NECESSARY CONDITIONS FOR BLOW-UP SOLUTIONS TO THE RESTRICTED EULER-POISSON EQUATIONS*

HAILIANG LIU ${ }^{\dagger}$ AND JAEMIN SHIN \ddagger

Abstract

In this work, we study the behavior of blow-up solutions to the multidimensional restricted Euler-Poisson equations which are the localized version of the full Euler-Poisson system. We provide necessary conditions for the existence of finite-time blow-up solutions in terms of the initial data, and describe the asymptotic behavior of the solutions near blow-up times. We also identify a rich set of the initial data which yields global bounded solutions.

Keywords. Restricted Euler-Poisson dynamics; Blow-up solutions; Asymptotic behaviors.
AMS subject classifications. 34C11; 35Q35.

1. Introduction and main results

In this paper, we consider the following ordinary differential equation (ODE) system

$$
\begin{align*}
& \lambda_{i}^{\prime}=-\lambda_{i}^{2}+\frac{k}{n}\left(\rho-c_{b}\right), \quad i=1,2, \cdots, n, \quad t>0, \tag{1.1a}\\
& \rho^{\prime}=-\rho \lambda, \quad \lambda=\sum_{i=1}^{n} \lambda_{i}, \tag{1.1b}\\
& \rho(0)=\rho_{0}>0, \quad \lambda_{i}(0)=\lambda_{i, 0}, \tag{1.1c}
\end{align*}
$$

where ' is the derivative in time t, k, c_{b} are positive parameters, and $n \geq 2$ is an integer. This system proposed in [15] is a localized version of the Euler-Poisson equations, hence called the restricted Euler-Poisson (REP) system in the literature. We assume that the initial data for λ_{i} are real and satisfy the order condition

$$
\begin{equation*}
\lambda_{1,0}=\cdots=\lambda_{J, 0}<\lambda_{J+1,0} \leq \cdots \leq \lambda_{n, 0} . \tag{1.1d}
\end{equation*}
$$

Here, we introduce a quantity $1 \leq J \leq n$ with which we characterize the number of the initial λ_{i} coinciding with $\lambda_{1,0}$. The order of λ_{i} 's is known to be preserved (see [14, 15] and Lemma 2.1). The purpose of this work is to identify necessary conditions for the existence of blow-up solutions to this REP system, and study the detailed solution behavior near the blow-up time.

To understand the physical meaning of each term, we recall the full Euler-Poisson equations for the velocity field \mathbf{u} and local density ρ,

$$
\begin{align*}
& \mathbf{u}_{t}+\mathbf{u} \cdot \nabla \mathbf{u}=k \nabla \Delta^{-1}\left(\rho-c_{b}\right), x \in \mathbb{R}^{n}, t>0, \tag{1.2a}\\
& \rho_{t}+\nabla \cdot(\rho \mathbf{u})=0 \tag{1.2b}
\end{align*}
$$

where the constant k represents a repulsive $(k>0)$ or attractive $(k<0)$ force, and c_{b} denotes the background state. This system (1.2) describes the dynamic behavior of several important physical flows, including those for semi-conductors, plasma physics,

[^0]and the collapse of stars (see $[2,3,8,11,18,19]$). The existence and behaviors of solutions for (1.2) and related problems have been extensively studied under various assumptions; see, e.g., $[5,6,9,12,21]$ and references therein. In particular, in [15], Liu and Tadmor introduced the method of spectral dynamics, which serves as a powerful tool to study dynamics of the velocity gradient $M=\nabla \mathbf{u}$ along particle paths. Indeed, (1.2) can be converted into
\[

$$
\begin{aligned}
& M^{\prime}=-M^{2}+k \mathcal{R}\left[\rho-c_{b}\right], \\
& \rho^{\prime}=-\rho \operatorname{tr} M,
\end{aligned}
$$
\]

where ' is the convective derivative, $\partial_{t}+\mathbf{u} \cdot \nabla$, and \mathcal{R} is the Riesz matrix operator,

$$
\mathcal{R}[f]:=\nabla \otimes \nabla \Delta^{-1}[f] .
$$

It is the global nature of the Riesz matrix, $\mathcal{R}\left[\rho-c_{b}\right]$, which makes the issue of regularity for Euler-Poisson equations such an intricate question to solve, both analytically and numerically. In this paper we focus on the REP equation for M which was proposed in [15] by restricting attention to the local isotropic trace, $\frac{k}{n}\left(\rho-c_{b}\right) I_{n \times n}$, of the global coupling term $k \mathcal{R}\left[\rho-c_{b}\right]$, i.e.,

$$
\begin{align*}
& M^{\prime}=-M^{2}+\frac{k}{n}\left(\rho-c_{b}\right) I_{n \times n} \tag{1.3a}\\
& \rho^{\prime}=-\rho \operatorname{tr} M \tag{1.3b}
\end{align*}
$$

This is a matrix Ricatti equation for the $n \times n$ matrix M, coupled with the density equation, which should mimic the dynamics of $(\rho, \nabla \mathbf{u})$ in the full Euler-Poisson equations. The REP system (1.1) for the eigenvalue λ_{i} of M follows from (1.3). We note that the REP system [15] is to the full Euler-Poisson equations what the restricted Euler (RE) model is to the full Euler equations, while the RE system is known to be useful in understanding the local topology of the Euler dynamics; we refer the reader to $[1,4,7,22]$.

The existence of a critical threshold phenomenon associated with this 2D REP model with zero background, $c_{b}=0$, was first identified in [15]. A precise description of the critical threshold for the 2D REP system, with both zero and nonzero background charges, was given in [16]. These results have been extended to multi-dimensional REP equations by Lee and Liu in [14]. Lee identified upper-thresholds for finite time blow-up solutions to an improved REP equation in two dimensions ([13]). It is worth mentioning that critical thresholds for restricted Euler equations were studied in [17] and [20].

In this work, we attempt to advance our understanding of the critical threshold phenomenon by providing necessary conditions for the existence of finite-time blowup solutions to the REP system (1.1). Our results thus provide a complement to the existing results in $[13,15,16]$ for REP systems.

