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COMPLEXITY OF RANDOMIZED ALGORITHMS FOR
UNDERDAMPED LANGEVIN DYNAMICS∗

YU CAO† , JIANFENG LU‡ , AND LIHAN WANG§

Abstract. We establish an information complexity lower bound of randomized algorithms for
simulating underdamped Langevin dynamics. More specifically, we prove that the worst L2 strong
error is of order Ω(

√
dN−3/2), for solving a family of d-dimensional underdamped Langevin dynamics,

by any randomized algorithm with only N queries to ∇U , the driving Brownian motion and its weighted
integration, respectively. The lower bound we establish matches the upper bound for the randomized
midpoint method recently proposed by Shen and Lee [NIPS 2019], in terms of both parameters N and
d.
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1. Introduction
The underdamped Langevin dynamics have been widely used to sample high-

dimensional probability distributions [38,43,57], as it could provide a faster convergence
rate compared to the overdamped Langevin dynamics. The analysis of the sampling
algorithms based on underdamped Langevin dynamics consists of two key aspects:

(i) the mixing time of continuous-time underdamped Langevin dynamics;

(ii) the time-discretization error for numerically integrating underdamped Langevin
dynamics.

The first question has been widely studied for various metrics of convergence, see, e.g.,
[3, 7, 9, 43,49].

Our focus in this work is the performance of discretization algorithms for under-
damped Langevin dynamics. This has also been quite extensively studied, in terms of
both asymptotic analysis [13,34,42,55] and non-asymptotic analysis [4,5,7,32,50]. The
algorithm with the best rate up to date was proposed by Shen and Lee [50]. Their ran-
domized midpoint method (RMM) for underdamped Langevin dynamics has a strong
L2 error O

(√
dN−3/2

)
using only N gradient queries, where d is the dimension. On the

other hand, it is not clear yet from the literature what error rate an optimal algorithm
can achieve. In other words, what the intrinsic difficulty of numerical integration of
underdamped Langevin dynamics is. This paper provides an answer in the framework
of information-based complexity (IBC). In particular, we show that the randomized
midpoint method is order optimal with respect to both d and N .

Information-based complexity [41, 53], which is closely related to the notion of the
information-theoretic lower bound, studies the intrinsic complexity of a family of com-
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putational problems, based on the type of queries that one has, rather than focusing
on a particular algorithm for the task. Intuitively, the algorithmic performance would
depend on the information one could acquire (for example, the gradients of the poten-
tial function U for Langevin dynamics). IBC aims to establish a lower bound of the
accuracy of a family of algorithms, provided the amount and the type of information.

In this work, we adopt the framework of IBC to study randomized algorithms for
approximating the strong solution of the underdamped Langevin dynamics with gradient
queries to strongly convex potentials and also the driving Brownian motion.

1.1. Underdamped Langevin dynamics. We consider the following under-
damped Langevin dynamics (Xt,Vt)∈Rd×Rd (we adopt the parameter scaling used
in [5, 50], which is slightly different from the usual physical model of underdamped
Langevin dynamics)

dXt=Vtdt,

dVt=−2Vtdt−
1

L
∇U(Xt)dt+

2√
L

dWt,
(1.1)

on the time interval [0,T ], with the fixed initial condition X0 =x? and V0 = 0, where
x?≡x?(U)∈Rd is a local minimum of the potential function U ; Wt is the d-dimensional
standard Brownian motion; the parameter L>0 has a physical meaning as the mass of

the particle. The unique stationary distribution of (1.1) is ρ∞(x,v)∝ exp
(
−U(x)− |v|

2

2/L

)
.

As time t→∞, the distribution of (Xt, Vt) converges to the equilibrium exponentially
fast under mild conditions; see, e.g., [3, 9, 10, 33, 43, 49, 54]. Generalization of our main
result (Theorem 1.1) below to underdamped Langevin dynamics with general friction
coefficient is straightforward, and we will not pursue such generality herein for simplicity.

Assumption 1.1. In this work, we shall only consider strongly convex U with Lips-
chitz gradient, i.e., we consider the following family of potential functions,

F ≡F(d,`,L) :=
{
U ∈C2(Rd)

∣∣∣ `Id≤∇2U(x)≤LId, ∀x∈Rd
}

(1.2)

for fixed parameters 0<`<L<∞. The notation Id herein means d×d identity matrix.
Under the strong convexity assumption, we know that x? is uniquely determined by U .
The condition number κ is defined as κ :=L/`.

1.2. Main results. Denote the probability space for underdamped Langevin
dynamics (1.1) as (M,Σ,P). In the context of Langevin sampling, we assume that,

besides the Brownian motion, the query to a weighted Brownian motion W̃
(θ)
t is also

admissible, where

W̃
(θ)
t (ω) :=

∫ t

0

eθsdWs(ω), ∀ ω∈M. (1.3)

When θ= 0, W̃
(θ=0)
t (ω)≡Wt(ω). In general, we define a correlated Gaussian process

W̃
~θ
t for ~θ= (θ1,θ2,·· · ,θJ):

W̃
~θ
t (ω) :=

(
W̃

(θ1)
t (ω) ·· · W̃ (θj)

t (ω) ·· · W̃ (θJ)
t (ω)

)
,

as a short-hand notation. In particular, we shall use W̃
(0,2)
t ≡ (Wt,W̃

(2)
t ) frequently be-

low, as in our main theorem. The reason for such an assumption is that in the context
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of Langevin sampling, generating correlated Gaussian random vectors is not computa-
tionally expensive, whereas computing ∇U is usually the computational bottleneck.

More formally, we assume that there is an oracle query ΥU,ω :Rd× [0,T ]→Rd×R2d,
defined as

ΥU,ω(x,t) :=
(
∇U(x),W̃

(0,2)
t (ω)

)
, x∈Rd, t∈ [0,T ],

for any U ∈F and ω∈M, and the set of admissible information operations is defined by

Λ :=
{

ΥU,ω(x,t)
∣∣ x∈Rd, t∈ [0,T ]

}
. (1.4)

Our main result is the following information-based complexity bound for solving
the underdamped Langevin dynamics with U ∈F .

Theorem 1.1 (Information-based complexity with queries to ∇U and weighted Brown-
ian motions). Consider the complexity problem F (1.2) with Λ as the set of admissible
information operations. Then whenever N ≥N0 for some integer N0 (independent of
the dimension d),

Clow

√
dN−3/2 . inf

A∈ARand
N

eF,Λ(A).Cup

√
dN−3/2, (1.5)

where the prefactor Cup =
√

T 3

` + T 4

L , and Clow≡Clow(`,L,T ) can be chosen as

Clow = sup
Cx>0, Cv>0,
`<u<uR≤L

√
P(Cx,Cv,u,T )C2

xmin{u−`,uR−u}C(Cx,Cv,uR,L,T ), (1.6)

where P(Cx,Cv,u,T ) for `≤u≤L is defined below in (2.9), and C(Cx,Cv,uR,L,T ) for
`≤uR≤L is defined below in (3.5).

As a remark, the choice of W̃
(0,2)
t inside the oracle query ΥU,ω as well as the set

of information operations Λ (in particular, the choice of the weighted Brownian motion

W̃
(2)
t ) comes from the friction coefficient in the underdamped Langevin dynamics (1.1).

In the above, eF,Λ(A) is the worst L2 strong error for any algorithm A, defined later
in (2.4); the notation ARand

N means the set of randomized algorithms that use N infor-
mation operations {ΥU,ω(Yj ,tj)}j=1,2,···,N (namely, N queries of ∇U and N queries of

W̃
(0,2)
t ). The notion of randomized algorithms using only N queries will be elaborated

further in Section 2.1 below. The proof of Theorem 1.1 will be given in Section 3.
The proof of the lower bound estimate is based on a novel non-asymptotic perturbation
result with respect to the potential U (see Proposition 3.1).

Remark 1.1.

(i) As a corollary to the theorem, the randomized midpoint method (see (2.6) below
for the algorithm) is order optimal.

(ii) The fundamental challenge for the computational problem (F ,Λ) comes from the
insufficient information of ∇U , instead of the path irregularity of the random

process W̃
(0,2)
t . However, if we replace W̃

(0,2)
t in the admissible information op-

erations Λ (1.4) by Wt only (the Brownian motion itself), then the complexity
lower bound becomes Ω(

√
dN−1), as the irregularity of the Brownian motion Wt

becomes the complexity bottleneck. This follows from the classical result by Clark
and Cameron [6] (see also the literature review in the next subsection).
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(iii) If we replace F in (1.2) by the following larger set of potentials{
U ∈C1(Rd)

∣∣∣ `≤ ‖∇U(x)−∇U(y)‖
‖x−y‖

≤L, ∀x 6=y∈Rd
}
,

the above lower bound in (1.5) also holds, by the definition of eF,Λ (2.4).

(iv) In (1.6), the scaling of Clow with respect to the time T and the condition number
κ=L/` is complicated. Providing a tight estimate of Clow appears to be rather
challenging, and we shall leave it to future works.

(v) Though we focus on underdamped Langevin dynamics in this paper, the ideas and
techniques herein are applicable to a wide range of SDEs.

1.3. Literature review. Below is a brief literature review for underdamped
Langevin algorithms and also the information-based complexity for differential equa-
tions.

Underdamped Langevin algorithms. The Euler-Maruyama method for the un-
derdamped Langevin dynamics, which replaces ∇U(Xt) with ∇U(Xkh) in (1.1) and
solves the modified equation for a short time h at the kth time step, is the most widely
studied algorithm. To the best of our knowledge, it was first proposed and studied
by Ermak and Buckholz [11]. Cheng, Chatterji, Bartlett, and Jordan [5] and later
Dalalyan and Riou-Durand [7] proved that the strong error of the Euler-Maruyama al-
gorithm is O(

√
dN−1). Results were generalized to non-convex potentials in [4] with

the same rate in d and N but with much worse prefactors. The sampling error of
the Euler-Maruyama algorithm in Kullback-Leibler divergence was studied in [32]. Re-
cently, Shen and Lee [50] proposed the randomized midpoint method, which reduces
the error to O(

√
dN−3/2). There have been other algorithms, for example, the BBK

scheme [2, 42], the Verlet-type scheme proposed in [13], and the Leimkuhler-Matthews
scheme [31], but non-asymptotic analysis has not been studied for these yet.

