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CONSISTENCY ANALYSIS OF
BILEVEL DATA-DRIVEN LEARNING IN INVERSE PROBLEMS∗

NEIL K. CHADA† , CLAUDIA SCHILLINGS‡ , XIN T. TONG§ , AND SIMON WEISSMANN¶

Abstract. One fundamental problem when solving inverse problems is how to find regularization
parameters. This article considers solving this problem using data-driven bilevel optimization, i.e. we
consider the adaptive learning of the regularization parameter from data by means of optimization.
This approach can be interpreted as solving an empirical risk minimization problem, and we analyze its
performance in the large data sample size limit for general nonlinear problems. We demonstrate how
to implement our framework on linear inverse problems, where we can further show that the inverse
accuracy does not depend on the ambient space dimension. To reduce the associated computational
cost, online numerical schemes are derived using the stochastic gradient descent method. We prove
convergence of these numerical schemes under suitable assumptions on the forward problem. Numerical
experiments are presented illustrating the theoretical results and demonstrating the applicability and
efficiency of the proposed approaches for various linear and nonlinear inverse problems, including Darcy
flow, the eikonal equation, and an image denoising example.

Keywords. Bilevel optimization; statistical consistency; inverse problems; stochastic gradient
descent; Tikhonov regularization.
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1. Introduction

Data-driven modeling seeks to improve model accuracy and predictability by ex-
ploiting information from existing data. It has lead to a wide range of successes in deep
learning, reinforcement learning, natural language processing and other areas [30,32,52].
This article is interested in its applications when solving inverse problems. Mathemati-
cally speaking, when solving inverse problems, we try to recover a u∈U from a perturbed
data y∈Y where their relationship is given as

y=G(u)+η. (1.1)

In (1.1), η denotes an additive observational noise and G :U→Y is the mapping from
the parameter space U to the observation space Y. Here, U and Y denote possibly
infinite dimensional Banach spaces. Solutions to inverse problems have been well-studied
through the use of variational and optimization methods which are well-documented in
the following texts [5, 28,54].

Regularization is an important aspect of the numerical treatment of inverse prob-
lems. It helps to overcome the ill-posedness problem in theory and the overfitting
phenomenon in practice. It can also be interpreted as a form of a-priori knowledge in
the Bayesian approach [36, 53]. To implement regularization on (1.1), we estimate the
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unknown parameter u by minimizing a regularized loss function, i.e. we consider

uλ :=argmin
u∈U

LY(G(u),y)+Sλ(u), λ∈R+, (1.2)

where LY :Y×Y→R+ is some metric in Y and Sλ :U→R+ is a regularization function
with regularization parameter λ>0. A common choice is Tikhonov regularization [55]
which can be included in (1.2) through the penalty term Sλ(u)=

λ
2 ∥u∥

2
U . The choice of

norm ∥ · ∥U often models prior information on the unknown parameter. Other common
forms include L1 and total variation regularization, which are particularly useful for
imaging purposes [5, 28,41].

In (1.2), the parameter λ balances the influence of the data and the a-priori knowl-
edge via the regularization. While expert knowledge can often provide a rough range of
λ, the exact value, i.e. the λ leading to the best estimation of the unknown parameter
u, is often difficult to determine. However, the parameter λ strongly influences the
accuracy of the estimate and has to be properly chosen. Bilevel optimization is one way
to resolve this issue [20, 24, 50, 54]. It seeks to learn the regularization parameter in a
variational manner, and it can be viewed as a data–driven regularization [2]. To formu-
late this approach, we view the unknown parameter U ∈U and the data Y ∈Y in the
model (1.1) as a jointly distributed random variable with distribution µ(U,Y ). To find
the best possible regularization parameter of the model (1.1), the bilevel minimization
seeks to solve

λ∗=argmin
λ>0

F (λ), F (λ)=Eµ(U,Y )
[LU (uλ(Y ),U)], (upper level)

uλ(Y ) :=argmin
u∈U

LY(G(u),Y )+Sλ(u), (lower level)
(1.3)

where LU :U×U→R+ is some metric in the parameter space U . The upper level
problem seeks to minimize the distance between the unknown parameter U and the reg-
ularized solution corresponding to its data Y , which is computed through uλ(Y ) in the
lower level problem. To solve this (stochastic) bilevel optimization problem, we assume
that we have access to training data, given through samples of (Ui,Yi)∼µ(U,Y ), and the
function F in (1.3) can be approximated by its empirical Monte–Carlo approximation.
The area of bilevel optimization has been applied to various methodologies for inverse
problems. To motivate this, we provide various examples of the application of bilevel
optimization, in the setting described by (1.3), to inverse problems and an overview of
recent literature.

1.1. Motivating Examples.

1.1.1. Example 1 - PDE-constrained inverse problems. We first consider
an inverse problem (1.1) with the lower level problem formulated by a partial differential
equation (PDE):

argmin
u∈U

LY(O(p),y)+Sλ(u),

s.t. M(u,p)=0,
(1.4)

where u∈U denotes the unknown parameter and p∈V is the state. The functionM :U×
V→W describes an underlying ODE or PDE model. The operator O :V→RK denotes
the observation operator which maps the state p to finite dimensional observations.
The Darcy’s flow problem is one such example. In particular, u describes a subsurface
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structure, p is the corresponding pressure field, M describes the Darcy’s law, and O
evaluates p at different locations.

In order to formulate the corresponding bilevel problem (1.3), we assume that the
forward model M(u,p)=0 is well-posed, which means that for each u∈U there exists
a unique p∈V such that M(u,p)=0∈W. Hence, using the solution operator G :U→V
s.t. M(u,G(u))=0, we can formulate the reduced problem of (1.4) by

argmin
u∈U

LY(G(u),y)+Sλ(u), (1.5)

where we have defined G=O◦G. Hence, given a training data set (u(j),y(j)) we can
also formulate the empirical bilevel minimization problem

λ̂n :=argmin
λ>0

1

n

n∑
j=1

∥uλ(y
(j))−u(j)∥22,

uλ(y
(j)) :=argmin

u∈U
LY(G(u),y(j))+Sλ(u).

(1.6)

In terms of applications, many inverse problems arising in PDEs [3] are concerned
with the recovery of an unknown which is heterogeneous. As a result it is very natural
to model the unknown as Gaussian random fields. Such models include Darcy flow,
the Navier–Stokes model [34] and electrical impedance tomography [6, 36]. Physical
constraints such as boundary, or initial conditions are required for modeling purposes.

Holler et al. [33] consider bilevel optimization for inverse problems in the setting
of (1.4). They provide theory which suggests existence of solutions and formulate their
problem as an optimal control problem. This is connected with the work of Kaltenbacher
[37,38] who provided a modified approach known as “all-at-once” inversion. These works
have also been used in the context of deconvolution [15,16,51].

1.1.2. Example 2 - Image & signal processing. Bilevel optimization is a
popular solution choice for image processing problems [7,39]. In these problems, one is
interested in optimizing over an underlying image and particular areas/segments of that
image. A common example of this includes image denoising which is to remove noise
from an image. Another example is image deblurring where the image is commonly
given as a convolution with a linear kernel A, i.e.

y=A∗u+η,

where ∗ denotes the convolution of A and u, commonly expressed as

A∗u(x)=
∫
Rd

A(x−τ)u(τ)dτ.

This inverse problem is also known as deconvolution. The setting of (1.3) is common
for deconvolution, where their loss functions are given as

λ̂n :=argmin
λ>0

1

n

n∑
j=1

∥uλ(y
(j))−u(j)∥22,

uλ(y
(j)) :=argmin

u∈U
LY(A∗u,y(j))+λ∥Lu∥22.

(1.7)

In (1.7), L is a regularization matrix, and the upper level problem is taken as the
minimization of the empirical loss function given by a training data set (u(j),y(j)).
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Commonly, λ is taken to be either a weighted function between LY and the penalty term,
or it can be viewed as the noise within a system. Common choices of L traditionally are
L= I or a first- or second-order operator, which can depend on the unknown or image
of interest. Further detail on the choice of L and A are discussed in [7].

The work of De los Reyes, Schönlieb [10,21–23] and coauthors considered the appli-
cation of bilevel optimization to denoising and deblurring, where non-smooth regular-
ization is used such as total variation and Bregman regularization. The latter forms of
regularization are useful in imaging as they preserve non-smooth features, such as edges
and straight lines. Recent developments of these techniques using Bayesian methodolo-
gies for imaging can be found in [56,57].

1.2. Our contributions. In this article, we investigate two different approaches
to solve bilevel optimization and their performance on inverse problems. Firstly we
formulate the offline approach of bilevel optimization as an empirical risk minimization
(ERM) problem. Analyzing the performance of the ERM solution is difficult, since
the loss function is random and non-convex, so numerical solutions often can only find
local minima. We build a theoretical framework under these general settings, and are
interested in consistency, i.e. when sample size goes to infinity. In particular, this
translates to a convergence rate of the ERM solution. This framework is applied to
linear inverse problems to understand the performance of bilevel optimization approach.
Moreover, our results depend only on the effective dimension, but not the ambient space
dimension, and hold accordingly, subject to appropriate convexity conditions. This is
an important aspect in inverse problems since the underlying space can be of infinite
dimension.

Secondly, we discuss how to implement stochastic gradient descent (SGD) methods
on bilevel optimization. SGD is a popular optimization tool for empirical risk minimiza-
tion because of its straightfoward implementation and efficiency. The low computational
costs are particularly appealing in the bilevel context as finding the lower-level solution
is already time consuming. Besides exact SGD, we also consider SGD with central
difference approximation. This can be useful for problems with complicated forward
observation models. A general consistency analysis framework is formulated for both
exact SGD and approximated SGD. We demonstrate how to apply this framework to
linear inverse problems.

Various numerical results are presented highlighting and verifying the theory ac-
quired. Our results are firstly presented on various partial differential equations, both
linear and nonlinear which include Darcy flow and the eikonal equation, as motivated
through Example 1 in Subsection 1.1.1. We also test our theory on an image denoising
example which is discussed through Example 2 in Subsection 1.1.2. In particular, we
demonstrate numerically the statistical consistency result which includes the rate of
convergence and we show that the learned parameter λ within each inverse problem
experiment outperforms that with a fixed λ.

We emphasize that with our findings and results in this work, our focus is not on
developing new methodology for bilevel learning. Instead our focus is on building a
statistical understanding of bilevel learning through the notion of statistical consistency
and convergence of numerical schemes.

1.3. Organization. The structure of this paper is given as follows. In Section 2
we present the bilevel optimization problem of interest in a stochastic framework, and
present a statistical consistency result of the adaptive parameter. We then extend this
result to the linear inverse setting with Tikhonov regularization. This will lead onto
Section 3 where we discuss the stochastic gradient descent method and its application
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in our bilevel optimization problem. We provide various assumptions required where we
tend show in the linear setting that our parameter converges in L2 to the minimizer. In
Section 4 we test our theory on various numerical models which include both linear and
nonlinear models such as Darcy flow and the eikonal equation. This will also include an
image denoising example. Finally, we conclude our findings in Section 5. The appendix
will contain the proofs for results in Section 2 and Section 3.

2. Regularization parameter offline recovery
In this section we discuss how to use offline bilevel optimization to recover regu-

larization parameters. We also show that the solution is statistically consistent under
suitable conditions.

2.1. Offline bilevel optimization. Regularization parameter learning by
bilevel optimization views the unknown parameter U and the data Y as a jointly dis-
tributed random variable with distribution Z∼µ(U,Y ), see e.g. [2] for more details.
Recall the bilevel optimization problem is given by

λ∗=argmin
λ∈Λ

F (λ), F (λ)=Eµ(U,Y )
[LU (uλ(Y ),U)], (upper level)

uλ(Y ) :=argmin
u∈U

Ψ(λ,u,Y ), Ψ(λ,u,y) :=LY(G(u),y)+Sλ(u), (lower level)

where LU denotes a discrepancy function in the parameter space U :=Rd and LY de-
notes a discrepancy function in the observation space Y :=RK . Sλ(U) represents the
regularization with parameter λ∈Λ. Here, Λ represents the range of regularization pa-
rameters which often come from physical constraints. For simplicity, we assume all the
functions here are continuous and integrable, and so are their first- and second-order
derivatives with respect to λ.