In order to see the subtleness of the problem, we recall that a movable essential singularity cannot be achieved for a first-order scalar differential equation $u^{\prime}=F(t, u)$, as long as F is a rational function of u with coefficients that are algebraic functions of $t([10])$. However, this is not the case for the system of equations considered here. In other words, the singularity types of solutions λ and ρ of (1.1) are not known a priori. This is one of the main difficulties with this problem, because we cannot simply utilize some balance equations to analyze the behavior of solutions near a singular point. To overcome this difficulty, we transform the Riccati-type equations (1.1a) into secondorder linear differential equations for

$$
u_{i}(t)=e^{\int_{0}^{t} \lambda_{i}(s) d s} .
$$

By analyzing the general solution to the second-order differential equation, we are able to reveal the behavior of u_{i}, which also provides information on the behavior of λ_{i}^{\prime}. Indeed, we can characterize the asymptotic behaviors of λ_{i} and ρ near the blow-up time by the gap of the initial data $\lambda_{i, 0}$ together with ρ_{0}.

The quantity J defined in (1.1d) is critical in terms of different solution behaviors of λ_{i}. We state our main results in the following.

Theorem 1.1. Suppose that the maximum interval of existence for (1.1) is $\left[0, t_{B}\right)$ for some $0<t_{B}<\infty$. Then

$$
\begin{gather*}
1 \leq J \leq \frac{n}{2} \quad \text { and } \tag{1.4}\\
t_{B} \geq \frac{1}{\omega} \arctan \left(\frac{\lambda_{1,0}}{\omega}\right)+\frac{\pi}{2 \omega}, \quad \omega:=\sqrt{k c_{b} / n} \tag{1.5}
\end{gather*}
$$

Moreover,

$$
\begin{align*}
& \lim _{t \rightarrow t_{B}^{-}} \lambda_{i}(t)=-\infty, \quad 1 \leq i \leq J, \tag{1.6a}\\
& \lim _{t \rightarrow t_{B}^{-}} \lambda_{i}(t)=\infty, \quad J<i \leq n \tag{1.6b}\\
& \lim _{t \rightarrow t_{B}^{-}} \rho(t)=\infty, \tag{1.6c}
\end{align*}
$$

and also

$$
\begin{gather*}
\lim _{t \rightarrow t_{B}^{-}} \lambda_{1}(t) e^{\int_{0}^{t} \lambda_{1}(s)+\lambda_{n}(s) d s}=-p \tag{1.7a}\\
\lim _{t \rightarrow t_{B}^{-}} \lambda_{n}(t) e^{\int_{0}^{t} \lambda_{1}(s)+\lambda_{n}(s) d s}=q \tag{1.7b}
\end{gather*}
$$

for some $0 \leq q \leq p$.
Remark 1.1. An interesting feature of the behavior of λ_{i} is that λ_{i} diverge to $-\infty$ if and only if $\lambda_{i, 0}=\lambda_{1,0}$ and all the other λ_{i} diverge to $+\infty$. Moreover, J cannot exceed $n / 2$ and in the case of $J \geq 3, J$ is strictly smaller than $n / 2$; see Theorem 1.2. The limits in (1.7) indicate how λ_{i} are connected through p and q, which are mainly characterized by the gap of the initial data $\lambda_{i, 0}$ together with ρ_{0}.

Our second theorem gives the detailed blow-up rates of solutions. We note that $\lambda_{i}(t)=\lambda_{1}(t)$ for $1 \leq i \leq J$ (see Lemma 2.1).
Theorem 1.2. Under the hypothesis in Theorem 1.1, the blow-up rates of singular solutions depend on the size of J, and can be made more precise as follows:
(i) If $J=1$, then $n \geq 2$ and

$$
\begin{aligned}
& \lim _{t \rightarrow t_{B}^{-}}\left(t_{B}-t\right) \lambda_{1}(t)=-1, \\
& \lambda_{i}(t)=\mathcal{O}\left(\left|\ln \left(t_{B}-t\right)\right|\right) \text { as } t \rightarrow t_{B}^{-}, \quad 2 \leq i \leq n, \\
& \rho(t)=\mathcal{O}\left(\frac{1}{t_{B}-t}\right) \text { as } t \rightarrow t_{B}^{-} .
\end{aligned}
$$

(ii) If $J=2$, then $n \geq 4$ and one of the following cases must hold:
(a) If $n \geq 5$, then

$$
\begin{aligned}
& \lim _{t \rightarrow t_{B}^{-}}\left(t_{B}-t\right) \lambda_{1}(t)=-1 \\
& \lim _{t \rightarrow t_{B}^{-}}\left(t_{B}-t\right) \lambda_{i}(t)=0, \lim _{t \rightarrow t_{B}^{-}} \int_{0}^{t} \lambda_{i}(s) d s=\infty, \quad 3 \leq i \leq n, \\
& \rho(t)=o\left(\frac{1}{\left(t_{B}-t\right)^{2}}\right) \text { as } t \rightarrow t_{B}^{-}
\end{aligned}
$$

(b) If $n=4$ and $\left(\lambda_{1,0}-\lambda_{3,0}\right)\left(\lambda_{1,0}-\lambda_{4,0}\right)=: A_{0}>k \rho_{0}$, then

$$
\begin{aligned}
& \lim _{t \rightarrow t_{B}^{-}}\left(t_{B}-t\right) \lambda_{1}(t)=-\frac{1}{2}-\frac{1}{2} \sqrt{\frac{A_{0}}{A_{0}-k \rho_{0}}} \\
& \lim _{t \rightarrow t_{B}^{-}}\left(t_{B}-t\right) \lambda_{i}(t)=-\frac{1}{2}+\frac{1}{2} \sqrt{\frac{A_{0}}{A_{0}-k \rho_{0}}}, \quad i=3,4 \\
& \rho(t)=\mathcal{O}\left(\frac{1}{\left(t_{B}-t\right)^{2}}\right) \text { as } t \rightarrow t_{B}^{-}
\end{aligned}
$$

(c) If $n=4$ and $A_{0}=k \rho_{0}$, then there exists $C>0$ such that

$$
\begin{aligned}
\lim _{t \rightarrow t_{B}^{-}}\left(t_{B}-t\right)^{2} \lambda_{1}(t) & =-C \\
\lim _{t \rightarrow t_{B}^{-}}\left(t_{B}-t\right)^{2} \lambda_{i}(t) & =C, \quad i=3,4, \\
\lim _{t \rightarrow t_{B}^{-}}\left(t_{B}-t\right)^{4} \rho(t) & =\frac{k}{4} C^{2}
\end{aligned}
$$

(iii) If $J \geq 3$, then $n>2 J$ and there exists $C>1$ such that

$$
\begin{aligned}
& \lim _{t \rightarrow t_{B}^{-}}\left(t_{B}-t\right) \lambda_{1}(t)=-C \\
& \lim _{t \rightarrow t_{B}^{-}}\left(t_{B}-t\right) \lambda_{i}(t)=C-1, \quad J+1 \leq i \leq n, \\
& \rho(t)=\mathcal{O}\left(\frac{1}{\left(t_{B}-t\right)^{2}}\right) \text { as } t \rightarrow t_{B}^{-} .
\end{aligned}
$$

Remark 1.2. Note that for each J specified in different cases, n has to be in a certain range so as to fulfill the requirement that the maximum interval of existence for (1.1) be finite.

