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HOMOGENIZATION OF A DISCRETE NETWORK MODEL FOR
CHEMICAL VAPOR INFILTRATION PROCESS∗

CHUN XIAO† , SHIXIN XU‡ , XINGYE YUE§ , CHANGJUAN ZHANG¶, AND

CHANGRONG ZHANG‖

Abstract. Chemical vapor infiltration (CVI) is an important engineering process for manufac-
turing composite materials. Reaction-diffusion of the reactant gas and the structure change are two
mutual influence processes. Some works have been done on the multi-scale modeling and simulation
for the CVI process. The homogenization theory has not been rigorously established for the coupled
nonlinear system on the concentration of the reactant gas and porosity of the media yet. In this work,
we establish a discrete multi-scale node-bond network model for CVI process which contains a spatially
discrete reaction-diffusion equation coupled with a spatially discrete porosity evolution equation. The
tortuosity factor for the bonds in the node-bond structure is considered. The corresponding continuous
homogenized system for the discrete model is given and the error estimation between the solutions of
the homogenized system and the discrete one is derived.
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1. Introduction
CVI process is an engineering process which is widely used in fabrication of ce-

ramic matrix composite materials (CMCs). Take carbon fiber reinforced silicon carbide
(C/SiC) as an example. A preform is woven from fiber bundles before the process,
and each fiber bundle consists of thousands of carbon fibers (see Figure 1.1). During
the process, reactant gas is infiltrated into the preform at elevated temperature, then
surface reaction happens and SiC solid is generated along the fiber interface. The com-
posite material of C/SiC is produced when all the pores in the preform are occluded.
As shown in Figure 1.1, there are two kinds of pores in the preform: macro pores among
bundles (Figure 1.1(a)) and micro pores among fibers (Figure 1.1(b)) inside the bundle.
Such structure leads to two stages of CVI process. In the first stage, the deposition
mainly happens in micro pores. In the second stage, the micro pores are closed and the
deposition only happens on the surface of macro pores.

Some modeling and simulation works have been done to study CVI process. The
multi-scale modeling of the isothermal CVI process for the fabrication of C/SiC compos-
ites was considered by Y. Bai et al. [1] where the preform was regarded as a two-phase
porous media described by a dynamic pore-scale node-bond network during the fabri-
cation process in microscopic model and a macroscopic model was formally developed
without rigorous proof. Later, C.J. Zhang et al. [22] presented the homogenization the-
ory on a simplified linear model for the CVI process, wherein they only considered the

∗Received: November 30, 2020; Accepted (in revised form): March 15, 2021. Communicated by
Chun Liu.
†School of Mathematical Sciences, Soochow University, Suzhou 215006, China, and School of Math-

ematics and Statistics, Lingnan Normal University, Zhanjiang 524048, China (cxiao77xc@gmail.com).
‡Department of Mathematics, Duke Kunshan University, Kunshan 215316, China (shixin.xu@

dukekunshan.edu.cn).
§Corresponding Author. School of Mathematical Sciences, Soochow University, Suzhou 215006,

China (xyyue@suda.edu.cn).
¶South China Research Center for Applied Mathematics and Interdisciplinary Studies, South China

Normal University, Guangzhou 510631, China (cjzhang@m.scnu.edu.cn).
‖High Speed Aerodynamics Institute, China Aerodynamics Development and Research Center, Mi-

anyang 622661, China (zcr001@mail.ustc.edu.cn).

1809

mailto:cxiao77xc@gmail.com
mailto:shixin.xu@dukekunshan.edu.cn
mailto:shixin.xu@dukekunshan.edu.cn
mailto:xyyue@suda.edu.cn
mailto:cjzhang@m.scnu.edu.cn
mailto:zcr001@mail.ustc.edu.cn


1810 HOMOGENIZATION OF CVI PROCESS

quasi-steady state of the gas concentration and ignored the effect of the porosity evolu-
tion. They paid more attention on the surface reaction and the effect of locally periodic
perforation. W.L. Hu [7] established a multi-scale model to probe the residual pore
distribution for 2-dimensional problems. The level set method was used to capture the
evolution of interface on the micro scale and heterogeneous multi-scale method (HMM)
was applied on the macro level. C.J. Zhang [21] proposed a seamless HMM algorithm to
probe the residual pore distribution for 3-dimensional problems. Other relative works
about CVI process include [9, 10,14,16,18,19].

Fig. 1.1. (a) Cross section perpendicular to randomly positioned bundles; (b) Cross section per-
pendicular to randomly positioned fibers inside a fiber bundle.

This work aims to establish the homogenization theory for the second stage of CVI
process, which is the foundation of the multi-scale simulation. Unlike the model in [1],
where a continuous node-bond network model was applied, we develop a discrete node-
bond network model, which is a coupled nonlinear evolutionary difference system on
the gas concentration and the porosity and in which the tortuosity effect in the bonds
is took into account. The homogenized system for the discrete model is set up and an
error estimate is presented between the first order expansion and the solution of the
original discrete system.

Compared with the great amount of research for continuous homogenization prob-
lems, the studies about discrete ones are relatively few. The first homogenization result
for difference schemes was formulated and proved by S. Kozlov [11]. It was proved
that the central limit theorem holds for symmetric random walks in random ergodic
statistically homogeneous media in [12]. A. Piatnitski et al. [13] studied the asymptotic
behavior, as ε→0, of the effective coefficients for a family of random difference schemes.
The discrete analogue of the compensated compactness lemma was proved and the H-
convergence of difference operator was established wherein. Some more results about
random difference equations can be found in [4,6,20]. Even fewer attention was paid to
the error analysis for discrete homogenization problem. An error estimate can be found
in [23], where the homogenization of linear elliptic difference operators with periodic
coefficients was studied.

The remainder of this paper is organized as follows: The discrete node-bond network
model for CVI process and the main results on the homogenization are given in Section
2. In Section 3 the error estimate is proved.