Information-based complexity for differential equations. We now provide a
concise review of related works on the information-based complexity for both ordinary
and stochastic differential equations.

Information-based complexity analysis for ODEs was initially studied by Kacewicz
[23–26] for deterministic algorithms, and later by Kacewicz [27,28], Heinrich and Milla
[15], and Daun [8] for randomized algorithms. For some particular classes of ODE sys-
tems, the matching complexity bounds and order optimal algorithms are well known, for
both deterministic and randomized algorithms. A notable observation is that compared
to deterministic algorithms, randomized algorithms may achieve order 1/2 speed-up,
which relates to the universal convergence rate of Monte Carlo methods. This phe-
nomenon also occurs for solving SDE in our case: compared to the Euler-Maruyama
method, the randomized midpoint method [50] achieves order 1/2 improvement. On
the other hand, we shall comment that it is still open whether such an improvement is
non-trivial in our problem by employing randomized algorithms, namely, whether there
exists a strong order 3/2 deterministic algorithm with only gradient queries.

As for the information-based complexity result for SDEs, the lack of full information
about both drift and diffusion terms might contribute to the overall computational
complexity. It is a common practice to study the complexity from drift and diffusion
separately. Therefore, most works in the literature focus on the complexity due to
the diffusion term, since the complexity of the drift term (with trivial diffusion term)
reduces to the ODE problem. However, in our problem, it appears unlikely to reduce the
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problem into analyzing drift and diffusion terms separately, because both terms are non-
trivial for our computational problem of simulating underdamped Langevin dynamics.
As far as we know, our problem does not fit into known IBC problem formulations for
SDEs.

The study of information-based complexity for the diffusion part dates back at least
to the seminal work of Clark and Cameron [6]. They considered SDEs with C3 drift term
(with bounded derivatives up to the third-order) and constant diffusion term, and they
proved that the strong one-point approximation error is asymptotically Ω(N−1), for
algorithms with uniform mesh grids, where N is the number of queries to the Brownian
motion Wt [6, Theorem 1]. The order optimal algorithm is simply the Euler-Maruyama
method [16, 44]. Clark and Cameron also showed that for general SDEs with Lipschitz
diffusion terms, a certain family of algorithms with uniform mesh grid will result in
the one-point approximation error with order Ω(N−1/2) [6]. The minimum one-point
approximation error for scalar SDEs could be found in [36]. Apart from the one-point
approximation error, the error for trajectories is also considered, i.e., the global approx-
imation error. A series of works of Hofmann, Müller-Gronbach, and Ritter, addressed
this problem for L2 error [17, 18, 20], and for L∞ error [19, 35]. We refer readers to
a survey paper by Müller-Gronbach and Ritter [37] for more details. Around the last
decade, Przyby lowicz [45–47], Przyby lowicz and Morkisz [48] studied the time-irregular
SDEs. More recently, Hefter, Herzwurm, and Müller-Gronbach provided probabilistic
lower bound estimates [14].

Finally, we also point out other related works studying differential equations with
inexact information, see, e.g., [1, 29] for ODEs and [39,40] for SDEs.

Notation. The Lebesgue measure on Rd (for any dimension d) is denoted by µ.
The probability space for (1.1) is (M,Σ,P) and the probability space of the source of

randomness for randomized algorithms is denoted by (M̃,Σ̃,P̃). Suppose X ,Y are two
arbitrary spaces, and let X :M×X →Y be a function such that X (·,ι) is a random
variable on (M,Σ,P) for any fixed ι∈X . Then,

Eω[X (ω,ι)]≡Eω∼P[X (ω,ι)] :=

∫
X (ω,ι) dP(ω).

Other notations like Eω̃≡Eω̃∼P̃ and E(ω,ω̃)≡E(ω,ω̃)∼P×P̃ are similarly defined.

For two arbitrary real-valued functions f and g, when cf ≤g for some universal
constant c, we denote this by f .g as a simplification; the notation & is similarly
defined. The notations Ω and O follow the convention in complexity analysis, i.e.,
f = Ω(g) means f &g, and f =O(g) means f .g. The binary relations ≺ and � are
partial order relations on the Boolean lattice {0,1}N .

2. Preliminaries
In this section, we will illustrate the setup of the IBC problem under consideration,

the integral form of (1.1), the randomized midpoint method [50], and the exact solution
of (1.1) for 1D quadratic potentials.

2.1. IBC problem setup. We have explained the family of computational
problems, characterized by the family F (1.2) in the introduction. Next, we shall
explain more about the admissible information operations and the family of randomized
algorithms. We refer readers to e.g., [37, Sec. 2] for a more abstract framework.

Solution map. For the computational problem under consideration, we want to
approximate the following solution map, for a given T >0:

XT : (U,ω)∈ (F×M) 7→XT (U,ω)∈Rd,
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where XT (U,ω) denotes the strong solution of (1.1) at time T , for a given potential
function U .

Admissible information operations. The set of admissible information opera-
tions Λ (1.4), recalled here, is

Λ =
{

ΥU,ω(x,t)
∣∣x∈Rd, t∈ [0,T ]

}
.

We need to use a finite amount of information (operations) to predict the strong solution
XT (U,ω) in (1.1), and such a prediction is known as an algorithm.

Algorithms. We shall always choose

Y1 =x?(U), t1 = 0, (2.1)

as these are the initial conditions in the dynamics (1.1). A deterministic algorithm A
with N evaluations means there is a sequence of deterministic mappings ϕj :Rd×(Rd×
R2d)j→Rd×R (1≤ j≤N−1) and a mapping φ :Rd×(Rd×R2d)N→Rd such that

(Yj+1,tj+1) :=ϕj
(
Y1,Φj

)
≡ϕj

(
x?(U),Φj

)
, for 1≤ j≤N−1; (2.2a)

Φj :=
(
ΥU,ω(Y1,t1),ΥU,ω(Y2,t2), ·· · ,ΥU,ω(Yj ,tj)

)
, for 1≤ j≤N ; (2.2b)

and the algorithm A is given by

A(U,ω) =φ(Y1,ΦN )

≡φ
(
x?(U),ΥU,ω(Y1,t1),ΥU,ω(Y2,t2),·· · ,ΥU,ω(YN ,tN )

)
.

(2.3)

Ideally, we hope that XT (U,ω)≈A(U,ω) under certain norms. The family of all such
algorithms is denoted by ADet

N .

The family of randomized algorithms with only N queries is denoted by ARand
N .

Consider any other probability space (M̃,Σ̃,P̃) as the source of randomness. We define

randomized algorithms A(U,ω,ω̃) as mappings from the space F×M×M̃ to the vector
space Rd:

(U,ω,ω̃)∈F×M×M̃→A(U,ω,ω̃)∈Rd,

such that

A(·,·,ω̃)∈ADet
N , ∀ ω̃∈M̃.

Apparently, ADet
N ⊆ARand

N and moreover, ADet
N1
⊆ADet

N2
, ARand

N1
⊆ARand

N2
whenever N1≤

N2.

The error of the randomized algorithm A(·,·,ω̃) is measured in the L2 sense herein:

eF,Λ(A) := sup
U∈F

(
E(ω,ω̃)∼P×P̃

[
|XT (U,ω)−A(U,ω,ω̃)|2

])1/2

. (2.4)

Remark 2.1. For the underdamped Langevin dynamics used to sample log-concave
probability distributions e−U/

∫
e−U , we are interested only in XT , instead of the whole

trajectory on the interval [0,T ].
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2.2. The integral form and the randomized midpoint method. Several
numerical algorithms for underdamped Langevin dynamics [5,7,11,50] are based on its
integral form

Xt=X0 +
1−e−2t

2
V0+

1√
L

∫ t

0

(1−e2(s−t))dWs−
1

2L

∫ t

0

(1−e2(s−t))∇U(Xs)ds,

Vt=e−2tV0 +
2√
L

∫ t

0

e2(s−t) dWs−
1

L

∫ t

0

e2(s−t)∇U(Xs)ds.

(2.5)

In [50], Shen and Lee considered a randomized midpoint method for simulating
underdamped Langevin dynamics, in the context of sampling log-concave distributions.
Let Ns be the total number of steps and h :=T/Ns is the time step size. Given X̂k

and V̂k at time sk :=kh for integer 0≤k≤Ns−1, the randomized midpoint method
approximates X̂k+1 and V̂k+1 in the following way:

X̂k+1 = X̂k+
1−e−2h

2
V̂k+

1√
L

∫ h

0

(1−e2(s−h))dWsk+s

− 1

2L
h(1−e2(ηkh−h))∇U(X̂k+1/2),

V̂k+1 =e−2hV̂k+
2√
L

∫ h

0

e2(s−h) dWsk+s

− 1

L
he2(ηkh−h)∇U(X̂k+1/2),

X̂k+1/2 = X̂k+
1−e−2ηkh

2
V̂k+

1√
L

∫ ηkh

0

(1−e2(s−ηkh))dWsk+s

− 1

2L

(∫ ηkh

0

1−e2(s−ηkh) ds
)
∇U(X̂k),

(2.6)

where i.i.d. random variables
{
ηk
}

0≤k≤Ns−1
are uniformly distributed on the interval

[0,1], independent of Wt; the initial condition is X̂0 =x?(U) and V̂0 = 0.
In the above, X̂k+1 and V̂k+1 are obtained by approximating the integral with

respect to∇U(Xs) in (2.5) by its evaluation at a single point X̂k+1/2; X̂k+1/2 is obtained
using the Euler-Maruyama scheme for the integral form (2.5) at the random time sk+
ηkh.