In contrast to the finite-time breakdown, the multi-dimensional REP equations admit a large class of global bounded solutions. Our results are summarized below.
Theorem 1.3. If

$$
J>\frac{n}{2}
$$

or

$$
J \geq 3 \quad \text { and } \quad J=\frac{n}{2}
$$

then (1.1) has a global bounded solution.

This has improved upon some global existence results in [14], in particular Theorem 2.3 (corresponding to $n=3, J=3$) and Theorem 2.9 (corresponding to $J=n$) therein.

The remainder of this paper is organized as follows. In Section 2, we first show that no highly oscillating solution exists (see (2.2) for the definition of a highly oscillating solution). That is, we show that ρ and $\left|\lambda_{i}\right|$ diverge to ∞ for some i when (1.1) admits a finite-time blow-up solution. We also provide a proof of (1.5). In Section 3, we transform (1.1a) to a second-order linear differential equation, and demonstrate the solution behaviors of (1.7). To prove Theorem 1.2 using (1.7), we consider the subcases

$$
p>q \quad \text { and } \quad p=q .
$$

We study the case with $p>q$ in Section 4. Here, we show that the coefficients of leading singular order terms for λ_{1} and λ_{n} can be represented as $-p /(p-q)$ and $q /(p-q)$, respectively. We also conclude that this case yields (i), (a) and (b) of (ii), or (iii) in Theorem 1.2. The last section deals with the case where $p=q$, which implies (c) of (ii) in Theorem 1.2. The main difficulty in this case lies in that the leading singular terms of $-\lambda_{1}$ and λ_{n} are the same. For this reason, we have examined the second singular terms. We also provide explicit solutions to the REP system (1.1) assuming that $\lambda_{3,0}=\lambda_{4,0}$. We remark that (1.4) and (1.6) follow from Theorem 1.2.
Notation 1.1. Throughout the paper we write

$$
f(x)=\mathcal{O}(g(x)) \quad \text { as } x \rightarrow x_{0}^{-},
$$

if there are $M, \delta>0$ such that

$$
|f(x)| \leq M|g(x)| \quad \text { for all } x_{0}-x<\delta
$$

Similarly, we write

$$
f(x)=o(g(x)) \quad \text { as } x \rightarrow x_{0}^{-},
$$

if for any $\varepsilon>0$ there is $\delta>0$ such that

$$
|f(x)| \leq \varepsilon|g(x)| \quad \text { for all } x_{0}-x<\delta
$$

2. Non-oscillating solutions

Suppose that $\left[0, t_{B}\right)$ is the maximum interval of existence of solutions to an ordinary differential equation (ODE) $u^{\prime}=F(t, u)$. Then, either

$$
\begin{equation*}
\lim _{t \rightarrow t_{B}^{-}}|u(t)|=\infty, \tag{2.1}
\end{equation*}
$$

or

$$
\begin{equation*}
0<\limsup _{t \rightarrow t_{B}^{-}} u(t)-\liminf _{t \rightarrow t_{B}^{-}} u(t) . \tag{2.2}
\end{equation*}
$$

Here, we define $\infty-\infty=0$. We say that a solution blows up at a finite time if it satisfies (2.1), and is oscillating at a finite time if it satisfies (2.2). Note that $u(t)$ satisfying (2.1) may be oscillating in the standard sense, i.e., $u(t) \rightarrow \infty$ but $u^{\prime}(t) \ngtr 0$ (or $u(t) \rightarrow-\infty$ but $\left.u^{\prime}(t) \nless 0\right)$.

For the REP system (1.1), we can prove that there exist no finite-time oscillating solutions. More precisely, the following proposition holds.

Proposition 2.1. Suppose that the maximum interval of existence for (1.1) is $\left[0, t_{B}\right)$ for some $0<t_{B}<\infty$. Then, it holds for some i that

$$
\begin{equation*}
\lim _{t \rightarrow t_{B}^{-}}\left|\lambda_{i}(t)\right|=\infty \tag{2.3}
\end{equation*}
$$

Proof. If λ_{i} is assumed to be an oscillating solution of type (2.2), then there exists a sequence of disjoint intervals $\left(a_{m}, b_{m}\right) \subset\left(0, t_{B}\right)$ on which λ_{i} is decreasing and

$$
\begin{gather*}
\lim _{m \rightarrow \infty}\left(b_{m}-a_{m}\right)=0, \tag{2.4}\\
\lim _{m \rightarrow \infty}\left(\lambda_{i}\left(b_{m}\right)-\lambda_{i}\left(a_{m}\right)\right)<0, \tag{2.5}\\
\lim _{m \rightarrow \infty}\left(\left|\lambda_{i}\left(b_{m}\right)\right|+\left|\lambda_{i}\left(a_{m}\right)\right|\right)<\infty . \tag{2.6}
\end{gather*}
$$

Note that if (2.6) fails, then one can conclude that $\lim _{t \rightarrow t_{B}}\left|\lambda_{i}(t)\right|=\infty$, although λ_{i} is oscillating in the standard sense.