In general, we do not know the exact distribution µ in the upper level of (1.3). We
consider the scenario where we have access to training data z(j) := (u(j),y(j))nj=1, which
we assume to be i.i.d. samples from µ(U,Y ). With these data, we can approximate F in
(1.3) by its empirical average:

F̂n(λ)=
1

n

n∑
j=1

LU (uλ(y
(j)),u(j)). (2.1)

This leads to a data-driven estimator of the regularization parameter,

λ̂n=argmin
λ∈Λ

F̂n(λ),

uλ(y
(j))=argmin

u∈U
LY(G(u),y(j))+Sλ(u).

(2.2)

This method of estimation is often known as empirical risk minimization in machine
learning [9, 52]. We refer to this as “offline” since minimizing F̂n involves all n data

points at each algorithmic iteration. With λ̂n being formulated, it is of natural interest
to investigate its convergence to the true parameter λ∗, when the sample size increases.
Consistency analysis is of central interest in the study of statistics. In particular, if λ̂n

is the global minimum of F̂n, we have the following Theorem 5.2.3 [8] from Bickel and
Doksum, formulated in our notation

Theorem 2.1. Suppose for any ϵ>0

P(sup{λ∈Λ, |F̂n(λ)−F (λ)|}>ϵ)→0,
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as n→∞, λ̂n is the global minimizer of F̂n, and λ∗ is the unique minimizer of F , then
λ̂n is a consistent estimator.

In more practical scenarios, the finding of λ̂n relies on the choice of optimization
algorithms. If we are using gradient-based algorithms, such as gradient descent, λ̂n can
be the global minimum of F̂n if F̂n is convex. More generally, we can only assume λ̂n

to be a stationary point of F̂n, i.e. ∇F̂n(λ̂n)=0. In such situations, we provide the
following alternative tool replacing Theorem 2.1:

Proposition 2.1. Suppose F is C2, λ∗ is a local minimum of F , and λ̂n is a local
minimum of F̂n. Let D be an open convex neighborhood of λ∗ in the parameter space
and c0 be a positive constant. Denote An as the event

An={λ̂n∈D,∇2
λF̂n(λ)⪰ c0I for all λ∈D}.

When An takes place, the following holds:

|λ̂n−λ∗|≤
|∂λF̂n(λ∗)−∂λF (λ∗)|

c0
.

In particular, we have

E1An
|λ̂n−λ∗|≤

√
tr(Var(∂λf(λ∗,Z)))

c0
√
n

.

Proof. Proof can be found in the appendix.

Proposition 2.1 makes two claims. From the second claim, we can see λn converges
to λ∗ at rate of 1√

n
. And with the first claim, sometimes we can have more accurate

estimate on large or medium deviations. We will see how to do that in the linear inverse
problem discussed below.

On the other hand, Proposition 2.1 requires the existence of region D so that both
λ̂n and λ∗ are in it, moreover F̂n needs to be strongly convex inside D. The convexity
part is necessary, since without it, there might be multiple local minima, and we will
have identifiability issues. In order to apply Theorem 2.1, one needs to find D and bound
the probability of outlier cases Ac

n. This procedure can be nontrivial, and requires some
advanced tools from probability. We demonstrate how to do so for the linear inverse
problem.

2.2. Offline consistency analysis with linear observation models. In this
section we demonstrate how to apply Proposition 2.1 for linear observation models with
Tikhonov regularization.

To motivate our framework, we assume u∈Rd and the data y is observed through
a matrix A∈RK×d

y=Au+ξ, (2.3)

with Gaussian prior information u∼N (0, 1
λ∗

C0) and Gaussian noise ξ∼N (0,Γ). The
common choice of discrepancy functions in the lower level are the corresponding negative
log-likelihoods

LY(G(u),y)=
1

2
∥Au−y∥2Γ, Sλ(u)=

λ

2
∥u∥2C0

.

Since both of these functions are quadratic in u, the lower level optimization problem
has an explicit solution

uλ(y)=(A⊤Γ−1A+λC−1
0 )−1A⊤Γ−1yi.
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If we use the root-mean-square error in the upper level to learn λ, the discrepancy
function is given by

f(λ,u,y)=∥uλ(y)−u∥2.

and the empirical loss function is defined by

F̂n(λ)=
1

n

n∑
i=1

∥uλ(yi)−ui∥2. (2.4)

It is worth mentioning that F (λ) is not convex on the real line despite that G is linear.
The detailed calculation can be found in Remark A.1. It is for this reason, that it is
necessary to introduce the local region D, that F is convex inside, in Proposition 2.1.

In some challenging scenarios the underlying distribution of the noise and parameter
is not known. However, as long as one has access to the covariances, Γ and C0 of the
underlying distribution, the bilevel optimization approach is well-defined and it can
still be implemented in order to choose the regularization parameter for the inverse
problem. Our theoretical results extend to the general setting, as long as u is (0, 1

λ∗
C0)

sub-Gaussian, and ξ is (0,Γ)-sub-Gaussian.

Assumption 2.1. A random vector z is (0,Σ)-sub-Gaussian if there exists

σ=(σi
1,. ..,σ

i
d)

⊤∈Rℓ,

such that

z
d
=Σ1/2σ,

where σ1,. ..,σℓ are i.i.d. random variables with Eσ1=0, E|σ1|2=1 and

sup
p≥1

p−1/2E[|σ1|p]1/p≤Cσ,

for some Cσ >0. Furthermore, we assume that the components are symmetric in the

sense that σ1
d
=−σ1.

Sub-Gaussian indicates the the tail of u and ξ are not heavy, so concentration
inequalities can be applied [47]. Note however that N(0,Γ) is (0,Γ)-sub-Gaussian. Uni-
form distributions U [(−a,a)] can also be sub-Gaussian.

Another important issue in inverse problems is the notion of dimension indepen-
dence. Since most applications involve models of high or even infinite dimension, it is of
interest to see if the parameter recovery depends only on some effective dimension but
not the ambient space dimension d. Here, the effective dimension is usually described
by physical quantities in the inverse problem. For this paper, we assume the following:

Assumption 2.2. Tr(C0),∥C0∥F and ∥A⊤Γ−1A∥, ∥A∥, ∥Γ∥ are constants independent
of the dimension d.

In the subsequent development, we will refer to constants that depend only on
Tr(C0),∥C0∥F ,∥A⊤Γ−1A∥, ∥A∥, ∥Γ∥ as dimension independent (DI).

Roughly speaking, in order for Tr(C0),∥C0∥F to be DI, the spectrum of the prior
covariance C0 needs to decay to zero quickly. By assuming ∥A⊤Γ−1A∥, ∥A∥, ∥Γ∥ to be
DI, each individual observation needs to be moderately precise. We do not have hard
constraints on the number of observations, other than that they should be independent.
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All these conditions are practical and can be found in [2,36]. We will also demonstrate
that they hold for our numerical example(s).

Since the formulation of uλ involves the inversion of matrix A⊤Γ−1A+λC−1
0 , such

an operation may be unstable for λ approaching∞. When λ approaches∞, the gradient
of F̂n approaches zero, so ∞ can be a stationary point that an optimization algorithm
tries to converge to. To avoid these issues, we assume there are lower and upper bounds
such that

0<λl<
1

2
λ∗<

3

2
λ∗<λu,

where λl can be chosen as a very small number and λu can be very large. Their
values often can be obtained from physical restrictions from the inverse problem. By
assuming their existence, we can restrict λ̂n to be in the interval Λ=(λl,λu). Now we
are ready to present our main result for the offline recovery of regularization parameter.
In particular, we show λ̂n converges to λ∗ with high probability.

Theorem 2.2. Suppose that u is (0, 1
λ∗

C0)-sub-Gaussian, ξ is (0,Γ)-sub-Gaussian,

where C0∈Rd×d, Γ∈RK×K are known symmetric positive definite matrices and λ∗>0
is unknown, and let λ∗

n∈ (λl,λu) be a local minimum of F̂n. Then it holds true that
∂λF (λ∗)=0 and there exist C∗,c∗>0 such that for any 1>ϵ>0 and n,

P(|λ̂n−λ∗|>ϵ,λl<λ̂n<λu)≤C∗ exp(−c∗nmin(ϵ,ϵ2)).

The values of C∗,c∗>0 depend on λl,λu,λ∗,C0 but not on n. Moreover, if Assumption
2.2 is assumed, C∗,c∗>0 are also dimension independent.

Proof. (Sketch of the proof). The basic idea of proving the consistency is to
construct a open convex neighborhood D of λ∗ in order to apply Proposition 2.1. The
global convergence can be obtained by splitting

P(|λ̂n−λ∗|>ϵ,λl<λ̂n<λu)=P(|λ̂n−λ∗|>ϵ,λl<λ̂n<λu |An)P(An)

+P(|λ̂n−λ∗|>ϵ,λl<λ̂n<λu |A∁
n)P(A∁

n),

where it is left to prove the convergence of P(A∁
n) to zero, which means that λ̂n stays

in the local convexity region D with high probability. We give full details of the proof
in the appendix.

Since we can obtain consistency assuming that λ̂n is a local minimum, we do not
demonstrate how to implement Theorem 2.1 for the more restrictive scenario where λ̂n

is a global minimum.
In general, knowing that λ̂n is an accurate estimator is sufficient to guarantee that

the recovery is accurate, also due to the Lipschitzness of uλ. In particular, we can also
show that the Lipschitz constant is DI:

Proposition 2.2. Under Assumption 2.2, there is a dimension independent L so
that

Ey∥uλ(y)−uλ∗(y)∥2≤L|λ−λ∗|2.

Here y is a random observation sample.

Remark 2.1. In practical settings it is assumed that the noise is not fully known and
we can easily extend our results by changing Γ 7→ 1

γΓ. We then would try to choose the

ratio between regularization parameter and noise scale, this is, we can change λ 7→ λ
γ

and apply again the bilevel optimization approach with “known” noise covariance Γ.



N.K. CHADA, C. SCHILLINGS, X.T. TONG, AND S. WEISSMANN 131

3. Regularization parameter online recovery

In this section we discuss how to implement the stochastic gradient descent (SGD)
method for online solutions of the bilevel optimization. We will formulate the SGD
method for general nonlinear inverse problems and state certain assumptions on the
forward model and the regularization function to ensure convergence of the proposed
method.

3.1. Bilevel stochastic gradient descent method. In the offline solution of
the bilevel optimization problem (2.2), one has to compute the empirical loss function

F̂n or its gradient in (2.1). This involves solving the lower level problem for each
training data point (u(j),y(j)), j=1,. ..,n. When n is very large, this can be very
computationally demanding. One way to alleviate this is to use the stochastic gradient
descent (SGD). This has been done in the context of traditional optimization [19], where
various convergence results were shown. As a result this has been applied to problems
in machine learning, most notably support vector machines [17, 18], but also in a more
general context without the use of SGD [29, 35]. Here we propose a SGD method to
solve the bilevel optimization problem (1.3) online.

To formulate the SGD method, we first note that the gradient descent method
generates iterates λk+1 based on the following update rules

λk+1=λk−βk∂λF (λk),

where βk is a sequence of stepsizes.

As mentioned above, the population gradient ∂λF is often computationally inac-
cessible, and its empirical approximation ∂λF̂n is often expensive to compute. One
general solution to this issue is using a stochastic approximation of ∂λF . Here we
choose ∂λf(λk,Z

(k)), where (Z(k))k∈{1,...,n}∼µ(U,Y ), since it is an unbiased estimator
of ∂λF :

∂λF (λk)=EZ∂λf(λk,Z).