Remark 2.2. The RMM with Ns steps is a randomized algorithm with N = 2Ns
evaluations in the form of (2.2) and (2.3); please refer to Appendix A for more details.

Many previous works have proposed and analyzed various randomized algorithms
to solve differential equations. For ODEs, the analogy of the randomized midpoint
method can be found in, e.g., [1, 8, 15]. More randomized ODE solvers could be found
in e.g., [22, 51, 52]. As for SDEs, the randomized Euler’s method, which is in a very
similar spirit as the randomized midpoint method, has been studied in, e.g., [39,46–48].
A randomized Milstein method was studied by Kruse and Wu [30] for non-differentiable
drift functions; a randomized derivative-free Milstein method was studied by Morkisz
and Przyby lowicz [40] for scalar SDEs with inexact information.

Remark 2.3. While we focus on the strong error in this paper, we would like to
comment that for underdamped Langevin dynamics, the randomized midpoint method
defined in (2.6) has a weak error of O(h3). As the full analysis is tedious and it is
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not the main focus of our paper, we only include a heuristic argument here. We shall
consider a one-step error only and let η≡η0 herein for simplicity.

Note that for a fixed realization of Wt, we can compare

X̂1−Xh=− 1

2L

(
h(1−e−2(h−ηh))∇U(X̂ 1

2
)−
∫ h

0

(1−e−2(h−s))∇U(Xs)ds
)

=− 1

2L

(
h(1−e−2(h−ηh))∇U(X̂ 1

2
)−h(1−e−2(h−ηh))∇U(Xηh)

+h(1−e−2(h−ηh))∇U(Xηh)−
∫ h

0

(1−e−2(h−s))∇U(Xs)ds
)
,

V̂1−Vh=− 1

L

(
he−2(h−ηh)∇U(X̂ 1

2
)−
∫ h

0

e−2(h−s)∇U(Xs)ds
)

=− 1

L

(
he−2(h−ηh)∇U(X̂ 1

2
)−he−2(h−ηh)∇U(Xηh)

)
− 1

L

(
he−2(h−ηh)∇U(Xηh)−

∫ h

0

e−2(h−s)∇U(Xs)ds
)

=: I+II.

We observe that X̂1−Xh is of higher order than V̂1−Vh. Therefore, keeping only the
error from V and by the Taylor expansion around (Xh,Vh), we can estimate, for a
smooth enough test function f , that∣∣E[f(X̂1,V̂1)−f(Xh,Vh)

]∣∣. ∣∣E[∇vf(Xh,Vh) ·(I+II)
]∣∣

+
∣∣E[(I+II) ·∇2

vf(Xh,Vh)(I+II)
]∣∣.

Now let Eη denote the expectation with respect to η only. Since η is uniformly dis-
tributed on [0,1], we have

Eη
[
he−2(h−ηh)∇U(Xηh)

]
=h

∫ 1

0

e−2(h−ηh)∇U(Xηh)dη=

∫ h

0

e−2(h−s)∇U(Xs)ds.

This shows Eη
[
II
]

= 0. Since (Xh,Vh) is independent of η, we have

E
[
∇vf(Xh,Vh) ·II

]
=E
[
∇vf(Xh,Vh) ·Eη

[
II
]]

= 0.

Therefore,∣∣E[f(X̂1,V̂1)−f(Xh,Vh)
]∣∣. h

L

∣∣∣E[∇vf(Xh,Vh) ·
(
∇U(X̂ 1

2
)−∇U(Xηh)

)]∣∣∣
+E
[
‖∇2

vf(Xh,Vh)‖· |V̂1−Vh|2
]
.

Finally, assuming that all derivatives of f are bounded, we use [50, Lemma 9] for the
first term below, and [50, Lemma 2] for the second term below,

∣∣E(f(X̂1,V̂1)−f(Xh,Vh)
)∣∣. h

L

(
E|∇U(X̂ 1

2
)−∇U(Xηh)|2

) 1
2

+E|V̂1−Vh|2 =O(h4).

This local truncation error gives O(h3) weak error by Grönwall’s inequality as usual.
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2.3. Exact solution for quadratic potentials in 1D. Our estimate of the
prefactor Clow in Theorem 1.1 relies on the behavior of Xt(Uu,ω) and Vt(Uu,ω), where
the potential has the quadratic form Uu(x) :=ux2/2 (thus x?(Uu) = 0 for this case).
Therefore, in this subsection, we shall first review the exact solution of the underdamped
Langevin dynamics with quadratic potentials and then define a quantity in (2.9) to be
used in the next section.

It is easy to rewrite (1.1) as

d

[
Xt

Vt

]
=H

[
Xt

Vt

]
dt+

[
0
2√
L

]
dWt, H=

[
0 1
− u
L −2

]
.

Then its integral form can be immediately obtained as follows[
Xt

Vt

]
=

∫ t

0

eH(t−s)
[

0
2√
L

]
dWs.

The matrix exponential of H can be explicitly computed for u<L:

eHt=
1

2
√

1−u/L

(λ+e
−tλ−−λ−e−tλ+

) (
e−tλ−−e−tλ+

)
u
L

(
e−tλ+−e−tλ−

) (
λ+e

−tλ+−λ−e−tλ−
),

where

λ±= 1±
√

1−u/L. (2.7)

This immediately leads to the following result.

Lemma 2.1 (Exact solution). When d= 1 and Uu(x) =ux2/2, we have for u<L

Xt(Uu, ·) =
1√
L−u

∫ t

0

(
e−(t−s)λ−−e−(t−s)λ+

)
dWs,

Vt(Uu, ·) =
1√
L−u

∫ t

0

(
−λ−e−(t−s)λ−+λ+e

−(t−s)λ+
)
dWs.

(2.8)

Next, let us introduce the following quantity for Cx,Cv>0, `≤u≤L,

P(Cx,Cv,u,T ) := P
(
ω : sup

0≤t≤T
Xt(Uu,ω)≥2Cx,

inf
0≤t≤T

Xt(Uu,ω)≤−2Cx, sup
0≤t≤T

|Vt(Uu,ω)|≤Cv/2
)
. (2.9)

The event under consideration requires Xt(Uu,ω) to cross −2Cx and 2Cx, whereas
the velocity Vt(Uu,ω) is uniformly bounded on the whole interval [0,T ]. Typically, we
should expect to choose a small Cx and a large Cv in order to have P(Cx,Cv,u,T ) =O(1).
Indeed, if Cx/Cv is too large, the probability P(Cx,Cv,u,T ) equals to 0, as stated in
the following lemma.

Lemma 2.2. When 12Cx/Cv>T , then P(Cx,Cv,u,T ) = 0.

Proof. For any ω satisfying the condition in (2.9), the travel distance of Xt must
be at least 6Cx (since it starts from 0 and has to cross levels 2Cx and −2Cx) with
velocity at most Cv/2, then the total time must be at least 12Cx/Cv.
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However, note that for large enough Cv, P(Cx,Cv,u,T )>0.

Lemma 2.3. For fixed Cx>0, u∈ (`,L), and T >0, and for sufficiently large Cv, we
have

P(Cx,Cv,u,T )≥ 1

2
P
(
ω : sup

0≤t≤T
Xt(Uu,ω)≥2Cx, inf

0≤t≤T
Xt(Uu,ω)≤−2Cx

)
>0.

The proof of this lemma is postponed to Appendix B.
Therefore, the prefactor Clow in (1.6) is non-zero. The precise dependence of Clow

on parameters `, L and T , however, appears to be a challenging problem and will be
left for future investigations.

3. Proof of Theorem 1.1.
The proof of the lower bound estimate relies on the (non-asymptotic) perturbation

analysis in Section 3.1, in particular, the lower bound estimate in Proposition 3.1. The
overall strategy, from the information-based complexity perspective, is similar to the
lower bound estimate for randomized algorithms for integration problems, see, e.g., [41].
The new ingredient is the perturbation-type analysis for the particular problem under
consideration. The proof of the upper bound is known from [50]. Thus, we shall only
provide a sketch of the main steps to prove the upper bound, for completeness.

3.1. Non-asymptotic perturbation analysis with respect to U . We
consider the case d= 1, which is assumed throughout this subsection. We postpone
proofs for all results in this subsection to Section 3.3 for clarity.

Let us consider

Uu(x) :=
ux2

2
, ∀u∈ [`,L],

and let us also introduce a set parameterized by u∈ (`,L) and ε>0

Fu,ε :={U ∈F : ‖∇U(x)−ux‖∞≤ ε, x?(U) = 0}. (3.1)

Recall from Section 1.1 that x?(U) is the local minimum of potential function U ∈F ;
thus for any U ∈Fu,ε, we have the initial condition X0(U,ω) = 0.

First, we show that when the potential function is slightly perturbed away from
a quadratic function Uu, the strong solutions of Xt(U,ω) and Vt(U,ω) are at most
perturbed by an order of O(ε).

Lemma 3.1 (Upper bound). Consider any u∈ (`,L). For any U ∈Fu,ε, any ω∈M, and
t∈ [0,T ], we have

|Xt(U,ω)−Xt(Uu,ω)|≤ ε

2L(1−
√

1− u
L )
√

1− u
L

,

|Vt(U,ω)−Vt(Uu,ω)|≤ ε

L
√

1− u
L

.
(3.2)

For any u∈ (`,L), Cx>0 and Cv>0, let us define

ε̄≡ ε̄(Cx,Cv,u,L)

:= min
{

2L
(

1−
√

1− u
L

)√
1− u

L
Cx, L

√
1− u

L

Cv
2

}
,
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which is strictly positive. Moreover, for ε>0, let us define a set E ≡E(Cx,Cv,u,T,ε)

E :=
{
ω : sup

0≤t≤T
Xt(U,ω)≥Cx, inf

0≤t≤T
Xt(U,ω)≤−Cx,

sup
0≤t≤T

|Vt(U,ω)|≤Cv, ∀U ∈Fu,ε
}
.