From (1.1b)

$$
\rho=\rho_{0} e^{-\int_{0}^{t} \lambda(s) d s}>0
$$

It follows from (1.1a) that

$$
\lambda_{i}^{\prime} \geq-\lambda_{i}^{2}-\omega^{2}, \quad \omega:=\sqrt{\frac{k c_{b}}{n}}
$$

That is,

$$
\begin{equation*}
\frac{\lambda_{i}^{\prime}}{\lambda_{i}^{2}+\omega^{2}} \geq-1 \tag{2.7}
\end{equation*}
$$

Upon integration over (a_{m}, b_{m}), this implies that

$$
\frac{1}{\omega} \arctan \left(\frac{\lambda_{i}\left(b_{m}\right)}{\omega}\right)-\frac{1}{\omega} \arctan \left(\frac{\lambda_{i}\left(a_{m}\right)}{\omega}\right) \geq-\left(b_{m}-a_{m}\right)
$$

Owing to the conditions (2.5) and (2.6), the left-hand side is strictly less than 0 , while the right-hand side converges to 0 . Thus, there exist no oscillating solutions of type (2.2) for λ_{i}.

The order-preserving property of λ_{i} is well known (see [14, 15]). Indeed, it follows from (1.1a) that

$$
\begin{equation*}
\left(\lambda_{i}-\lambda_{j}\right)^{\prime}=-\left(\lambda_{i}+\lambda_{j}\right)\left(\lambda_{i}-\lambda_{j}\right) \tag{2.8}
\end{equation*}
$$

and this yields the following lemma.
Lemma 2.1. For any $t>0$, the solutions λ_{i} of (1.1) satisfy

$$
\lambda_{1}(t)=\cdots=\lambda_{J}(t)<\lambda_{J+1}(t) \leq \cdots \leq \lambda_{n}(t) .
$$

Proposition 2.1 states that $\lim _{t \rightarrow t_{B}^{-}}\left|\lambda_{i}(t)\right|=\infty$ for some i. Then, one can conclude that

$$
\lim _{t \rightarrow t_{B}^{-}} \lambda_{1}(t)=-\infty
$$

owing to Lemma 2.1 concerning order preservation. In fact, if we assume that there exists no λ_{i} diverging to $-\infty$, then λ_{j} tends to $+\infty$ for some j as $t \rightarrow t_{B}^{-}$, so does $\lambda=\sum_{i=1}^{n} \lambda_{i}$. Thus,

$$
\min _{0 \leq t \leq t_{B}} \lambda(t)>-\infty,
$$

and

$$
\begin{aligned}
& \lambda_{j}^{\prime}(t)=-\lambda_{j}^{2}(t)+\frac{k \rho_{0}}{n} e^{-\int_{0}^{t} \lambda(s) d s}-\omega^{2} \\
& \leq \frac{k \rho_{0}}{n} e^{-t_{B}} \min _{0 \leq t \leq t_{B}} \lambda(t) \\
&-\omega^{2}<\infty,
\end{aligned}
$$

which contradicts the fact that $\lambda_{j} \rightarrow \infty$ as $t \rightarrow t_{B}^{-}$. Thus, it must hold that $\lim _{t \rightarrow t_{B}^{-}} \lambda_{i}(t)=$ $-\infty$ for some i. Owing to the order preservation in Lemma 2.1, the following proposition holds.

Proposition 2.2. Suppose that the maximum interval of existence for (1.1) is $\left[0, t_{B}\right)$ for some $0<t_{B}<\infty$. Then, there exist $1 \leq J_{1} \leq J_{2} \leq n$ such that

$$
\begin{array}{cc}
\lim _{t \rightarrow t_{B}^{-}} \lambda_{i}(t)=-\infty, & 1 \leq i \leq J_{1} \\
\lim _{t \rightarrow t_{B}^{-}} \lambda_{i}(t)=\infty, \quad J_{2}<i \leq n . \tag{2.10}
\end{array}
$$

We remark that there exists no λ_{i} satisfying (2.10) in the case that $J_{2}=n$. However, (2.9) indicates that

$$
\lim _{t \rightarrow t_{B}^{-}} \lambda_{1}=-\infty
$$

The estimation (1.5) of t_{B} also follows immediately. Integrating (2.7) for $i=1$ over $(0, t)$ yields that

$$
\arctan \left(\frac{\lambda_{1}(t)}{\omega}\right)>\arctan \left(\frac{\lambda_{1,0}}{\omega}\right)-\omega t
$$

Sending t to t_{B} implies that

$$
-\frac{\pi}{2} \geq \arctan \left(\frac{\lambda_{1,0}}{\omega}\right)-\omega t_{B}
$$

Thus, we obtain (1.5) in Theorem 1.1.
Theorem 2.1. Suppose that the maximum interval of existence for (1.1) is $\left[0, t_{B}\right)$ for some $0<t_{B}<\infty$. Then,

$$
t_{B} \geq \frac{1}{\omega} \arctan \left(\frac{\lambda_{1,0}}{\omega}\right)+\frac{\pi}{2 \omega} .
$$

Next, we turn our attention to density ρ. Here, we show that $\rho \notin L^{1}\left(0, t_{B}\right)$ through a contradiction argument. Assuming that $\rho \in L^{1}\left(0, t_{B}\right)$, we find that $J_{2}=n$, because integrating (1.1a) gives that for $i=1,2, \cdots, n$

$$
\lambda_{i}(t)-\lambda_{i, 0}=-\int_{0}^{t} \lambda_{i}^{2}(s) d s+\frac{k}{n} \int_{0}^{t}\left(\rho(s)-c_{b}\right) d x<\infty .
$$

It follows that $J_{1}=n$ or λ_{i} is finite for $J_{1}<i \leq n$. Thus, there exists $f(t)$ such that

$$
\begin{equation*}
\rho(t)=\rho_{0} e^{-\int_{0}^{t} \lambda(s) d s}=f(t) e^{-\sum_{i=1}^{J_{1}} \int_{0}^{t} \lambda_{i}(s) d s}, \quad 0<f(t)<\infty . \tag{2.11}
\end{equation*}
$$

Now, let $1 \leq i \leq J_{1}$. Then, there exists $t_{1} \in\left(0, t_{B}\right)$ such that

$$
\lambda_{i}(t)<0, \quad t_{1}<t<t_{B}
$$

and $\tilde{\lambda}_{i}:=\lambda_{i}-\omega$ satisfies

$$
\tilde{\lambda}_{i}^{\prime}=\lambda_{i}^{\prime}>-\lambda_{i}^{2}-\omega^{2}>-\tilde{\lambda}_{i}^{2} .
$$

