce the corresponding parabolic eigenvalue problem as follows{
∂tpc− c̃∂xpc−σ∂xxpc−a(e(t),x)pc=λc̃,σpc, (t,x)∈ [0,+∞)×R,
0<pc; pc(t,x) =pc(t+T,x), (t,x)∈ [0,+∞)×R. (1.4)

For better legibility, we omit the tilde in the index of pc, while we still refer to the
problem with constant c̃. We also define the eigenvalue problem in the bounded domain
[−R,R], for some R>0,

∂tpR− c̃∂xpR−σ∂xxpR−a(e(t),x)pR=λRpR, (t,x)∈ [0,+∞)× [−R,R],

pR= 0, (t,x)∈ [0,+∞)×{−R,R},
0<pR; pR(t,x) =pR(t+T,x), (t,x)∈ [0,+∞)× [−R,R].

(1.5)

It is known that problem (1.5) has a unique eigenpair (λR,pR) with pR a strictly positive
eigenfunction such that ‖pR(0, ·)‖L∞([−R,R]) = 1, (see [19]). Another fundamental result
(see for instance [21]), for our purpose is that the function R 7→λR is decreasing and
λR→λc̃,σ as R→+∞.

To announce our first result we introduce another assumption. We assume that a
takes small values at infinity in the following sense: there exist positive constants δ and
R0 such that

a(e,x)+λc̃,σ≤−δ, ∀e∈E and |x|≥R0. (Hc)

Proposition 1.1. Assume (H1), (H4) and (Hc). Then for problem (1.4) there exists a
unique generalized principal eigenfunction pc associated to λc̃,σ, with ‖pc(0, ·)‖L∞(R) = 1.
Moreover, we have pc= lim

R→∞
pR and

pc(t,x)≤‖pc‖L∞e−ν(|x|−R0), ∀(t,x)∈ [0,+∞)×R, (1.6)

for ν=− c̃
2σ +

√
δ
σ + 1

2

(
c̃
σ

)2
.

Finally, the eigenfunction pc(t,x) is exponentially stable, in the following sense;
there exists α>0 such that:

‖m(t,x)etλc̃,σ−αpc(t,x)‖L∞(R)→0 exponentially fast as t→∞. (1.7)

The proof of this proposition is based on the results in [16].

We next define the T−periodic functions Qc(t) and Pc(t,x) as follows:

Qc(t) =

∫
Ra(e(t),x)pc(t,x)dx∫

Rpc(t,x)dx
, Pc(t,x) =

pc(t,x)∫
Rpc(t,x)dx

, (1.8)

and we recall a result proved in [16].
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Proposition 1.2. There exists a unique periodic solution ρ̂(t) to the problem{
dρ̂

dt
= ρ̂ [Qc(t)− ρ̂], t∈ (0,T ),

ρ̂(0) = ρ̂(T ),
(1.9)

if and only if

∫ T

0

Qc(t)dt>0. Moreover this solution can be explicitly expressed as

follows:

ρ̂(t) =

1−exp

[
−
∫ T

0

Qc(s)ds

]

exp

[
−
∫ T

0

Qc(s)ds

]∫ t+T

t

exp

[∫ s

t

Qc(θ)dθ

]
ds

. (1.10)

1.5. The main results and the plan of the paper. We are interested in deter-
mining conditions on the environment shift speed c̃ which leads to extinction or survival
of the population. In the case of the population survival we then try to characterize
asymptotically the population density considering small effect of the mutations.

To present our result on the survival criterion, we define the “critical speed”.

Definition 1.1. We define the critical speed c̃∗σ as follows

c̃∗σ =

{
2
√
−σλ0,σ, if λ0,σ<0,

0, otherwise,
(1.11)

where λ0,σ corresponds to the principal eigenvalue introduced by Proposition 1.1, in the
case c= 0.

The next result shows that c̃∗σ is indeed a critical speed of environmental change
above which the population goes extinct.

Proposition 1.3 (Long-time behavior). Let n(t,x) be the solution of (1.2). Assume
(H1), (H2a), (H4) and (Hc). Then the following statements hold:

(i) If c̃≥ c̃∗σ, then the population will go extinct, i.e. ρ(t)→0, as t→∞.

(ii) If c̃< c̃∗σ, then |ρ(t)− ρ̂(t)|→0, as t→∞, with ρ̂ the unique solution of (1.9).

(iii) Moreover,

∥∥∥∥n(t,x)

ρ(t)
−Pc(t,x)

∥∥∥∥
L∞
−→0, as t→∞. Consequently we have, as

t→∞:

‖n(t,·)− ρ̂(t)Pc(t,·)‖L∞→0, if c̃< c̃∗σ and ‖n‖L∞→0, if c̃≥ c̃∗σ. (1.12)

Remark 1.1. Note that if λ0,σ≥0, then c̃∗σ = 0, which means that the population goes
extinct even without environmental linear change, that is c̃= 0.

Proposition 1.3 allows to relate extinction/survival of the population to the envi-
ronmental change speed and shows that if the change goes “too fast” the population
will not be able to follow the environment change and will get extinct. However, if the
change speed is “moderate” the phenotypic density n converges to the periodic function
nc(t,x) = ρ̂(t)Pc(t,x), which is in fact the unique periodic solution of (1.2).

Next, we are interested in describing this periodic solution nc, asymptotically as
the effect of mutations is small. To this end, with a change of notation, we take σ=ε2
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and c̃=εc, and we study asymptotically the solution (nεc, ρ̂εc) as ε vanishes. For better

legibility, we also define c∗ε :=
c̃∗ε2

ε
where c̃∗ε2 stands for the critical speed c̃∗σ with σ=ε2.

Note that, in view of Proposition 1.3, to provide an asymptotic analysis considering
σ=ε2 small, a rescaling of the environmental shift speed as c̃=εc is necessary (see also
Theorem 1.3). The population can tolerate only an environmental shift with small speed
if the mutations have small effect.

In order to keep the notation simpler we denote (nεc, ρ̂cε) = (nε,ρε), which is the
unique periodic solution of the problem:

∂tnε−εc∂xnε−ε2∂xxnε=nε[a(e(t),x)−ρε(t)], (t,x)∈ [0,+∞)×R,

ρε(t) =

∫
R
nε(t,x)dx,

nε(0,x) =nε(T,x).

(1.13)

To study asymptotically this problem we perform a Hopf-Cole transformation (or WKB
ansatz), i.e we consider

nε=
1√
2πε

exp

(
ψε
ε

)
. (1.14)

This change of variable comes from the fact that with such rescaling the solution nε
will naturally have this form. While we expect that nε tends to a Dirac mass, as ε→0,
ψε will have a nonsingular limit. From this transformation (1.14) we deduce that ψε
solves:

1

ε
∂tψε−ε∂xxψε=

∣∣∣∂xψε+
c

2

∣∣∣2 +a(e(t),x)− c
2

4
−ρε(t), (t,x)∈ [0,+∞)×R. (1.15)

Here is our first main result:

Theorem 1.1 (Asymptotic behavior). Assume (H1), (H2a) and (Hc) and also that
c< liminf

ε→0
c∗ε. Then the following statements hold:

(i) As ε→0, we have ‖ρε(t)− %̃(t)‖L∞→0, with %̃(t) a T−periodic function.

(ii) Moreover, as ε→0, ψε(t,x) converges locally uniformly to a function ψ(x)∈
C(R), a viscosity solution to the following equation:

−
∣∣∣∂xψ+

c

2

∣∣∣2 =a(x)−ρ− c
2

4
, x∈R,

max
x∈R

ψ(x) = 0,

−A1|x|2− c
2x−A2≤ψ≤ c1−c2|x|,

(1.16)

with

ρ̄=

∫ T

0

%̃(t)dt,

for some positive constants A1,A2,c1 and c2 =− c
2 +
√
δ+ c2

2 .

The above theorem is closely related to Theorem 4 in [16]. A new difficulty comes
from the drift term. To deal with the drift term we use a Liouville transformation
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(see for instance [7, 8]) that allows us to transform the problem to a parabolic problem
without drift.

To present our next result, let us consider the eigenvalue (1.4) for σ=ε2 and c̃= cε,
that is:{

∂tpcε−εc∂xpcε−ε2∂xxpcε−a(e(t),x)pcε=pcελc,ε, (t,x)∈ [0,+∞)×R,
0<pcε; pcε(t,x) =pcε(t+T,x), (t,x)∈ [0,+∞)×R.

(1.17)

Here we denote λc,ε the eigenvalue λc̃,σ with σ=ε2 and c̃= cε for better legibility.

Theorem 1.2 (Uniqueness and identification of the solution). Let λc,ε be the principal
eigenvalue of problem (1.17) and assume (H1), (H2b), (H3) and (Hc). Assume in
addition that c< liminf

ε→0
c∗ε, then the following statements hold:

(i) Let ρε= 1
T

∫ T
0
ρε(t)dt, then ρε=−λc,ε.

(ii) The viscosity solution of (1.16) is unique and it is indeed a classical solution
given by

ψ(x) =
c

2
(x−x)+

∫ xm

x

√
a(xm)−a(y)dy−

∣∣∣∣∫ x

xm

√
a(xm)−a(y)dy

∣∣∣∣ , (1.18)

where x<xm is given in (H3). Moreover, as ε→0, ρε converges to ρ=a(x).

(iii) Furthermore, let nε solve (1.13), then

nε(t,x)− %̃(t)δ(x−x)⇀0, as ε→0, (1.19)

pointwise in time, weakly in x in the sense of measures, with %̃ the unique
periodic solution of the following equation{

d%̃

dt
= %̃ [a(e(t),x̄)− %̃] , t∈ (0,T ),

%̃(0) = %̃(T ).
(1.20)

Remark 1.2. The statement (iii) in Theorem 1.2 implies, for the solution ñε to the
initial problem (1.1) with σ=ε2 and c̃= cε, that

ñε(t,x)− %̃(t)δ(x−x−ct)⇀0, as ε→0, (1.21)

pointwise in time, weakly in x in the sense of measures. This implies that the phenotypic
density of the population concentrates on a dominant trait which follows the optimal
trait with the same speed but with a constant lag xm−x.

Note that while in [16] the uniqueness of the viscosity solution to the corresponding
Hamilton-Jacobi equation with constraint was immediate, here to prove the uniqueness
of the viscosity solution more work is required. In particular, in order to prove such
result the constraint is not enough and we use also the bounds on ψ, given in (1.16).
More precisely we introduce a new function u(x) =ψ(x)+ c

2x which solves
−|∂xu|2 =a(x)−ρ− c2

4 , x∈R,
maxx∈Ru(x)− c

2x= 0,

−A1|x|2−A2≤u(x)≤ c1−c2|x|+ c
2x,

(1.22)

where the constants A1, A2, c1, c2 are the same as in (1.16).
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The main idea comes from the fact that any viscosity solution to a Hamilton-Jacobi
equation of type (1.22) but in a bounded domain Ω can be uniquely determined by its
values on the boundary points of Ω and by its values at the maximum points of the
RHS of the Hamilton-Jacobi equation [24].

Finally, in our last result we provide an asymptotic expansion for the Floquet eigen-
value which leads to an asymptotic expansion for the critical speed c∗ε and the average
size of the population ρ̄ε.

Theorem 1.3 (Asymptotic expansions). Let λc,ε be the principal eigenvalue of prob-
lem (1.17) and assume (H1), (H2b) and (Hc). Assume in addition that c< liminf

ε→0
c∗ε,

then the following asymptotic expansions hold

ρε=−λc,ε=a(xm)− c
2

4
−ε
√
−axx(xm)/2+o(ε), (1.23)

c∗ε = 2
√
a(xm)−ε

√
−axx(xm)

2a(xm)
+o(ε). (1.24)

Note that the expansion for the Floquet eigenvalue is indeed related to the harmonic
approximation of the ground state energy of the Schrödinger operator [18]. However,
here we have a parabolic, non-self-adjoint operator.