(3.3)

In the following lemma, we shall bound P(E) by P(Cx,Cv,u,T ) from below, for small
enough ε.

Lemma 3.2. Consider any u∈ (`,L), and any Cx,Cv>0. For arbitrary 0<ε< ε̄, P(E)
is uniformly bounded from below by P(Cx,Cv,u,T ) defined in (2.9).

In general, for two fixed potential functions U1 6=U2, the distance |XT (U1,ω)−
XT (U2,ω)| highly depends on the realization of the Brownian motion Wt(ω), and it is
unlikely to establish a uniform non-trivial lower bound of |XT (U1,ω)−XT (U2,ω)| for
arbitrary ω. However, if we restrict the outcome ω to a “nice” set, i.e., ω∈E defined in
(3.3), then we can provide a lower bound estimate of |XT (U1,ω)−XT (U2,ω)| as in the
following proposition. This lower bound estimate is the key to prove Theorem 1.1.

Proposition 3.1. Consider any u∈ (`,L), Cx,Cv,ε>0, and let E ≡E(Cx,Cv,u,T,ε)
be the set defined in (3.3). Consider two potential functions U1,U2∈Fu,ε. Assume that

(i) the continuous function g :=∇U1−∇U2 is non-negative on R;

(ii) there exists I ⊆ [−Cx/2,Cx/2], a finite union of closed bounded intervals, such that

g(x)≥ ε

2
1I(x), ∀x∈R, (3.4)

where 1I is the indicator function of set I on R.

Let us introduce uR∈ [u,L] as a constant such that

∇2U2(x)≤uR, ∀x∈R.

Then for any ω∈E, we have

|XT (U1,ω)−XT (U2,ω)|≥C εµ(I),

where µ is the Lebesgue measure and C≡C(Cx,Cv,uR,L,T ) is given by

C :=


e( 3Cx

2Cv
−T )(1−

√
1−uRL )

(
1−e−

Cx
Cv

√
1−uRL

)
4LCv

√
1− uR

L

, if uR<L;

Cxe
3Cx
2Cv
−T

4LC2
v

, if uR=L.

(3.5)

3.2. Proof of the lower bound estimate for Theorem 1.1. We shall
proceed to prove the lower bound estimate, based on the results in Section 3.1.

Case (I): d= 1. We shall first consider the case d= 1.

Step (1): Setup and notations. Since we only access ∇U at N points, we will not be
able to gain the full information of ∇U based on the local queries. In this step, we shall
consider a family of U (see (3.7) and (3.8) below) as small perturbations of a quadratic
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potential with the mode (Hessian) u, and we shall estimate how the deviation of ∇U
contributes to the error eF,Λ(A) (2.4) for any randomized algorithm A∈ARand

N .
Without loss of generality, we assume that N is an even integer. We shall pick

`<u<uR≤L. We could then fix Cx and Cv satisfying P(Cx,Cv,u,T )>0. Let us define

ξ := min{u−`,uR−u}>0, ε :=
Cxξ

8N
. (3.6)

We will pick N sufficiently large such that ε< ε̄(Cx,Cv,u,L). Then we could also deter-
mine the set E defined in (3.3).

We divide the interval I :=
[
− Cx

2 ,
Cx
2

]
into 2N equally spaced sub-intervals. Let

xj = Cx
2N j for integers −N ≤ j≤N ; let Ij =

[
xj ,xj+1

)
for −N ≤ j≤N−2 and let IN−1 =[

xN−1,xN
]
. Define a non-negative function g supported on

[
0, Cx2N

]
by

g(x) :=


ax2, x∈

[
0, Cx8N

]
;

−a(x− Cx
4N )2 +2a

(
Cx
8N

)2
, x∈

[
Cx
8N ,

3Cx
8N

]
;

a(x− Cx
2N )2, x∈

[
3Cx
8N , Cx2N

]
;

0, x /∈
[
0, Cx2N

]
,

where a := ξ 4N
Cx

. It is easy to verify that g∈C1(R) and moreover,

‖g′‖∞= ξ, ‖g‖∞= ε.

Moreover, we choose I =
[
Cx
8N ,

3Cx
8N

]
(thus, the length µ(I ) = Cx

4N ), and we know that
g(x)≥ ε

21I (x) for any x∈R.
For index β= (β−N ,β−N+1, ·· · ,βN−1)∈{0,1}2N , we define Uβ with Uβ(0) = 0 by its

derivative

∇Uβ(x) :=ux+

N−1∑
j=−N

βjg(x−xj)≥ux+

N−1∑
j=−N

βj
ε

2
1I (x−xj). (3.7)

Apparently, Uβ is well-defined, Uβ ∈Fu,ε, and ∇2Uβ(x)≤uR, ∀β, ∀x∈R. Define a space

G≡Gu,ε :={Uβ : β∈{0,1}2N}⊆Fu,ε, (3.8)

and let µG be a uniform probability distribution on the set G, i.e., µG(Uβ) = 1
22N for any

β.
Then by Definition (2.4),

eF,Λ(A)2≥EUβ∼µGE(ω,ω̃)∼P×P̃

[
|XT (Uβ ,ω)−A(Uβ ,ω,ω̃)|2

]
=E(ω,ω̃)∼P×P̃

[
EUβ∼µG

[
|XT (Uβ ,ω)−A(Uβ ,ω,ω̃)|2

]]
≥P(E) E(ω,ω̃)∼P|E×P̃

[
EUβ∼µG

[
|XT (Uβ ,ω)−A(Uβ ,ω,ω̃)|2

]]
, (3.9)

where the probability measure P|E is the restriction of P to the event E ; more specifically,
P|E(B) =P(B∩E)/P(E) for any event B∈Σ. Besides, EUβ∼µG means expectation with
respect to Uβ , where Uβ is treated as a uniformly distributed random variable on the
set G; to avoid introducing too many notations, we slightly abuse the notation of Uβ
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to represent both a single potential function (or say an element in G) and a (uniformly
distributed) random variable on the set G.

We know by Lemma 3.2 that P(E) is uniformly bounded from below by a positive
value P(Cx,Cv,u,T ), and we claim (to be proved below in the Step (2))

EUβ∼µG
[
|XT (Uβ ,ω)−A(Uβ ,ω,ω̃)|2

]
&

C4
xC

2
ξ2

N3
. (3.10)

Therefore,

eF,Λ(A)&ClowN
−3/2,

where

Clow =
√

P(Cx,Cv,u,T )C2
xCξ

(3.6)
=
√
P(Cx,Cv,u,T )C2

xCmin{u−`,uR−u}.

Since Cx, Cv, u, and uR are parameters to be tuned, we arrive at (1.6) by optimizing.

Step (2): Proof of the perturbation bound (3.10). From now on, we fix both ω̃∈M̃ and
ω∈E . The main task is to estimate the fluctuation of the exact solution XT (Uβ ,ω) for
those Uβ with the same algorithmic output A(Uβ ,ω,ω̃) by Proposition 3.1; this is done
by a quantitative perturbation analysis.

The first task is to characterize the set of Uβ with the same algorithmic output
A(Uβ ,ω,ω̃). This is given by Lemma 3.3 below. To state the result, let us define some

notations. The access points for ∇Uβ are denoted by Y β1 ,Y
β
2 , ·· · ,Y

β
N , which only depend

on the choice of β. Let us denote the union of sub-intervals that Y βj belong to as J β :

J β :=
⋃

−N≤j≤N−1,

Y βk ∈Ij for some 1≤k≤N

Ij .

If µ(J β)<Cx/2 (e.g., there exist two indices j1<j2 such that Y βj1 and Y βj2 belong to the

same sub-interval), then we add sub-intervals with the largest indices to complete J β .
More specifically, for each fixed β, let us define

L =
{
j | −N ≤ j≤N−1, Y βk /∈ Ij , ∀k∈{1,2,3, ·· · ,N}

}
.

When the cardinality of L is larger than N (i.e., |L|>N), or equivalently µ(J β)<Cx/2,
we add |L|−N sub-intervals in a procedure described by the following pseudocode:

Pseudocode: The completion procedure of J β

while µ(J β)<Cx/2 do
j← largest value in L
L←L\{j}
J β←J β∪Ij

end while

Example 3.1. If N = 3, then there are six sub-intervals I−3,I−2,I−1,I0,I1,I2. Let us
consider the following examples:

• if all Y β1 ,Y
β
2 ,Y

β
3 ∈ I0, then we set J β := I0∪(I1∪I2);
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• if all Y β1 ,Y
β
2 ,Y

β
3 ∈ I−1, then we set J β := I−1∪(I1∪I2);

• if Y β1 ,Y
β
2 ∈ I0, and Y β3 ∈ I1, then we set J β := I0∪I1∪(I2);

• if Y β1 ∈ I0, Y β2 ∈ I1, and Y β3 ∈ I2, then we set J β := I0∪I1∪I2.

The interval within the parenthesis is the additional sub-interval(s) that we add to
complete J β .

Note that such a procedure is always valid, since Y β1 ,Y
β
2 ,·· · ,Y

β
N reside in at most

N sub-intervals; for each β, J β is always uniquely defined. From now on, when we use
the notation J β , we refer to the “completed” version. Likewise, time points for queries,
denoted by tβj , also depend on β only.

Lemma 3.3. For any fixed index β, if for some index β′, ∇Uβ′ =∇Uβ on the domain
J β, then

(i) Y βj =Y β
′

j , tβj = tβ
′

j for all 1≤ j≤N ;

(ii) J β =J β′ and moreover, A(Uβ ,ω,ω̃) =A(Uβ′ ,ω,ω̃).