We then deduce that

$$
\tilde{\lambda}_{i}<-\frac{1}{t_{B}-t}, \quad t_{1}<t<t_{B} .
$$

Thus, for some constant $K>0$ it holds that

$$
-\sum_{i=1}^{J_{1}} \int_{0}^{t} \lambda_{i}(s) d s>\ln \left(K\left(t_{B}-t\right)^{-J_{1}}\right), \quad t_{1}<t<t_{B}
$$

Substituting the inequality into (2.11) yields

$$
\rho(t)=f(t) e^{-\sum_{i=1}^{J_{1}} \int_{0}^{t} \lambda_{i}(s) d s}>\frac{K f(t)}{\left(t_{B}-t\right)^{J_{1}}}, \quad t_{1}<t<t_{B}
$$

In Proposition 2.2, we have shown $J_{1} \geq 1$, which contradicts the assumption that $\rho \in$ $L^{1}\left(0, t_{B}\right)$. We summarize this result as follows.
Proposition 2.3. Suppose that the maximum interval of existence for (1.1) is $\left[0, t_{B}\right)$ for some $0<t_{B}<\infty$. Then,

$$
\begin{equation*}
\lim _{t \rightarrow t_{B}^{-}} \int_{0}^{t} \rho(s) d s=\infty \tag{2.12}
\end{equation*}
$$

3. Transformed equations

Although Proposition 2.2 and Proposition 2.3 state that for some i, λ_{i} and $\int_{0}^{t} \rho(s) d s$ diverge as $t \rightarrow t_{B}^{-}$, respectively, they do not illuminate the behaviors of λ_{i}^{\prime} and ρ near t_{B}, which are essential for analyzing solution singularities. To go further, we transform the Riccati-type equation (1.1a) to a second-order linear differential equation by defining

$$
\begin{equation*}
u_{i}(t)=e^{\int_{0}^{t} \lambda_{i}(s) d s} \tag{3.1}
\end{equation*}
$$

This gives

$$
\begin{align*}
& \lambda_{i}=\frac{u_{i}^{\prime}}{u_{i}}, \\
& u_{i}(0)=1, \quad u_{i}^{\prime}(0)=\lambda_{i, 0} \tag{3.2}
\end{align*}
$$

and

$$
\begin{equation*}
\rho(t)=\rho_{0} e^{-\sum_{i=1}^{n} \int_{0}^{t} \lambda_{i}(s) d s}=\rho_{0} \prod_{i=1}^{n} \frac{1}{u_{i}(t)} \tag{3.3}
\end{equation*}
$$

Equation (1.1a) is also transformed to

$$
\begin{equation*}
u_{i}^{\prime \prime}-\frac{k}{n}\left(\rho-c_{b}\right) u_{i}=0 \tag{3.4}
\end{equation*}
$$

or (recall that $\omega^{2}=k c_{b} / n$)

$$
\begin{equation*}
u_{i}^{\prime \prime}+\omega^{2} u_{i}=\frac{k}{n} \rho_{0} \prod_{\substack{m=1 \\ m \neq i}}^{n} \frac{1}{u_{m}}=: g_{i} . \tag{3.5}
\end{equation*}
$$

The general solution of (3.5) is thus given by

$$
\begin{equation*}
u_{i}(t)=c_{1} \sin \omega t+c_{2} \cos \omega t+\frac{1}{\omega} \int_{0}^{t} g_{i}(s) \sin \omega(t-s) d s \tag{3.6}
\end{equation*}
$$

We proceed to observe the behavior of u_{i} near t_{B}. Let $1 \leq i \leq J_{1}$, i.e.,

$$
\begin{equation*}
\lambda_{i}=\frac{u_{i}^{\prime}}{u_{i}} \rightarrow-\infty \quad \text { as } t \rightarrow t_{B}^{-}, \tag{3.7}
\end{equation*}
$$

then the positivity of u_{i} implies that $u_{i}^{\prime}<0$, and thus u_{i} converges. Let $-\alpha_{i} \leq 0$ be the least upper bound of u_{i}^{\prime}. Then, for any $\varepsilon>0$ there exists $t_{0} \in\left(0, t_{B}\right)$ such that

$$
-\alpha_{i}-\varepsilon<u_{i}^{\prime}\left(t_{0}\right) \leq-\alpha_{i} .
$$

On the other hand, it follows from (3.4) that for any $t_{0}<t<t_{B}$,

$$
\begin{equation*}
u_{i}^{\prime}(t)-u_{i}^{\prime}\left(t_{0}\right)=\int_{t_{0}}^{t} \frac{k}{n}\left(\rho(s)-c_{b}\right) u_{i}(s) d s \tag{3.8}
\end{equation*}
$$

Owing to Proposition 2.3 and the convergence of u_{i}, there exists $t_{1} \in\left(t_{0}, t_{B}\right)$ such that

$$
u_{i}^{\prime}(t)-u_{i}^{\prime}\left(t_{0}\right)=\int_{t_{0}}^{t} \frac{k}{n}\left(\rho(s)-c_{b}\right) u_{i}(s) d s>0, \quad t_{1} \leq t<t_{B}
$$

and

$$
-\alpha_{i}-\varepsilon<u_{i}^{\prime}\left(t_{0}\right)<u_{i}^{\prime}(t) \leq-\alpha_{i}, \quad t_{0} \leq t_{1} \leq t<t_{B}
$$

This implies that

$$
\begin{equation*}
\lim _{t \rightarrow t_{B}^{-}} u_{i}^{\prime}(t)=-\alpha_{i}, \tag{3.9}
\end{equation*}
$$

and thus u_{i} converges to 0 as t approaches t_{B}, satisfying (3.7). We may extend the interval of existence and obtain the boundary conditions:

$$
\begin{equation*}
u_{i}\left(t_{B}\right)=0, \quad u_{i}^{\prime}\left(t_{B}\right)=-\alpha_{i} . \tag{3.10}
\end{equation*}
$$

It follows from (3.6) that

$$
\begin{equation*}
u_{i}(t)=\frac{1}{\omega}\left(\int_{t_{B}}^{t} g_{i}(s) \sin \omega(t-s) d s-\alpha_{i} \sin \omega\left(t-t_{B}\right)\right) . \tag{3.11}
\end{equation*}
$$