In Section 6 we study an illuminating biological example and show, thanks to the
above result, that the fluctuations of the environment may help the population to follow
the environmental shift.

The paper is organized as follows: In Section 2 we deal with the long-time study of
the problem and prove the preliminary results Proposition 1.1 and Proposition 1.3.
Next in Section 3 we provide an asymptotic analysis of the problem considering small
effect of mutations and we prove Theorem 1.1. In Section 4, we obtain the uniqueness
of the viscosity solution to (1.16) and prove Theorem 1.2. Section 5 is devoted to
the approximations of the principal eigenvalue (average size of the population) and
the critical speed, given in Theorem 1.3. In Section 6 we study a biological example
and discuss the effect of the fluctuations on the critical speed of survival and on the
phenotypic distribution of the population. Finally, in Appendices A and B, we provide
some technical results and computations.

2. The convergence in long time
In this section we provide the proofs of Proposition 1.1 and Proposition 1.3. To

this end, we make a change of variable which allows us to transform the problem into a
parabolic equation without the drift term.

Let m(t,x) satisfy the linearized problem (1.3), we denote P0 and Pc the linear
operators associated to problem (1.3), for c̃= 0 and c̃>0 respectively, that is:

P0ω :=∂tω−σ∂xxω−a(e(t),x)ω, Pcω :=∂tω− c̃∂xω−σ∂xxω−a(e(t),x)ω. (2.1)

In Subsection 2.1, we introduce the Liouville transformation and provide a relation
between P0 and Pc which allows us to obtain a relationship between c̃ and λc̃,σ. Next
in Subsection (2.2) and (2.3) we provide the proofs of Proposition 1.1 and Proposition
1.3 respectively.

2.1. Liouville transformation. Here, we reduce the parabolic Equation (1.2)
to a parabolic problem without the drift term via a Liouville transformation (see for
instance [7, 8] where this transformation is used for an elliptic problem).
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Let M(t,x) be given by

M(t,x) :=m(t,x)e
c̃

2σ x, (2.2)

for m(t,x) the solution of the linearized problem (1.3), then M satisfies:

∂tM−σ∂xxM =
[
a(e(t),x)− c̃2

4σ

]
M. (2.3)

We denote P̃ the linear operator associated to the above equation, i.e.

P̃ω :=∂tω−σ∂xxω−ac(e(t),x)ω,

where ac(e(t),x) =
[
a(e(t),x)− c̃2

4σ

]
.

We establish in the next lemma the relation between the principal eigenvalues as-
sociated to the operators P0, Pc and P̃.

Lemma 2.1. Let λ(P,D) denote the principal eigenvalue of the operator P in the
domain D, it holds

λc̃,σ =λ(Pc,R+×R) =λ
(
P̃,R+×R

)
.

Moreover, let λ0,σ =λ(P0,R+×R), then λc̃,σ =λ0,σ+ c̃2

4σ .

Proof. The proof follows from the definition of the eigenfunction and eigenvalue
and the fact that

P̃ω=
(
Pc
(
ωe−

c̃
2σ x
))
e
c̃

2σ x.

2.2. Proof of Proposition 1.1. Proposition 1.1 can be proved following similar
arguments as in the proof of Lemma 6 in [16]. Note that the argument in [16] is based
on an exponential separation result for linear parabolic equations in [21] that holds for
general linear operators of the form

ωt=L(t,x)ω, in [0,+∞)×R,

with L(t,x) being any time-dependent second-order elliptic operator in non-divergence
form, i.e:

L(t,x)ω=aij(t,x)∂i∂jω+Bi(t,x)∂iω+A(t,x)ω,

where the functions Bi,A∈L∞(R+×R) and aij satisfies

aij(t,x)ξiξj≥α0|ξ|2, (t,x)∈R+×R,

(see Section 9 in [21] for more details).

Here, we only provide the proof of the inequality (1.6) which is also obtained by an
adaptation of the proof of Lemma 6 in [16]. Let ãc(e(t),x) =ac(e(t),x)+λc̃,σ then pc is
a positive periodic solution of the following equation:

∂tpc− c̃∂xpc−σ∂xxpc=pcãc(e(t),x), inR×R. (2.4)
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Note that we have defined pc in (−∞,0] by periodic prolongation. We denote
‖pc‖L∞(R×R) = Γ and define:

ζ(t,x) = Γe−δ(t−t0) +Γe−ν(|x|−R0),

for some ν to be found later and δ, R0 given in (Hc). One can verify that

Γ≤ ζ(t,x) if |x|=R0 or t= t0.

Furthermore if |x|>R0 or t>t0 evaluating in (2.4) shows:

∂tζ− c̃∂xζ−σ∂xxζ−ζãc(e(t),x) = Γe−δ(t−t0)(−δ− ãc(e(t),x))

+Γe−ν(|x|−R0)
(
c̃ν x
|x|−σν

2− ãc(e(t),x)
)
≥0,

since ãc(e(t),x)+ c̃2

4σ =a(e(t),x)+λc̃,σ≤−δ thanks to assumption (Hc) and choosing ν
conveniently such that the inequality holds. Indeed, since −1≤ x

|x| ≤1, we have:

c̃ν
x

|x|
−σν2− ãc(e(t),x)≥−c̃ν−σν2 +δ+

c̃2

4σ
≥0

for

−c̃−
√

4δσ+2c̃2

2σ
≤ν≤ −c̃+

√
4δσ+2c̃2

2σ
.

Thus ζ is a supersolution of (2.4) on:

Λ0 ={(t,x)∈ (t0,∞)×R ; |x|>R0},

which dominates pc on the parabolic boundary of Λ0. Applying the maximum principle
to ζ−pc, we obtain

pc(t,x)≤Γe−δ(t−t0) +Γe−ν(|x|−R0), |x|≥R0, t∈ (t0,∞).

Taking the limit t0→−∞ yields

pc(t,x)≤Γe−ν(|x|−R0), |x|≥R0, t<+∞,

in particular, for ν=
−c̃+

√
4δσ+2c̃2

2σ
. We conclude that pc satisfies (1.6).

2.3. Proof of Proposition 1.3. The proof of Proposition 1.3, is closely related
to the proof of Proposition 2 in [16] but we need to verify two properties before applying
the arguments in [16]. To this end we prove the following lemmas. The rest of the proof
follows from the arguments in [16].

Lemma 2.2. Let λc̃,σ be the principal eigenvalue of problem (1.4). Then, λc̃,σ<0 if
and only if c̃< c̃∗σ.

Proof. Follows directly from the definition of c̃∗σ.

Lemma 2.3. Assume (H1) and (H4) and let C3 =C2(σC2 + c̃)+d0 then the solution
n(t,x) to Equation (1.2) satisfies:

n(t,x)≤ exp(C1−C2|x|+C3t) , ∀(t,x)∈ (0,+∞)×R.



S.FIGUEROA IGLESIAS AND S. MIRRAHIMI 1771

Proof. We argue by a comparison principle argument. Define the function

n̄(t,x) = exp(C1−C2|x|+C3t) .

We prove that n≤ n̄. One can verify that for C3 defined as in the formulation of the
lemma, we have the following inequality a.e:

∂tn̄− c̃∂xn̄−σ∂xxn̄− [a(e(t),x)−ρ(t)]n̄

=e(C1−C2|x|+C3t)
[
C3−σC2

2 +C2
cx
|x|−a(e(t),x)+ρ(t)

]
≥0.

Moreover, we have for t= 0, n(0,x)≤ n̄(0,x) thanks to assumption (H4). We can then
apply a maximum principle to d(t,x) = n̄(t,x)−n(t,x), in the class of L2 functions, and
we conclude that:

0≤d(t,x)⇒n(t,x)≤ n̄(t,x), ∀(t,x)∈ (0,+∞)×R.

3. Regularity estimates
In this section, we prove Theorem 1.1. To this end we first provide some uniform

bounds for ρε(t). Then, in Subsection 3.2, we prove that ψ is locally uniformly bounded,
Lipschitz continuous with respect to x and locally equicontinuous in time. Finally in
the last subsection we conclude the proof of Theorem 1.1 by letting ε go to zero and
describing the limits of ψε and ρε.

3.1. Uniform bounds for ρε. We have the following result on ρε.
Proposition 3.1. Assume (H1), (Hc) and let c̃=εc with c< liminf

ε→0
c∗ε. Then for all

0<ε≤ε0, there exist positive constants ρm and ρM such that:

0<ρm≤ρε(t)≤ρM , ∀t≥0. (3.1)

The proof of this result follows similar arguments as in [16]. For the convenience of
the reader, we provide this proof in Appendix A.

3.2. Regularity results for ψε. In this subsection we prove some regularity
estimates on ψε which give the basis to prove the convergence of ψε and ρε as ε→0 in
Subsection 3.3. We claim the following theorem.

Theorem 3.1. Assume (H1), (H2a) and (Hc). Let ψε be a T−periodic solution to
(1.15). Then the following items hold:

(i) The sequence (ψε)ε is locally uniformly bounded; i.e.

−A1|x|2−
c

2
x−A2≤ψε≤ c1−c2|x|, ∀(t,x)∈R+×R, (3.2)

for some positive constants A1,A2,c1 and c2 =− c
2 +
√
δ+ c2

2 .

(ii) Moreover, the sequence (φε=
√

2c1−ψε)ε, is uniformly Lipschitz continuous
with respect to x in (0,+∞)×R.

(iii) Also, (ψε)ε is locally equicontinuous in time in [0,T ]×R and satisfies

|ψε(t,x)−ψε(s,x)|→0 as ε→0, ∀ 0≤s≤ t≤T. (3.3)

In the next subsections we provide the proof of the lower bound in (3.2) and the
uniform Lipschitz continuity of φε. The proof of the other properties can be obtained
by an adaptation of the arguments in [16]. For the convenience of the reader we provide
them in Appendix A.
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3.2.1. Lower bound for ψε. To obtain the lower bound for ψε we use the
bounds for a in (H1) and for ρε in (3.1) and we obtain for D0 =d0 +ρM

∂tnε−cε∂xnε−ε2∂xxnε≥−D0nε.

Let n∗ε be the solution of the following Cauchy problem{
∂tn
∗
ε−cε∂xn∗ε−ε2∂xxn

∗
ε+D0n

∗
ε = 0,

n∗ε(0,x) =n0
ε,

we define N∗ε analogously to (2.2) by the Liouville transformation of n∗ε as follows

N∗ε (t,x) :=n∗ε(t,x)e
c
2εx.

Then, N∗ε solves the heat equation{
∂tN

∗
ε −ε2∂xxN

∗
ε +D1N

∗
ε = 0,

N∗ε (0,x) =n0
ε(x)e

c
2εx,

for D1 =D0 + c2

4 . The solution to the latter equation is given explicitly by the Heat
Kernel K,

N∗ε (t,x) =e−D1t (N∗ε (0,y)∗K) =
e−D1t

ε
√

4πt

∫
R
N∗ε (0,y)e−

|x−y|2

4tε2 dy, t>0.