The identity above holds by Fubini’s theorem, since we assume f and its second-order
derivatives are all continuous and differentiable. Comparing with ∂λF̂n, ∂λf involves
only one data point Z(k), so it has a significantly smaller computation cost. We refer
to this method as “online”, since it does not require all n data points available at each
algorithmic iteration.

We formulate the stochastic gradient descent method to solve (1.3) as Algorithm 1.

Algorithm 1 Bilevel Stochastic Gradient Descent

1: Input: λ0, m, β=(βk)
n
k=1, βk>0, i.i.d. sample (Z(k))k∈{1,...,n}∼µ(U,Y ).

for k=0,. ..,n−1 do

λk+1=χ(λk−βk∂λf(λk,Z
(k))), (3.1)

end for
2: Output: the average λ̄n=

1
m

∑n
k=n−m+1λk

In Algorithm 1, the step size βk is a sequence decreasing to zero not too fast, so
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that the Robbins–Monro conditions [46] apply:

∞∑
k=1

βk=∞,

∞∑
k=1

β2
k <∞. (3.2)

One standard choice is to take a decreasing step size βk=β0k
−α with α∈ (1/2,1]. We

note that the output of our bilevel SGD method is given by the average over the last
iterations λ̄n, which has been shown to accelerate the scheme for standard SGDmethods,
see [45]. The projection map χ ([52] Section 14.4.1) is defined as

χ(λ)=argmin
θ∈Λ

{|θ−λ|}.

In other words, it maps λ to itself if λ∈Λ, otherwise it outputs the point in Λ that is
closest to λ. Using χ ensures λk+1 is still in the range of regularization parameter if Λ
is closed. This operation in general shortens the distance between λk+1 and λ∗ when Λ
is convex:

Lemma 3.1 (Lemma 14.9 of [52]). If Λ is convex, then for any λ

|χ(λ)−λ∗|≤ |λ−λ∗|.

Proof. Proof can be found in the appendix.

In particular, the stochastic gradient ∂λf(λk,Z
(k)) is given by the following lemma,

which states sufficient conditions on Ψ to ensure both uλ and f are continuously differ-
entiable w.r.t. λ.

Lemma 3.2. Suppose the lower level loss function Ψ(λ,u,y) is C2 for (u,λ) in a neigh-
borhood of (uλ0 ,λ0) and is strictly convex in u in this neighborhood, then the function
λ 7→uλ(y) is continuously differentiable w.r.t. λ near λ0 and the derivative is given by

∂λuλ(y)=−
(
∂2
u [Ψ(λ,uλ(y),y)]

)−1
∂2
λu [Ψ(λ,uλ(y),y)]. (3.3)

and

∂λf(λ,y,u)=∂wLU (uλ(y),u)
T∂λuλ(y). (3.4)

Proof. Proof can be found in the appendix.

3.2. Approximate stochastic gradient method. In order to implement
Algorithm 1, it is necessary to evaluate the gradient ∂λf . While Lemma 3.2 provides a
formula to compute the gradient, its evaluation can be expensive for complicated PDE
forward models. In these scenarios, it is more reasonable to implement approximate
SGD.

One general way to find approximate gradient is applying central finite difference
schemes. This involves perturbing certain coordinates in opposite direction, and use the
value difference to approximate the gradient:

∂̃λf(λk,z)≈
f(λk+hk,z)−f(λk−hk,z)

2hk
, (3.5)

where hk is a step size. The step size hk can either be fixed as a small constant, or
it can be decaying as k increases, so that higher accuracy gradients are used when the
iterates are converging.
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In many cases, the higher level optimization uses a L2 loss function

LU (y,u)=∥y−u∥2.

The exact SGD update step (3.1) can be written as

λk+1=λk−βk∂λ∥uλk
(y(k))−u(k)∥2

=λk−βk

(
∂λuλk

(y(k))
)⊤

(uλk
(y(k))−u(k)).

In this case, it makes more sense to apply central difference scheme only on the ∂uλ

part:

∂λuλ(y
(k))≈ uλ+hk

(y(k))−uλ−hk
(y(k))

2hk
=: ∂̃λuλ(y

(k)). (3.6)

Using this approximation, we formulate the approximate SGD method in the following
algorithm, where we replace the exact gradient ∂λuλ(y

(k)) by the numerical approxima-

tion ∂̃λuλ(y
(k)) defined in (3.6).

Here we have defined the numerical approximation of ∂λf by

∂̃λf(λ,(y,u)) :=
(
∂̃λuλ(y)

)⊤
(uλ(y)−u). (3.7)

In most finite difference approximation schemes, the approximation error involved is
often controlled by hk. In particular, we assume the centered forward difference scheme
used in either (3.5) or (3.7) yields an error of order

∥E∂̃λ(f(λ,Y,U))−∂λF (λ)∥=:αk=O(h2
k).

Replacing the stochastic gradient in Algorithm 1 with its approximation, we obtain the
algorithm below:

Algorithm 2 Approximate Bilevel Stochastic Gradient Descent

1: Input: λ0, m, β=(βk)
n
k=1, βk>0, i.i.d. sample (Z(k))k∈{1,...,n}∼µ(U,Y ).

for k=0,. ..,n−1 do

λk+1=χ(λk−βk∂̃λf(λk,Z
(k))), (3.8)

end for
2: Output: the average λ̄n=

1
m

∑n
k=n−m+1λk

3.3. Consistency analysis for online estimators. Next we formulate suffi-
cient conditions that can ensure that λk converges in L2 to the optimal solution λ∗ of
(1.3).

Proposition 3.1. Suppose that there is a convex region D⊂Λ and a constant c>0
such that

(λ−λ∗)∂λF (λ)>c|λ−λ∗|2. (3.9)
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for all λ∈D and there are constants a, b>0 such that for all λ∈D it holds true that

E[|∂̃λf(λ,Z)|2]<a+b|λ−λ∗|2. (3.10)

Also the bias in the approximated SGD is bounded by

|E∂̃λf(λk,Zk)−∂λF (λk)|2≤αk. (3.11)

Let An be the event that λk ∈D. Suppose β0≤ c
b . Then if the approximation error is

bounded by a small constant αk≤α0, there is a constant Cn such that

E1An |λn−λ∗|2≤

EQ0+2a

∞∑
j=1

β2
j

Cn+
α0

c2
.

Here

Cn=min
k≤n

max


n∏

j=k+1

(1−cβj),aβk/c

 (3.12)

is a sequence converging to zero.
If the approximation error is decaying so that αk≤Dβk, then we have the estimation

error

E1An
|λn−λ∗|2≤

EQ0+2(a+D/c)

∞∑
j=1

β2
j

Cn.

Proof. Proof can be found in the appendix.

Remark 3.1. We note that the above result also leads to similar convergence of the
average estimator λ̄n since by Jensen’s inequality

|λ̄n−λ∗|2≤
1

m

n∑
k=n−m+1

|λk−λ∗|2.

Further, for standard SGD methods the averaging step has been shown to lead to the
highest possible convergence rate under suitable assumptions. Interested readers can
refer to [45] for more details.

Remark 3.2. Most of our discussion focused on the case where unlimited independent
data points Z(k)=(u(k),y(k)) are accessible. Sometimes in practice this is not possible,
and we have access to {Z(k),k=1,. ..,M}. SGD in this case can still be implemented to

minimize the empirical loss function F (λ)= 1
M

∑M
k=1f(λ,Z

(k)). To do so, we just need

to let µU,Y = 1
M

∑K
k=1 δu(k),y(k) . So when we apply SGD and draw a random sample

from µU,Y , we essentially draw a random index i from {1,. ..,M} and apply SGD to the
data point Z(i). Proposition 3.1 still holds and shows that SGD will converge to the
minimizer of the empirical loss function.

3.4. Consistency analysis with linear inverse problem. We consider again
the linear inverse problem from Section 2.2

y=Au+ξ,
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but we do not state specific assumptions on the distribution without E[|u|4]<∞ and
E[|A⊤Γ−1ξ|4]<∞.

We formulate the online convergence for the corresponding bilevel optimization with
least-square data misfit and Tikhonov regularization, i.e.

LY(Au,y)=
1

2
∥Au−y∥2Γ, Sλ(u)=

λ

2
∥u∥2C0

.

Theorem 3.1. Let β=(βk)k∈N be a sequence of step sizes with βk>0,
∞∑
k=1

βk=∞,

and
∞∑
k=1

β2
k <∞. Furthermore, let E[|u|4]<∞ and E[|A⊤Γ−1ξ|4]<∞. Then for some

constant B and a sequence Cn converging to zero, the following hold:

(1) The iterates generated from the exact SGD, Algorithm 1, converge to λ∗ in the sense

E|λn−λ∗|2≤BCn,

(2) the iterates generated from the aproximate SGD, Algorithm 2 with formula (3.7)
and hk=h, converge to λ∗ up to an error of order O(h4), i.e.

E|λn−λ∗|2≤B(Cn+h4).

If we use decaying finite difference stepsize hk≤hβ
1/4
k , then the error can be further

bounded by

E|λn−λ∗|2≤BCn.

Moreover, if Assumption 2.2 is assumed, the constants B,Cn are dimension indepen-
dent.

Proof. Proof can be found in the appendix.

Remark 3.3. While in the offline setting the proof of the consistency result for
the linear sub-Gaussian setting was heavily relying on the sub-Gaussian assumption
on u and ξ, in the online setting we are able to extend the result to a wider range of
distributions of u and ξ. For our proof of Theorem 3.1 in Appendix B.3 we only need to
assume that E[|u|4]<∞ and E[|A⊤Γ−1ξ|4]<∞. Hence, it can also be applied to general
linear inverse problems without sub-Gaussian assumption on the unknown parameter
or sub-Gaussian assumption on the noise.

4. Numerical results
In this section our focus will be directed on testing the results of the previous

sections. We will present various inverse problems to our theory, which will be based
on partial differential equations, both linear and nonlinear, which includes a linear 2D
Laplace equation, a 2D Darcy flow from geophysical sciences and a 2D eikonal equation
which arises in wave propagation. As a final numerical experiment, related to the
examples discussed in Section 1, we test our theory on an image denoising problem.

For the linear example, we have access to the exact derivative of the Tikhonov
solution for the bilevel optimization. In particular, we can implement both offline and
online bilevel optimization methodologies. In contrast, finding the exact derivatives for
nonlinear inverse problems is difficult both in derivation and computation, so we will
only use online methods with approximated gradient. For online methods, we implement
the following variants:
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• bSGD: Application of the bilevel SGD, Algorithm 1 with exact derivative (3.4).

• bSGDa: Application of the bilevel SGD, Algorithm 2 with derivative approxi-
mation (3.7) for fixed hk=h0 in (3.6).

For our first model we have tested both bSGD and bSGDa, while for the nonlinear
models we have used bSGDa. It is worth mentioning that we have also tested, as a side
experiment, using the adaptive derivative hk=h0/k

1/4. For these experiments it was
shown that the adaptive derivative scheme does not show any major difference to the
case of fixed hk=h0. In fact, Theorem 3.1 has already implied this, since the difference
between the two schemes is of order h−4

0 , which is often smaller than the error from the
numerical forward map solver or the use of λ̄n. For this reason, we do not demonstrate
this scheme in our numerics.