In (3.8), we observe that

$$
\begin{equation*}
g_{i}=\frac{k}{n} \rho_{0} \prod_{\substack{m=1 \\ m \neq i}}^{n} \frac{1}{u_{m}}=\frac{k}{n} \rho u_{i} \in L^{1}\left(0, t_{B}\right) \tag{3.12}
\end{equation*}
$$

Next we consider the case that $J_{2}<j \leq n$; that is,

$$
\begin{equation*}
\lambda_{j}=\frac{u_{j}^{\prime}}{u_{j}} \rightarrow \infty \tag{3.13}
\end{equation*}
$$

Because $u_{j}>0, u_{j}^{\prime}$ must be positive in a neighborhood of t_{B}, which implies that u_{j} is increasing near t_{B}. Thus,

$$
\begin{equation*}
\text { either } \lim _{t \rightarrow t_{B}^{-}} u_{j}(t)=\infty \quad \text { or } \lim _{t \rightarrow t_{B}^{-}} u_{j}(t)=\beta_{j} \tag{3.14}
\end{equation*}
$$

for some $\beta_{j}>0$. In either case, u_{j}^{\prime} must diverge to ∞, owing to (3.13).
Thanks to the behavior of u_{i} near t_{B}, we obtain the following lemma.
Lemma 3.1. Suppose that the maximum interval of existence for (1.1) is $\left[0, t_{B}\right)$ for some $0<t_{B}<\infty$. Then, for $1 \leq J_{1} \leq J_{2} \leq n$ defined in Proposition 2.2

$$
\begin{aligned}
\lambda_{i, 0} & =\lambda_{j, 0}, \quad 1 \leq i, j \leq J_{1} \\
\lambda_{i}(t) & =\lambda_{j}(t), \quad 1 \leq i, j \leq J_{1}
\end{aligned}
$$

and

$$
\begin{aligned}
& \lim _{t \rightarrow t_{B}^{-}} \frac{\lambda_{i}(t)}{\lambda_{j}(t)}=1, \quad J_{2}<i, j \leq n, \\
& \lim _{t \rightarrow t_{B}^{-}} \frac{u_{j}(t)}{u_{n}(t)}=\frac{\lambda_{j, 0}-\lambda_{1,0}}{\lambda_{n, 0}-\lambda_{1,0}}, \quad J_{2}<j<n .
\end{aligned}
$$

Proof. We employ Abel's identity for (3.4) together with the initial conditions (3.2) to obtain

$$
\begin{equation*}
u_{i}^{\prime}(t) u_{j}(t)-u_{i}(t) u_{j}^{\prime}(t)=\lambda_{i, 0}-\lambda_{j, 0}, \quad 0 \leq t<t_{B} \tag{3.15}
\end{equation*}
$$

Let $1 \leq i, j \leq J_{1}$. Because $u_{i}\left(t_{B}\right)=u_{j}\left(t_{B}\right)=0$ and $u_{i}^{\prime}\left(t_{B}\right), u_{j}^{\prime}\left(t_{B}\right)$ are bounded, the lefthand side of (3.15) vanishes at $t=t_{B}$, and thus $\lambda_{i, 0}=\lambda_{j, 0}$, as desired.

We rewrite (3.15) as

$$
\begin{equation*}
\lambda_{i}(t)-\lambda_{j}(t)=\frac{u_{i}^{\prime}(t)}{u_{i}(t)}-\frac{u_{j}^{\prime}(t)}{u_{j}(t)}=\frac{\lambda_{i, 0}-\lambda_{j, 0}}{u_{i}(t) u_{j}(t)} . \tag{3.16}
\end{equation*}
$$

This yields

$$
\lim _{t \rightarrow t_{B}^{-}} \frac{\lambda_{i}(t)}{\lambda_{j}(t)}=1, \quad J_{2}<i, j \leq n,
$$

because $1 /\left(u_{i} u_{j}\right)$ converges for $J_{2}<i, j \leq n$.

From (3.15) we observe that u_{1} and u_{n} are linearly independent solutions of (3.4). Then, for $J_{2}<j<n$ we can represent u_{j} as a linear combination of u_{1} and u_{n}. Further using the initial conditions (3.2), we obtain

$$
\begin{equation*}
u_{j}=\frac{\lambda_{n, 0}-\lambda_{j, 0}}{\lambda_{n, 0}-\lambda_{1,0}} u_{1}+\frac{\lambda_{j, 0}-\lambda_{1,0}}{\lambda_{n, 0}-\lambda_{1,0}} u_{n} . \tag{3.17}
\end{equation*}
$$

On the other hand, the behaviors of u_{1} and u_{j} near t_{B} in (3.10) and (3.14) imply that

$$
\lim _{t \rightarrow t_{B}^{-}} u_{1}(t) / u_{j}(t)=0,
$$

and it follows that

$$
\lim _{t \rightarrow t_{B}^{-}} \frac{u_{j}(t)}{u_{n}(t)}=\frac{\lambda_{j, 0}-\lambda_{1,0}}{\lambda_{n, 0}-\lambda_{1,0}}, \quad J_{2}<j<n .
$$

Further, we are able to show that $J_{1}=J_{2}=J$. That is, there don't exist bounded λ_{i}. More precisely, we have

Theorem 3.1. Suppose that the maximum interval of existence for (1.1) is $\left[0, t_{B}\right)$ for some $0<t_{B}<\infty$. Then,

$$
1 \leq J<n
$$

and

$$
\lim _{t \rightarrow t_{B}^{-}} \lambda_{i}(t)= \begin{cases}-\infty, & 1 \leq i \leq J \\ \infty, & J<i \leq n\end{cases}
$$

Proof. From Lemma 3.1 it follows that $J=J_{1}$ and also $J=J_{1}<n$; otherwise, all $\lambda_{i, 0}$ would be identical, and this implies the existence of a global solution (see Theorem 2.9 in [14]).