Note that N∗ε (0,x) from its definition can be written as follows

N∗ε (0,x) :=
pcε(0,x)∫

Rpcε(0,x)dx
ρε(0)e

c
2εx. (3.4)

We recall that pcε is uniquely determined once ‖pcε(0,x)‖L∞(R) = 1 is fixed. Then, one
can choose xε such that pcε(0,xε) = 1. From an elliptic-type Harnack inequality in a
bounded domain we can obtain

pcε(t0,xε)≤ sup
y∈B(xε,ε)

pcε(t0,y)≤Cpcε(t0,x), ∀(t0,x)∈ [δ0,2T ]×B(xε,ε), (3.5)

where δ0 is such that 0<δ0<T and C is a positive constant depending on δ0 and d0

(we refer to Appendix A - Proof of upper bound, for more details on this inequality).
We then use the T−periodicity of pcε to conclude that the last inequality is satisfied for
all t∈ [0,T ].

From (1.6), (3.4) and (3.5) we deduce that

ε−1D2e
−D3

ε + c
2εx≤ρm

pε(0,x)e
c
2εx∫

Rpε(0,x)dx
≤N∗ε (0,x), ∀x∈B(xε,ε),

for some positive constants D2 and D3 depending on ‖pε‖L∞ , ρm, δ, and the constants
of hypothesis (Hc). Then, for all (t,x)∈ (0,+∞)×R

N∗ε (t,x) ≥ D2

ε2
√

4πt
e−

D3+εD1t
ε

∫
B(xε,ε)

e
c
2εye−

|x−y|2

4tε2 dy

≥ D2|B(xε,ε)|
ε2
√

4πt
exp

{
−|x|

2 +(|xε|+ε)2

2tε2
+
c

2

(xε
ε
−1
)
−D3 +D1tε

ε

}
.
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By the definition of n∗ε and the comparison principle we obtain that n∗ε(t,x)≤nε(t,x)
and hence

nε(t,x)≥ D2|B(xε,ε)|
ε2
√

4πt
exp

{
−|x|

2 +(|xε|+ε)2

2tε2
+
c

2

(
xε−x
ε
−1

)
−D3 +D1tε

ε

}
.

This, together with the definition of ψε, implies that

ε log

(
D2|B(xε,ε)|
ε2
√

4πt

)
− |x|

2 +(|xε|+ε)2

2tε
+
c

2
(xε−x−ε)−(D3 +D1tε)≤ψε(t,x), ∀t≥0.

In particular, we obtain that ∀t∈ [1,1+εT ].

ε log

(
D2|B(xε,ε)|
ε3/2
√

4πt

)
− |x|

2 +(|xε|+ε)2

2t
+
c

2
(xε−x−ε)−(D3 +D1t)≤ψε

(
t

ε
,x

)
Note that xε is uniformly bounded in ε thanks to (1.6). Then we can conclude by using
the periodicity of ψε. We obtain a quadratic lower bound for ψε for all t≥0; that is,
there exist A1, A2≥0 and ε0 small enough such that for all ε≤ε0,

−A1|x|2−
c

2
x−A2≤ψε(t,x), ∀t≥0. (3.6)

3.2.2. Lipschitz bounds. In this section we prove the Lipschitz bounds for φε.
To this end we use a Bernstein-type method closely related to the one used in [5, 16].
Let φε=

√
2c1−ψε, for c1 given by (3.2), then φε satisfies

1

ε
∂tφε−c∂xφε−ε∂xxφε−

(
ε

φε
−2φε

)
|∂xφε|2 =

a(e(t),x)−ρε(t)
−2φε

.

Define Φε=∂xφε, which is also T−periodic. We differentiate the above equation with
respect to x and multiply by Φε

|Φε| , i.e.,

1
ε∂t|Φε|−c∂x|Φε|−ε∂xx|Φε|−2

(
ε
φε
−2φε

)
Φε ·∂x|Φε|+

(
ε
φ2
ε

+2
)
|Φε|3

≤ (a(e(t),x)−ρε(t))|Φε|
2φ2

ε

− ∂xa ·Φε
2φε|Φε|

.

From (3.2) we deduce that

√
c1≤φε≤

√
A1|x|2 +

c

2
x+A3, ∀ t≥0, x∈R,

for A3 =A2 +2c1. It follows that∣∣∣∣2( ε

φε
−2φε

)∣∣∣∣≤A4|x|+A5,

for some positive constants A4 and A5. From here, we deduce for ϑ large enough

1

ε
∂t|Φε|−c∂x|Φε|−ε∂xx|Φε|−

(
A4|x|+A5

)∣∣Φε ·∂x|Φε|∣∣+2(|Φε|−ϑ)
3≤0. (3.7)

Let TM >2T and A6 be chosen later, define now, for (t,x)∈
(

0, TMε

]
× [−R,R]

Θε(t,x) =
1

2
√
tε

+
A6R

2

R2−|x|2
+ϑ.
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We next verify that Θε is a strict supersolution of (3.7) in
(

0, TMε

]
× [−R,R]. To this

end we compute

∂tΘε=− 1

4t
√
tε
, ∂xΘε=

2A6R
2x

(R2−|x|2)2
, ∂xxΘε=

2A6R
2

(R2−|x|2)2
+

8A6R
2|x|2

(R2−|x|2)3
,

and then replace in (3.7) to obtain

1
ε∂tΘε−c∂xΘε−ε∂xxΘε−

(
A4|x|+A5

)
|Θε ·∂xΘε|+2(Θε−ϑ)

3

=− 1
4εt
√
εt
− 2cA6R

2x
(R2−|x|2)2 −ε

[
2A6R

2

(R2−|x|2)2 + 8A6R
2|x|2

(R2−|x|2)3

]
−
(
A4|x|+A5

)(
1

2
√
εt

+ A6R
2

R2−|x|2 +ϑ
)

2A6R
2|x|

(R2−|x|2)2 +2
(

1
2
√
εt

+ A6R
2

R2−|x|2

)3

≥−ε
[

2A6R
2d

(R2−|x|2)2 + 8A6R
4

(R2−|x|2)3

]
−
(
A4R+A5

)(
1

2
√
εt

+ A6R
2

R2−|x|2 +ϑ
)

2A6R
3

(R2−|x|2)2

+ 3A6R
2

R2−|x|2

(
1

2tε + A6R
2

√
εt(R2−|x|2)

)
+ 2A6R

3

(R2−|x|2)2

(
A2

6R
3

R2−|x2|−c
)
,

where, for the inequality, we have used that |x|≤R.

One can verify that the RHS of the above inequality is strictly positive for R>1, ε≤
1, and A6>>

√
TM . Therefore, Θε is a strict supersolution of (3.7) in

(
0, TMε

]
× [−R,R]

and for ε≤1.

We next prove that

|Φε(t,x)|≤Θε(t,x) in
(

0,
TM
ε

]
× [−R,R].

To this end, we notice that Θε(t,x) goes to +∞ as |x|→R or as t→0. Therefore,

|Φε|(t,x)−Θε(t,x) attains its maximum at an interior point of
(

0, TMε

]
× [−R,R]. We

choose tmax≤ TM
ε the smallest time such that the maximum of |Φε|(t,x)−Θε(t,x) in the

set (0,tmax]× [−R,R] is equal to 0. If such tmax does not exist, we are done.

Let xmax be such that |Φε|(t,x)−Θε(t,x)≤|Φε|(tmax,xmax)−Θε(tmax,xmax) = 0 for
all (t,x)∈ (0,tmax)× [−R,R]. At such point, we have

0≤∂t
(
|Φε|−Θε

)
(tmax,xmax), 0≤−∂xx

(
|Φε|−Θε

)
(tmax,xmax),

|Φε|(tmax,xmax)∂x|Φε|(tmax,xmax) = Θε(tmax,xmax)∂xΘε(tmax,xmax).

Combining the above properties with the facts that |Φε| and Θε are respectively sub-
and strict super-solution of (3.7), we obtain that

(|Φε|(tmax,xmax)−ϑ)3−(Θε(tmax,xmax)−ϑ)3<0⇒|Φε|(tmax,xmax)<Θε(tmax,xmax),

which is in contradiction with the choice of (tmax,xmax). We deduce, then that

|Φε(t,x)|≤ 1

2
√
εt

+
A6R

2

R2−|x|2
+ϑ for (t,x)∈

(
0,
TM
ε

]
× [−R,R], ∀R>1.
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We note that for ε<ε0 small enough we have TM
ε > 2T

ε >
T
ε +T > T

ε . Letting R→∞ we
deduce that

|Φε(t,x)|≤ 1

2
√
εt

+A6 +ϑ≤ 1

2
√
T

+A6 +ϑ for (t,x)∈
[
T

ε
,
T

ε
+T

]
×R.

Finally we use the periodicity of Φε to extend the result for all t∈ [0,+∞) and rewriting
the result in terms of φε we obtain for some positive constant A7

|∂xφε|≤A7, in [0,+∞)×R. (3.8)

3.3. Derivation of the Hamilton-Jacobi equation with constraint. In
this section we derive the Hamilton-Jacobi equation with constraint (1.16) using the
regularity estimates in Theorem 3.1.

3.3.1. Convergence along subsequences of ψε and ρε. According to Section
3.2, {ψε} is locally uniformly bounded and equicontinuous, so by the Arzela-Ascoli
Theorem after extraction of a subsequence, ψε(t,x) converges locally uniformly to a
continuous function ψ(t,x). Moreover from (3.3), we obtain that ψ does not depend on
t, i.e ψ(t,x) =ψ(x).

Furthermore, from the uniform bounds on ρε in (3.1) we obtain that |dρεdt | is also
bounded. Then we apply the Arzela-Ascoli Theorem to guarantee the locally uniform
convergence along subsequences of ρε(t), to a function %̃(t) as ε→0.

3.3.2. The Hamilton-Jacobi equation with constraint. Here we use a
perturbed test function argument (see for instance [15]), in order to prove that, ψ(x) =
limε→0ψ(t,x) is in fact a viscosity solution of the following Hamilton-Jacobi equation.

−
∣∣∣∂xψ+

c

2

∣∣∣2 =a(x)−ρ− c
2

4
, (3.9)

where ρ= 1
T

∫ T
0
%̃(t)dt. We prove that ψ is a viscosity sub-solution and one can use the

same type of argument to prove that it is also a super-solution.

Let us define the auxiliary “cell problem”:
∂tφ=a(e(t),x)− %̃(t)−a(x)+ρ, (t,x)∈ [0,+∞)×Rd,
φ(0,x) = 0,

φ : T −periodic.
(3.10)

This equation has a unique smooth solution, that we can explicitly write:

φ(t,x) =−t(a(x)−ρ)+

∫ t

0

(a(e(t),x)− %̃(t))dt.

Let ϕ∈C∞(R) be a test function and assume that ψ−ϕ has a strict local maximum at
some point x0∈R, with ψ(x0) =ϕ(x0). We must prove:

−
∣∣∣∂xϕ(x0)+

c

2

∣∣∣2−a(x0)+
c2

4
+ρ≤0. (3.11)

We define the perturbed test function Ψε(t,x) =ϕ(x)+εφ(t,x), such that ψε−Ψε attains
a local maximum at some point (tε,xε). We note that Ψε converges locally uniformly
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to ϕ as ε→0 since φ is locally bounded by definition, and hence one can choose xε such
that xε→x0 as ε→0, (see Lemma 2.2 in [3]). Then Ψε satisfies:

1

ε
∂tΨε(tε,xε)−ε∂xxΨε(tε,xε)−

∣∣∣∂xΨε(tε,xε)+
c

2

∣∣∣2−a(e(tε),xε)+
c2

4
+ρε(tε)≤0,

since ψε is a solution of (1.15). The above line gives:

∂tφ(tε,xε)−ε∂xxϕ(xε)−ε2∂xxφ(tε,xε)−
∣∣∂xϕ(xε)+ε∂xφ(tε,xε)+ c

2

∣∣2
−a(e(tε),xε)+ c2

4 +ρε(tε)≤0.