4.1. Linear example: 2D Laplace equation. We consider the following
forward model {

−∆p(x) = u(x), x∈X,

p(x) = 0, x∈∂X,
(4.1)

with Lipschitz domain X=[0,1]2 and consider the corresponding inverse problem of
recovering the unknown u† from observation of (4.1), described through

y=O(p)+η, (4.2)

where η∼N (0,Γ) is the measurement noise and p is the solution of (4.1). We solve
the PDE in weak form, where A−1 :U→V, with U =L∞(X) and V=H1

0 (X)∩H2(X),
denotes the solution operator for (4.1) and O :V→RK denotes the observation map
taking measurements at K randomly chosen points in X, i.e. O(p)=(p(x1),. ..,p(xK))⊤,
for p∈V, x1,. ..,xK ∈X. For our numerical setting K=250 points have been observed,
which is illustrated in Figure 4.1. We can express this problem as a linear inverse
problem in the reduced form (2.3) by

y†=Au†+η∈RK , (4.3)

where A=O◦A−1 is the forward operator which takes measurements of (4.1). The
forward model (4.1) is solved numerically on a uniform mesh with 32×32 grid points
in X by a finite element method with continuous, piecewise linear finite element basis
functions.

We assume that our unknown parameter u† follows a Gaussian distribution
N (0, 1

λ∗
C0) with covariance

C0=β ·(τ2I−∆)−α, (4.4)

with Laplacian operator ∆ equipped with Dirichlet boundary conditions, known β, τ >
0, α>1 and unknown λ∗>0. To sample from the Gaussian distribution, we consider
the truncated Karhunen-Loève (KL) expansion [40], which is a series representation for
u∼N (0,C0), i.e.

u(x)=

∞∑
i=1

ξi

√
1

λ∗
σiφi(x), (4.5)

where (σi,φi)i∈N are the eigenvalues and eigenfunctions of the covariance operator C0

and ξ=(ξi)i∈N is an i.i.d. sequence with ξ1∼N (0,1) i.i.d. . Here, we have sampled
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Fig. 4.1: Reference PDE solution for the Laplace equation of the underlying unknown parameter u†,
and the corresponding randomized observation points x1, .. .,xK ∈X.
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Fig. 4.2: MSE (left) resulting from the offline recovery depending on training data size. Learned
regularization parameter λk (right) resulting from the online recovery, Algorithm 1 for the Laplace
equation.

from the KL expansion for the discretized C0 on the uniform mesh. Furthermore, we
assume to have access to training data (u(j),y(j)=Au(j)+η(j))j=1,...,n, n∈N, which we
will use to learn the unknown scaling parameter λ∗ before solving the inverse problem.
For the numerical experiment we set β=100, τ =0.1, α=2 and λ∗=0.1. After learning
the regularization parameter, we will compare the estimated parameter through the
different results of the Tikhonov minimum

uλi(y
†)=(A⊤Γ−1A+λi ·C0)

−1A⊤y†,

for λ1= λ̂ learned from the training data, λ2=λ∗ and fixed λ3=1. We have used the
MATLAB function fmincon to recover the regularization parameter offline by solving
the empirical optimization problem

λ̂n∈argmin
λ>0

1

n

n∑
j=1

|uλ(y
(j))−u(j)|2. (4.6)

We useM =1000 samples of training data to construct Monte–Carlo estimates of E[|λ̂n−
λ†|2]. While the computation of the empirical loss function can be computationally
demanding, we also apply the proposed online recovery in the form of the SGD method
to learn the regularization parameter λ by running Algorithm 1 with chosen step size
βk=200/k, range of regularization parameter Λ=[0.0001,10] and initial value λ0=1.
The resulting iterate λk can be seen in Figure 4.2 on the right side.
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Fig. 4.3: Comparison of different Tikhonov solutions for choices of regularization parameter λi. The
learned Tikhonov regularized solution corresponds to the resulting one of the SGD method Algorithm
1 for the Laplace equation.

From the numerical experiments for the linear example we observe that the numerics
match our derived theory. In the offline recovery setting, this is first evident in Figure
4.2 on the left side. We compare the MSE with the theoretical rate, which seems to
decay at the same rate. The online recovery is highlighted by the right plot in Figure 4.2
which demonstrates the convergence towards λ∗ as the iterations progress. Further, we
show the result of the approximate bSGD method Algorithm 2 for fixed chosen hk=0.01
in (3.6). As the derivative approximation (3.6) is closely exact, we see very similar good
performance of the approximate bSGD method.

Finally, Figure 4.3 shows the recovery of the underlying unknown through differ-
ent choices of λ. It verifies that the adaptive learning of λ outperforms that of fixed
regularization parameter λ=1.

4.1.1. Dimension independent experiments. Next, we are going to analyze
the independence of dimension in the bilevel optimization approach. Our setup is similar
as discussed before, but considers the domain X=[0,1].

We solve the forward model numerically on a uniform mesh for different choices
of mesh sizes h∈{2−5,2−6,2−7,2−8} by a finite element method with continuous,
piecewise-linear ansatz functions, where the same K=5 observation points have been
observed on each mesh. We assume that the underlying parameter u† follows a Gaussian
distribution N (0, 1λ∗C0) with C0=(−∆)−1 and apply again the truncated KL expansion

up to a fixed truncation index, but considering discretized versions φh
i of φi(x) on each

level h.

In Figure 4.4, we compare the MSE for the resulting estimates λ̂n for different
choices of sample size n depending on the dimension d. Here, we use again M =1000
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samples of training data to construct Monte-Carlo estimates of the MSE E[|λ̂n−λ∗|2].
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Fig. 4.4: MSE resulting from the offline recovery depending on dimension of the parameter space d
and evaluated for different choices of training data size n.

Fig. 4.5: Reference PDE solution for Darcy flow of the underlying unknown parameter u† and the
corresponding randomized observation points x1, .. .,xK ∈X.

4.2. Nonlinear example: 2D Darcy flow. We now consider the following
elliptic PDE which arises in the study of subsurface flow known as Darcy flow. The
forward model is concerned using the log-permeability logu∈L∞(X)=:U to solve for
the pressure p∈H1

0 (X)∩H2(X)=:V from{
−∇·(exp(u)∇p) = f, x∈X

p = 0, x∈∂X
(4.7)

with domain X=[0,1]2 and known scalar field f ∈R. We again consider the correspond-
ing inverse problem of recovering the unknown u† from observation of (4.7), described
through

y=O(p)+η, (4.8)

where O :V→RK denotes the linear observation map, which takes again measurements
at K randomly chosen points in X, i.e. O(p)=(p(x1),. ..,p(xK))⊤, for p∈V, x1,. ..,xK ∈
X. For our numerical setting we choose K=125 observational points, which can again
be seen in Figure 4.5. The measurement noise is denoted by η∈N (0,Γ), for Γ∈RK×K

symmetric and positive definite.
We formulate the inverse problem through

y†=G(u†)+η, (4.9)
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Fig. 4.6: Comparison of different Tikhonov solutions for choices of the regularization parameter
λ. The learned Tikhonov regularized solution corresponds to the resulting one of the SGD method
Algorithm 2 for Darcy flow.
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Fig. 4.7: Learned regularization parameter λk, for Darcy flow, resulting from the approximate bilevel
SGD method Algorithm 2 with fixed derivative accuracy h=h0 and the corresponding mean over the
last 50 iterations λ̄n. We obtain an error |λ∗− λ̄n|2=3.3640e−05.

with G=O◦G, where G :U→V denotes the solution operator of (4.7), solving the PDE
(4.7) in weak form. The forward problem (4.7) has been solved by a second-order
centered finite difference method on a uniform mesh with 256 grid points.

We assume that u† follows the Gaussian distribution N (0, 1
λ∗

C0) with a covariance
operator (4.4) prescribed with Neumann boundary condition. Similar as before, β,τ >0
and α>1 are known, while λ∗>0 is unknown. This time, in order to infer the unknown
parameter, we use the KL expansion and do estimation of the coefficients ξ. See also
[11,31] for more details. Therefore we truncate (4.5) up to d and consider the nonlinear
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map G :Rd→RK , with G(ξ)=G(uξ(·)) and

uξ(·)=
d∑

i=1

ξi

√
1

λ∗
σiφi(·).

This implies our unknown parameter is given by ξ∈Rd and we set a Gaussian prior on
ξ with N (0, 1

λ∗
I), where λ∗>0 is unknown.

We again assume to have access to training data (ξ(j),y(j))j=1,...,n, n∈N, where
ξ(j)∼Ξ∼N (0, 1

λ∗
I) and we aim to solve the original bilevel optimization problem

λ̂∈argmin
λ>0

E[∥uλ(Y )−Ξ∥2], uλ(Y )=argmin
ξ∈Rd

1

2
∥G(ξ)−Y ∥2Γ+

λ

2
∥ξ∥2I . (4.10)

The corresponding empirical optimization problem is given by

λ̂n∈argmin
λ>0

1

n

n∑
j=1

∥uλ(y
(j))−ξ(j)∥2, uλ(y

(j))=argmin
ξ∈Rd

1

2
∥G(ξ)−y(j)∥2Γ+

λ

2
∥ξ∥2I ,

(4.11)
for a given size of the training data n. In comparison to the linear setting, we are
not able to compute the Tikhonov minimum analytically for each observation y(j), as
we require more computational power to solve (4.11). We will solve (4.11) online by
application of Algorithm 2, where we will approximate the derivative of the forward
model by centered difference method (3.6). We keep the accuracy of the numerical
approximation fixed to hk=0.01.

For our numerical results we choose d=25 coefficients in the KL expansion and the
noise covariance Γ=γ2I with γ=0.001. For the prior model set β=10, α=2, τ =3 and
the true scaling parameter λ∗=0.1.

For the SGD method we have chosen a step size βk=0.001k−1. The learned param-
eter moves fast into the direction of the true λ∗, and oscillates around this value, where
the variance reduces with the iterations, as seen in Figure 4.7.

Finally, Figure 4.6 highlights again the importance and improvements of choosing
the right regularization parameters.

4.3. Nonlinear example: Eikonal equation. We also seek to test our
theory on the eikonal equation, which is concerned with wave propagation. Given
a slowness or inverse velocity function s(x)∈C0(X̄)=:U , characterizing the medium,
and a source location x0∈X, the forward eikonal equation is to solve for travel time
T (x)∈C0(X̄)=:V satisfying

|∇T (x)| = s(x), x∈X \{x0},
T (x0) = 0,

∇T (x) ·ν(x) ≥ 0, x∈∂X.

(4.12)

The forward solution T (x) represents the shortest travel time from x0 to a point in the
domain X. The Soner boundary condition imposes that the wave propagates along the
unit outward normal ν(x) on the boundary of the domain. The model equation (4.12)
is of the form (1.4) with an additional constraint arising from the Soner boundary
condition.

The inverse problem for (4.12) is to determine the speed function s=exp(u) from
measurements of the shortest travel time T (x). The data is assumed to take the form

y=O(T )+η, (4.13)
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Fig. 4.8: Reference PDE solution for the eikonal equation of the underlying unknown parameter u†,
and the corresponding randomized observation points x1, .. .,xK ∈X.

Fig. 4.9: Comparison of different Tikhonov solutions for choices of the regularization parameter
λ. The learned Tikhonov regularized solution corresponds to the resulting one of the SGD method
Algorithm 2 for the eikonal equation.

where O :V→RK denotes the linear observation map, which takes again measurements
at K=125 randomly chosen grid points in X, i.e. O(p)=(T (x1),. ..,T (xK))⊤, for T ∈Z,
x1,. ..,xK ∈X. The observed points can be seen in Figure 4.8. The measurement noise
is again denoted by η∈N (0,Γ), for Γ∈RK×K symmetric and positive definite. Again
we formulate the inverse problem through

y†=G(u†)+η, (4.14)

with G=O◦G, where G :U→V denotes the solution operator of (4.7). As before we
will assume our unknown u† is distributed according to a mean-zero Gaussian with
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covariance structure (4.4). For this numerical example we set β=1, τ =0.1, α=2 and
λ∗=0.1. We truncate the KL expansion such that the unknown parameters ξ∈Rd with
d=25. For the eikonal equation we take a similar approach to Section 4.2, that is we
use the SGD described through Algorithm 2. For the SGD method we have chosen an
adaptive step size

βk=min

(
0.002,

λ0

|∂λf(λk,Z(k))|

)
k−1.