Assume the deposition reaction in the preform is the following:

MTS(CH3SiCl3(v))
excess H2−→ SiC(s) +3HCl(v). (1.1)
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2. Multi-scale model
There are a lot of models to simulate the pore structure of the preform, including

single pore model [5], the parallel bundle model [15], the overlap model [2] and the node-
bond network model [14]. In [1], the node-bond network model was used to simulate the
pore shape and distribution in the preform, and the results matched the real experiment
well. Similarly, we choose node-bond network model in Figure 2.1 to simulate the fibre
bundle and pore distribution. The grey part is occupied by fiber bundles and the white
part is occupied by the pores. Note that Figure 2.1 is only a two dimensional schematic
diagram, in three dimension the grey part (fiber bundles) is also connected. The pores
can be divided into two parts, one is the “circle” which represents the node, the other is
the “tube” which represents the bond. Adjacent nodes are connected by bonds. Assume
the distance between the center of adjacent nodes is ε. Suppose the reactant gas (MTS)
concentration Cε(x,t) and porosity φε(x,t) are spatial discrete functions defined on the
center point x of each node, and the pore structure is assumed to be uniquely determined
by the porosity φε(x,t), i.e., the radius of node rn and the radius of bond rb are only
dependent on φε(x,t). As deposition reaction goes on, the nodes and bonds gradually
become smaller and smaller (see Figure 2.2).

Fig. 2.1. Node-bond network.

(a) t= t0 (b) t= t1>t0

Fig. 2.2. Evolution of the pore. The structure of the node and bond is uniquely determined by the
porosity φε(x,t) at node x, i.e., the radius of node rn and the radius of bond rb are only dependent on
φε(x,t).

First we consider the mass variation of reactant gas. Mass variation in a node is
due to two factors, one is the diffusion of gas from adjacent cells, the other is the surface
reaction. Denote the node by its center. For a node xp, the set of all the adjacent linked
nodes is denoted by Λ(xp). The conservation law of mass at node xp has the form as

d(φε(xp,t)C
ε(xp,t))

dt
εd=

∑
xm∈Λ(xp)

Fmp+Rp, (2.1)
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where Fmp is the mass flux from node xm to node xp and Rp is the surface reaction
term. Specifically,

Fmp=
D

τmp
π(rb,p∧rb,m)2C

ε(xm,t)−Cε(xp,t)
ε

, (2.2)

where τmp is the tortuosity factor [19] in the bond between nodes xm and xp, D is the
constant diffusion coefficient inside the pores. rb,i is the radius of the bond linked to
node xi and u∧w=min{u,w}. The radius rb,i is determined by the porosity φε(xi,t),
so we may write

Fmp=
D

τmp
h(φε(xp,t)∧φε(xm,t))εd−1C

ε(xm,t)−Cε(xp,t)
ε

. (2.3)

Function h represents the effect of the geometry change on the diffusion ability, it is
positive and monotonically increasing. The deposition reaction is regarded as first order,
so Rp can be given as

Rp=−KCε(xp,t)Svl(φε(xp,t))εd, (2.4)

where K is the first-order reaction rate constant and Svl is the effective reaction and
deposition surface area of pores per unit volume.

Then we consider the porosity evolution. Since Rp depicts the mole change of MTS
per unit volume per unit time and the change rate of porosity is proportional to Rp,
the evolution equation of porosity at node xp can be written as

dφε(xp,t)

dt
=−qM

ρ
KCε(xp,t)Svl(φ

ε(xp,t)), (2.5)

where M is the molar mass of SiC, ρ is the density of SiC, q is the proportion between
the stoichiometric coefficient of SiC and that of MTS in Equation (1.1). Actually, from
(1.1) it is obvious that q= 1, so we may omit q in some proof in the rest of the paper.

Let Ω⊂Rd,d≥2 be the domain occupied by the preform, and Ωε=Ω
⋂
εZd be

the lattice points on Ω, Ω̊ε={x∈Ωε :x±εei∈Ωε,1≤ i≤d} be the inner lattice points,
where ei is the unit vector along the i-th coordinate axis. ∂Ωε are the boundary points
of Ωε, i.e., ∂Ωε= Ωε\Ω̊ε. Every discrete point in Ωε represents a node. The difference
operators are defined asδ+ε

i v(x) =
1

ε
(v(x+εei)−v(x)), δ−εi v(x) =

1

ε
(v(x)−v(x−εei)),

δ+
i u(y) =u(y+ei)−u(y), δ−i u(y) =u(y)−u(y−ei).

Let x(i) =x−εei and φ̂ε(x,x(i),t) =φε(x,t)∧φε(x(i),t). Then based on (2.1) and (2.5),
our discrete model for CVI process is given as follows:

d(φε(x,t)Cε(x,t))

dt
=

d∑
i=1

δ+ε
i

(
aε(x,x(i)) h(φ̂ε(x,x(i),t)) δ−εi Cε(x,t)

)
−KSvl(φε)Cε(x,t), in Ω̊ε×(0,T ),

dφε(x,t)

dt
=−M

ρ
KSvl(φ

ε)Cε(x,t), in Ωε×(0,T ),

Cε(x,t) =C0, on ∂Ωε×(0,T ),

Cε(x,0) =C0, φε(x,0) =φ0, in Ωε,

(2.6)
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where aε(x,x(i)) =a(x/ε,x(i)/ε) =D/τx,x(i) and τx,x(i) is the tortuosity factor between
node x and node x(i). φ0 is the initial porosity and a positive constant. C0 is the
working concentration of the reactant gas, which is supplied by the environment in the
reaction oven and is kept constant around the preform of the material.

Remark 2.1. Note that the effective reaction surface per unit volume Svl with a unit
of 1/m is of order O(ε−1) and the reaction speed K has a unit of m/s. So the unit of
the quantity KSvl is 1/s, which has nothing to do with the spatial scale ε. Therefore
we must have

K=kε, where k is a constant independent of ε.