Now we show $J_{1}=J_{2}$ by a contradiction argument. Indeed, if it is assumed that $J_{1}<J_{2}$, then there exists $\left|\lambda_{i}\right|<\infty$ for $J_{1}<i \leq J_{2}$. It follows that for all $0<t<t_{B}$,

$$
\int_{0}^{t} \rho(s) d s=\int_{0}^{t}\left[c_{b}+\frac{n}{k}\left(\lambda_{i}^{\prime}(s)+\lambda_{i}^{2}(s)\right)\right] d s<\infty
$$

which contradicts Proposition 2.3.
Theorem 3.1 implies that for $i=1, \cdots, J$ and $j=J+1, \cdots, n, u_{i}^{\prime}=u_{1}^{\prime}<0$ and $u_{j}^{\prime}>0$ in a neighborhood of t_{B}. Because $u_{1}, u_{j}>0$, we observe from (3.15) that $u_{1}^{\prime} u_{j}$ and $u_{1} u_{j}^{\prime}$ should be bounded in $\left[0, t_{B}\right]$. Furthermore, it follows from (3.16) that $u_{1} u_{j}$ converges to 0 .

Corollary 3.1. Let t_{B} and J be as in Theorem 3.1, and u_{j} as in (3.1). Then, for any $J<j \leq n$,

$$
\begin{array}{ll}
\left|u_{1}^{\prime}(t) u_{j}(t)\right|<\infty, & 0 \leq t<t_{B}, \\
\left|u_{1}(t) u_{j}^{\prime}(t)\right|<\infty, & 0 \leq t<t_{B},
\end{array}
$$

and

$$
\begin{equation*}
\lim _{t \rightarrow t_{B}^{-}}\left(u_{1} u_{j}\right)(t)=0 \tag{3.18}
\end{equation*}
$$

Now, we may divide (3.10) and (3.14) into the following cases, assuming that $J<$ $j \leq n$:

$$
\begin{align*}
& u_{1}^{\prime}\left(t_{B}\right)=-\alpha_{1}<0 \quad \text { and } \lim _{t \rightarrow t_{B}^{-}} u_{j}(t)=\infty, \tag{3.19}\\
& u_{1}^{\prime}\left(t_{B}\right)=0 \quad \text { and } \lim _{t \rightarrow t_{B}^{-}} u_{j}(t)=\beta_{j}>0, \tag{3.20}\\
& u_{1}^{\prime}\left(t_{B}\right)=-\alpha_{1}<0 \quad \text { and } \lim _{t \rightarrow t_{B}^{-}} u_{j}(t)=\beta_{j}>0, \\
& u_{1}^{\prime}\left(t_{B}\right)=0 \quad \text { and } \lim _{t \rightarrow t_{B}^{-}} u_{j}(t)=\infty .
\end{align*}
$$

However, (3.19) and (3.20) cannot occur. Indeed, (3.19) contradicts the boundedness of $u_{1}^{\prime} u_{j}$ in Corollary 3.1. If (3.20) is assumed, then $u_{1}^{\prime} u_{j} \rightarrow 0$, and thus $u_{1} u_{j}^{\prime} \rightarrow-\lambda_{1,0}+$ $\lambda_{j, 0}>0$ as t approaches t_{B}. It follows that, in a neighborhood of t_{B},

$$
\left(u_{1} u_{j}\right)^{\prime}>0 .
$$

This also contradicts Corollary 3.1, owing to (3.18) and the fact that $u_{1} u_{j}>0$. Thus, we have the following proposition.
Proposition 3.1. Suppose that the maximum interval of existence for (1.1) is $\left[0, t_{B}\right)$ for some $0<t_{B}<\infty$. Define u_{j} as (3.1). If $J<j \leq n$, then either

$$
\begin{equation*}
u_{1}^{\prime}\left(t_{B}\right)=-\alpha_{1} \text { and } \lim _{t \rightarrow t_{B}^{-}} u_{j}(t)=\beta_{j} \text { for some } \alpha_{1}, \beta_{j}>0 \tag{3.21}
\end{equation*}
$$

or

$$
\begin{equation*}
u_{1}^{\prime}\left(t_{B}\right)=0 \text { and } \lim _{t \rightarrow t_{B}^{-}} u_{j}(t)=\infty \tag{3.22}
\end{equation*}
$$

must hold.
Next, we demonstrate the convergence of $u_{1}^{\prime} u_{j}$ and $u_{1} u_{j}^{\prime}$ for $J<j \leq n$. If (3.21) holds in Proposition 3.1, then the convergence follows from (3.15). In the case of (3.22), we show the convergence through several lemmas.

Lemma 3.2. Under the hypothesis of Proposition 3.1, for any $t \in\left[0, t_{B}\right)$

$$
\left|\int_{0}^{t} u_{1}^{\prime}(s) u_{j}^{\prime}(s)+g_{1 j}(s) d s\right|<\infty
$$

where

$$
g_{i j}:=\frac{k}{n} \rho u_{i} u_{j} .
$$

Proof. From (3.5), we deduce that

$$
u_{1}^{\prime \prime} u_{j}+\omega^{2} u_{1} u_{j}=g_{1 j} .
$$

Integrating this equation over $[0, t]$ yields

$$
\begin{equation*}
u_{1}^{\prime}(t) u_{j}(t)-\lambda_{1,0}+\int_{0}^{t} \omega^{2} u_{1}(s) u_{j}(s) d s=\int_{0}^{t} u_{1}^{\prime}(s) u_{j}^{\prime}(s)+g_{1 j}(s) d s \tag{3.23}
\end{equation*}
$$

Then, the lemma follows from Corollary 3.1.
Lemma 3.3. Under the hypothesis of Proposition 3.1,

$$
\int_{0}^{t} u_{1}^{\prime}(s) u_{j}^{\prime}(s)+g_{1 j}(s) d s
$$

converges as $t \rightarrow t_{B}^{-}$.
Proof. If (3.21) holds in Proposition 3.1, then the lemma immediately follows from (3.23) and (3.18).