Using (3.10), this last equation becomes:

−ε∂xxϕ(xε)−ε2∂xxφ(tε,xε)−
∣∣∣∂xϕ(xε)+ε∂xφ(tε,xε)+

c

2

∣∣∣2
+(ρε− %̃)(tε)−a(xε)+ρ+

c2

4
≤0. (3.12)

Next we pass to the limit as ε→0. We know from Subsection 3.3.1 that ρε→ %̃ locally
uniformly as ε→0. Moreover φ is smooth with locally bounded derivatives with respect
to x, thanks to its definition. Using these arguments and letting ε→0 in (3.12) we
obtain (3.11) which implies that ψ is a viscosity sub-solution of (3.9).

Furthermore, note that ψ is also bounded from above, by taking the limit as ε→0
in (3.2), i.e.,

ψ(x)≤ c1−c2|x|, (3.13)

and attains its maximum. We claim that

max
x∈R

ψ(x) = 0.

Indeed, from the upper bound for ρε in (3.1), the definition of ψε in (1.14) and the
continuity of ψ, we obtain that ψ(x)≤0. Moreover, from the locally uniform convergence
of ψε to ψ, as ε→0, and (3.2) we deduce that maxx∈Rψ(x)<0 implies that ψε(x)<−β,
for all x∈R and ε≤ε0 and some positive constant β. This is in contradiction with the
fact that ρε is bounded by below by a positive constant ρm (we refer to Section 4.3
of [16] for more details).

4. Uniqueness of the viscosity solution to (1.16) and explicit identifica-
tion

In this section we provide the proof of Theorem 1.2. To this end, we first derive an
equivalent Hamilton-Jacobi equation to (1.16) by means of the Liouville transformation
and prove some properties of the eigenvalue λc,ε. We then prove the uniqueness of the
viscosity solution to such equivalent equation. This allows us to establish the uniqueness
of the solution to (1.16) and to identify it explicitly. Finally, we provide the proof of
the convergence of nε to the Dirac mass given by (1.19).

4.1. Derivation of an equivalent Hamilton-Jacobi equation. In this sub-
section, we define a new function

u(x) :=ψ(x)+
c

2
x, (4.1)
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which solves the following Hamilton-Jacobi equation in the viscosity sense

−|∂xu|2 =a(x)−ρ− c
2

4
. (4.2)

Note that the transformation (4.1) is indeed analogous to the Liouville transformation
presented in Section 2.1. We have the following boundedness result for u.

Lemma 4.1. The function u(x), defined by (4.1), is locally bounded and satisfies

−A1|x|2−A2≤u(x)≤ c1−c2|x|+
c

2
x, ∀ x∈R, (4.3)

where the constants A1, A2, c1 and c2 are given in (3.2).

Proof. From Subsection 3.2 we got uniform bounds for ψε in (3.2), which lead to
bounds on ψ. That is

−A1|x|2−
c

2
x−A2≤ψ(x)≤ c1−c2|x|.

Then, the bounds (4.3) follow directly from the definition of u(x) in (4.1).

Therefore, we conclude that the function u satisfies (1.22). In Subsection 4.3 we will
prove a uniqueness result for (1.22) which will imply the uniqueness of ψ, the solution
to (1.16).

4.2. Some properties of the eigenvalue λc,ε. In this subsection we prove
Theorem 1.2-(i). We also establish that λc,ε is uniformly bounded above and below by
negative constants and derive some properties of the limit, along subsequences, of λc,ε.

From the Equation (1.17) we can integrate in R, divide by
∫
Rpcε(t,x)dx and inte-

grate again in t∈ [0,T ] and obtain

λc,ε=− 1

T

∫ T

0

Qcε(t)dt. (4.4)

where Qcε(t) is defined analogously to (1.8) from the periodic eigenfunction pcε. We
next use the relationship between the solution nε to (1.13) and the eigenfunction pcε to
obtain the first claim of Theorem 1.2. Indeed, from Equation (1.13) after an integration
in x∈R we obtain:

dρε(t)

dt
=

∫
R
nε(t,x)a(e(t),x)dx−ρ2

ε(t).

We divide by ρε(t) and use the relation between nε and pcε inside of the integral, that
is:

ρε(t)+
d

dt
lnρε(t) =

∫
Rpcε(t,x)a(e(t),x)dx∫

Rpcε(t,y)dy
.

Note that the RHS is exactly Qcε. We then integrate in [0,T ] and using (4.4) and the
T−periodicity of ρε we deduce that

ρε=−λc,ε, (4.5)
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We next prove that λc,ε is uniformly bounded above and below by negative constants.
Combining 4.4 and (H1) we obtain that

−d0≤λc,ε.

Moreover, since we are in the case c< liminf
ε→0

c∗ε, we can find a positive constant τ such

that for every ε≤ε0, with ε0 small enough we have c<c∗ε−τ . Then from the definition
of c∗ε we deduce that

c<2
√
−λ0,ε2−τ = 2

√
−λc,ε+

c2

4
−τ,

which leads to

λc,ε<−
cτ

2
− τ

2

4
,

and hence, for λm= cτ
2 + τ2

4 we obtain

λc,ε≤−λm<0. (4.6)

Thus (λc,ε)ε is uniformly bounded above and below by negative constants. This implies
that we can extract a subsequence, still called λc,ε, which converges as ε→0 to some
negative value λ1. Moreover passing to the limit as ε→0 in assumption (Hc) we obtain,
for all such limit values λ1,

a(x)≤−δ−λ1, ∀|x|≥R0. (4.7)

Note that passing to the limit of ρε as ε→0 along the same subsequence, we obtain
that

ρ=−λ1. (4.8)

4.3. Uniqueness and explicit formula for u(x). In this subsection we prove
the uniqueness of the viscosity solution of the Hamilton-Jacobi Equation (1.22). To this
end we consider the Hamilton-Jacobi equation as follows

−|∂xu|2 =h(x), x∈Ω, (4.9)

where h∈C1(R). Note that this corresponds to our problem for h(x) = h̄(x) :=a(x)−
ρ− c2

4 .

We divide the proof of the uniqueness result into several steps. We first prove that,
in the case where Ω is an open bounded domain and h<0 in Ω, a viscosity solution
to (4.9) can be uniquely determined by its values on the boundary of Ω. We then use
this property and (4.3) to prove that in our problem it is not possible that h̄(x)<0
for all x∈R. We prove indeed that maxh̄(x) = 0 and this maximum is attained only
at the point xm. Finally we use these properties to conclude that u is indeed uniquely
determined by an explicit formula.

Step 1: If h<0 and Ω is bounded then the viscosity solution to (4.9)
is uniquely determined by its values on the boundary of Ω. Suppose that
h(x)<0, for every x∈Ω. For this problem we obtain uniqueness of the viscosity solution



S.FIGUEROA IGLESIAS AND S. MIRRAHIMI 1779

thanks to a representation formula for the function u. Indeed, for Ω bounded we define
L(x,y) as follows

L(x,y) = sup
{∫ T0

0
−
√
−h(ξ(t))dt/(T0,ξ) such that ξ(0) =x, ξ(T0) =y,

ξ(t)∈Ω,∀t∈ [0,T0],
∣∣∣dξdt ∣∣∣≤1 a.e in [0,T0]

}
,

(4.10)

and in [24]-Chapter 5 the following is proved.

Proposition 4.1. Assume that h(x)<0, ∀x∈Ω, with Ω a bounded domain. The
function

u= inf
y∈∂Ω

[ϕ(y)+L(x,y)],

is the unique viscosity solution of

|Du|=
√
−h(x) in Ω; u=ϕ on ∂Ω.

Step 2: maxx∈R h̄(x) = h̄(xm) = 0 and the maximum is only attained at this
point. We assume on the contrary that maxx∈R h̄(x)<0. We consider Ω =BR′ =
(−R′,R′) for R′>0, to be chosen later. According to step 1, we can express the value
of the viscosity solution of (4.9) at the point 0, for h(x) = h̄(x), as follows:

u(0) = max

{
u(−R′)−

∣∣∣∣∫ 0

−R′

√
−h̄(y)dy

∣∣∣∣ ;u(R′)−

∣∣∣∣∣
∫ R′

0

√
−h̄(y)dy

∣∣∣∣∣
}
.

Note that thanks to (4.7) and (4.8), we obtain that√
δ+

c2

4
≤
√
−h̄(y), ∀|y|≥R0.

We deduce that, for all R′>R0,∫ 0

−R′

√
−h̄(y)dy≥

√
δ+

c2

4
(R′−R0), and

∫ R′

0

√
−h̄(y)dy≥

√
δ+

c2

4
(R′−R0).

Next we combine the above inequalities with the third line of (1.22) to obtain

u(0)≤max

{
c1−R′

√
δ+ c2

2 −(R′−R0)
√
δ+ c2

4 ;

c1 +cR′−R′
√
δ+ c2

2 −(R′−R0)
√
δ+ c2

4

}
,

for c1 given in (1.22). This implies that, taking R′ arbitrarily large, u(0) is arbitrarily
small which is a contradiction. Therefore the assumption on h̄(x) of being strictly
negative in Ω is false.

We have proved that h̄(x) vanishes at some point x∈R. Note also from (4.2) that

ā(x)− ρ̄− c
2

4
≤0,

and maxx∈R h̄(x) is attained at the unique maximum point of ā, which is xm.
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Step 3: Identification of u in R. We now prove that the solution u is uniquely
determined by its value at the maximum point of h̄(x). That is, for all x∈R

u(x) =−
∣∣∣∣∫ x

xm

√
−h̄(y)dy

∣∣∣∣+u(xm). (4.11)

To this end we choose 0<R, and 0<R′ such that R<<R′ and we consider the domain
BR′ = [−R′,xm]∪ [xm,R

′]. Note that h̄<0 in the sets (−R′,xm) and (xm,R
′). We can

thus apply Proposition 4.1 in these domains:

u(x) = max

{
u(−R′)−

∣∣∣∣∫ x

−R′

√
−h̄(y)dy

∣∣∣∣ ;u(xm)−
∣∣∣∣∫ x

xm

√
−h̄(y)dy

∣∣∣∣ .}, ∀x∈ (−R,xm),

u(x) = max

{
u(R′)−

∣∣∣∣∫ x

R′

√
−h̄(y)dy

∣∣∣∣ ;u(xm)−
∣∣∣∣∫ x

xm

√
−h̄(y)dy

∣∣∣∣ .}, ∀x∈ (xm,R),

We next prove the following inequalities for R′ large enough,∣∣∣∣∫ x

xm

√
−h̄(y)dy

∣∣∣∣−u(xm)≤
∣∣∣∣∫ x

−R′

√
−h̄(y)dy

∣∣∣∣−u(−R′), ∀x∈ (−R,xm),∣∣∣∣∫ x

xm

√
−h̄(y)dy

∣∣∣∣−u(xm)≤
∣∣∣∣∫ x

R′

√
−h̄(y)dy

∣∣∣∣−u(R′), ∀x∈ (xm,R).

and combine them with the above lines to obtain (4.11) for all x∈ [−R,R]. Since R is
arbitrary we thus obtain (4.11).