Similar discussion was contained on page 177 of [17]. If we denote Svl(φ
ε) =g(φε)/ε,

then

KSvl(φ
ε) =kg(φε) is bounded uniformly with respect to ε. (2.7)

Remark 2.2. Comparing with the continuous node-bond network model in [1], the
above model is a spatially discrete one with the tortuosity factor involved. The main
feature of the new model is that the nonlinearity and the multi-scale oscillation are
splitable. In the continuous node-bond network model, the nonlinearity comes from the
changing of the diffusion area due to the surface reaction and deposition, which leads
to a multi-scale free-boundary problem and is really hard to handle in the process of
homogenization.

The preform is assumed to be periodic with respect to εY1, where Y1 = [0,n1]×···×
[0,nd], ni∈Z+, 1≤ i≤d. Let Y =Y1

⋂
Zd be the lattice points on Y1, Y̊ ={y∈Y :y±ei∈

Y,1≤ i≤d} be the inner lattice points, then the tortuosity factor τx,x(i) is periodic with
respect to εY , i.e., a(y,y−ei) is Y -periodic. Just for simplicity, we assume that Ω
consists of integer periods.

Now we present the continuous homogenized equations for (2.6) as

∂(φ∗C∗(x,t))

∂t
=∇·

(
A∗h(φ∗(x,t))∇C∗(x,t)

)
−k g(φ∗(x,t))C∗(x,t), in Ω×(0,T ),

∂φ∗(x,t)

∂t
=−M

ρ
k g(φ∗(x,t))C∗(x,t), in Ω×(0,T ),

C∗(x,t) =C0, on ∂Ω×(0,T ),

C∗(x,0) =C0, φ∗(x,0) =φ0, in Ω.

(2.8)

The homogenized diffusion coefficient A∗= (a∗ij), and a∗ij is defined as

a∗ij =
1

|Y̊ |

∑
y∈Y̊

(aij(y,y−ei)+

d∑
k=1

aik(y,y−ei)δ−k χ
j(y)), (2.9)

where

aij(y,y−ei) =a(y,y−ei)Iij , Iij =

{
1, i= j,

0, i 6= 0.

and |Y̊ | is the number of points in Y̊ . χj is the solution of the following cell problem:
d∑

i,k=1

δ+
i (aik(y,y−ei)δ−k (χj+yj)) = 0, y∈ Y̊ ,

χj(y) is Y-periodic, and
∑
y∈Y̊

χj(y) = 0.
(2.10)
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In order to derive the error estimates between the solutions of (2.6) and (2.8), we
need the following assumptions:

• (H1): a(y,y−ei) is Y -periodic and there are two positive constants a0,a1, such
that

0<a0≤aε(x,x−εei)≤a1, ∀ x∈Ωε.

• (H2): h(s),g(s)∈C1[0,1] are monotonic increasing. 0<h0≤h(s),s∈ [0,1]. g(s)
is non-negative and g(s)≡0, ∀s∈ [0,φR], where φR∈ (0,φ0) is the residual poros-
ity.

• (H3):
MC0

ρ
<1.

• (H4): The domain Ω consists of integer periods. The boundary nodes have
their center lying on ∂Ω.

Actually, (H3) is not too strict. Some typical values of M,C0,ρ are 0.04 kg/mol,
0.02 mol/m3, 3200 kg/m3 respectively, so it holds that MC0

ρ �1. As for assumption

(H2), when the porosity reaches the residual porosity φR, the whole CVI process will
finish and there is no reaction any more since the effective reaction surface area becomes
zero. The assumption (H4) is not essential and is just for simplified treatment.

We introduce the some discrete function spaces on Ωε, which will be used below.

L2(Ωε) ={vε : Ωε→R;‖vε‖2L2(Ωε) ,ε
d
∑
x∈Ωε

|vε(x) |2<∞},

L∞(Ωε) ={vε : Ωε→R;‖vε‖L∞(Ωε) ,max
x∈Ωε

|vε(x)|<∞},

W 1,2(Ωε) ={vε : Ωε→R;‖vε‖2W 1,2(Ωε) ,ε
d
∑
x∈Ωε

|vε(x)|2 +εd
∑
x∈Ωε

d∑
i=1

|δ−εi vε(x)|2<∞},

W 1,2
0 (Ωε) ={vε : Ωε→R;v|∂Ωε

= 0, ‖vε‖2
W 1,2

0 (Ωε)
,εd

∑
x∈Ωε

d∑
i=1

| δ−εi vε(x) |2<∞}.

At the boundary point of Ωε, it may happen that x(i) =x−εei /∈Ωε. If so, we define
δ−εi vε(x) = 0.

The following theorem is on the error estimates between the solutions of (2.6) and
(2.8), which is the main result of this paper.

Theorem 2.1. Let Cε,φε be solutions of (2.6), and C∗,φ∗ the solutions of (2.8).
Suppose that C∗∈C3,1(Ω×(0,T )), φ∗∈C1,1(Ω×(0,T )) and assumptions (H1), (H2),
(H3) and (H4) hold, then we have

‖Cε−C∗‖L∞(0,T ;L2(Ωε)) +‖φε−φ∗‖L∞(0,T ;L2(Ωε))≤Qε, (2.11)

‖Cε−Cε1‖L2(0,T ;W 1,2(Ωε))≤Q
√
ε,

where Cε1 =C∗+ε
d∑
j=1

χj ∂C
∗

∂xj
is the first order expansion of Cε, Q is a positive constant

independent of ε.