Here, the chosen step size βk provides a bound on the maximal moved step in each SGD
step, i.e.

|βk ·∂λf(λk,Z
(k))|≤λ0/k. (4.15)

This helps to avoid instability arising through the high variance of the stochastic gradi-
ent, but the step size will be mainly of order 0.002/k. However, from theoretical side it
is not clear whether assumption of (3.2) is still satisfied. Therefore, we will also show
the resulting

∑n
k=1βk and the realisation of the stochastic gradient ∂fλ(λk,Z

(k)) in
Figure 4.11.
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Fig. 4.10: Learned regularization parameter λk, for the eikonal equation, resulting from the approx-
imate bilevel SGD method Algorithm 2 with fixed derivative accuracy h=h0 and the corresponding
mean over the last 50 iterations λ̄n. We obtain an error |λ∗− λ̄n|2=1.9360e−05.
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Fig. 4.11: Summation of the realized adaptive step size (left) and the realized stochastic gradient
∇f(λk,Z

(k)) (right) resulting from the online recovery, Algorithm 1 for the eikonal equation.

Our setting for the parameter choices of our prior and for the bilevel-optimization
problem remain the same. To discretize (4.12) on a uniform mesh with 256 grid points
we use a fast marching method, described by the work of Sethian [27,49].

As we observe the numerical experiments, Figure 4.9 highlights that using the
learned λn provides recoveries almost identical to that of using the true λ∗. For both
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Fig. 4.12: Comparison of different Tikhonov solutions for fixed choices of the regularization parameter
λ for the signal denoising example.
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Fig. 4.13: Comparison of the learned to best possible Tikhonov solutions for choices of the regular-
ization parameter λ. The learned Tikhonov regularized solution corresponds to the resulting one of the
SGD method Algorithm 1 for the signal denoising example.

cases we see an improvement over the case λ=1 which is what we expected and have
seen throughout our experiments. This is verified through Figure 4.10 where we see
oscillations of the learned λk around the true λ∗, until approximately 100 iterations
where it starts to become stable. Finally from Figure 4.11 we see that the summation
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of our choice βk diverges, but not as quickly as the summation of the deterministic
step size 0.002/k does, which is the implication of the introduced adaptive upper bound
based on the size of the stochastic gradient ∇λf(λk,Z

(k)). Figure 4.11 also shows the
histrogram of the stochastic gradient and its rare realized large values.

4.4. Signal denoising example. We now consider implementing our methods
on image denoising, which is discussed in Section 1 and Subsection 1.1.2. We are
interested in denoising a 1D compound Poisson process of the form

ut=

Nt∑
i=1

Xi, (4.16)

where (Nt)t∈[0,T ] is a Poisson process, with rate r>0 and (Xi)
Nt
i=1 are i.i.d. random

variables representing the jump size. Here, we have chosen X1∼N (0,1). We consider
the task of recovering a perturbed signal of the form (4.16) through Tikhonov regular-
ization with different choices of regularization parameter λ. In particular, the observed
signal u=(ut1 ,. ..,utd)

⊤∈Rd is perturbed by white noise

yti =uti +ηti , (4.17)

where ti∈{1/d ·T,2/d ·T,...,T} and ηti ∼N (0,σ2) are i.i.d. random variables, and the
Tikhonov estimate corresponding to the lower level problem of (1.7) for given regular-
ization parameter λ>0 is defined by

uλ(y)=(Γ−1+λL−1)−1Γ−1y, (4.18)

with given regularization matrix L∈Rd×d and y=(y1,. ..,yd)
⊤∈Rd. We assume to have

access to training data (u(j),y(j))nj=1 of (4.17) and choose the regularization parameter

λ̂ according to Algorithm 1. Further, we compare the resulting estimate of the signal

yobs=u†+η,

to fixed choices of λ∈{0.01, 0.00001} and to the best possible choice λ∗=
argminλ ∥uλ(yobs)−u†∥2.

For the experiment we set the rate of jumps r=10 and consider the signal observed
up to time T =1 at d=1000 observation points. For Algorithm 1, we use a training
data set of size n=500, we set an initial value λ0=0.001 and step size βk=0.001k−1.
The Tikhonov solution (4.18) has been computed with a second-order regularization
matrix L=∆−1. As we can see from our results the value of λ=0.001 oversmoothens
the estimate in comparison with λ=0.00001. This is shown in Figure 4.12. However
comparing fixed λ with the learned λ in Figure 4.13 we see an improvement, closer to
the best possible λ, which is verified further through Table 4.1, where we can see the
MSE over the time interval. Both Figure 4.12 and Figure 4.13 show on the right-hand
side the pointwise squared error over time.

λ 1e−02 1e−05 λn λ∗
error 0.0378 0.0134 0.0077 0.0073

Table 4.1: MSE over time of the reconstruction for different choices of the regularization parameter
for signal denoising example.
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5. Conclusion

In this work we have provided new insights into the theory of bilevel learning for
inverse problems. In particular our focus was on deriving statistical consistency results
with respect to the data limit of the regularization parameter λ. This was considered for
both the offline and online representations of the bilevel problem. For the online version
we used and motivated stochastic gradient descent as the choice of optimizer, as it is well
known to reduce the computational time required compared to other methodologies. To
test our theory we ran numerical experiments on various PDEs which not only verified
the theory, but clarified that adapting the regularization parameter λ outperforms that
of a fixed value. Our results in this article provide numerous directions for future, both
practically and analytically.

• One direction is to consider a fully Bayesian approach, or understanding, to
bilevel learning. In the context of statistical inverse problems, this could be
related to treating λ as a hyperparameter of the underlying unknown. This
is referred to as hierarchical learning [44] which aims to improve the overall
accuracy of the reconstruction [1, 25].

• Another potential direction is to understand statistical consistency from other
choices of regularization. Answering this for other penalty terms, such as L1,
total variation and adversarial [42] (based on neural networks), is of importance
and interest in numerous applications [2]. A potential first step in this direc-
tion would be to consider the well-known elastic-net regularization [28], which
combines both L1 and Tikhonov regularization. Of course to consider this one
would need to modify the assumptions on convexity.

• One could propose using alternative optimizers, which provide a lower com-
putational cost. A natural choice would be derivative-free optimization [26].
One potential optimizer could be ensemble Kalman inversion [13, 14], a recent
derivative-free methodology, which is of particular interest to the authors. In
particular as EKI has been used in hierarchical settings [11, 12], the reduction
in cost could be combined with the hierarchical motivation discussed above.

• As a final avenue, it would be of interest to make extensions to both the infinite-
dimensional setting, and bilevel problems involving multiple hyperparameters.
For the former, initial work has been done on this, in the context of imaging
[10, 43]. For the latter, to the best of the authors’ knowledge, this has been
primarily considered in machine learning applications [4, 29], which should be
extendable in our bilevel data-driven setting.

Acknowledgements. NKC acknowledges a Singapore Ministry of Education Aca-
demic Research Funds Tier 2 grant [MOE2016-T2-2-135] and KAUST baseline funding.
SW is grateful to the DFG RTG1953 “Statistical Modeling of Complex Systems and
Processes” for funding of this research. The research of XTT is supported by the Na-
tional University of Singapore grant R-146-000-292-114.

Appendix A. Proofs of offline consistency analysis.

A.1. General framework. We start with the proof for the general framework:

Proof. (Proof of Proposition 2.1.) To simplify the mathematical notation, we use
z to denote the data couple (u,y), and use f to denote the data loss function

f(λ,z)=LU (uλ(y),u).
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When λ̂n∈D, we apply the fundamental theorem of calculus on ∂λF̂n, and find

∂λF̂n(λ∗)=∂λF̂n(λ̂)+

∫ 1

0

∂2
λF̂n(sλ∗+(1−s)λ̂n)(λ∗− λ̂n)ds=AF (λ̂n−λ∗),

where

AF :=

∫ 1

0

∂2
λF̂n((1−s)λ̂n+sλ∗)ds⪰ coI.

Note that

0=∂λF (λ∗)=∂λF (λ∗)−∂λF̂n(λ∗)+∂λF̂n(λ∗)

=AF (λ̂n−λ∗)+∂λF (λ∗)−∂λF̂n(λ∗).

We can reorganize this as

−
(
∂λF̂n(λ∗)−∂λF (λ∗)

)
=AF (λ̂n−λ∗),

As a consequence, we now have a formula for the point estimation error λ∗− λ̂n.

∥λ∗− λ̂∥=
∥∥∥A−1

F

(
∂λF̂n(λ∗)−∂λF (λ∗)

)∥∥∥≤ c−1
0

∥∥∥∂λF̂n(λ∗)−∂λF (λ∗)
∥∥∥. (A.1)

Note that by using ∂λEf(λ,Z)=E∂λf(λ,Z), see [48, Theorem 12.5],

∂λF̂n(λ∗)−∂λF (λ∗)=
1

n

n∑
i=1

∂λf(λ∗,zi)−E∂λf(λ∗,Z).

So

E∥∂λF̂n(λ∗)−∂λF (λ∗)∥2=
1

n
tr(Var(∂λf(λ∗,Z))).

And our second claim follows by Cauchy-Schwarz

E1An
∥∂λF̂n(λ∗)−∂λF (λ∗)∥≤

√
E∥∂λF̂n(λ∗)−∂λF (λ∗)∥2.

A.2. Formulas for the linear inverse problem. Next, we apply Proposition
2.1 to the linear inverse problem under Assumption 2.1.

The solution of the Tikhonov regularized optimization problem (without assuming
any distribution on yi and ξi respectively) in the linear setting can be written as

uλ(yi)=(A⊤Γ−1A+λC−1
0 )−1A⊤Γ−1yi,

and we consider the difference

ũi−uλ(yi)
d
=−(A⊤Γ−1A+λC−1

0 )−1A⊤Γ−1(Aui−Γ1/2ξi)+ui,

where we have defined ξi=Γ−1/2(Aui−yi)∼N (0,I). Denote D :=C
1/2
0 A⊤Γ−1/2, Ω0=

C−1
0 and vi=Ω

1/2
0 ui, and note that

(A⊤Γ−1A+λC−1
0 )−1A⊤Γ−1(Aui−Γ1/2ξi)+ui
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=(A⊤Γ−1A+λC−1
0 )−1(λC−1

0 ui+A⊤Γ−1/2ξi)

=C
1/2
0 (C

1/2
0 A⊤Γ−1AC

1/2
0 +λI)−1C

1/2
0 (λC−1

0 ui+A⊤Γ−1/2ξi)

=C
1/2
0 (DD⊤+λI)−1(λvi+Dξi).

Therefore we define

Qλ=(DD⊤+λI)−1,

and the data loss can be written as

f(λ,z)=Tr(QλC0Qλ(λv+Dξ)(λv+Dξ)⊤)

=Tr(QλC0Qλ(λ
2vv⊤+2λDξv⊤+Dξξ⊤D⊤)).

We further define the following quantities

P1=QλC0Qλ, P2=
∂P1

∂λ
=−(Q2

λC0Qλ+QλC0Q
2
λ),

P3=
∂P2

∂λ
=2(Q3

λC0Qλ+Q2
λC0Q

2
λ+QλC0Q

3
λ),

P4=
∂P3

∂λ
=−6(Q4

λC0Qλ+Q3
λC0Q

2
λ+Q2

λC0Q
3
λ+QλC0Q

4
λ).

Note that ∥Qλ∥≤λ−1, so we have

|Tr(Qk
λC0Q

j
λ)|= |Tr(C0Q

j+k
λ )|≤ 1

λj+k
Tr(C0),

∥Qk
λC0Q

j
λ∥≤∥Qλ∥j+k∥C0∥≤

1

λj+k
∥C0∥,

∥Qk
λC0Q

j
λ∥F ≤∥Qk

λ∥∥C0Q
j
λ∥F ≤∥Qλ∥j+k∥C0∥F ≤ 1

λj+k
∥C0∥F .