Suppose that xm<x<R. We prove the second inequality (the first one follows from
an analogous argument). We claim that, for R′ large enough

−
∫ x

xm

√
−h̄(y)dy+u(xm)+

∫ R′

x

√
−h̄(y)dy−u(R′)≥0. (4.12)

Indeed, for x∈ [xm,R] we have

−
∫ x

xm

√
−h̄(y)dy≥−

∫ R

xm

√
−h̄(y)dy. (4.13)

Moreover, from the upper bound for u in (4.3) we obtain for all x∈BR′(xm),

u(x)≤ c1−c2|x|+
c

2
x, ⇒u(R′)≤ c1 +

c

2
R′. (4.14)

Furthermore, following similar arguments as in the previous step we obtain that:√
−h̄(y)≥

√
δ+

c2

4
, ∀y∈ (R0,R

′). (4.15)

Finally, putting together (4.13), (4.14) and (4.15) we obtain:

−
∫ x

xm

√
−h̄(y)dy+u(xm)+

∫ R′

x

√
−h̄(y)dy−u(R′)

≥−
∫ R

xm

√
−h̄(y)dy+u(xm)+(R′−R0)

√
δ+

c2

4
− c

2
R′−c1

≥0,
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for R′ large enough.

Step 4: Uniqueness of u. We finally determine the value of u at xm which leads
to the uniqueness and an explicit formula for u thanks to (4.11).

Replacing the value of h in (4.11), we obtain

u(x) =u(xm)−

∣∣∣∣∣
∫ x

xm

√
ρ+

c2

4
−a(y)dy

∣∣∣∣∣ , ∀x∈R. (4.16)

This directly implies that u is in fact a classical solution for x∈R which attains its
maximum at x=xm. We also recall the second property in (1.22), that is

max
x∈R

u(x)− c
2
x= 0.

We denote the set of maximum points of u(x)− c
2x by X∗, i.e

X∗ :={x∗∈R such that u(x∗)− c
2
x∗= 0}.

Let x∗∈X∗, we evaluate the above formula of u at x∗ in order to obtain an expression
for u(xm). This implies

u(x) =
c

2
x∗+

∣∣∣∣∣
∫ x∗

xm

√
a(xm)−a(y)dy

∣∣∣∣∣−
∣∣∣∣∫ x

xm

√
a(xm)−a(y)dy

∣∣∣∣ , ∀x∈R. (4.17)

Moreover, we have

u(xm)− c
2
xm≤u(x∗)− c

2
x∗= 0,

which implies that

c

2
(x∗−xm)≤0,

and hence x∗≤xm. Note also that we have a(xm) =ρ+ c2

4 from step 2 and ā(x∗) = ρ̄
thanks to (1.16). Combining these properties with assumption (H3) it follows that
x∗=x, and hence u is uniquely determined. As a consequence we obtain the explicit
formula (1.18) for ψ(x). This ends the proof of Theorem 1.2-(ii).

4.4. Convergence to the Dirac mass. We deal in this subsection with the
result for the convergence of nε, that is Theorem 1.2-(iii).

Call fε(t,x) =
nε(t,x)

ρε(t)
, then fε is uniformly bounded in L∞(R+,L

1(R)). Next, we

fix t≥0, and we prove that fε(t,·), converges, along subsequences, to a measure, as
follows

fε(t, ·)⇀δ(·− x̄) as ε→0,

weakly in the sense of measures.

Indeed, we already know that

max
x∈R

ψ(x) =ψ(x̄) = 0 and ψ(x)≤ c1−c2|x|,
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for x̄ given in Theorem 1.2. This implies that for any ζ >0, there exists β>0 such that
ψ(x)≤−β for every x∈R\ [x̄−ζ,x̄+ζ].

We denoteO=R\ [x̄−ζ,x̄+ζ] and choose χ∈Cc(O), such that suppχ⊂K, for some
compact set K, then it follows that∣∣∣∣∫

O
fε(t,x)χ(x)dx

∣∣∣∣≤ 1

ρm

∫
O
e
ψε(t,x)

ε |χ(x)|dx≤ 1

ρm

∫
K
e
ψε(t,x)

ε |χ(x)|dx.

From the locally uniform convergence of ψε, to ψ(x), we obtain that there exists ε0>0
such that ∀ε<ε0, ψε(t,x)≤−β2 , ∀x∈K, and hence∫

K
e
ψε(t,x)

ε |χ(x)|dx≤
∫
K
e−

β
2ε |χ(x)|dx→0 as ε→0,

since χ is bounded in K. Therefore, thanks to the uniform L1 bound of fε, we obtain
that fε converges weakly in the sense of measures and along subsequences to µδ(x− x̄)
as ε→0. Then to prove that in fact, µ= 1 we can proceed as in Section 4.3 in [16].

4.5. Identification of the limit of ρε. In order to identify the limit of ρε we first
write, thanks to Proposition 1.3 and Proposition 1.2, the following explicit expression
for ρε:

ρε(t) =

1−exp

[
−
∫ T

0

Qcε(s)ds

]

exp

[
−
∫ T

0

Qcε(s)ds

]∫ t+T

t

exp

[∫ s

t

Qcε(θ)dθ

]
ds

, (4.18)

where Qcε is defined analogously to (1.8), using the periodic eigenfunction pcε of problem
(1.17).

We then compute the limit of Qcε as ε→0. We know that pcε(t,x) =
nε(t,x)

ρε(t)

∫
R
pcε(t,y)dy. Replacing pcε by this quantity in the formula for Qcε we obtain

Qcε(t) =

∫
R
a(e(t),x)pcε(t,x)dx∫

R
pcε(t,x)dx

=

∫
R
a(e(t),x)

nε(t,x)

ρε(t)

∫
R
pcε(t,y)dydx∫

R
pcε(t,x)dx

=

∫
R
a(e(t),x)nε(t,x)dx

ρε(t)
.

From the previous subsection we deduce that:

lim
ε→0

Qcε(t) = lim
ε→0

∫
R
fε(t,x)a(e(t),x)dx=a(e(t),x̄).

Finally we can pass to the limit in the expression (4.18) for ρε, to obtain the following
explicit formula for %̃

%̃(t) =

1−exp

[
−
∫ T

0

a(s,x̄)ds

]

exp

[
−
∫ T

0

a(s,x̄)ds

]∫ t+T

t

exp

[∫ s

t

a(θ,x̄)dθ

]
ds

, (4.19)
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which is in fact the unique periodic solution of the Equation (1.20) thanks to Proposition
1.2. Therefore using the convergence result for ρε we deduce finally (1.19) and this ends
the proof of Theorem 1.2.

5. Approximations of the eigenvalue
In this section we prove Theorem 1.3, i.e., the asymptotic expansions (1.23) and

(1.24). Note that the first equality in (1.23) has been already obtained in Section 4.2.

To this end we develop an asymptotic approximation of order ε of the eigenvalue
λc,ε given by the eigenvalue problem (1.17). To obtain such asymptotic expansion we
construct an approximate eigenfunction p̃ε corresponding to an approximate eigenvalue
λ̃ε which solves an equation close to (1.17). We then use Proposition 1.1 to prove that

λ̃ε approximates λc,ε with an error of order ε2.

To construct an approximate eigenfunction, we first try to approximate wε, obtained
from the Hopf-Cole transformation of pcε as follows:

pcε(t,x) =
1√
2πε

e
wε(t,x)

ε . (5.1)

One can verify that wε solves:

1

ε
∂twε−ε∂xxwε=

∣∣∣∂xwε+
c

2

∣∣∣2 +a(e(t),x)+λc,ε−
c2

4
. (5.2)

We can obtain similar bounds for wε as for ψε, which guarantee the convergence along
subsequences of wε to certain function w=w(x), which is in fact the limit of the whole
sequence wε, and satisfies the following Hamilton-Jacobi equation in the viscosity sense

−
∣∣∣∂xw+

c

2

∣∣∣2 =a(x)+λ1−
c2

4
. (5.3)

Remark 5.1. Note that in order to obtain the limit Equation (5.3) we can argue exactly
as for ψε in Section 3.3.2, by a “perturbed test function” argument, (see also [16]).

Note that, thanks to Theorems 1.1 and 1.2, λ1 =−ρ and ψ(x) is a solution to (5.3).
We then, write (formally)

wε(t,x) =ψ(x)+εφ(t,x)+ε2ω(t,x)+o(ε2) and λc,ε=−ρ+ελ2 +o(ε), (5.4)

for some T−periodic functions φ and ω, and we construct the following approximated
eigenpair:

ψ̃ε=ψ+εφ and λ̃ε=−ρ+ελ2. (5.5)

We then substitute this pair (ψ̃ε,λ̃ε) into (5.2) and obtain:

∂tφ−cψx−cε∂xφ−εψxx−ε2∂xxφ= |ψx+ε∂xφ|2 +a(e(t),x)−ρ+ελ2 +o(ε), (5.6)

where the notations ψx and ψxx correspond respectively to the first and second derivative
of ψ.

Regrouping the terms with similar powers of ε we obtain the following system for
φ, 

∂tφ=
∣∣∣ψx+

c

2

∣∣∣2 +a(e(t),x)− c
2

4
−ρ,

−ψxx= [2ψx+c]
1

T

∫ T

0

∂xφ(t,x)dt+λ2.
(5.7)



1784 ADAPTATION IN A TIME-VARYING ENVIRONMENT

We remark that the previous system has a unique solution φ up to addition by a con-
stant. Indeed, from Equation (1.16) we obtain

∂tφ=a(e(t),x)− ā(x).

Integrating in [0,t] leads to

φ(t,x) =φ(0,x)+

∫ t

0

a(τ,x)dτ− tā(x),

and the value of φ(0,x) can be obtained from the second equation in (5.7) once we fix
φ(0,xm). Note that here we use the fact that 2ψx+c vanishes only at the point xm.

We now define p̃ε(t,x) := 1√
2πε

e
ψ̃ε(t,x)

ε , and use the system (5.7), to obtain the equal-

ity:

Pεp̃ε− λ̃εp̃ε=−ε2
(
|∂xφ|2 +∂xxφ

)
p̃ε, (5.8)

for Pε the following parabolic operator

Pεp=∂tp−cε∂xp−ε2∂xxp−a(e(t),x)p.

We denote

λε+ = λ̃ε+ε2K, and λε− = λ̃ε−ε2K,

with

K=‖|∂xφ|2 +∂xxφ‖L∞ , (5.9)

where the well definition of K is guaranteed by the next lemma which is proved in the
next subsection.

Lemma 5.1. The constant K given in (5.9) is well defined. Moreover the function φ
computed above solves (5.7) with λ2 =

√
−āxx(xm)/2.

We then deduce from (5.8) that

p̃ελε− ≤∂tp̃ε−cε∂xp̃ε−ε2∂xxp̃ε−a(e(t),x)p̃ε≤ p̃ελε+ .

We next define the functions

qε(t,x) = p̃ε(t,x)e−tλε− , q
ε
(t,x) = p̃ε(t,x)e−tλε+ .

One can verify that qε and q
ε

are super- and sub-solution of the linear problem (1.3)

with σ=ε2 and c̃= cε, that is

∂tqε−cε∂xqε−ε
2∂xxqε≤ qεa(e(t),x),

∂tqε−cε∂xqε−ε2∂xxqε≥ qεa(e(t),x).

We then apply a comparison principle and obtain that the solution qε(t,x) to the fol-
lowing linear problem {

∂tqε−cε∂xqε−ε2∂xxqε= qεa(e(t),x),

qε(0,x) = p̃ε(0,x),
(5.10)
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satisfies

q
ε
(t,x)≤ qε(t,x)≤ qε(t,x), ∀(t,x)∈R+×R.