For the rest of the paper, Q (with or without subscripts) stands for a generic positive
constant independent of ε with possibly different values in different contexts.
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3. Error estimate
In this section we are dedicated to proving the main result Theorem 2.1. Since the

micro model (2.6) is a discrete and nonlinear system, we borrowed some ideas from the
error analysis for the homogenization of elliptic difference operators [23] and the error
analysis for a class of nonlinear parabolic equations [3]. Firstly, we give some a priori
estimates for Cε and φε. The following lemma shows that the maximum principle is
still valid though what we face up is a system.

Lemma 3.1. Suppose the assumptions (H1)-(H3) hold. If Cε(x,t),φε(x,t) are the
solutions of (2.6) and continuous with respect to time t, then we have

0≤Cε(x,t)≤C0, 0<φR≤φε≤φ0, ∀ t∈ [0,T ], x∈Ωε, (3.1)

and

dφε

dt
∈L∞(Ωε×(0,T )). (3.2)

Proof. The result of (3.2) is a direct consequence of the estimates (3.1).
To prove the results (3.1), we first prove that φε≥φR>0, no mater whether Cε

is positive or not; then with the positiveness of φε, we prove the discrete maximum
principle for Cε, i.e., 0≤Cε(x,t)≤C0; finally the result φε≤φ0 follows naturally.

Introduce φ̃(x,t) such that

dφ̃(x,t)

dt
=−M

ρ
k g(φ̃)(Cε(x,t))+, φ̃(x,0) =φ0,

where (Cε(x,t))+ =max{Cε(x,t),0}. Noting (2.7), the above equation is just the second
equation of (2.6) with the term Cε(x,t) being replaced by (Cε(x,t))+. It can be proved
that φε≥ φ̃ thanks to Cε(x,t)≤ (Cε(x,t))+. We claim that φ̃≥φR. In fact, for fixed
x∈Ωε, φ̃(x, ·) is monotonic decreasing from its initial value φ0. By the assumption (H2),

g(s)≡0, for s∈ [0,φR]. So when φ̃(x,t) decreases to φR at some time t′,
dφ̃(x,t)

dt
≡0, for

t≥ t′, i.e., φ̃(x,t)≡φR, for t≥ t′.
If Cε is non-negative, then from the second equation of (2.6), φε(x,t) is monotonic

decreasing and less than its initial value φ0. We have proved the results on φε.
We now aim to prove the results on Cε. Inserting the second equation of (2.6) into

the first one, we have

φε
dCε

dt
−

d∑
i=1

δ+ε
i

[
aε h(φ̂ε) δ−εi Cε

]
+k g(φε)Cε(1−MCε

ρ
) = 0. (3.3)

First we show that Cε(x,t)≥0 by contradiction. Suppose there exits (x∗,t∗)∈ Ω̊ε×(0,T )
such that

min
(x,t)∈Ωε×[0,T ]

Cε(x,t) =Cε(x∗,t∗)<0, (3.4)

then since φε≥φR>0, we have that

φε
dCε

dt

∣∣∣∣
(x∗,t∗)

≤0, −
d∑
i=1

δ+ε
i

[
aε h(φ̂ε) δ−εi Cε

]∣∣∣∣
(x∗,t∗)

≤0, (3.5)
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and it is obvious that

k g(φε)Cε(1−MCε

ρ
)

∣∣∣∣
(x∗,t∗)

≤0. (3.6)

In the last inequality, the equality may hold if g(φε) = 0. If there exists one equality
which does not hold among the three inequalities of (3.5)-(3.6), then there is a contra-

diction in (3.3). Otherwise, −
d∑
i=1

δ+ε
i

[
aε h(φ̂ε) δ−εi Cε

]∣∣∣∣
(x∗,t∗)

= 0 implies that

Cε(xp,t
∗) =Cε(x∗,t∗), for xp∈Λ(x),

i.e., all neighbor-linked lattice points at time t∗ are minimizers. Applying the above
argument to the neighbor minimizers recursively, we will at least meet a contradiction
in (3.3) near the boundary of Ωε, since all boundary points are not the minimizers. The
contradiction means that

Cε(x,t)≥0, ∀ (x,t)∈Ωε× [0,T ].

Then we prove that Cε≤C0 by contradiction. Suppose there exists (x1,t1)∈ Ω̊ε×(0,T )
such that

max
(x,t)∈Ωε×[0,t1]

Cε(x,t) =Cε(x1,t1)>C0. (3.7)

Consider two cases: Cε(x1,t1)<
ρ

M
or Cε(x1,t1)≥ ρ

M
.

If Cε(x1,t1)<
ρ

M
, we have that

φε
dCε

dt

∣∣∣∣
(x1,t1)

≥0, −
d∑
i=1

δ+ε
i

[
aε h(φ̂ε) δ−εi Cε

]∣∣∣∣
(x1,t1)

≥0, (3.8)

and it is clear that

k g(φε)Cε(1−MCε

ρ
)

∣∣∣∣
(x1,t1)

≥0. (3.9)

By similar argument for the minimizers, a contradiction must occur in (3.3) at some
maximizer.

If Cε(x1,t1)≥ ρ

M
, then MCε

ρ ≥1. From the assumption (H3), we know that at initial

time MC0

ρ <1, so there must exist (x2,t2), 0<t2<t1, x2∈ Ω̊ε such that

Cε(x2,t2) = max
(x,t)∈Ωε×[0,t2]

Cε(x,t)<
ρ

M
, and Cε(x2,t2)>C0.

This reduces to the first case. Then the lemma is proved.

It can be easily shown that the following rule holds for δ+ε
i ,δ−εi .{

δ+ε
i (u(x)v(x)) =u(x+εei)δ

+ε
i v(x)+v(x)δ+ε

i u(x),

δ−εi (u(x)v(x)) =u(x−εei)δ−εi v(x)+v(x)δ−εi u(x),
(3.10)
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and discrete integration by parts holds: let B= (bij) be a d×d matrix, when v(x)
vanishes on ∂Ωε, we have

εd
∑
x∈Ωε

d∑
i,j=1

δ+ε
i

(
bijh(φ̂ε)δ−εj u

)
v=−εd

∑
x∈Ωε

d∑
i,j=1

bijh(φ̂ε)δ−εj u δ−εj v. (3.11)

Since the micro model is discrete and the homogenized model is continuous, to
measure the difference between the solutions of (2.6) and (2.8), we give a discrete
system for the homogenized solutions.