Proof. Part (ii) trivially follows from the form of algorithms in (2.3) and part

(i). Then it suffices to prove part (i). This comes from induction: if Y βj =Y β
′

j , tβj = tβ
′

j

for all j≤k, then we know the information up to k queries are the same, i.e., Φβk = Φβ
′

k

where Φk is defined in (2.2b), and superscripts are used to indicate the dependence; to

verify Φβk = Φβ
′

k , we need to check the following two relations for any j≤k:

W̃
(0,2)

tβj
(ω) =W̃

(0,2)

tβ
′
j

(ω), ∇Uβ′(Y β
′

j ) =∇Uβ(Y βj ).

Since tβj = tβ
′

j by the assumption of induction, obviously, W̃
(0,2)

tβj
(ω) =W̃

(0,2)

tβ
′
j

(ω). Next,

since Y βj =Y β
′

j , we have∇Uβ′(Y β
′

j ) =∇Uβ′(Y βj ). It is then enough to verify∇Uβ′(Y βj ) =

∇Uβ(Y βj ).

• If Y βj /∈
[
−Cx/2,Cx/2

]
, then ∇Uβ′(Y βj )

(3.7)
= uY βj

(3.7)
= ∇Uβ(Y βj ).

• If Y βj ∈
[
−Cx/2,Cx/2

]
, then Y βj ∈J β by definition. By the assumption that

∇Uβ′ =∇Uβ on the domain J β , we know ∇Uβ′(Y βj ) =∇Uβ(Y βj ).

Then (Y βk+1,t
β
k+1) =ϕk(Y β1 ,Φ

β
k) =ϕk(Y β

′

1 ,Φβ
′

k ) = (Y β
′

k+1,t
β′

k+1). As for the base case,

note that for an arbitrary β, Uβ ∈Fu,ε, and thus Y β1
(2.1)
= x?(Uβ)

(3.1)
= 0.

Definition 3.1. For two arbitrary indices β and β′, we define a binary relation
β∼β′ if β′j =βj whenever Ij⊆J β. By the above Lemma 3.3, we know J β =J β′ and
A(Uβ ,ω,ω̃) =A(Uβ′ ,ω,ω̃). It is easy to verify that such a relation is an equivalence
relation.

For any index β, apparently, there are exactly 2N −1 other indices belonging to
the same equivalence class (since we could freely choose βj ∈{0,1} whenever Ij 6⊆J β),
and there are exactly 2N such equivalence classes. Let us enumerate these equivalence
classes by K1,K2,·· · ,K2N .

Example 3.2. When N = 3, for an index β= (0,0,0,0,0,0), we assume that J β =
I0∪I1∪I2 as an example. Then we could freely choose the first three indices, and

the equivalence class containing β is exactly
{

(β−3,β−2,β−1,0,0,0)
∣∣∣ β−3,β−2,β−1∈

{0,1}
}

.
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We now consider how much the actual solution XT (Uβ ,ω) can fluctuate within the
same class. Consider an arbitrary equivalence class K, and suppose β∈K. For any index
β′, recall that J β′ are the same for all β′∈K (i.e., J β′ only depends on the equivalence
class K that we consider), and β′j are the same if Ij⊆J β . This motivates us to define
the reduced index below.

Definition 3.2 (Reduced index). For an equivalence class K, let us denote J ≡
J β for an arbitrary β∈K; from the explanation above, the set J is well-defined. We
introduce the reduced index β̃ :=

(
βj
)
Ij 6⊆J

∈{0,1}N . For each class K, there is a one-

to-one correspondence between β∈K and a reduced index β̃∈{0,1}N . Thus, we slightly
abuse the notation and denote Uβ̃≡Uβ, whenever the equivalence class K is clear from

the context. For the reduced index, we define a partial order � as follows: if β̃′j≥ β̃j
for all 1≤ j≤N (namely, ∇Uβ′(x)≥∇Uβ(x) for all x∈R), then we denote β̃′� β̃ (or

β̃≺ β̃′).

Recall from the Step (1) above that I =
[
Cx
8N ,

3Cx
8N

]
with length µ(I ) = Cx

4N . By
Proposition 3.1 with I=

⋃
j: β̃′j>β̃j

(xj+I ), we immediately have the following result.

Lemma 3.4. If β̃′� β̃, then

|XT (Uβ′ ,ω)−XT (Uβ ,ω)|≥Cε Cx
4N

#
{
j : β̃′j>β̃j

}
=
C2
xCξ

32N2
#
{
j : β̃′j>β̃j

}
. (3.11)

Let us introduce the following set, for any integer 0≤k≤N ,

Mk :=
{
β̃∈{0,1}N :

N∑
j=1

β̃j =k
}
.

Lemma 3.5. Consider even integer N ≥2. For any integer 0≤k≤N/2, there ex-

ists a bijective map Υ :Mk→MN−k such that for any β̃∈Mk, we have β̃≺Υ(β̃). In

particular, when k=N/2, Υ(β̃) = β̃.

Proof. This lemma follows immediately from the symmetric chain decomposition
(SCD) for Boolean lattices; see, e.g., [12, 56] for an introduction, as well as proofs. A
symmetric chain is a sequence γ(n)≺γ(n+1)≺···≺γ(N−n) where γ(j)∈Mj for n≤ j≤
N−n. SCD states that the set {0,1}N can be decomposed into disjoint symmetric

chains. Therefore, for any β̃∈Mk, it must belong to a particular chain, say γ(n)≺
γ(n+1)≺···≺γ(N−n). By the definition of symmetric chains, we have γ(k) = β̃, and then
we can simply define Υ(β̃) :=γ(N−k)�γ(k)≡ β̃. Such a procedure is always valid, and
since all symmetric chains are disjoint, Υ is a bijective map.

With these preparations, we can now continue to finish the proof of (3.10), and
thus the lower bound in Theorem 1.1 for the case d= 1. Within any equivalence class
K, we have∑

β∈K

|XT (Uβ ,ω)−A(Uβ ,ω,ω̃)|2 =
∑

β̃∈{0,1}N

|XT (Uβ̃ ,ω)−A(Uβ̃ ,ω,ω̃)|2

≥
N
2 −1∑
k=0

∑
β̃∈Mk

|XT (Uβ̃ ,ω)−A(Uβ̃ ,ω,ω̃)|2 + |XT (UΥ(β̃),ω)−A(UΥ(β̃),ω,ω̃)|2
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&

N
2 −1∑
k=0

∑
β̃∈Mk

|XT (Uβ̃ ,ω)−XT (UΥ(β̃),ω)|2
(3.11)

&

N
2 −1∑
k=0

(
N

k

)
C4
xC

2
ξ2

N4
(N−2k)2

&
C4
xC

2
ξ2

N4

N
2∑

k=0

(
N

k

)(N
2
−k
)2

&
C4
xC

2
ξ2

N4

N∑
k=0

(
N

k

)(N
2
−k
)2

&
C4
xC

2
ξ2

N3
2N .

Finally, we have

EUβ∼µG
[
|XT (Uβ ,ω)−A(Uβ ,ω,ω̃)|2

]
=

1

22N

∑
Kj

∑
β∈Kj

|XT (Uβ ,ω)−A(Uβ ,ω,ω̃)|2

&
1

22N
×2N × C

4
xC

2
ξ2

N3
2N &

C4
xC

2
ξ2

N3
.

Thus we complete the proof of the lower bound in Theorem 1.1 for the case d= 1.

Case (II): General dimension d. For a general dimension d, we can choose U(x) =

U(x1,x2, ·· · ,xd) =
∑d
j=1U

(j)(xj), where U (j) :R→R, x= (x1,x2, ·· · ,xd), and xj ∈R. If

U (j)∈F(1,`,L), then U ∈F(d,`,L). Note that if U takes this particular form, then each
component of the underdamped Langevin dynamics (1.1) is evolving independently.
Then we immediately know

eF,Λ(A)2≥ sup
U : U(x)=

∑d
j=1U

(j)(xj)

E(ω,ω̃)∼P×P̃
[
|XT (U,ω)−A(U,ω,ω̃)|2

]
= sup
U : U(x)=

∑d
j=1U

(j)(xj)

d∑
j=1

E(ω,ω̃)∼P×P̃

[
|X(j)

T (U,ω)−A(j)(U,ω,ω̃)|2
]

& dC2
lowN

−3,

where X
(j)
T (U,ω)∈R is the jth component of XT (U,ω), and A(j)(U,ω,ω̃) is the jth

component of the algorithmic prediction A(U,ω,ω̃). Therefore, we obtain eF,Λ(A)&
Clow

√
dN−3/2. The last inequality above is intuitively reasonable, since A(j)(U,ω,ω̃)

could be regarded as an algorithm of the jth component, and having queries to the
information from independent components, like ∇xkU (k)(xk) (k 6= j), would not improve
the algorithmic prediction for the jth component.

More rigorously, one could directly generalize the proof of the Case (I). Below is a
sketch of the only few technical differences. First, similar to (3.9),

eF,Λ(A)2≥
d∑
j=1

E(ω,ω̃)∼P×P̃ EU∼µG1×µG2×···×µGd
[
|X(j)

T (U,ω)−A(j)(U,ω,ω̃)|2
]
,

where µGj is a uniform measure of U (j)∈Gj , similar to (3.8), for 1≤ j≤d. Without loss
of generality, we only need to consider the component j= 1, and we need to show that

E(ω,ω̃)∼P×P̃ EU∼µG1×µG2×···×µGd
[
|X(1)

T (U,ω)−A(1)(U,ω,ω̃)|2
]
&C2

lowN
−3.

We shall fix ω∈E , where E is now defined in the same way as (3.3) by considering the

components X
(1)
t (U,ω) and V

(1)
t (U,ω) only. We shall also fix ω̃∈M̃ and U (j) for j≥2.

Then it suffices to prove that (cf. (3.10))

EU(1)∼µG1

[
|X(1)

T (U (1),ω)−A(1)(U (1),ω,ω̃)|2
]
&

C4
xC

2
ξ2

N3
.
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The proof of this inequality is essentially the same as the Step (2) in the Case (I). The
only minor difference is that J β is now defined as the completed union of sub-intervals,
wherein the first components of Y β1 ,Y

β
2 , ·· · ,Y

β
N reside.