From the proof of Proposition 1.1 in Section 2.2 (see Equation (1.7)), applied to the
case σ=ε2 and c= cε we know that qε converges exponentially fast as t→+∞ to the
periodic eigenfunction in (1.17), (see also [21]); that is, we can write for some positive
constants α and β,

‖qεetλc,ε−αpcε‖L∞ ≤e−βt. (5.11)

We recall that qεe
tλc,ε can indeed be written as

qεe
tλc,ε = q̃ε,1 + q̃ε,2,

with q̃ε,1(t,·)∈ span{pcε(t,·)}, q̃ε,2→0 exponentially fast and∫
R
q̃ε,2(t,x)p∗cε(t,x)dx= 0,

where p∗cε is the principal eigenfunction to the adjoint problem

−∂tp∗cε+cε∂xp
∗
cε−ε2∂xxp

∗
cε= (a(e(t),x)+λc,ε)p

∗
cε, (5.12)

(see Theorem 2.2 in [21] and the proof of Lemma 6 in [16]). The positivity of α is then
derived from the fact that qε(0,x) and p∗cε are positive functions.

On the one hand Equation (5.11) implies that,

0≤ p̃εe(−λε++λc,ε)t≤αpcε+e−βt.

Since pcε and p̃ε are time-periodic functions, then necessarily

λc,ε−λε+ ≤0,

otherwise we get a contradiction as t→+∞. Therefore

λc,ε− λ̃ε≤Kε2, (5.13)

where K is defined in (5.9).

On the other hand, from (5.11) we obtain

p̃εe
(−λε−+λc,ε)t≥αpcε−e−βt.

Note that if λc,ε−λε− ≤0 we obtain from the T−periodicity of the eigenfunctions, as
t→+∞, that pcε≤0, which is also a contradiction. We deduce that

λc,ε−λε− ≥0.

Therefore we have

λc,ε− λ̃ε≥−Kε2. (5.14)

Combining both inequalities (5.13) and (5.14) we write∣∣λc,ε−(−ρ+ελ2)
∣∣≤Kε2, (5.15)
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which leads, thanks to Theorem 1.2-(ii) and Lemma 5.1, to an approximation for the
eigenvalue of order ε2 as follows:

λc,ε=−a(xm)+
c2

4
+ε
√
−āxx(xm)/2+o(ε).

The approximation (1.24) for the critical speed c∗ε can be derived from the above ap-
proximation and (1.11). Indeed, from (1.11) and the definition of c∗ε we obtain

c∗ε = 2

√
ā(xm)−ε

√
− āxx(xm)

2
+o(ε) = 2

√
ā(xm)−ε

√
− āxx(xm)

2 ā(xm)
+o(ε).

5.1. Boundedness of K. In this subsection we prove Lemma 5.1. We provide
the proof in several steps.

Proof. (Proof of Lemma 5.1.)

Step 1: |∂xφ| is bounded. An integration in [0,T ] of the first equation in (5.7) gives
us the already known equation for ψ in (3.9). This allows us to rewrite the equation as
follows:

∂tφ=a(e(t),x)−a(x)⇒∂xφ(t,x) =∂xφ(0,x)+

∫ t

0

ax(e(τ),x)dτ− tax(x), (5.16)

where ax and ax denote the derivatives with respect to x of a(e(t),x) and a(x)
respectively. This implies that in order to bound ∂xφ we just need to bound the
derivative of φ at point t= 0 since a(e(t),x)∈L∞(R+,C

3(R)).

Then from the second equation in (5.7) we obtain:

1

T

∫ T

0

∂xφ(t,x)dt=
−ψxx(x)+ψxx(xm)

2ψx(x)+c
, (5.17)

if the last formula is well defined, i.e., if all the derivatives exist.
Note that, an integration for t∈ [0,T ] in the Equation (5.16) leads to, (after dividing by
T )

1

T

∫ T

0

∂xφ(t,x)dt=∂xφ(0,x)+
1

T

∫ T

0

∫ t

0

ax(e(τ),x)dτdt− T
2
ax(x),

since ∂xφ(0,x) does not depend on t. We then deduce from the last formula and (5.17)

∂xφ(0,x) =
−ψxx(x)+ψxx(xm)

2ψx(x)+c
+G(x), (5.18)

where

G(x) =− 1

T

∫ T

0

∫ t

0

ax(e(τ),x)dτdt+
T

2
ax(x), (5.19)

is a regular function. We next prove that the derivatives involved in (5.17) exist. To
this end we claim the following technical result.
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Lemma 5.2. The function ψ(x) is twice differentiable for every x∈R and

ψxx(x) =



− ax(x)

2
√
a(xm)−a(x)

, x<xm,

−
√
−axx(xm)/2, x=xm,

ax(x)

2
√
a(xm)−a(x)

, x>xm.

(5.20)

Proof. Indeed, from the explicit formula (1.18) we differentiate and obtain:

ψx(x) =

−
c
2 +
√
a(xm)−a(x), x<xm,

− c
2 , x=xm,

− c
2−
√
a(xm)−a(x), x>xm.

(5.21)

We next compute

lim
x→x+

m

ψx(x)−ψx(xm)

x−xm
= lim
x→x+

m

−
√
ā(xm)− ā(x)

x−xm
= lim
x→x+

m

−
√
f(x)

x−xm
,

where we have denoted f(x) =a(xm)−a(x). We write a Taylor expansion of f around
x=xm, i.e.:

f(x) =−1

2
āxx(xm)(x−xm)2− 1

6
āxxx(xm)(x−xm)3 +o((x−xm)3),

since f(xm) = 0 and xm is a maximum point. It implies that:

lim
x→x+

m

ψx(x)−ψx(xm)

x−xm
= lim
x→x+

m

āx(x)

2
√
ā(xm)− ā(x)

=−
√
−axx(xm)/2.

Note that xm being a maximum point, a(xm)≥a(x), ∀x∈R and axx(xm)≤0. Following
similar arguments one can prove that

lim
x→x−m

ψx(x)−ψx(xm)

x−xm
= lim
x→x−m

−āx(x)

2
√
ā(xm)− ā(x)

=−
√
−axx(xm)/2.

We pursue with the proof of Lemma 5.1.

By substituting the derivatives of ψ in (5.17) we obtain for every x 6=xm:

∂xφ(0,x) =G(x)+


ax(x)−

√
−2axx(xm)(a(xm)−a(x))

4(a(xm)−a(x))
, x<xm,

ax(x)+
√
−2axx(xm)(a(xm)−a(x))

4(a(xm)−a(x))
, x>xm.

(5.22)

We can bound ∂xφ(0,x) near to x=xm. We write the limits as x→xm in (5.22) in
terms of f and its derivatives A=−axx(xm)/2 and B=−axxx(xm)/6, and compute:

lim
x→x∓m

∂xφ(0,x) = lim
x→x∓m

G(x)+ lim
x→x∓m

−f ′(x)∓2
√
A
√
f(x)

4f(x)
, (5.23)
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if both limits exist. Note that from the definition of G in (5.19) we deduce that the
first limit in (5.23) exists and is equal to G(xm). We, then, only need to compute the
second one to guarantee the existence of ∂xφ(0,xm). We compute both lateral limits
separately:

limx→x−m
−f ′(x)−2

√
A
√
f(x)

4f(x)

= limx→x−m
−[2A(x−xm)+3B(x−xm)2+o((x−xm)2)]−2A|x−xm|

√
1+B

A (x−xm)+o((x−xm))

4(A(x−xm)2+B(x−xm)3+o((x−xm)3))

= limx→x−m
−2A(x−xm)−3B(x−xm)2+o((x−xm)2)+2A(x−xm)(1+ B

2A (x−xm)+o((x−xm))

4(A(x−xm)2+B(x−xm)3+o((x−xm)3))

=− B

2A
.

Following similar arguments one can prove that

lim
x→x+

m

−f ′(x)−2
√
A
√
f(x)

4f(x)
=− B

2A
.

From this last computation and formula (5.22) we deduce that ∂xφ(t,x) is bounded for
every (t,x)∈R+×R and

∂xφ(0,xm) =G(xm)− axxx(xm)

6axx(xm)
.

Step 2: |∂xxφ| is bounded. Again in order to bound ∂xxφ(t,x) we can bound
∂xxφ(0,x) according to formula (5.16). Note that far from xm this derivative exists and
it is bounded because of the regularity of a(e(t),x). To verify the boundedness near
xm we follow the same arguments as above for the first derivative, that is, we denote
f(x) = ā(xm)− ā(x) as before and we compute

lim
x→x∓m

∂xφ(0,x)−∂xφ(0,xm)

x−xm
= lim
x→x∓m

G(x)−G(xm)

x−xm

+ lim
x→x∓m

−f ′(x)∓2
√
A
√
f(x)+ 2B

A f(x)

4f(x)(x−xm)
, (5.24)

if both limits in the RHS exist and are bounded. Note that the first limit in the RHS
of (5.24) exists and is equal to G′(xm) because of the definition of G in (5.19) and the
regularity of a(e(t),x). Moreover, using the Taylor expansion for f(x) around x=xm
the terms in the numerator of (5.24) can be developed as follows

f ′(x) = 2A(x−xm)+3B(x−xm)2 +O((x−xm)3),

2
√
A
√
f(x) = 2A|x−xm|

√
1+ B

A (x−xm)+O((x−xm))2

= 2A|x−xm|
(
1+ B

2A (x−xm)+O((x−xm)2)
)
,

2B
A f(x) = 2B(x−xm)2 +O((x−xm)3).
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We substitute into (5.24) and it holds that the terms remaining in the numerator are
of order (x−xm)3. Indeed,

lim
x→x−m

−f ′(x)−2
√
A
√
f(x)+ 2B

A f(x)

4f(x)(x−xm)

= lim
x→x−m

[
−2A(x−xm)−3B(x−xm)2 +2A(x−xm)(1+ B

2A (x−xm))

4A(x−xm)3 +4B(x−xm)4 +O((x−xm)4)

+
2B(x−xm)2 + 2B2

A (x−xm)3 +O((x−xm)3)

4A(x−xm)3 +4B(x−xm)4 +O((x−xm)4)

]

=
B2

2A2
,

and by an analogous procedure we can obtain

lim
x→x+

m

−f ′(x)+2
√
A
√
f(x)+ 2B

A f(x)

4f(x)(x−xm)
=
B2

2A2
.

We then conclude that the second derivative of φ at point (0,xm) is bounded and

∂xxφ(0,xm) =G′(xm)+
a2
xxx(xm)

18 a2
xx(xm)

.

Step 3: λ2 =
√
−āxx(xm)/2. We next evaluate the second equation in (5.7) at

x=xm to obtain λ2 =
√
−āxx(xm)/2.

6. An illustrating biological example
In this section we discuss the effect of the periodic fluctuations on the critical speed

of survival and the phenotypic distribution of the population for the following particular
growth rate

a(e,x) = r−g(e)(x−θ(e))2, (6.1)

where r is a positive constant corresponding to the maximal growth rate. The positive
function g represents the pressure of selection and the function θ represents the optimal
trait, both being functions of the environmental state e. As above, we assume that
e(t) :R+→E is a periodic function with period T = 1.

We compute the mean of a(e(t),x)

a(x) =

∫ 1

0

a(e(t),x)dt= r−x2ḡ+2xg1−g2,

where

ḡ=

∫ 1

0

g(e(t))dt, g1 =

∫ 1

0

g(e(t))θ(e(t))dt, g2 =

∫ 1

0

g(e(t))θ2(e(t))dt, (6.2)

and we observe that the maximum of a(x) is attained at xm= g1

ḡ , with

ā(xm) = r+
g2

1

ḡ
−g2.
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In what follows, we try to characterize the phenotypic density nε, the solution to (1.13).
From Theorem 1.2-(ii) we obtain that ψ(x), the solution of the Hamilton-Jacobi

Equation (1.16), attains its maximum at

x̄=xm−
c

2
√
ḡ

=
g1

ḡ
− c

2
√
ḡ
.