Lemma 3.2. Let C∗,φ∗ be the solution of (2.8), and C∗∈C3,1(Ω×(0,T )), φ∗∈
C1,1(Ω×(0,T )), then there exist a bounded function R(x,t) : Ωε×(0,T )→R such that

d(φ∗(x,t)C∗(x,t))

dt
=

d∑
i,j=1

δ+ε
i

(
a∗ijh(φ∗(x,t))

∂C∗(x,t)

∂xj

)
−kg(φ∗(x,t))C∗(x,t)−εR(x,t) in Ω̊ε×(0,T ),

dφ∗(x,t)

dt
=−M

ρ
kg(φ∗(x,t))C∗(x,t) in Ωε×(0,T ),

C∗(x,t) =C0 in ∂Ωε×(0,T ),

C∗(x,0) =C0, φ∗(x,0) =φ0 in Ωε.

(3.12)

In the continuous case, if a vector is periodic, solenoidal, and the integration of
the vector in the period is zero, then there exists an antisymmetric matrix such that
the divergence of the antisymmetric matrix equals to the original solenoidal vector [8].
This property plays an important role in the proof of the error estimate because it
can simplify the proof and reduce the regulation requirement on the solutions of the
homogenized equations. For the discrete case, the corresponding result is also valid.

Lemma 3.3. Let g= (g1,. ..,gd)
′ :Zd→Rd be a discrete solenoidal vector, i.e.

d∑
j=1

δ+
j gj(y) = 0. If gj is Y -periodic and 1

|Y̊ |

∑
y∈Y̊

gj(y) = 0 for j= 1,. ..,d, then there exists

an antisymmetric matrix G= (Gjl)d×d such that gj =
d∑
l=1

δ+
l Gjl, ∀j= 1,. ..,d, y∈ Y̊ .

Proof. Consider the discrete Fourier transform for gj ,

gj(y) =
∑
k∈Y̊

ĝj(k)e2πiy·{ k
N }, j= 1,. ..,d,

where { kN }= ( k1n1
, k2n2

,. .., kdnd
)′, and ĝj(k) = 1

|Y̊ |

∑
y∈Y̊

gj(y)e−2πiy·{ k
N } is the discrete Fourier

coefficient.
Let fkj = δ−j (e−2πiy·{ k

N }) =hkj e
−2πiy·{ k

N }, where hkj = 1−e−2πi{ k
N }·(−ej). Since gj is

solenoidal, we have∑
y∈Y̊

d∑
j=1

gjf
k
j =

∑
y∈Y̊

d∑
j=1

δ−j (e−2πiy·{ k
N })gj =−

∑
y∈Y̊

d∑
j=1

(e−2πiy·{ k
N })δ+

j gj = 0, ∀k∈ Y̊ .

On the other hand, direct computation gives∑
y∈Y̊

d∑
j=1

gjf
k
j =

∑
y∈Y̊

∑
l∈Y̊

d∑
j=1

ĝj(l)h
k
j e

2πiy·{ l−k
N }=

d∑
j=1

hkj ĝj(k).
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So it follows that

d∑
j=1

hkj ĝj(k) = 0, ∀k∈ Y̊ .

This leads to ĝj(k) =
d∑
l=1

αkjlh
k
l , with

αkjl=


ĝj(k)hkl − ĝl(k)hkj

d∑
j=1

(hkj )2

, k 6= 0,

0, k= 0,

is an antisymmetric matrix. Let

Gjl=−
∑
k∈Y̊

αkjle
2πiy·{ k

N },

then

d∑
l=1

δ+
l Gjl=

d∑
l=1

∑
k∈Y̊

αkjl(1−e2πi{ k
N }·el)e2πiy·{ k

N }

=

d∑
l=1

∑
k∈Y̊

αkjlh
k
l e

2πiy·{ k
N }=

∑
k∈Y̊

ĝj(k)e2πiy·{ k
N }=gj .

So, (Gjl) is the required antisymmetric matrix, the lemma is proved.

Introducing boundary corrector term is a common technique to treat the mismatch
at the boundary in homogenization analysis. Let θε be the solution of the following
equation: 

d

dt
(φεθε)−

d∑
l=1

δ+ε
i

(
aεh(φ̂ε)δ−εi θε

)
= 0 in Ω̊ε×(0,T ),

θε=−
d∑
j=1

χj
∂C∗

∂xj
on ∂Ωε×(0,T ),

θε(x,0) = 0 in Ωε.

(3.13)

The following lemma presents some a priori estimates for θε.

Lemma 3.4. Let θε be the solution of (3.13) and C? satisfy the regularity assumption
in Theorem 2.1, then

‖εθε‖L∞(0,T ;L2(Ωε))≤Qε, ‖εθε‖L2(0,T ;W 1,2(Ωε))≤Q
√
ε. (3.14)

Proof. Let vε=ebtθε, then vε satisfies the following equation:
φε
dvε
dt
−

d∑
l=1

δ+ε
i

(
aεh(φ̂ε)δ−εi vε

)
+vε

(dφε
dt
−bφε

)
= 0 in Ω̊ε×(0,T ),

vε=−ebt
d∑
j=1

χj
∂C∗

∂xj
on ∂Ωε×(0,T ),

vε(x,0) = 0 in Ωε.

(3.15)
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From Lemma 3.1, dφε

dt is bounded, and φε≥φR>0. So we may choose b<0 and |b|
large enough to make dφε

dt −bφ
ε>0. The first result in (3.14) is valid by the discrete

maximum principle. Next we consider the second result. Let the lattice cut-off function

τ(x) =

{
0 x∈ Ω̊ε,

1 x∈∂Ωε.