In conclusion, for function T being T (A)= |Tr(A)| or T (A)=∥A∥ or T (A)=∥A∥F , we
all have

T (Pk)≤ ( 2λ )
k+1T (C0).

In particular, under Assumption 2.2, T (Pk) will be bounded by constants independent
of the dimension.

Using these notations, we have

∂λf(λ,z)=Tr

(
P2(λ

2vv⊤+2λDξv⊤+Dξξ⊤D⊤)+P1(2λvv
⊤+2Dξv⊤)

)
.

∂2
λf(λ,z)=Tr

(
P3(λ

2vv⊤+2λDξv⊤+Dξξ⊤D⊤)+4P2(λvv
⊤+Dξv⊤)+2P1vv

⊤
)
.

∂3
λf(λ,z)=Tr

(
P4(λ

2vv⊤+2λDξv⊤+Dξξ⊤D⊤)+6P3(λvv
⊤+Dξv⊤)+6P2vv

⊤
)
.
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A.3. Pointwise consistency analysis. To apply Proposition 2.1, it is neces-
sary to show that the gradient of F̂n(λ) is a good approximation of ∂F (λ) at λ=λ∗
with high probability. This is actually true for general λ.

To show this, we start by showing that the sample covariances are consistent.

Lemma A.1. Let zi=(zi1,. ..,z
i
d)

⊤∈Rd with zil i.i.d. random variables in i=1,. ..,n
as well as in l=1,. ..,d with Ez11 =0, E|z11 |2=1 and

sup
p≥1

p−1/2E[|z11 |p]1/p≤Cv,

and ξ=(ξi1,. ..,ξ
i
K)⊤∈RK with ξil i.i.d. random variables in i=1,. ..,n as well as in

l=1,. ..,K with Eξ11 =0, E|ξ11 |2=1 and

sup
p≥1

p−1/2E[|ξ11 |p]1/p≤Cξ.

For

Cn=
1

n

n∑
i=1

ziz
⊤
i , Bn=

1

n

n∑
i=1

ziξ
⊤
i ,

the following holds

P(|Tr(ΣCn)−Tr(Σ)|>t)≤2exp

(
−cnmin

(
t2

∥Σ∥2F
,

t

∥Σ∥

))
,

P(|Tr(ΣBn)|>t)≤2exp

(
−cnmin

(
t2

∥Σ∥2F
,

t

∥Σ∥

))
.

Moreover, there is a universal constant C such that

E|Tr(ΣCn)|2≤2Tr(Σ)2+C

(
∥Σ∥3F
n3/2

+
∥Σ∥3

n3

)
.

E|Tr(ΣBn)|2≤C

(
∥Σ∥3F
n3/2

+
∥Σ∥3

n3

)
.

Proof. Note

Tr(Σziz
⊤
i )=z⊤i Σzi.

We define the block-diagonal matrix DΣ∈Rnd×nd which consists of n blocks of Σ, and
Z=[z1;z2;·· · ;zn]∈Rnd. Note that

Tr(ΣCn)=Z⊤( 1nDΣ)Z.

By the Hanson–Wright inequality [47, Theorem 1.1], we obtain for some constants c0
and K,

P(|Tr(ΣCn)−Tr(Σ)|>t)≤2exp

(
−c0min

(
t2

K4∥ 1
nDΣ∥2F

,
t

K2∥ 1
nDΣ∥

))
.

Note that

∥ 1
nDΣ∥2F =

1

n2
∥DΣ∥2F =

1

n
∥Σ∥2F ,
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∥ 1
nDΣ∥=

1

n
∥DΣ∥=

1

n
∥Σ∥.

So the first assertion is proved. For the second claim we first note that

Tr(Σξiz
⊤
i )=z⊤i Σξi=

[
z⊤i ,ξ⊤i

]
Q

[
zi
ξi

]
, Q=

[
0 Σ
0 0

]
∈R(d+dy)×(d+dy).

Consider then a block-diagonal matrix DQ∈Rn(d+y)×n(d+dy) which consists of n blocks
of Q, and Z=[z1;ξ1;z2;ξ2; ·· · ;zn;ξn]∈Rn(d+dy). Then we can verify that

Tr(ΣBn)=Z⊤( 1nDQ)Z.

By the Hanson–Wright inequality [47, Theorem 1.1], we have

P(|Tr(ΣBn)|>t)≤2exp

(
−cmin

(
t2

K4∥ 1
nDQ∥2F

,
t

K2∥ 1
nDQ∥

))
.

Again we note that

∥ 1
nDQ∥2F =

1

n2
∥DQ∥2F =

1

n
∥Σ∥2F ,

∥ 1
nDQ∥=

1

n
∥DQ∥=

1

n
∥Q∥,

and finally end up with

P(|Tr(ΣBn)|>t)≤2exp

(
−cnmin

(
t2

K4∥Σ∥2F
,

t

K2∥Σ∥

))
.

For the bounds of second moments, let T =Tr(ΣCn)−Tr(Σ), then

E|Tr(ΣCn)|2≤2|Tr(Σ)|2+2ET 2.

Then note that by the probability bound,

ET 2≤
∫ ∞

0

t2P(|T |>t)dt

≤2

∫
t2 exp

(
−cnmin

(
t2

∥Σ∥2F
,

t

∥Σ∥

))
dt

≤2

∫ ∞

0

t2exp

(
−cn

t2

∥Σ∥2F

)
dt+2

∫ ∞

0

t2 exp

(
−cn

t

∥Σ∥

)
dt.

We let s= t
√
cn

∥Σ∥F
and find∫ ∞

0

t2 exp

(
−cn

t2

∥Σ∥2F

)
dt=

∥Σ∥3F
(cn)

3
2

∫ ∞

0

s2 exp
(
−s2

)
ds.

We then let s= cn t
∥Σ∥ and find∫ ∞

0

t2 exp

(
−cn

t

∥Σ∥

)
dt=

∥Σ∥3

(cn)3

∫ ∞

0

s2 exp(−s)ds.
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So there is a universal constant C such that

ET 2≤ C

2

(
∥Σ∥3F
n3/2

+
∥Σ∥3

n3

)
.

The bound for E|Tr(ΣBn)| follows identically.

By the previous result we obtain the following convergence results.

Lemma A.2. The empirical loss function F̂n is C3 in λ, and for any λ∈ (λl,λr), there
exist constants C, c>0 such that for all ε>0

P(|∂λF̂n(λ)−(1−λ/λ∗)Tr(P2DD⊤)|>ε)≤C exp(−ncmin{ε,ε2}),

and

P(|∂2
λF̂n(λ)−Tr

(
(
λ2

λ∗
−λ)P3+(

4λ

λ∗
−3λ)P2+

2

λ∗
P1

)
|>ε)≤C exp(−cnmin{ε,ε2}).

Under Assumption 2.2, both C and c are independent of ambient dimension d.

Proof. Since F̂n(λ)=
1
n

∑n
i=1f(λ,ζi), if we let

Cv =
1

n

n∑
i=1

viv
⊤
i , B=

1

n

n∑
i=1

ξiv
⊤
i , Cξ =

1

n

n∑
i=1

ξiξ
⊤
i ,

then

∂λF̂n(λ)=Tr

(
P2(λ

2Cv+2λDB+DCξD
⊤)+P1(2λCv+2DB)

)
(A.2)

=Tr

(
(P2λ

2+2λP1)Cv+(2P1+2λP2)DB+D⊤P2DCξ

)
(A.3)

We note that

E∂λF̂n(λ)=Tr

(
P2(λ

2/λ∗I+DD⊤)+2λP1/λ∗

)
=Tr

(
−(Q2

λC0Qλ+QλC0Q
2
λ)(

λ2

λ∗
I+DD⊤)+2 λ

λ∗
QλC0Qλ

)
=Tr

(
(1− λ

λ∗
)P2DD⊤

)
.

Moreover, in (A.2), ∂λF̂n can be written as sum of Tr(Σ1Cv),Tr(Σ2B) and
Tr(Σ3Cξ) for certain matrices Σ such as

Σ1=(P2λ
2+2λP1), Σ2=(2P1+2λP2)D, Σ3=D⊤P2D.

Note that for any random variables Ak

P

(
|

m∑
k=1

(Ak−EAk)|>ε

)
≤

m∑
k=1

P(|Ak−EAk|>ε/m).

Therefore we can apply Lemma A.1 at each trace term, and bound its probability of
deviating from its mean. Therefore, we can find constants C1,c such that

P(|∂λF̂n(λ)−(1−λ/λ∗)Tr(P2DD⊤)|>ε)≤C1 exp
(
−cnmin(ε2,ε)

)
.
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If Assumption 2.2 is assumed, note that

∥Qλ∥≤
1

λ
∥C0∥≤

1

λl
∥C0∥,

for all λ≥λl respectively. So using norm inequalities ∥AB∥≤∥A∥∥B∥ and ∥AB∥F ≤
∥A∥∥B∥F , we can verify that all Pi,i=1,. ..,4 have dimension independent operator
norm and Frobenius norms. Therefore all Σi,i=1,. ..,3 have dimension independent
operator norm and Frobenius norms. So C1 and c are dimension independent.

For the second claim,

∂2
λf(λ,z)=Tr

(
P3(λ

2vv⊤+2λDξv⊤+Dξξ⊤D⊤)+4P2(λvv
⊤+Dξv⊤)+2P1vv

⊤
)
.

we find

∂2
λF̂n(λ)=Tr

(
(λ2P3+4λP2+2P1)Cv+(2λP3+4P2)DB+D⊤P3DCξ

)
. (A.4)

Therefore,

E∂2
λF̂n(λ)=Tr

(
(λ2P3+4λP2+2P1)/λ∗+DD⊤P3

)
.

The deviation probability can also be obtained by analyzing matrices

Σ′
1=(λ2P3+4λP2+2P1), Σ′

2=(2λP3+4P2)D, Σ′
3=D⊤P3D.

Note that

Tr(Q−1
λ P3)=Tr(2Q2

λC0Qλ+Q2
λC0Qλ+QλC0Q

2
λ+2QλC0Q

2
λ)=−3P2.

Tr(λP2+2P1)=Tr((Q−1
λ −λI)Q2

λC0Qλ+QλC0Q
2
λ(Q

−1
λ −λI))=−Tr(DD⊤P2).

So the average can also be written as

E∂2
λF̂n(λ)=Tr

(
(λ(λI+DD⊤)P3+4λP2+2P1)/λ∗+(1−λ/λ∗)DD⊤P3

)
=Tr

(
(−3λP2+4λP2+2P1)/λ∗+(1−λ/λ∗)DD⊤P3

)
=Tr

(
−DD⊤P2/λ∗+(1−λ/λ∗)DD⊤P3

)
=Tr

(
DD⊤((1−λ/λ∗)P3−P2/λ∗)

)
.

Likewise, we can obtain

∂3
λF̂n(λ)=Tr

(
(λ2P4+6λP3+6P2)Cv+(2λP4+6P2)DB+D⊤P4DCξ

)
,

and

∂3
λF̂n(λ)=Tr

(
(λ2P4+6λP3+6P2)/λ∗+D⊤P4D

)
. (A.5)

Remark A.1. It is worthwhile to note that

∂2
λF (λ)=E∂2

λF̂n(λ)=Tr
(
DD⊤((1−λ/λ∗)P3−P2/λ∗)

)
,

is not always positive, and it can be negative if λ is very large. In other words, F is
not convex on the real line. Therefore, it is necessary to introduce a local parameter
domain where F is convex inside.
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A.4. Consistency analysis within an interval. To apply Proposition 2.1, it
is also necessary to show that the F̂n(λ) is strongly convex in a local region/interval.
This can be done using a chaining argument in probability theory.