Let ψ(x) be given by (1.18), then for this specific growth rate it can be written as follows

ψ(x) =
c

2

(
xm−

c

2
√
ḡ
−x
)

+

∫ xm

xm− c
2
√
ḡ

√
ḡ(y−xm)2dy−

∣∣∣∣∫ x

xm

√
ḡ(y−xm)2dy

∣∣∣∣
= −
√
ḡ

2

(
x+

c

2
√
ḡ
− g1

ḡ

)2

= −
√
ḡ

2
(x− x̄)

2
.

Moreover, the asymptotic expansions in Theorem 1.3 imply that

ρε= r+
g2

1

ḡ
−g2−

c2

4
−ε
√
ḡ+o(ε), c∗ε = 2

√
r+

g2
1

ḡ
−g2−ε

√√√√√ ḡ

r+
g2

1

ḡ
−g2

+o(ε).

Furthermore, following the arguments in [16]-Section 5, we can also obtain an approxi-
mation of order ε for the phenotypic mean µε and the variance σ2

ε of the population’s
distribution, that is:

µε(t) =
1

ρε(t)

∫
R
x nε(t,x)dx=

g1

ḡ
− c

2
√
ḡ

+εD(t)+o(ε),

σ2
ε =

1

ρε(t)

∫
R

(x−µε)2nε(t,x)dx=
ε√
ḡ

+o(ε),

where D(t) =∂xφ(x̄,t) for φ the solution of the system (5.7). We refer the readers to
the Appendix B for more details on the derivation of the moments.
One can verify that for this growth rate we have

D(t) =−c
√
ḡ

(
t− 1

2

)
+2

∫ 1

0

∫ τ

0

g(e(s))(x̄−θ(e(s)))dsdτ−2

∫ t

0

g(e(s))(x̄−θ(e(s)))ds.

Note that the phenotypic mean is 1−periodic since D(0) =D(1). Moreover 〈µε(t)〉=
g1

ḡ −
c

2
√
ḡ
+o(ε) since

∫ 1

0
D(t)dt= 0.

We are now interested in comparing these quantities with the case where there are
no fluctuations. To do so we first consider a case where g(e) =g>0 is constant and then
a case where θ is constant.

Case 1. g(e) =g constant. Note that, in such a case g1 =gθ̄ and g2 =g
∫ 1

0
θ2(e(t))dt with

θ̄=
∫ 1

0
θ(e(t))dt. We compute

ρε,g(e)=g = r+g
[
θ̄2−

∫ 1

0
θ2(e(t))dt

]
− c

2

4
−ε√g+o(ε),〈

µε,g(e)=g(t)
〉

= θ̄− c
2
√
g +o(ε),

c∗ε,g(e)=g = 2

√
r+g

[
θ̄2−

∫ 1

0
θ2(e(t))dt

]
−ε
√

g

r+g
[
θ̄2−

∫ 1

0
θ2(e(t))dt

]+o(ε).

(6.3)
We compare then, the sub-cases where e is constant or periodic.
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(a) If e(t) is a 1−periodic function then, θ̄2<
∫ 1

0
θ2(e(t))dt and we obtain

ρε,p<r−
c2

4
−ε√g+o(ε),

〈
µε,p(t)

〉
= θ̄− c

2
√
g

+o(ε),

c∗ε,p<2
√
r−ε

√
g

r
+o(ε).

(b) If e(t)≡e is constant, typically equal to the averaged state of the periodic
environment above, (so that θ≡θ(e) =:θe) we obtain in particular that

θ̄2 =
∫ 1

0
θ2(e)dt and hence

ρε,c= r− c
2

4
−ε√g+o(ε),

〈
µε,c(t)

〉
=θe−

c

2
√
g

+o(ε),

c∗ε,c= 2
√
r−ε

√
g

r
+o(ε).

Thus, by keeping the pressure of selection constant, we deduce that, for ε small,

ρε,p≤ρε,c and c∗ε,p≤ c∗ε,c.

This means that having an oscillating optimal trait is not beneficial for the
population, in the sense that the mean total size of the population decreases
with respect to the case with a constant optimal trait and the critical speed
which leads the population to extinction is smaller in the periodic case. Note
also from (6.3) that in the periodic case the mean population size is reduced
by the product of the selection pressure and the variance of the optimal trait

(that is
∫ 1

0
θ2(e(t))dt− θ̄2).

Case 2. θ(e(t)) =θ constant. Note that, in such a case g1 = ḡθ and g2 = ḡθ2. We compute

ρε,θ(e(t))=θ = r− c
2

4
−ε
√
ḡ+o(ε),

〈
µε,θ(e(t))=θ(t)

〉
=θ− c

2
√
ḡ

+o(ε),

c∗ε,θ(e(t))=θ = 2
√
r−ε

√
ḡ

r
+o(ε).

We compare then, the sub-cases where e is constant or periodic.
(a) If e(t) is a 1−periodic function then we obtain

ρε,p= r− c
2

4
−ε
√
ḡ+o(ε),

〈
µε,p(t)

〉
=θ− c

2
√
ḡ

+o(ε),

c∗ε,p= 2
√
r−ε

√
ḡ

r
+o(ε).

(b) If e(t)≡e is constant, typically equal to the averaged state of the periodic
environment above, (so that g≡g(e) =:ge), we obtain

ρε,c= r− c
2

4
−ε√ge+o(ε),

〈
µε,c(t)

〉
=θ− c

2
√
ge

+o(ε),

c∗ε,c= 2
√
r−ε

√
ge
r

+o(ε).
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If we choose an oscillating selection pressure function g(e) which satisfies:

ḡ <g(e), (6.4)

which holds for instance if g(·) is a concave function, then we obtain that

ρε,c<ρε,p and c∗ε,c<c
∗
ε,p.

This means that the mean total size of the population increases with respect to
the case with a constant environmental state. Moreover, the critical speed above
which the population goes extinct is larger in the periodic case. This means
that the periodic fluctuations can help the population to follow the environment
change.

Note that the condition (6.4) imposed to g(e(t)) is the opposite to the one
imposed in [16] (Equation 51 of Section 6.2), leading to more performant pop-
ulations. There, it was proved that in presence of the mutations and while the
fluctuations act on the pressure of the selection (that is with a similar growth
rate, however with c= 0 and under the condition ḡ >g(e)), a fluctuating envi-
ronment can select for a population with smaller variance and in this way lead
to more performant populations. What is beneficial in a (on average) constant
environment may indeed be disadvantageous in a changing environment.

Note also that in the present example under condition (6.4), we have∣∣∣〈µε,p(t)〉−θ∣∣∣> ∣∣∣〈µε,c(t)〉−θ∣∣∣.
This means that even if the population can follow the environmental change in
a better way by considering a fluctuating environment, this population is less
adapted.
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Council (ERC) under the European Union’s Horizon 2020 research and innovation pro-
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Modélisation Mathématique et Biodiversité of Véolia Environment-École Polytechnique-
Museum National d’Histoire Naturelle-Fondation X.

Appendix A. The proofs of some regularity estimates.

A.1. Uniform bounds for ρε: the proof of Proposition 3.1.
Proof.

From Equation (1.13) integrating in x∈R and using assumption (H1) we obtain:

dρε
dt

=

∫
R
nε(t,x)[a(e(t),x)−ρε(t)]dx≤ρε(t)[d0−ρε(t)]. (A.1)

This implies that

ρε(t)≤ρM := max(ρ0
ε,d0).

For the lower bound we use the explicit expression (4.18) for ρε, the solution of (1.9).
We come back to Equation (4.4), which gives, thanks to (H1), (4.6) and (4.18) the
following lower bound for ρε

0<ρm :=
1

T
e−d0T

(
eλmT −1

)
≤ρε(t), ∀ t≥0.
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A.2. Upper bound for ψε: the proof of the r.h.s of (3.2). We prove that
ψε is bounded from above using the equation for nε. From (1.6), we have for pcε:

pcε(t,x)≤‖pcε‖L∞e
− 1
ε

(
− c2 +

√
δ+ c2

2

)
(|x|−R0)

, ∀(t,x)∈ [0,+∞)×R. (A.2)

Define qcε(t,x) =pcε(t,xε), which satisfies{
∂tqcε−c∂xqcε−∂xxqcε=aε(e(t),x)qcε, in [0,+∞)×R,
0<qcε(t,x) = qcε(t+T,x)

(A.3)

for aε(e(t),x) =a(e(t),xε)+λc,ε. Note that aε is uniformly bounded thanks to the
L∞−norm of a. Moreover we have the following bounds for λc,ε coming from (4.4),

−d0≤λc,ε≤−λm. (A.4)

We recall that pcε is uniquely determined once ‖pcε(0,x)‖L∞(R) = 1 is fixed. Then, one
can choose xε such that pcε(0,xε) = 1. Note also that qε is a nonnegative solution of
(A.3) in the bounded domain (0,2T )×B(xεε ,1).

Here we apply an elliptic-type Harnack inequality for positive solutions of (A.3) in
a bounded domain, (see for instance Theorem 2.5 [20]). Let δ0, be such that 0<δ0<T ,
then we have:

sup
x∈B( xεε ,1)

qcε(t,x)≤C inf
x∈B( xεε ,1)

qcε(t,x), ∀ t∈ [δ0,2T ],

where C is a positive constant depending on δ0 and d0. Coming back to pcε this implies

pcε(t0,xε)≤ sup
y∈B(xε,ε)

pcε(t0,y)≤Cpcε(t0,x), ∀(t0,x)∈ [δ0,2T ]×B(xε,ε). (A.5)

And we use the T−periodicity of pcε to conclude that the last inequality is satisfied for
t∈ [0,T ].

From (3.1), (A.2) and (A.5) we obtain

nε(0,x)≤ρM
pcε(0,x)∫

Rpcε(0,x)dx
≤ρM

Cpcε(0,x)∫
B(xε,ε)

pcε(0,xε)dx
=ρM

Cpcε(0,x)

|B(xε,ε)|
≤C ′ε−1e

c1−c2|x|
ε ,

for all ε≤ε0, with ε0 small enough, where the constant c1 depends on ρM , δ, R0 and c,

and c2 =− c
2 +
√
δ+ c2

2 . Next we proceed with a maximum principle argument to obtain

for every (t,x)∈ [0,+∞)×R and c3 = c2(c+c2)+d0,

nε(t,x)≤C ′e
c1−c2|x|

ε +c3t.

From the latter inequality and the periodicity of ψε, with an abuse of notation for
constant c1, we deduce that:

ψε(t,x)≤ c1−c2|x|, ∀(t,x)∈ [0,+∞)×R. (A.6)
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A.3. Equicontinuity in time for ψε. We will use the arguments in [16], which
follow a method introduced in [4], in order to deduce uniform equicontinuity in time for
the family ψε on compact subsets of (0,+∞)×R.

The goal will be to find for any η>0, constants Λ1, Λ2 large enough such that: for
any x∈B(0,R/2), s∈ [0,T ], and for all ε<ε0 we have

ψε(t,y)−ψε(s,x)≤η+Λ1|x−y|2 +εΛ2(t−s),∀(t,y)∈ [s,T ]×BR(0), (A.7)

and

ψε(t,y)−ψε(s,x)≥−η−Λ1|x−y|2−εΛ2(t−s),∀(t,y)∈ [s,T ]×BR(0). (A.8)

Because of the analogy between both the inequalities above we only prove (A.7).