Obviously,

|δ±εj (ετ)|≤2, τ ≤1, for ∀ x∈ Ω̊ε.

Notice that θε+τ
d∑
j=1

χj ∂C
∗

∂xj
∈W 1,2

0 (Ωε), we can choose θε+τ
d∑
j=1

χj ∂C
∗

∂xj
as a test function

in (3.13) to get

1

2

d

dt
(εd

∑
x∈Ωε

φεθ2
ε)+εd

∑
x∈Ωε

d∑
i=1

aεh(φ̂ε)(δ−εi θε)
2

=−εd
∑
x∈Ωε

φε
dθε
dt

(
τ

d∑
j=1

χj
∂C∗

∂xj

)
−εd

∑
x∈Ωε

θε
dφε
dt

(1

2
θε+τ

d∑
j=1

χj
∂C∗

∂xj

)
−εd

∑
x∈Ωε

d∑
j=1

aεh(φ̂ε)δ−εi θεδ
−ε
i (τ

d∑
j=1

χj
∂C∗

∂xj
)

≡R1 +R2 +R3. (3.16)

Rewrite R2 as

R2 =−1

2
εd
∑
x∈Ωε

θ2
ε

dφε
dt
−εd

∑
x∈Ωε

θε
dφε
dt

(
τ

d∑
j=1

χj
∂C∗

∂xj

)
=R21 +R22,

By Lemma 3.1, we have that

|R21|≤Q‖θε‖2L2(Ωε)≤
Q

φR
‖
√
φεθε‖2L2(Ωε). (3.17)

Denote the ε-neighbourhood of ∂Ωε by Ω∂ε ={x∈Ωε :dist(x,∂Ωε)≤ε}, that is just the
most 2 outward layers of the lattice points in Ωε. Then, according to the definition of
the cut-off function τ(x), the boundedness of χj and ∂C∗

∂xj
, the boundedness of dφε

dt , we

have

|R22|≤Q1ε
d
∑
x∈Ωε

θ2
ε +Q2ε

d
∑
x∈Ω∂

ε

1≤Q3‖
√
φεθε‖2L2(Ωε) +Q4ε. (3.18)

For the term of R3, direct calculation yields

δ−εi
(
τ

d∑
j=1

χj
∂C∗

∂xj

)
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=

d∑
j=1

(
τ(x−εei)χj(y−ei)δ−εi

∂C∗

∂xj
+τ(x−εei)

1

ε
δ−1
i χj(y)

∂C∗

∂xj
+δ−εi τ(x)χj

∂C∗

∂xj

)
.

From the definition of τ , the boundedness of χj and the regularity of C∗, we derive that

εd
∑
x∈Ωε

(
δ−εi
(
τ

d∑
j=1

χj
∂C∗

∂xj

))2

≤Qεd
∑
x∈Ω∂

ε

((
χj(y−ei)δ−εi

∂C∗

∂xj

)2
+ε−2

(
δ−1
i χj(y)

∂C∗

∂xj

)2
+ε−2

(
χj(y)

∂C∗

∂xj

)2)
≤Q1ε

−1. (3.19)

So we have

|R3|≤
1

2
εd
∑
x∈Ωε

d∑
i=1

aεh(φ̂ε)(δ−εi θε)
2 +Qε−1. (3.20)

Finally we consider R1. Rewrite R1 as

R1 =− d

dt

(
εd
∑
x∈Ωε

φεθε
(
τ

d∑
j=1

χj
∂C∗

∂xj

))
+εd

∑
x∈Ωε

dφε

dt
θε
(
τ

d∑
j=1

χj
∂C∗

∂xj

)
+εd

∑
x∈Ωε

φεθε
d

dt

(
τ

d∑
j=1

χj
∂C∗

∂xj

)
=R11 +R12 +R13.

Notice that the initial value of τ
d∑
j=1

χj ∂C
∗

∂xj
= 0, then the boundedness of φε,θε,τ,χ

j along

with the regularity of C∗ leads to∣∣∣∣∫ t

0

R11

∣∣∣∣≤εd ∑
x∈Ω∂

ε

∣∣∣∣φεθε(τ d∑
j=1

χj
∂C∗

∂xj

)∣∣∣∣≤Qε, (3.21)

and

|R12|≤Qε, |R13|≤Qε. (3.22)

So, combining the above estimates together and multiplying (3.16) by ε2 and integrating
it with respect to time, we obtain

‖
√
φεεθε‖2L2(Ωε) +

∫ t

0

d∑
j=1

‖δ−εi εθε‖2L2(Ωε)≤Q1ε+Q2

∫ t

0

‖
√
φεεθε‖2L2(Ωε).

Then, Gronwall inequality and the boundedness of φε leads to the second inequality of
(3.14). The lemma is proved.

The following lemma bounds the difference between φε and φ∗.
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Lemma 3.5. Let φε,φ∗ be the solutions of (2.6) and (2.8) respectively, then for
∀ t∈ (0,T ), we have

‖φε(x,t)−φ∗(x,t)‖2L2(Ωε)≤Q
∫ t

0

‖Cε−C∗‖2L2(Ωε). (3.23)

Proof. Let e(φ) =φε−φ∗, e(C) =Cε−C∗. Subtracting the second equation of
(2.8) from the second equation of (2.6) yields that

∂e(φ)

∂t
=−M

ρ
k
(
Cε(g(φε)−g(φ∗))+g(φ∗)(Cε−C∗)

)
=−M

ρ
k
(
Cεg′(ξ)e(φ)+g(φ∗)e(C)

)
,

so

1

2

∂

∂t
e(φ)2 =−M

ρ
k
(
Cεg′(ξ)e(φ)2 +g(φ∗)e(C)e(φ)

)
.