3.3. Proof of results in Section 3.1.

Proof. (Proof of Lemma 3.1.) Consider any fixed U ∈Fu,ε and any fixed
ω∈M. Let us introduce g(x) :=∇U(x)−ux, ∆X,t :=Xt(U,ω)−Xt(Uu,ω), and ∆V,t :=
Vt(U,ω)−Vt(Uu,ω). By assumption, ‖g‖∞≤ ε and ∆X,0 = ∆V,0 = 0. By (1.1), it is
straightforward to derive that

d

[
∆X,t

∆V,t

]
=H

[
∆X,t

∆V,t

]
dt+

[
0

− 1
Lg(Xt(U,ω))

]
dt, H=

[
0 1
− u
L −2

]
.

Then we could rewrite the above equation in the integral form,[
∆X,t

∆V,t

]
=

∫ t

0

eH(t−s)
[

0

− g(Xs(U,ω))
L

]
ds.

Hence, by introducing gs≡g(Xs(U,ω)), and recalling λ± from (2.7), we have

∆X,t=− 1

2
√
L(L−u)

∫ t

0

gs
(
e−(t−s)λ−−e−(t−s)λ+

)
ds,

∆V,t=− 1

2
√
L(L−u)

∫ t

0

gs
(
λ+e

−(t−s)λ+−λ−e−(t−s)λ−
)
ds.

(3.12)

Since |gs|≤ ε, it is straightforward to obtain that

|∆X,t|≤
ε

2
√
L(L−u)

∫ t

0

|e−(t−s)λ−−e−(t−s)λ+ |ds

=
ε

2
√
L(L−u)

(1−e−λ−t

λ−
− 1−e−λ+t

λ+

)
≤ ε

2λ−
√
L(L−u)

=
ε

2L(1−
√

1− u
L )
√

1− u
L

.

Similarly, for |∆V,t|, we have

|∆V,t|≤
ε

2
√
L(L−u)

∫ t

0

|λ+e
−(t−s)λ+−λ−e−(t−s)λ− |ds

≤ ε

2
√
L(L−u)

∫ t

0

λ+e
−(t−s)λ+ +λ−e

−(t−s)λ− ds

=
ε

2
√
L(L−u)

(1−e−λ+t+1−e−λ−t)≤ ε

L
√

1− u
L

.

Proof. (Proof of Lemma 3.2.) For any Cx,Cv>0, let us pick any 0<ε< ε̄.
Notice that

sup
0≤t≤T

Xt(Uu,ω)≥2Cx≥Cx+
ε

2L(1−
√

1− u
L )
√

1− u
L
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implies that sup0≤t≤TXt(U,ω)≥Cx by (3.2), and likewise for the other two cases. We
have

P
(
ω : sup

0≤t≤T
Xt(U,ω)≥Cx, inf

0≤t≤T
Xt(U,ω)≤−Cx,

sup
0≤t≤T

|Vt(U,ω)|≤Cv, ∀U ∈Fu,ε
)

≥P
(
ω : sup

0≤t≤T
Xt(Uu,ω)≥2Cx, inf

0≤t≤T
Xt(Uu,ω)≤−2Cx,

sup
0≤t≤T

|Vt(Uu,ω)|≤Cv/2
)
.

Finally, recall the expression of P(Cx,Cv,u,T ) from (2.9).

Proof. (Proof of Proposition 3.1.) We shall fix ω∈E throughout this proof. Let
∆X,t :=Xt(U1,ω)−Xt(U2,ω) and ∆V,t :=Vt(U1,ω)−Vt(U2,ω). Then by (1.1), we have

d

[
∆X,t

∆V,t

]
=Ht

[
∆X,t

∆V,t

]
dt+

[
0

− 1
Lg(Xt(U1,ω))

]
dt, Ht=

[
0 1
−utL −2

]
, (3.13)

with initial conditions ∆X,0 = ∆V,0 = 0, where u· : t→ut is a continuous function of time
such that

∇U2(Xt(U1,ω))−∇U2(Xt(U2,ω)) =ut∆X,t.

To see why ut is well-defined, notice that U2∈F is a C2(R) function (recall F in (1.2)).
Then by the first-order Taylor’s expansion,

∇U2(Xt(U1,ω))−∇U2(Xt(U2,ω)) =∇2U2(ϑ)(Xt(U1,ω)−Xt(U2,ω)),

for some value ϑ between Xt(U1,ω) and Xt(U2,ω); we simply let ut=∇2U2(ϑ). More-
over, we could easily observe that `≤ut≤uR≤L. For simplicity, we shall again denote

gt≡g(Xt(U1,ω)),

here and below.
Intuitively, the ODE dynamics (3.13) consists of two parts: the contraction part

and the source part. Suppose ut≡u is independent of time, then it is easy to observe
that eHt is a contraction operator for large enough time t, and the ODE dynamics (3.13)
with g≡0 will converge to the origin exponentially fast, for any initial condition; the

source part
[

0
− gtL

]
will drag the velocity term (i.e., ∆V,t) towards the negative direction.

Under the assumption that ω∈E , the term gt takes non-zero value at least for a period
of µ(I)/Cv.

When ut=u for all t, (3.13) has an explicit solution shown below, similar to (2.8)
and (3.12) above.

Lemma 3.6. Suppose ut=u for all t∈ [0,T ] in (3.13), then ∆X,T =S(u,T ), where

S(u,T ) :=


∫ T

0

e(t−T )(1+
√

1−u/L)−e(t−T )(1−
√

1−u/L)

2
√
L(L−u)

gtdt, if `≤u<L;∫ T

0

(t−T )et−T

L
gtdt, if u=L.
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Observe that ∆X,T ≤0 for both cases, which inspires us to propose the following
general result.

Lemma 3.7. The region characterized by ∆V,t≤−∆X,t and ∆X,t≤0 forms a trapping
region for the dynamics (3.13). Therefore, the quantity ∆X,t≡Xt(U1,ω)−Xt(U2,ω)≤0
for any t∈ [0,T ].

Proof. To prove that the region formed by ∆V,t≤−∆X,t and ∆X,t≤0 is a trap-
ping region for the ODE dynamics (3.13), we consider the following three cases at the
boundary:

• (∆X,t= 0 and ∆V,t= 0). We know d
dt∆X,t= 0 and d

dt∆V,t=− 1
Lgt≤0. Thus,

the solution of ∆X,t and ∆V,t will not escape the trapping region.

• (∆X,t= 0 and ∆V,t<0, i.e., the negative half-line of the velocity-axis). We know

(
d

dt
∆X,t,

d

dt
∆V,t) ·(−1,0) =

(
∆V,t,−2∆V,t−

gt
L

)
·(−1,0) =−∆V,t>0.

Therefore, the solution of ∆X,t and ∆V,t will not escape the trapping region
from the negative half-line of the velocity-axis.

• (∆V,t=−∆X,t for ∆X,t<0).

(
d

dt
∆X,t,

d

dt
∆V,t) ·(−1,−1) =

(
∆V,t,−

ut
L

∆X,t−2∆V,t−
gt
L

)
·(−1,−1)

= (ut/L−1)∆X,t+
gt
L
≥0.

By summarizing the above three cases, we conclude that the region formed by
∆V,t≤−∆X,t and ∆X,t≤0 is indeed a trapping region. Since ∆X,0 = ∆V,0 = 0,
we know that ∆X,t≤0 for any time t≥0.

By the above lemma (i.e., ∆X,t≤0 for any time t∈ [0,T ]), we know that

d

dt
∆X,t= ∆V,t,

d

dt
∆V,t=−ut

L
∆X,t−2∆V,t−

gt
L
≤−uR

L
∆X,t−2∆V,t−

gt
L
.

(3.14)

Lemma 3.8. We claim that in general,

∆X,T ≤S(uR,T ). (3.15)

Proof. Let (∆
(1)
X,t,∆

(1)
V,t) be the solution of (3.13), and let (∆

(2)
X,t,∆

(2)
V,t) be the

solution of (3.13) for ut≡uR. Then let us introduce ΓX,t := ∆
(1)
X,t−∆

(2)
X,t and ΓV,t :=

∆
(1)
V,t−∆

(2)
V,t. By (3.14), we immediately have

d

dt
ΓX,t= ΓV,t,

d

dt
ΓV,t≤−

uR
L

ΓX,t−2ΓV,t.

Since ΓX,0 = ΓV,0 = 0, by the same argument as in Lemma 3.7, we know that ΓX,t≤0

for any t≥0. Therefore, ∆
(1)
X,T ≤∆

(2)
X,T ≡S(uR,T ).
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Let us consider the case uR<L. Then we have

|∆X,T |=−∆X,T

(3.15)

≥
∫ T

0

e(t−T )(1−
√

1−uR/L)−e(t−T )(1+
√

1−uR/L)

2
√
L(L−uR)

gtdt

(3.4)

≥ ε

4L
√

1− uR
L

∫ T

0

e(t−T )(1−
√

1−uR/L)×(
1−e2(t−T )

√
1−uR/L

)
1I(Xt(U1,ω)) dt.