We fix (s,x) in [0,T [×BR/2(0) and define

ξ̂(t,y) =ψε(s,x)+η+Λ1|x−y|2 +εΛ2(t−s), (t,y)∈ [s,T [×BR(0),

with Λ1 and Λ2 positive constants to be determined. We prove that, for Λ1 and Λ2 large
enough, ξ̂ is a super-solution of the Equation (1.15) on [s,T ]×BR(0) and ξ̂(t,y)>ψε(t,y)
for (t,y)∈{s}×BR(0)∪ [s,T ]×∂BR(0).

According to Section 3.2.1, {ψε}ε is locally uniformly bounded, so we can find a
constant Λ1 such that for all ε<ε0,

8‖ψε‖L∞([0,T ]×BR(0))

R2
≤Λ1.

With this choice, ξ̂(t,y)>ψε(t,y) on [s,T ]×∂BR(0), for all η>0, Λ2>0 and x∈BR/2(0).

Next we prove that, for Λ1 large enough, ξ̂(s,y)>ψε(s,y) for all y∈BR(0). We
argue by contradiction. Assume that there exists η>0 such that for every constant Λ1

there exists yΛ1,ε∈BR(0) such that

ψε(s,yΛ1,ε)−ψε(s,x)>η+Λ1|yΛ1,ε−x|2. (A.9)

This implies

|yΛ1,ε−x|≤
√

2ΨM

Λ1
−→0, as Λ1→∞,

where we have denoted ΨM a uniform upper bound for ‖ψε‖L∞([0,T ]×BR(0)). Then for
all δ1>0, there exist Λ1 large enough and ε0 small enough, such that ∀ε<ε0,

|yΛ1,ε−x|≤ δ1.

Therefore, from the uniform continuity in space of ψε taking δ1 small enough, we obtain

|ψε(s,yΛ1,ε)−ψε(s,x)|<η/2 ∀ε≤ε0,

but this is a contradiction with (A.9). Therefore ξ̂(s,y)>ψε(s,y) for all y∈BR(0).

Finally, noting that R<+∞ we deduce that for Λ2 large enough, ξ̂ is a super-
solution to (1.15) in [s,T ]×BR(0).
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Using a comparison principle, we have

ψε(t,y)≤ ξ̂(t,y) ∀(t,y)∈ [s,T ]×BR(0).

Thus (A.7) is satisfied for t≥s≥0. To conclude we put x=y and obtain that for all
η>0 there exists ε0>0 such that for all ε<ε0

|ψε(t,x)−ψε(s,x)|≤η+εΛ2(t−s),

for every (t,x)∈ [0,T ]×BR(0). This implies that ψε is locally equicontinuous in time.
Moreover we obtain that

∀R>0, sup
t∈[0,T ], x∈BR

|ψε(t,x)−ψε(s,x)|→0 asε→0. (A.10)

Appendix B. Computations of the moments of the population’s distri-
bution.

In this section we estimate the moments of the population’s distribution with a
small error, following [16,28]. To this end, we use the arguments in Section 5.

Using (1.18), one can compute a Taylor expansion of order 4 around the point of
maximum x.

ψ(x) =−A
2

(x− x̄)2 +B(x− x̄)3 +C(x− x̄)4 +o(x− x̄)4. (B.1)

Note also that using the formal expansions in (5.4) one can obtain φ from an equivalent
system to (5.7), that is

∂tφ=
∣∣∣ψx+

c

2

∣∣∣2 +a(e(t),x)− c
2

4
− ρ̄,

−ψxx= [2ψx+c]
1

T

∫ T

0

∂xφ(t,x)dt−ψxx(xm).

(B.2)

and write (formally)

φ(t,x) =φ(t,x̄)+D(t)(x− x̄)+E(t)(x− x̄)2 +o(x− x̄)2, ω(t,x) =F (t)+o(x− x̄).

The above approximations of ψ, φ and ω around the maximum point of ψ allow us to
estimate the moments of the population’s distribution with an error of order ε2 as ε→0.
Indeed, we use the following approximation for the phenotypic density of the population

nε(t,x) =
1√
2πε

e
ψ(x)
ε +φ(t,x)+O(ε),

and replacing by the approximations of ψ, φ and ω given above, we can obtain∫
R

(x− x̄)knε(t,x)dx =
eφ(t,x̄)ε

k
2

√
2π

∫
R

[
yke

−Ay2

2

[
1+
√
ε
(
By3 +D(t)y

)
+ε

(
Cy4 +E(t)y2 +F (t)+

1

2
(By3 +D(t)y)2

)
+o(ε)

]
dy

]
.

Note that, we performed above a change of variable x− x̄=
√
ε y. Therefore each term

x− x̄ can be considered as of order
√
ε in the integration. The above computation
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leads in particular to the following approximations of the mean phenotypic trait and
the variance:

µε(t) =
1

ρε(t)

∫
R
x nε(t,x)dx= x̄+ε

(
3B

A2
+
D(t)

A

)
+O(ε2),

σ2
ε(t) =

1

ρε(t)

∫
R
(x−µε)2nε(t,x)dx=

ε

A
+O(ε2).

B.1. Application to the biological example. We now apply the previous
computations to the particular growth rate a given in (6.1). Thanks to (1.16), we obtain

ρ=a(x̄) = r− g
2
1

ḡ
− c

2

4
−g2,

for ḡ, g1 and g2 given in (6.2). Next from the second equation of (B.2) and the fact
that ψxx(x) =ψxx(xm), ∀ x∈R, we obtain that

0 =

(∫ 1

0

∂xφ(t,x)dt

)[
−2
√
ḡ (x− x̄)+c

]
, ∀ x∈R,

which implies directly, that ∫ 1

0

∂xφ(t,x)dt= 0. (B.3)

On the other hand, by substituting ψ(x) in (B.1) we find A=
√
g, B=C= 0.

Moreover, we differentiate with respect to x in the first equation of (B.2) and obtain:

∂x∂tφ=∂x
(
a(e(t),x)− ā(x)

)
= 2x(ḡ−g(e(t)))+2g(e(t))θ(e(t))−2g1,

and an integration in [0,t] gives

∂xφ(t,x)−∂xφ(0,x) = 2t(xḡ−g1)−2

∫ t

0

g(e(s))(x−θ(e(s)))ds.

We next integrate the last equality in [0,1] and use (B.3) to obtain

∂xφ(0,x) =−xḡ+g1 +2

∫ 1

0

∫ t

0

g(e(s))(x−θ(e(s)))dsdt,

from where we deduce that

∂xφ(t,x) =(2t−1)(xḡ−g1)+2

∫ 1

0

∫ τ

0

g(e(s))(x−θ(e(s)))dsdτ

−2

∫ t

0

g(e(s))(x−θ(e(s)))ds.

Evaluating in x̄ gives

D(t) =∂xφ(t,x̄) = −c
√
ḡ
(
t− 1

2

)
+2
∫ 1

0

∫ τ
0
g(e(s))(x̄−θ(e(s)))dsdτ

−2
∫ t

0
g(e(s))(x̄−θ(e(s)))ds.
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Now we are able to give an approximation of the population mean size ρε, the phe-
notypical mean µε and the variance σ2

ε of the population’s distribution, following the
previous computations, that is:

µε(t)≈
g1

ḡ
− c

2
√
ḡ

+εD(t), σ2
ε ≈

ε√
ḡ
.
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[21] J. Húska and P. Poláčik, Exponential separation and principal Floquet bundles for linear parabolic
equations on RN , Discrete Contin. Dyn. Syst., 20(1):81–113, 2008. 1.4, 2.2, 5, 5

[22] M. Kopp and S. Matuszewski, Rapid evolution of quantitative traits: theoretical perspectives,
Evol. Appl., 7(1):169–191, 2014. 1.2

https://doi.org/10.1137/16M1075934
https://doi.org/10.1137/16M1075934
https://doi.org/10.1051/m2an/2019010
https://www.springer.com/gp/book/9783540584223
https://link.springer.com/article/10.1007/s002050200188
https://dx.doi.org/10.4310/MAA.2009.v16.n3.a4
https://doi.org/10.1016/j.jde.2017.10.016
http://dx.doi.org/10.3934/dcds.2008.21.41
http://dx.doi.org/10.3934/dcds.2009.25.19
https://doi.org/10.1007/s11538-008-9367-5
https://doi.org/10.1007/s11538-016-0203-z
http://www.jstor.org/stable/2410301
https://doi.org/10.3934/dcdsb.2020075
https://doi.org/10.1111/evo.12741
https://doi.org/10.1016/j.tpb.2004.12.003
https://doi.org/10.1016/j.tpb.2004.12.003
https://doi.org/10.1017/S0308210500032121
https://www.onacademic.com/detail/journal_1000041632193799_bf48.html
https://www.onacademic.com/detail/journal_1000041632193799_bf48.html
https://doi.org/10.1002/evl3.160
https://doi.org/10.1002/evl3.160
https://www.researchgate.net/publication/29607592_Introduction_to_semi-classical_methods_for_the_Schrodinger_operator_with_magnetic_field
https://opensky.ucar.edu/islandora/object/books:81
https://doi.org/10.1016/j.jde.2006.02.008
http://dx.doi.org/10.3934/dcds.2008.20.81
https://doi.org/10.1111/eva.12127


1798 ADAPTATION IN A TIME-VARYING ENVIRONMENT

[23] R. Lande and S. Shannon, The role of genetic variation in adaptation and population persistence
in a changing environment, Evolution, 50(1):434–437, 1996. 1.2

[24] P.L. Lions, Generalized Solutions of Hamilton-Jacobi Equations, Research Notes in Mathematics,
Pitman Advanced Publishing Program, Boston, 1982. 1.5, 4.3

[25] T. Lorenzi, R.H. Chisholmm, L. Desvillettes, and B.D. Hughes, Dissecting the dynamics of epi-
genetic changes in phenotype-structured populations exposed to fluctuating environments, J.
Theor. Biol., 386:166–176, 2015. 1.2

[26] M. Lynch and R. Lande, Evolution and extinction in response to environmental change, in J. King-
solver, P. Kareiva and R. Huey (eds.), Biotic Interactions and Global Change, Sinauer Asso-
ciates Inc., 234–250, 1993. 1.2

[27] M. Lynch, W. Gabriel, and A.M. Wood, Adaptive and demographic response of plankton popula-
tions to environmental change, Limnol. Oceanogr., 36:1301–1312, 1991. 1.2

[28] S. Mirrahimi, A Hamilton-Jacobi approach to characterize the evolutionary equilibria in hetero-
geneous environments, Math. Model. Meth. Appl. Sci., 27(13):2425–2460, 2017. B

[29] S. Mirrahimi, B. Perthame, and P. Souganidis, Time fluctuations in a population model of adap-
tive dynamics, Ann. I. H. Poincaré Anal. Nonlinéaire, 32(1):41–58, 2015. 1.2

[30] B. Perthame and G. Barles, Dirac concentrations in Lotka-Volterra parabolic PDEs, Indiana Univ.
Math. J., 7:3275–3301, 2008. 1.2

https://doi.org/10.1111/j.1558-5646.1996.tb04504.x
https://www.abebooks.com/9780273085560/Generalized-Solutions-Hamilton-Jacobi-Equations-Research-0273085565/plp
https://doi.org/10.1016/j.jtbi.2015.08.031
https://www.mendeley.com/catalogue/bdc4fe69-a93c-351a-90c8-78698d639f98/
https://doi.org/10.4319/lo.1991.36.7.1301
https://doi.org/10.1142/S0218202517500488
https://doi.org/10.1016/j.anihpc.2013.10.001
https://core.ac.uk/display/23281826