Since Cε is bounded and g(s)∈C1[0,1], summing the above equation for x in Ωε, we
have

1

2

d

dt
‖e(φ)‖2L2(Ωε)≤Q1‖e(φ)‖2L2(Ωε) +Q2‖e(C)‖2L2(Ωε).

By Gronwall’s inequality, we have

‖e(φ)(x,t)‖2L2(Ωε)≤Q
∫ t

0

‖e(C)‖2L2(Ωε), ∀ t∈ (0,T ). (3.24)

This lemma is proved.

Proof. (Proof of Theorem 2.1.) Recall Cε1 =C∗+ε
d∑
j=1

χj ∂C
∗

∂xj
, then Cε−Cε1−εθε

vanishes on ∂Ωε. Consider the following term

d

dt
(φε(Cε−Cε1−εθε))−

d∑
i,j=1

δ+ε
i

(
aεijh(φ̂ε)δ−εj (Cε−Cε1−εθε)

)
=−kCεg(φε)− d

dt

(
φεε

d∑
k=1

χk
∂C∗

∂xk

)
− d

dt
(φεC∗)+

d∑
i,j=1

δ+ε
i (aεijh(φ̂ε)δ−εj Cε1),

=
d

dt
(φ∗C∗)−

d∑
i=1

δ+ε
i

(
a∗ijh(φ∗)

∂C∗

∂xj

)
+εR− d

dt
(φεC∗)+

d∑
i,j=1

δ+ε
i (aεijh(φ̂ε)δ−εj Cε1)

+kC∗g(φ∗)−kCεg(φε)− d

dt

(
φεε

d∑
k=1

χk
∂C∗

∂xk

)
,

=

d∑
i,j=1

δ+ε
i

(
aεijh(φ̂ε)δ−εj Cε1−a∗ijh(φ∗)

∂C∗

∂xj

)
+rε+εR, (3.25)

where the first equality comes from (2.6) and (3.13), while the second equality comes
from (3.12), and

rε=
( d
dt

(φ∗C∗)− d

dt
(φεC∗)

)
+
(
kC∗g(φ∗)−kCεg(φε)

)
− d

dt

(
φεε

d∑
k=1

χk
∂C∗

∂xk

)
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≡ rε1 +rε2 +rε3. (3.26)

Multiplying (3.25) by Cε−Cε1−εθε∈W
1,2
0 (Ωε), taking the summation for x∈Ωε, and

we have by summation by parts that

1

2

d

dt
εd
∑
x∈Ωε

(
φε(Cε−Cε1−εθε)2

)
+εd

∑
x∈Ωε

d∑
i,j=1

aεijh(φ̂ε)
(
δ−εj (Cε−Cε1−εθε)

)2
=−εd

∑
x∈Ωε

d∑
i,j=1

(
aεijh(φ̂ε)δ−εj Cε1−a∗ijh(φ∗)

∂C∗

∂xj

)
δ−εi (Cε−Cε1−εθε)

+εd
∑
x∈Ωε

(
εR+rε

)
(Cε−Cε1−εθε)−

1

2
εd
∑
x∈Ωε

dφε

dt
(Cε−Cε1−εθε)2

≡ I1 +I2 +I3. (3.27)

For the first term on the right-hand side of (3.27), from the regularity assumption
for C∗, there exists a bounded function r̄j(x,t) such that

δ−εj C∗− ∂C
∗

∂xj
=εr̄j(x,t), for (x,t)∈ Ω̊ε×(0,T ),

so

δ−εj Cε1 =
∂C∗

∂xj
+

d∑
k=1

δ−j χ
k ∂C

∗

∂xk
+ε

d∑
k=1

χk(y−ej)δ−εj
∂C∗

∂xk
+εr̄j ,

and

d∑
j=1

(
aεijh(φ̂ε)δ−εj Cε1−a∗ijh(φ∗)

∂C∗

∂xj

)
=

d∑
j=1

h(φ̂ε)
(
aεij+

d∑
k=1

aεikδ
−
k χ

j(y)−a∗ij
)∂C∗
∂xj

+

d∑
j=1

a∗ij(h(φ̂ε)−h(φ∗))
∂C∗

∂xj

+ε

d∑
j=1

( d∑
k=1

aεijχ
k(y−ej)δ−εj

∂C∗

∂xk
+aεij r̄j

)
h(φ̂ε). (3.28)

Let gij(y) =aij(y,y−ej)+
d∑
k=1

aik(y,y−ej)δ−k χj(y)−a∗ij . From the cell problem (2.10)

and the definition (2.9) for a∗ij we know that

d∑
i=1

δ+
i gij = 0,

1

|Y̊ |

∑
y∈Y̊

gij(y) = 0, ∀j= 1,. ..,d.

From Lemma 3.3, there exists an antisymmetric matrix αljk such that

gij(y) =

d∑
l=1

δ+
l α

j
il(y).
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So

d∑
j=1

(
aεijh(φ̂ε)δ−εj Cε1−a∗ijh(φ∗)

∂C∗

∂xj

)
=ε

d∑
j,l=1

δ+ε
l

(
h(φ̂ε)αjil(y)

∂C∗

∂xj

)
+γ1 +γ2, (3.29)

where

γ1 =−ε
d∑

j,l=1

αjil(y+el)h(φ̂ε(x+εel,x(i)+εel,t))δ
+ε
l

∂C∗

∂xj
−ε

d∑
j,l=1

αjil(y+el)δ
+ε
l h(φ̂ε)

∂C∗

∂xj

+ε

d∑
j=1

( d∑
k=1

aεijχ
k(y−ej)δ−εj

∂C∗

∂xk
+aεij r̄j

)
h(φ̂ε),

γ2 =

d∑
j=1

a∗ij(h(φ̂ε)−h(φ∗))
∂C∗

∂xj
.