First, we show that the empirical loss function has bounded derivatives with high
probability.

Lemma A.3. There exists an L>0 and c that only depend on Tr(C0),∥C0∥F and ∥D∥
such that the following holds true

P
(

max
λl≤λ≤λu

|∂k
λF̂n(λ)|>L,k=1,2,3

)
≤6exp(−nc).

Under Assumption 2.2, L and c are dimension-independent constants.

Proof. Recall that ∥Qλ∥≤ 1
λl
. From (A.2), (A.4) and (A.5), and Lemma A.4, we

have

P( max
λl≤λ≤λu

|∂k
λF̂n(λ)−EF̂n(λ)|>t)≤2exp

(
−cnmin

(
t2

∥Σk∥2F
,

t

∥Σk∥

))
,

for each k=1,2,3. So using union bound we find that

P( max
λl≤λ≤λu

|∂k
λF̂n(λ)−EF̂n(λ)|>t,k=1,2,3)≤6exp

(
−cnmin

(
t2

∥Σk∥2F
,

t

∥Σk∥

))
.

Here each Σk consists of matrices of form PjS or SPj where j=1,2,3,4 and S= I,D
or DD⊤. Then because

∥PjS∥≤∥Pj∥∥S∥≤
∥C0∥∥S∥
λj+1
l

, ∥PjS∥F ≤ ∥C0∥F ∥S∥
λj+1
l

.

So we see that c can depend on ∥C0∥≤Tr(C0),∥C0∥F and ∥D∥. Meanwhile, E∂k
λF̂n is

a linear sum of some Tr(Pj). While

|Tr(Pj)|≤ ( 2
λl
)j+1Tr(C0).

So L can also be taken as a constant that depends only on Tr(C0),∥C0∥F and ∥D∥.
This concludes our proof.

Next, we show that if a function is bounded at each fixed point with high probability,
it is likely to be bounded on a fixed interval if it is Lipschitz.

Lemma A.4. Suppose fn(λ) is a C1 function of λ and the following is true for some
interval I=[λl,λu]

P(fn(λ)>a)≤C exp(−nca) ∀λl≤λ≤λu.

Then

P
(
max
λ∈I

fn(λ)>2a,max
λ∈I

|∂fn(λ)|≤M

)
≤a−1|λu−λl|MC exp(−nca).

Alternatively, suppose fn(λ) is a C1 function of λ and the following is true for some
interval I

P(fn(λ)<a)≤ exp(−nca) ∀λl≤λ≤λu.
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Then

P
(
min
λ∈I

fn(λ)<a/2,max
λ∈I

|∂fn(λ)|≤M

)
≤2a−1|λu−λl|MC exp(−nca).

Proof. Pick λi=λl+
2a
|M | i for i=0,. ..,⌊ |λu−λl|M

2a ⌋. Then λl≤λi≤λu, and for any

λl≤λ≤λu, |λ−λi|≤ a
M for some λi. Note that if |∂fn(λ)|≤M , and fn(λi)≤a, for all

i, then for any λl≤λ≤λu,

fn(λ)≤fn(λi)+(λi−λ)∂λfn(λ)≤a+
a

M
M =2a.

Consequentially, by union bound

P
(
min
λ∈I

fn(λ)>2a,max
λ∈I

|∂fn(λ)|≤M

)
≤P
(
fn(λi)>a for some i

)
≤a−1|λu−λl|MC exp(−nca).

The same argument can be applied to show the second claim, except that we choose
λi= c+ a

|M | .

The next lemma indicates that the loss function is strongly convex within D with
high probability.

Lemma A.5. Assume that the largest eigenvalue of DD⊤ is λD and let λ∈D :=
[ 56λ∗,

7
6λ∗]. Then for some constants c,C >0,

P(min
λ∈D

∂2
λF̂n(λ)<H∗/4)≤

C

min{H∗,1}
exp

(
−cnmin(H2

∗ ,H∗,1)

)
,

with

H∗=H∗(λD,λ∗)=
λ2
D

(λD+2λ∗)2λ∗∥A⊤Γ−1A∥
>0.

Proof. Denote

A=DD⊤((1−λ/λ∗)P3−P2/λ∗),

and vi being the eigenvector of DD⊤ corresponds to eigenvalue λi. Note that v is also
the eigenvector Qλ with eigenvalue (λi+λ)−1, then

v⊤i Avi=

(
6(1−λ/λ∗)

(λi+λ)3
+

2

(λi+λ)2λ∗

)
λiv

⊤
i C0vi.

When λ∈D, if 7/6λ∗≥λ>λ∗

6(1−λ/λ∗)

(λi+λ)3
+

2

(λi+λ)2λ∗
≥− 1

(λi+λ)2λ
+

2

(λi+λ)2λ∗
≥ 1

(λi+λ)2λ∗
.

If λ≤λ∗, the same relation also holds. Then note that if vi are all the eigenvectors of
DD⊤ with eigenvalues λi, while λi are decreasing,

TrA=

d∑
i=1

v⊤i Avi≥
d∑

i=1

λiv
⊤
i C0vi

(λi+2λ∗)2λ∗
=

λ1v
⊤
1 C0v1

(λ1+2λ∗)2λ∗
.
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Finally, note that

λD=λ1=v⊤1 DD⊤v1=v⊤1 C
1/2
0 A⊤Γ−1AC

1/2
0 v1≤∥A⊤Γ−1A∥∥C1/2

0 v1∥2.

So

TrA≥ λ2
D

(λD+2λ∗)2λ∗∥A⊤Γ−1A∥
=H∗.

for λ∈D and we set ε=H∗/2>0 to apply Corollary A.2. We obtain some C1,c

C1exp
(
−cnmin(H2

∗ ,H∗)
)

≥P

(
|∂2

λF̂n(λ)−
2

λ∗
Tr
(
(3λ∗I−2λI+DD⊤)DD⊤Q4

λ

)
|>H∗/2

)

≥P

(
∂2
λF̂n(λ)<

2

λ∗
Tr
(
(3λ∗I−2λI+DD⊤)DD⊤Q4

λ

)
−H∗/2

)
≥P(∂2

λF̂n(λ)<H∗/2).

By Lemma A.3 there exists an L>0 and c1 such that

P
(
max
λ∈D

|∂3
λF̂n(λ|)>L

)
≤6exp(−nc1),

and by Lemma A.4 it holds true that

C2

min(H∗,1)
exp

(
−cnmin(H2

∗ ,H∗,1)

)
≥P
(
min
λ∈D

∂2
λF̂n(λ)<H∗/4,max

λ∈D
|∂3

λF̂n(λ)|≤M

)
,

for some C2>0. We define the sets An :={minλ∈D∂2
λF̂n(λ)<H∗/4} and Bn :=

{maxλ∈D |∂3
λF̂n(λ)|≤L}, and we obtain

P(min
λ∈D

∂2
λF̂n(λ)<H∗/4)=P(An |Bn)P(Bn)+P(An |B∁

n)P(B∁
n)

≤P(An∩Bn)+P(B∁
n)

≤ C

min(H∗,1)
exp

(
− cnmin(H2

∗ ,H∗,1)
)
.

The last lemma indicates that the empirical loss function is unlikely to have local
minima outside [ 23λ∗,

4
3λ∗].

Lemma A.6. Assume again that the largest eigenvalue of DD⊤ is λD. Let

L∗=
2λ2

D

3(λD+λu)3∥A⊤Γ−1A∥
.

There are constants c,C such that

P

 min
λu≥λ>

4
3λ∗

∂λF̂n(λ)<L∗/4

≤ C

min{L∗,1}
exp

(
−cnmin

(
L2
∗,L∗,1

))
,
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and

P

(
min

2
3λ∗≥λ>λl

∂λF̂n(λ)>−L∗/4

)
≤ C

min{L∗,1}
exp

(
−cnmin

(
L2
∗,L∗,1

))
.

Proof. We first note that with v being the leading eigenvector of DD⊤,

−Tr(P2DD⊤)≥v⊤(Q2
λC0Qλ+QλC0Q

2
λ)v≥2λD

v⊤C0v

(λD+λu)3

≥ 2λ2
D

(λD+λu)3∥A⊤Γ−1A∥
=:3L∗.

For λ> 4
3λ∗ we have

(1−λ/λ∗)Tr(P2DD⊤)≥L∗.

We set ε=L∗/2 to apply Lemma A.2 and obtain

C exp
(
−ncmin(L2

∗,L∗)
)
≥P(|∂λF̂n(λ)−(1−λ/λ∗)Tr(Q

3
λ)|>L∗/2)

≥P(∂λF̂n(λ)< (1−λ/λ∗)Tr(Q
3
λ)−L∗/2)

≥P(∂λF̂n(λ)<L∗/2).

Similarly as in Lemma A.5, we use Lemma A.3 and Lemma A.4 to obtain the first
assertion by using

(1−λ/λ∗)Tr(P2DD⊤)≤−L∗<0,

for λ< 2
3λ∗.

A.5. Summarizing argument. Finally, we are ready to prove Theorem 2.2.

Proof. (Proof of Theorem 2.2.) Denote D=[ 23λ∗,
4
3λ∗],

H∗=
λ2
D

(λD+2λ∗)2λ∗∥A⊤Γ−1A∥
>0,

and the events

B={λl<λ̂n<λu}, An={λ̂n∈D,∂2
λF̂n(λ)≥ 1

4H∗ for all λ∈D}.

First we decompose

P(|λ̂n−λ∗|>ε,B)= P(|λ̂n−λ∗|>ε,B |An) ·P(An)

+ P(|λ̂n−λ∗|>ε,B |A∁
n) ·P(A∁

n)

≤ P(|λ̂n−λ∗|>ε,B |An)+P(B∩A∁
n).

In the last step we have used P(λ̂n≤λu)=1. By Proposition 2.1

P(|λ̂n−λ∗|>ε,B |An)≤P
(
|∂λF̂n(λ∗)−∂λF (λ∗)|>

1

4
H∗ϵ,B

)
=P

(
|∂λF̂n(λ∗)|>

1

4
H∗ϵ,B

)
,
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which can be bounded by Lemmas A.2 and A.4

P(|λ̂n−λ∗|>ε |An)≤C1exp(−nc1min{ϵ,ϵ2}),

for some C1,c1.
We bound the probability P(A∁

n) by

P(B∩A∁
n)≤P(B,λ̂n /∈D)+P({∂2

λF̂n(λ)≥H∗/4 for all λ∈D}∁),

and study both terms separately. Note first, by Lemma A.6, for some constants C2,c2>0
the following holds

P(B,λ̂n /∈D)≤ P(∂λF̂n(λ)=0 for some λ∈ (λl,λu)\D)

≤ C2 exp(−c2n).

Second, by Lemma A.5, for some constants C3,c3>0 we obtain

P({∂2
λF̂n(λ)≥H∗/4 for all λ∈D}∁)≤C3exp(− c3n).

So there exist some constants C∗,c∗>0 such that

P(|λ̂n−λ∗|>ϵ)≤C∗ exp(−c∗nmin(ϵ,ϵ2)).

Proof. (Proof of Proposition 2.2.) As for the last claim, note that

uλ(y)=(A⊤Γ−1A+λC−1
0 )−1A⊤Γ−1y=C

1/2
0 Qλy,

moreover by the chain rule, there is a w between λ and λ∗, so that

∥Qλ−Qλ∗∥= |λ−λ∗|∥Q2
w∥≤

|λ−λ∗|
λ2
l

,

and

Ey∥uλ(y)−uλ∗(y)∥2=EyTr(C0(Qλ−Qλ∗)yy
T (Qλ−Qλ∗))

=Tr(C0(Qλ−Qλ∗)(AC0A
⊤/λ∗+Γ)(Qλ−Qλ∗))

≤ |λ−λ∗|2

λ4
l

∥AC0A
⊤/λ∗+Γ∥Tr(C0).