Without loss of generality, we assume τ1(ω)<τ2(ω), where τ1 is the first hitting time of
Xt(U1,ω) to −Cx and τ2 is the first hitting time to Cx. Since we assume ω∈E , both τ1
and τ2 are well-defined and 0≤ τ1,τ2≤T . Then

|∆X,T |

≥ ε

4L
√

1− uR
L

∫ τ2

τ1

e(t−T )(1−
√

1−uRL )
(

1−e2(t−T )
√

1−uRL
)
1I(Xt(U1,ω)) dt

=
ε

4L
√

1− uR
L

∫ τ2− Cx
2Cv

τ1+ Cx
2Cv

e(t−T )(1−
√

1−uRL )
(

1−e2(t−T )
√

1−uRL
)
1I(Xt(U1,ω)) dt

≥
ε
(
1−e2(τ2− Cx

2Cv
−T )
√

1−uRL
)

4L
√

1− uR
L

∫ τ2− Cx
2Cv

τ1+ Cx
2Cv

e(t−T )(1−
√

1−uRL )
1I(Xt(U1,ω)) dt

≥
ε
(
1−e−

Cx
Cv

√
1−uRL

)
4L
√

1− uR
L

∫ τ2− Cx
2Cv

τ1+ Cx
2Cv

e(t−T )(1−
√

1−uRL )
1I(Xt(U1,ω)) dt,

where we use the following observation in the second equality: since the velocity
Vt(U1,ω) is bounded by Cv, starting from the time τ1 (note that Xτ1(U1,ω) =−Cx), it
takes at least Cx/(2Cv) amount of time to reach −Cx/2. Thus, we have 1I(Xt(U1,ω)) =
0 for t∈

[
τ1,τ1 + Cx

2Cv

]
by the assumption (ii) that I ⊆ [−Cx/2,Cx/2] (similarly for the

time period
[
τ2− Cx

2Cv
,τ2
]
).

By the fact that µ
(
t :Xt(U1,ω)∈I

)
≥ µ(I)

Cv
(namely, 1I(Xt(U1,ω)) = 1 for at least

µ(I)/Cv period of time), we have

|∆X,T |

≥
ε
(
1−e−

Cx
Cv

√
1−uRL

)
4L
√

1− uR
L

∫
[τ1+ Cx

2Cv
,τ2− Cx

2Cv
]∩
{
t: Xt(U1,ω)∈I

}e(t−T )(1−
√

1−uRL ) dt

≥
ε
(
1−e−

Cx
Cv

√
1−uRL

)
4L
√

1− uR
L

∫ τ1+ Cx
2Cv

+
µ(I)
Cv

τ1+ Cx
2Cv

e(t−T )(1−
√

1−uRL ) dt

=
ε
(
1−e−

Cx
Cv

√
1−uRL

)
4L
√

1− uR
L

e(τ1+ Cx
2Cv
−T )(1−

√
1−uRL ) e

µ(I)
Cv

(1−
√

1−uRL )−1

1−
√

1− uR
L

≥
ε
(
1−e−

Cx
Cv

√
1−uRL

)
4L
√

1− uR
L

e(τ1+ Cx
2Cv
−T )(1−

√
1−uRL )µ(I)

Cv
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≥
εµ(I)

(
1−e−

Cx
Cv

√
1−uRL

)
4LCv

√
1− uR

L

e( 3Cx
2Cv
−T )(1−

√
1−uRL ),

where to get the final inequality, we use the fact that τ1≥ Cx
Cv

by the same velocity-type
argument. Then we finish the proof for the case uR<L. As for uR=L, one could
either follow a similar approach like above, or simply pass the limit uR→L to obtain
the expression of C.

3.4. Proof of the upper bound estimate for Theorem 1.1. The upper
bound estimate is based on Ref. [50]. In the following, we shall provide a sketch only.
We consider a non-adaptive mesh grid, i.e., sk =kh with h=T/Ns as in [50].

Suppose X̂k, X̂k+1/2 and V̂k are given by the randomized midpoint method as in

(2.6), and suppose X̃k+1 and Ṽk+1 are solutions of (1.1) at time sk+1, conditioned on
Xsk = X̂k and Vsk = V̂k at time sk. By [50, Appendix E], we have

E
[
‖X̂Ns−XT ‖2 +‖X̂Ns + V̂Ns−XT −VT ‖2

]
≤ e−Ns

h
2κ E

[
‖X̂0−X0‖2 +‖X̂0 + V̂0−X0−V0‖2

]
+

2κ
h

Ns−1∑
k=0

(
3E
∥∥Eηk [X̂k+1−X̃k+1]

∥∥2
+2E

∥∥Eηk [V̂k+1− Ṽk+1]
∥∥2
)

+

Ns−1∑
k=0

(
3E‖X̂k+1−X̃k+1‖2 +2E‖V̂k+1− Ṽk+1‖2

)
=

2κ
h

Ns−1∑
k=0

(
3E
∥∥Eηk [X̂k+1−X̃k+1]

∥∥2
+2E

∥∥Eηk [V̂k+1− Ṽk+1]
∥∥2
)

+

Ns−1∑
k=0

(
3E‖X̂k+1−X̃k+1‖2 +2E‖V̂k+1− Ṽk+1‖2

)
,

where in the last step, we use the fact that X̂0 =X0 and V̂0 =V0. In the above, Eηk
means expectation with respect to ηk for 0≤k≤Ns−1.

By [50, Lemma 2], we have

E
[
‖X̂Ns−XT ‖2 +‖X̂Ns + V̂Ns−XT −VT ‖2

]
.

2κ
h

(
h8

Ns−1∑
k=0

E‖V̂k‖2 +
h10

L2

Ns−1∑
k=0

E‖∇U(X̂k)‖2 +
Nsdh

9

L

)
+h4

Ns−1∑
k=0

E‖V̂k‖2 +
h4

L2

Ns−1∑
k=0

E‖∇U(X̂k)‖2 +
Nsdh

5

L

.(h4 +h7κ)

Ns−1∑
k=0

E‖V̂k‖2 +(
h9

`L
+
h4

L2
)

Ns−1∑
k=0

E‖∇U(X̂k)‖2 +
(Nsdh8

`
+
Nsdh

5

L

)
.

Next, we use [50, Lemma 12], and obtain that

E
[
‖X̂Ns−XT ‖2 +‖X̂Ns + V̂Ns−XT −VT ‖2

]
. (h4 +h7κ)

(Nsd
L

+
1

L

∣∣∣E[〈∇U(X̂Ns),V̂Ns〉
]∣∣∣)



1848 RANDOMIZED ALGORITHMS FOR UNDERDAMPED LANGEVIN

+(
h9

`L
+
h4

L2
)
(
NsLd+

L

h

∣∣∣E[〈∇U(X̂Ns),V̂Ns〉
]∣∣∣)+

(Nsdh8

`
+
Nsdh

5

L

)
.
h3

L

∣∣∣E[〈∇U(X̂Ns),V̂Ns〉
]∣∣∣+ h4Nsd

L
,

where in the last step, we use the fact that we are working on the L2-strong er-
ror estimate and h is the small parameter herein. Then we need to estimate∣∣∣E[〈∇U(X̂Ns),V̂Ns〉

]∣∣∣. Similar to [50, Appendix E],∣∣∣E[〈∇U(X̂Ns),V̂Ns〉
]∣∣∣

.
1

L
E
[
‖∇U(X̂Ns)‖2

]
+LE

[
‖V̂Ns‖2

]
. LE

[
‖V̂Ns−VT ‖2 +‖X̂Ns−XT ‖2

]
+LE[‖VT ‖2]+

1

L
E
[
‖∇U(XT )‖2

]
. LE

[
‖X̂Ns−XT ‖2 +‖X̂Ns + V̂Ns−XT −VT ‖2

]
+LE

[
‖VT ‖2

]
+

1

L
E
[
‖∇U(XT )‖2

]
.

By combining the last two equations,

E
[
‖X̂Ns−XT ‖2

]
≤ E

[
‖X̂Ns−XT ‖2 +‖X̂Ns + V̂Ns−XT −VT ‖2

]
.
h3

L

(
LE
[
‖VT ‖2

]
+

1

L
E
[
‖∇U(XT )‖2

])
+
h4Nsd

L

. h3
(
E
[
‖VT ‖2

]
+E
[
‖XT −x?‖2

])
+
h4Nsd

L
.

Suppose (Yt,Zt) is another solution of the underdamped Langevin dynamics (1.1)
with the initial distribution as ρ∞. Then similar to [50, Appendix E],

E
[
‖VT ‖2

]
+E
[
‖XT −x?‖2

]
. E

[
‖VT −ZT ‖2 +‖XT −YT ‖2

]
+E
[
‖ZT ‖2

]
+E
[
‖YT −x?‖2

]
. E

[
‖VT −ZT +XT −YT ‖2 +‖XT −YT ‖2

]
+
d

L
+
d

`

. e−
T
κ E
[
‖V0−Z0 +X0−Y0‖2 +‖X0−Y0‖2

]
+
d

`
. (e−

T
κ +1)

d

`
.
d

`
.

Finally, we have

E
[
‖X̂Ns−XT ‖2

]
.
dh3

`
+
h4Nsd

L
.

d

Ns
3

(T 3

`
+
T 4

L

)
.

Thus, if the algorithm A is the randomized midpoint method (2.6),

eF,Λ(A).Cup

√
dNs

−3/2 .Cup

√
dN−3/2,

where Cup =
√

T 3

` + T 4

L , and recall that the number of queries is N = 2Ns.
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Appendix A. RMM in the framework of randomized algorithms.
Rewriting the RMM (2.6) in the framework of randomized algorithms introduced

in Section 2.1 is not technically challenging but many details require much attention,
especially notations. Therefore, we would like to present in detail how the RMM fits
into the framework of general randomized algorithms for readers’ convenience, and also
for the purpose of a rigorous proof and completeness.

Let us consider the RMM for Ns steps (time step h=T/Ns), which means

N = 2Ns evaluations of ∇U and W̃
(0,2)
t . The probability space M̃= [0,1]Ns and ~η=

(η0,η2, ·· · ,ηNs−1)∈M̃ determines random time steps in (2.6); the σ-algebra Σ̃ can be

simply chosen as the Borel σ-algebra of M̃; the probability measure P̃ corresponds to a
uniform distribution on [0,1]Ns . Next, we need to rewrite the RMM with fixed ~η∈M̃ as
a deterministic algorithm; see (2.2) and (2.3). With fixed ~η, the time step prediction is
already complete. Therefore, we just need to explain those terms Φj and Yj in (2.2), as
well as the forms of ϕj and φ.