From the boundedness of φε,χj ,rj and the regularity of h,C∗, we deduce that

‖γ1‖2L2((0,T )×Ωε)≤Qε
2. (3.30)

For γ2, noticing that φ̂ε(x,x(i),t) =φε(x,t)∧φε(x(i),t), we can use Lemma 3.5, Lemma
3.4, the boundedness of φε,χj and the regularity of h,C∗ to get

‖γ2‖2L2(Ωε)≤Q1‖φε−φ∗‖2L2(Ωε) +Q2ε
2

≤Q3

∫ t

0

‖Cε−C∗‖2L2(Ωε) +Q2ε
2

≤Q4

∫ t

0

‖
√
φε(Cε−Cε1−εθε)‖2L2(Ωε) +Q5ε

2. (3.31)

Combining (3.29)-(3.31), the first term I1 at the right-hand side of (3.27) is bounded
by

|I1|=εd
∣∣ ∑
x∈Ωε

d∑
i=1

(
ε

d∑
j,l=1

δ+ε
l

(
h(φ̂ε)αjil(y)

∂C∗

∂xj

)
+γ1 +γ2

)
δ−εi (Cε−Cε1−εθε)

∣∣ (3.32)

=εd
∣∣ ∑
x∈Ωε

d∑
i=1

(
γ1 +γ2

)
δ−εi (Cε−Cε1−εθε)

∣∣
≤Q1

∫ t

0

‖
√
φε(Cε−Cε1−εθε)‖2L2(Ωε) +Q2ε

2 +
a0h0

2
‖Cε−Cε1−εθε‖2W 1,2

0 (Ωε)
,(3.33)

where the constants a0,h0 are lower bound of aε and h(s) given in the assumptions
(H1) and (H2). The first term at the right-hand side of (3.32) disappears thanks to

that
d∑

j,l=1

δ+ε
l

(
h(φ̂ε)αjil(y)∂C

∗

∂xj

)
is a solenoidal vector.

Next we consider the second term I2 in (3.27). rε is divided into 3 terms in (3.26).
Rewrite rε1 as

rε1 =
(dφε
dt
− dφ

∗

dt

)
C∗+

∂C∗

∂t
(φε−φ∗)
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=
MkC∗

ρ
((C∗−Cε)g(φ∗)+(g(φ∗)−g(φε))Cε)+

∂C∗

∂t
(φε−φ∗).

We can use similar arguments for γ2 to obtain∫ t

0

‖rε1‖2L2(Ωε)≤Q1

∫ t

0

‖Cε−C∗‖2L2(Ωε) +Q2

∫ t

0

‖φε−φ∗‖2L2(Ωε)

≤Q3

∫ t

0

‖
√
φε(Cε−Cε1−εθε)‖2L2(Ωε) +Q4ε

2, (3.34)

and for rε2 we also have∫ t

0

‖rε2‖2L2(Ωε)≤Q
∫ t

0

‖
√
φε(Cε−Cε1−εθε)‖2L2(Ωε) +Q1ε

2. (3.35)

Rewrite rε3 as

rε3 =−dφ
ε

dt
ε

d∑
k=1

χk
∂C∗

∂xk
−φεε

d∑
k=1

χk
∂2C∗

∂t∂xk
.

From the boundedness of φε, dφ
ε

dt ,χ
k and the regularity of C∗, we derive that

‖rε3‖2L2(Ωε)≤Qε
2. (3.36)

Combining (3.34)-(3.36), we have by the boundedness of R(x,t) in Lemma 3.2 that∫ t

0

‖I2‖2L2(Ωε)≤Q
∫ t

0

‖
√
φε(Cε−Cε1−εθε)‖2L2(Ωε) +Q1ε

2. (3.37)

The third term I3 in (3.27) can be bounded directly by the boundedness of φε, dφ
ε

dt
in Lemma 3.1 as

‖I3‖2L2(Ωε)≤Q1‖
√
φε(Cε−Cε1−εθε)‖2L2(Ωε) +Q2ε

2. (3.38)

Integrating (3.27) over time on (0,t), and combining the above estimates on I1,I2,I3,
we deduce that

‖
√
φε(Cε−Cε1−εθε)‖2L2(Ωε) +

∫ t

0

a0h0‖Cε−Cε1−εθε‖2W 1,2
0 (Ωε)

≤Qε2 +Q

∫ t

0

‖
√
φε(Cε−Cε1−εθε)‖2L2(Ωε).

Then from the boundedness of φε and Gronwall’s inequality, it follows that

sup
t∈(0,T )

‖Cε−Cε1−εθε‖L2(Ωε) +‖Cε−Cε1−εθε‖L2(0,T ;W 1,2(Ωε))≤Qε.

So the estimates in Lemmas 3.4 and 3.5 lead to

‖Cε−C∗‖L∞(0,T ;L2(Ωε)) +‖φε−φ∗‖L∞(0,T ;L2(Ωε))≤Qε,

and

‖Cε−Cε1‖L2(0,T ;W 1,2(Ωε))≤Q
√
ε.

Thus Theorem 2.1 is proved.
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4. Conclusion and Discussion
In this work, we establish a multi-scale node-bond network model for CVI process,

which is a nonlinear system containing a spatially discrete reaction-diffusion equation
coupled with a spatially discrete porosity evolution equation. The tortuosity factor
for the bonds in the node-bond structure is considered. The homogenization theory is
established, which is the foundation of the multi-scale simulation.

A problem, which may be discussed, is the assumption (H2) in Section 2. h(φ)
represents the mobility in the bond. When the porosity reaches its residual limit φR
at the ending of the whole CVI process, we have assumed that the reaction surface
area g(φ) is zero. It seems to be more reasonable to also have h(φ)≡0, for φ∈ [0,φR].
This will lead to degeneration for the reaction-diffusion equation. The homogenization
theory for this kind of problem may be interesting and is left to future work.
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