This concludes our proof.

Appendix B. Online consistency analysis.

B.1. Stochastic gradient decent. We start by verifying Lemma 3.2.
Proof. (Proof of Lemma 3.2.) We apply the implicit function theorem to prove

this statement. For fixed y∈RK , we define the function

φ(λ,u) :=∇uΨ(λ,u,y).

Since (λ,u) 7→Ψ(λ,u,y) is strictly convex, we have that for all (λ,u) near (λ0,uλ0
) the

Jacobian of φ w.r.t. u is invertible, i.e.

Duφ(λ,u)=∇2
uΨ(λ,u,y)>0.
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Set λ̄∈Rd arbitrary, then for ū=uλ̄(y) it holds true that

φ(λ̄,ū)=0,

and by the implicit function theorem there exists an open neighborhood D⊂Rd of λ0

with λ̄∈D such that there exists a unique continuously differentiable function Ū :D→
Rd with Ū(λ̄)= ū and

φ(λ,Ū(λ))=0,

for all λ∈Λ, i.e. Ū maps all λ∈Λ to the corresponding regularized solution Ū(λ)=
uλ(y). Further, the partial derivatives of Ū are given by

∂Ū

∂λi
(λ)=−

[
Duφ(λ,Ū(λ))

]−1
[
∂φ

∂λi
(λ,Ū(λ))

]
.

Since the choice of λ̄∈Rd is arbitrary, it follows that λ 7→uλ(y) is continuously differ-
entiable with derivative given by

∂λuλ(y)=−
(
∂2
u [Ψ(λ,uλ(y),y)]

)−1
∂2
λu [Ψ(λ,uλ(y),y)].

The computation of ∂λf can be obtained by the chain rule.

B.2. General consistency analysis framework.
Proof. (Proof of Proposition 3.1.)
Note that

∆k+1=χ(λk−βk∂̃λf(λk,Zk))−λ∗,

and apply Lemma 3.1

|∆k+1|2= |χ
(
λk−βk∂̃λf(λk,Zk)

)
−λ∗|2≤|λk−βk∂̃λf(λk,Zk)−λ∗|2

= |∆k−βk∂̃λf(λk,Zk)|2

= |∆k−βk∂λF (λk,Zk)−βkδk−βkξk|2,

where

δk=Ek∂̃f(λk,Z)−∂F (λk), ξk= ∂̃λf(λk,Zk)−Ek∂̃λf(λk,Z),

is the bias and noise in the stochastic gradient, we denote the expectation conditioned
on information available at step k as Ek and define the first exit time of D by τ =inf{k≥
0 |λk ∈D}. Next, we note that

Ek|∂f(λk,Zk)|2= |∂λF (λk)+δk|2+Ek|ξk|2.

So if τ ≥k,

Ek|∆k+1|2≤|∆k|2−2βk∆
T
k (∂λF (λk)+δk)+β2

k|∂λF (λk)+δk|2+Ek|ξk|2

≤|∆k|2−2βk∆
T
k ∂λF (λk)+2βk|∆k||δk|+β2

k(a+b|∆k|2)

≤|∆k|2−2cβk|∆k|2+
1

2
cβk|∆k|2+

2

c
βk|δk|2+β2

ka+bβ2
k|∆k|2

≤ (1−1.5cβk+bβ2
k)|∆k|2+(aβk+2αk/c)βk.
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Since βk<c/2b, we have

Ek1τ≥k+1|∆k+1|2≤Ek1τ≥k|∆k+1|2≤1τ≥k(1−cβk)|∆k|2+(aβk+2αk/c)βk.

Let Qk=1τk≥k|∆k|2, then we just derived that

EQk+1≤ (1−cβk)EQk+(aβk+2αk/c)βk.

Therefore by Gronwall’s inequality

EQn≤a

n∑
k=1

 n∏
j=k+1

(1−cβj)β
2
k

+
2

c

n∑
k=1

 n∏
j=k+1

(1−cβj)βkαk

+exp

(
−c

n∑
j=1

βj

)
EQ0.

(B.1)

Next we look at the second term of (B.1). Note that when αk≤α0, then

2

c

n∑
k=1

n∏
j=k+1

(1−cβj)βkαk≤
α0

c2

n∑
k=1

n∏
j=k+1

(1−cβj)cβk

≤ α0

c2

n∑
k=1

 n∏
j=k+1

(1−cβj)−
n∏

j=k

(1−cβj)

≤ α0

c2
.

In this case, (B.1) becomes

EQn≤a

n∑
k=1

 n∏
j=k+1

(1−cβj)β
2
k

+
α0

c2
+exp

−c

n∑
j=1

βj

EQ0,

and if αk≤Dβk, then (B.1) can be simplified as

EQn≤ (a+D/c)

n∑
k=1

 n∏
j=k+1

(1−cβj)β
2
k

+exp

−c

n∑
j=1

βj

EQ0.

In both cases, to show our claim, we just need to show

n∑
k=1

 n∏
j=k+1

(1−cβj)β
2
k

≤2Cn, exp

−c

n∑
j=1

βj

≤Cn.

Let k0 be the minimizer of

k0=argmin
k≤n

max{
n∏

j=k+1

(1−cβj),aβk/c}.

Then note that,

k0∑
k=1

n∏
j=k+1

(1−cβj)β
2
k ≤

k0∑
k=1

n∏
j=k0+1

(1−cβj)β
2
k

≤
n∏

j=k0+1

(1−cβj)

∞∑
k=1

β2
k ≤Cn.
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Also

n∑
k=k0+1

n∏
j=k+1

(1−cβj)β
2
k ≤

1

c
βk0

k0∑
k=1

n∏
j=k+1

(1−cβj)cβk

≤ 1

c
βk0

k0∑
k=1

 n∏
j=k+1

(1−cβj)−
n∏

j=k

(1−cβj)


≤ 1

c
βk0 =Cn.

The sum of the previous two inequalities leads to

n∑
k=1

 n∏
j=k+1

(1−cβj)β
2
k

≤2Cn.

Finally

exp(−c

n∑
j=1

βj)EQ0≤ exp(−c

n∑
j=k0+1

βj)EQ0≤Cn.

To see that Cn converges to zero, simply let

kn=max
k


k∏

j=1

(1−cβj)>

√√√√ n∏
j=1

(1−cβj)

.

Because
∏n

j=1(1−cβj) decays to zero when n→∞, so kn will increase to ∞, and βkn

will decay to zero. Meanwhile,

Cn≤min


n∏

j=k+1

(1−cβj),βkn

≤min


√√√√ n∏

j=1

(1−cβj),βkn

,

which will decay to zero when n→∞.

B.3. Application to linear inverse problems.
Proof. (Proof of Theorem 3.1.) We will set D=Λ=[λl,λu]. Then because χ

always brings λk back into D, the event A always happens.
Recall that

∂λf(λ,z)=Tr

(
P2(λ

2vv⊤+2λDξv⊤+Dξξ⊤D⊤)+P1(2λvv
⊤+2Dξv⊤)

)
.

∂2
λf(λ,z)=Tr

(
P3(λ

2vv⊤+2λDξv⊤+Dξξ⊤D⊤)+4P2(λvv
⊤+Dξv⊤)+2P1vv

⊤
)
.

∂3
λf(λ,z)=Tr

(
P4(λ

2vv⊤+2λDξv⊤+Dξξ⊤D⊤)+6P3(λvv
⊤+Dξv⊤)+6P2vv

⊤
)
.

(B.2)

We have seen in the proof of Lemma A.6, that

−∂λF (λ)=(λ/λ∗−1)Tr(P2DD⊤).
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Multiplication with (λ−λ∗) gives

−(λ−λ∗)∂λF (λ)=(λ−λ∗)
2Tr(P2D

TD/λ∗).

Note that if v is the eigenvector of DD⊤ with maximum eigenvalue λD

Tr(P2DD⊤/λ∗)≥v⊤P2DD⊤v/λ∗=
λDv⊤C0v

λ∗(λD+λ)3
≥ λ2

D

λ∗(λD+λu)3∥A⊤Γ−1A∥
.

So if we take c as

c=
2λ2

D

λ∗(λD+λu)3∥A⊤Γ−1A∥
,

(3.9) is verified.
Next, we note that by Taylor’s theorem, there are some wk,w

′
k between λk−hk and

λk+hk such that

|∂̃λf(λk,Z)−∂λf(λk,Z)|= 1

6
h2
k|∂3

λ3f(wk,Z)+∂3
λ3f(w′

k,Z)|.

Therefore

E|∂̃λf(λk,Z)−∂λf(λk,Z)|2= 1

18
h4
k(E|∂3

λ3f(wk,Z)|2+E|∂3
λ3f(w′

k,Z)|2).

We will show that there is a dimension-free constant Bλ that may depend on λ such
that

E|∂3
λ3f(wk,Z)|2≤Bλ, and E|∂3

λ3f(w′
k,Z)|2≤Bλ. (B.3)

This comes from the fact that each component of ∂3
λ3f(wk,Z) can be written as Tr(ΣCv)

or Tr(ΨB) or Tr(ΣCξ), with some Σ and Ψ. Here we define

Cv =vv⊤, B= ξv⊤, Cξ = ξξ⊤.

Then Lemma A.4 with n=1 shows that for some universal constant C

E(ΣCv)≤2|Tr(Σ)|2+C(∥Σ∥3F +∥Σ∥3).

E(ΣCξ)≤2|Tr(Σ)|2+C(∥Σ∥3F +∥Σ∥3).

E(ΨB)≤C(∥Ψ∥3F +∥Ψ∥3).

Meanwhile, the Σ matrices in ∂3
λ3f(wk,Z) are of the form Pj or D

⊤PjD, which we know
have bounded operator, trace and Frobenius norms, from the proof of Proposition 3.1,
and the Ψ matrix is of the form PjD, so ∥PjD∥F ≤∥Pj∥F ∥D∥,∥PjD∥≤∥Pj∥∥D∥. So
we can conclude that there is a dimension-free constant B, such that (B.3) holds.

Therefore (3.11) is verified by Jensen’s inequality

|E∂̃λf(λk,Z)−∂λF (λk)|2= |E∂̃λf(λk,Z)−E∂λf(λk,Z)|2

≤E|∂̃λf(λk,Z)−∂λf(λk,Z)|2≤ 1

9
h4
kBλ.

Finally, because λ∈ [λl,λu], so Bλ can be bounded as well.
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To prove that (3.10) is satisfied, note that by Young’s inequality

E|∂̃λf(λk,Z)|2≤2E|∂̃λf(λk,Z)−∂λf(λk,Z)|2+2E|∂λf(λk,Z)|2.

Since we have already bounded E|∂̃λf(λk,Z)−∂λf(λk,Z)|2, it suffices to bound
E|∂λf(λk,Z)|2 by a dimension-independent constant Aλ. But each component of
∂λf(wk,Z) can be written as Tr(ΣCv) or Tr(ΨB) or Tr(ΣCξ), with some Σ and Ψ.
Then Lemma A.4 with n=1 shows that for some universal constant C

E(ΣCv)≤2|Tr(Σ)|2+C(∥Σ∥3F +∥Σ∥3).

E(ΣCξ)≤2|Tr(Σ)|2+C(∥Σ∥3F +∥Σ∥3).

E(ΨB)≤C(∥Ψ∥3F +∥Ψ∥3).

Meanwhile, the Σ matrices in ∂3
λ3f(wk,Z) are of the form Pj or D⊤PjD, which we

know have bounded operator, trace and Frobenius norms and the Ψ matrix is of the
form PjD, so ∥PjD∥F ≤∥Pj∥F ∥D∥,∥PjD∥≤∥Pj∥∥D∥. So we can conclude that there
is a dimension-free constant Aλ, such that E|∂λf(λk,Z)|2≤Aλ. Finally, noting that
λ∈ [λl,λu], we have our conclusion.
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