Step 1: Corresponding Yj, Φj in (2.2).
Let us denote sk+1/2 =sk+ηkh≡ (k+ηk)h for integer 0≤k≤Ns−1, and introduce

artificial terms V̂k+1/2 := V̂k for convenience of notations below. Let us introduce tj =

sj/2 and Yj = X̂(j−1)/2 for integer 1≤ j≤2Ns. Recall the notation Φj from (2.2b) that

Φj :=
(

ΥU,ω(Y1,t1),ΥU,ω(Y2,t2),·· · ,ΥU,ω(Yj ,tj)
)
.

In the Table A.1 below, we summarize the notations discussed above for clarity.

General framework in Section 2.1 RMM (2.6)

N = 2Ns evaluations Ns steps
tj sj/2
Yj X̂(j−1)/2

Table A.1. This table summarizes the relationship between two sets of notations for the general
framework and the RMM.

Step 2: Choice of ϕj and φ. In this part, we will show that Yj+1≡ X̂j/2 is a function of

Y1≡x?(U) and Φj (i.e., to determine ϕj), and we will also show that X̂Ns =φ(Y1,Φ2Ns)
for some deterministic function φ.

Proposition A.1. We can find deterministic mappings ψ
(1)
j and ψ

(2)
j , for integer

1≤ j≤2Ns, such that

X̂j/2 =ψ
(1)
j (Y1,Φj);

V̂j/2 =ψ
(2)
j (Y1,Φj).

As a consequence, the choices of ϕj and φ are straightforward:

ϕj(Y1,Φj) := (ψ
(1)
j (Y1,Φj),tj+1), for 1≤ j≤2Ns−1≡N−1;
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φ(Y1,Φ2Ns) :=ψ
(1)
2Ns

(Y1,Φ2Ns)≡ X̂Ns .

Proof. We prove it by mathematical induction. Suppose the result is true for any
integer 1≤ j≤2k, where k is some integer (1≤k≤Ns−1), then we show the forms of

ψ
(1)
j and ψ

(2)
j for j= 2k+1 and 2k+2. That is, both X̂k+1/2 and V̂k+1/2 are functions

of Y1≡x?(U) and Φ2k+1; both X̂k+1 and V̂k+1 are functions of Y1 and Φ2k+2.

• (Case j= 2k+1). By definition, V̂k+1/2≡ V̂k =ψ
(2)
2k (Y1,Φ2k). As Φ2k+1 con-

tains more information than Φ2k, obviously, V̂k+1/2 is a deterministic function

of Y1 and Φ2k+1. Next, we consider X̂k+1/2. By (2.6), (1.3) and by recalling
tj≡sj/2,

X̂k+1/2 = X̂k+
1−e−2ηkh

2
V̂k+

1√
L

(
Wt2k+1

−Wt2k−e−2t2k+1
(
W̃

(2)
t2k+1

−W̃ (2)
t2k

))
− 1

2L

(∫ ηkh

0

1−e2(s−ηkh) ds
)
∇U(X̂k).

Note that X̂k =ψ
(1)
2k (Y1,Φ2k), V̂k =ψ

(2)
2k (Y1,Φ2k) by assumption, and also note

that

Φ2k+1 =
(

Φ2k,ΥU,ω(Y2k+1,t2k+1)
)
,

ΥU,ω(Y2k+1,t2k+1) =
(
∇U(Y2k+1),W̃

(0,2)
t2k+1

)
≡
(
∇U(X̂k),W̃

(0,2)
t2k+1

)
,

we immediately know that

X̂k+1/2 =ψ
(1)
2k (Y1,Φ2k)+

1−e−2ηkh

2
ψ

(2)
2k (Y1,Φ2k)+f2k+1(Φ2k+1),

for some linear function f2k+1 on Φ2k+1; the expression of f2k+1 should be clear

from above. Then, we can conclude that X̂k+1/2 =ψ
(1)
2k+1(Y1,Φ2k+1) for some

mapping ψ
(1)
2k+1, which is defined iteratively based on ψ

(1)
2k , ψ

(2)
2k , and f2k+1.

• (Case j= 2k+2). Similarly, both X̂k+1 and V̂k+1 are functions of X̂k, V̂k,

∇U(X̂k+1/2), W̃
(0,2)
sk and W̃

(0,2)
sk+1 , and the latter three terms are included in the

information Φ2k+2. By the same argument, we know that both X̂k+1 and V̂k+1

are functions of the initial condition Y1≡x?(U) and Φ2k+2.

• The base cases for j= 1,2 can be similarly verified.

Appendix B. Additional proofs.

Proof. (Proof of Lemma 2.3.) In the limit Cv→∞,

lim
Cv→∞

P(Cx,Cv,u,T )

= lim
Cv→∞

P
(
ω : sup

0≤t≤T
Xt(Uu,ω)≥2Cx, inf

0≤t≤T
Xt(Uu,ω)≤−2Cx,

sup
0≤t≤T

|Vt(Uu,ω)|≤Cv/2
)

= P
(
ω : sup

0≤t≤T
Xt(Uu,ω)≥2Cx, inf

0≤t≤T
Xt(Uu,ω)≤−2Cx

)
.
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Note that P(Cx,Cv,u,T ) is a monotonically increasing function with respect to Cv.
Therefore, for sufficiently large Cv, we must have

P(Cx,Cv,u,T )≥ 1

2
P
(
ω : sup

0≤t≤T
Xt(Uu,ω)≥2Cx, inf

0≤t≤T
Xt(Uu,ω)≤−2Cx

)
.

For finite Cx, due to the fluctuation of Brownian motion, the probability that the
trajectory {Xt(Uu,ω)}0≤t≤T crosses both levels 2Cx and −2Cx is expected to be strictly
positive. More rigorously,

P
(
ω : sup

0≤t≤T
Xt(Uu,ω)≥2Cx, inf

0≤t≤T
Xt(Uu,ω)≤−2Cx

)
≥ P

(
ω : XT (Uu,ω)≥2Cx, XT/2(Uu,ω)≤−2Cx

)
.

By (2.8), we know
(
XT (Uu,·),XT/2(Uu, ·)

)
are two correlated Gaussian random

variables with mean zero. As long as we can show that |corr(XT (Uu, ·),XT/2(Uu, ·))|<1,
then the above probability must be strictly positive. Let us denote

ft(s) :=
1√
L−u

(
e−(t−s)λ−−e−(t−s)λ+

)
.

Then

Eω∼P[XT/2(Uu,ω)2] =

∫ T/2

0

(
fT/2(s)

)2
ds;

Eω∼P[XT (Uu,ω)2] =

∫ T

0

(
fT (s)

)2
ds;

Eω∼P[XT/2(Uu,ω)XT (Uu,ω)] =

∫ T/2

0

fT/2(s)fT (s) ds.

By Cauchy-Schwarz inequality,∣∣∣Eω∼P[XT/2(Uu,ω)XT (Uu,ω)
]∣∣∣= ∣∣∣∫ T/2

0

fT/2(s)fT (s) ds
∣∣∣

≤

√∫ T/2

0

(
fT/2(s)

)2
ds

∫ T/2

0

(
fT (s)

)2
ds

<

√∫ T/2

0

(
fT/2(s)

)2
ds

∫ T

0

(
fT (s)

)2
ds

=
√

Eω∼P
[
XT/2(Uu,ω)2

]
Eω∼P

[
XT (Uu,ω)2

]
.

Therefore, |corr(XT/2,XT )|<1, and this completes the proof.
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H. Woźniakowski (eds.), Essays on the Complexity of Continuous Problems, European Math-
ematical Society Publishing House, Zuerich, Switzerland, 2009. 1

[54] C. Villani, Hypocoercivity, Memoirs of the American Mathematical Society, 202(950), 2009. 1.1
[55] W. Wang and R.D. Skeel, Analysis of a few numerical integration methods for the Langevin

equation, Mol. Phys., 101(14):2149–2156, 2003. 1
[56] Y. Zhu, Boolean lattice and symmetric chain decompositions, Combinatorics Seminar 2014,

Shanghai, 2014. 3.2
[57] R. Zwanzig, Nonlinear generalized Langevin equations, J. Stat. Phys., 9:215–220, 1973. 1

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.753.6813&rep=rep1&type=pdf
https://arxiv.org/abs/1902.00996v2
https://doi.org/10.1016/S0304-4149(02)00150-3
https://doi.org/10.1063/1.471875
http://www.jstor.org/stable/2699899 
https://doi.org/10.1214/105051604000000954
https://link.springer.com/chapter/10.1007/978-3-540-74496-2_4
https://dx.doi.org/10.1143/ptp.34.399
https://doi.org/10.1016/j.cam.2017.04.023
https://doi.org/10.1016/j.cam.2020.113112
https://link.springer.com/book/10.1007/BFb0079792
https://www.onacademic.com/detail/journal_1000017299085099_f6cd.html
https://link.springer.com/book/10.1007/978-1-4939-1323-7
https://doi.org/10.1017/S0962492900002920
https://doi.org/10.1016/j.cam.2010.05.033
https://doi.org/10.1016/j.cam.2015.01.003
https://doi.org/10.1016/j.amc.2015.08.055
https://doi.org/10.1016/j.apnum.2013.12.003
https://doi.org/10.1051/m2an/2017044
https://arxiv.org/abs/1909.05503v1
https://doi.org/10.1016/0893-9659(90)90040-I
https://link.springer.com/article/10.1007%2Fs002110050113
https://link.springer.com/article/10.1007%2Fs002110050113
https://www.ems-ph.org/books/show_abstract.php?proj_nr=102&vol=1&rank=3
https://doi.org/10.1090/S0065-9266-09-00567-5
https://doi.org/10.1080/0026897031000135825
http://math.sjtu.edu.cn/conference/Bannai/2014/data/20141230B/slides.pdf
https://link.springer.com/article/10.1007/BF01008729