In the case of (3.22), from (3.11) and (3.6) we have that

$$
\begin{aligned}
& u_{1}^{\prime}(s)=\int_{t_{B}}^{s} g_{1}(\tau) \cos \omega(s-\tau) d \tau \\
& u_{j}^{\prime}(s)=\lambda_{j 0} \cos \omega s-\omega \sin \omega s+\int_{0}^{s} g_{j}(\tau) \cos \omega(s-\tau) d \tau
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{0}^{t} u_{1}^{\prime}(s) u_{j}^{\prime}(s) d s & =\int_{0}^{t}\left[\int_{t_{B}}^{s} g_{1}(x) \cos \omega(s-x) d x\left(\lambda_{j 0} \cos \omega s-\omega \sin \omega s\right)\right] d s \\
& +\int_{0}^{t}\left[\int_{t_{B}}^{s} g_{1}(x) \cos \omega(s-x) d x \int_{0}^{s} g_{j}(y) \cos \omega(s-y) d y\right] d s \\
& =I+I I
\end{aligned}
$$

We notice that $\frac{d}{d t} I \rightarrow 0$ as $t \rightarrow t_{B}^{-}$, because $g_{1} \in L^{1}\left(0, t_{B}\right)$. It follows that I also converges. Thus, it suffices to show that

$$
h(t):=I I+\int_{0}^{t} g_{1 j}(s) d s
$$

converges.
Changing the order of integration yields

$$
I I=\int_{0}^{t} \int_{t_{B}}^{y} g_{1}(x) g_{j}(y)\left(\frac{1}{2 \omega} \sin \omega(x-y)+\frac{x-y}{2} \cos \omega(x-y)\right) d x d y
$$

and the integral representation of u_{1}, (3.11), yields

$$
\begin{aligned}
\int_{0}^{t} g_{1 j}(y) d y & =\int_{0}^{t} g_{j}(y) u_{1}(y) d y \\
& =\int_{0}^{t} \int_{t_{B}}^{y} g_{j}(y) g_{1}(x) \frac{1}{\omega} \sin \omega(y-x) d x d y
\end{aligned}
$$

We combine the two equations to obtain

$$
h(t)=\frac{1}{2 \omega} \int_{0}^{t} \int_{t_{B}}^{y} g_{1}(x) g_{j}(y)[\omega(x-y) \cos \omega(x-y)-\sin \omega(x-y)] d x d y .
$$

Now, take $0<t_{0}<t_{B}$ such that

$$
\omega\left(t_{B}-t_{0}\right)<\frac{\pi}{2}
$$

Then, for $t_{0} \leq t<t_{B}$,

$$
h(t)=\frac{1}{2 \omega} \int_{t_{0}}^{t} \int_{t_{B}}^{y} g_{1}(x) g_{j}(y)[\omega(x-y) \cos \omega(x-y)-\sin \omega(x-y)] d x d y+h\left(t_{0}\right)
$$

is a decreasing function, as the integrand $h^{\prime}(t)$ is negative over the domain $\left(t_{0}, t_{B}\right)$. Furthermore, we observe from Lemma 3.2 and the convergence of I that

$$
h(t)=\left(\int_{0}^{t} u_{1}^{\prime}(s) u_{j}^{\prime}(s) d s+\int_{0}^{t} g_{1 j}(s) d s\right)-I
$$

is bounded. It follows that $h(t)$ converges as $t \rightarrow t_{B}^{-}$, as desired.
We proceed to show the convergence of $u_{1}^{\prime} u_{j}$ and $u_{1} u_{j}^{\prime}$, which gives (1.7) in Theorem 1.1.

Theorem 3.2. Suppose that the maximum interval of existence for (1.1) is $\left[0, t_{B}\right)$ for some $0<t_{B}<\infty$. Define u_{j} as (3.1). If $J<j \leq n$, then there exist $0 \leq q_{j} \leq p_{j}$ such that

$$
\lim _{t \rightarrow t_{B}^{-}} u_{1}^{\prime}(t) u_{j}(t)=-p_{j}, \quad \lim _{t \rightarrow t_{B}^{-}} u_{1}(t) u_{j}^{\prime}(t)=q_{j}
$$

Proof. The convergence of $u_{1}^{\prime} u_{j}$ follows from Lemma 3.3 together with (3.23), and the convergence of $u_{1} u_{j}^{\prime}$ follows from (3.15).

Clearly, $p_{j}, q_{j} \geq 0$ and $p_{j}+q_{j}=-\left(\lambda_{1,0}-\lambda_{j, 0}\right)$, by (3.15). Furthermore, one can show that $0 \leq q_{j} \leq p_{j}$. Suppose that $p_{j}<q_{j}$. Then, there exists $t_{1} \in\left(0, t_{B}\right)$ such that if $t_{1}<$ $t<t_{B}$, then

$$
\frac{\lambda_{j}(t)}{-\lambda_{1}(t)}>1
$$

and

$$
\lambda_{j}^{\prime}(t)=-\lambda_{j}^{2}(t)+\frac{k}{n}\left(\rho(t)-c_{b}\right)<-\lambda_{1}^{2}(t)+\frac{k}{n}\left(\rho(t)-c_{b}\right)=\lambda_{1}^{\prime}(t) .
$$

Integration over $\left[t_{1}, t\right]$ yields

$$
\lambda_{j}(t)-\lambda_{j}\left(t_{1}\right)<\lambda_{1}(t)-\lambda_{1}\left(t_{1}\right)
$$

which contradicts the fact that $\lambda_{1} \rightarrow-\infty$ and $\lambda_{j} \rightarrow+\infty$.
From now on, we let p and q denote p_{n} and q_{n}, respectively. Then from Theorem 3.2 either

$$
p>q
$$

or

$$
p=q
$$

must hold. We investigate the solution behaviors stated in Theorem 1.2 by considering these cases in the following two sections. Indeed, we obtain (c) of (ii) in Theorem 1.2 by assuming that $p=q$, and all the other cases follow from $p>q$.

4. The case $p>q$

In this section, we describe the behaviors of blow-up solutions of (1.1) assuming that

$$
p>q
$$

We first state a technical lemma.
Lemma 4.1. Suppose that a function $R(t)$ defined in $\left[0, t_{B}\right)$ satisfies

$$
\left(t_{B}-t\right) R(t) \rightarrow 0 \quad \text { as } t \rightarrow t_{B}^{-}
$$

Then,

$$
\begin{aligned}
& \lim _{t \rightarrow t_{B}^{-}}\left(t_{B}-t\right) \int_{0}^{t} R^{2}(s) d s=0 \\
& \lim _{t \rightarrow t_{B}^{-}}\left(t_{B}-t\right) \int_{0}^{t} \frac{1}{t_{B}-s} R(s) d s=0
\end{aligned}
$$

Furthermore, for any $0<\varepsilon<1$ there exists $M>0$ such that

$$
\begin{equation*}
\frac{\left(t_{B}-t\right)^{\varepsilon}}{M}<e^{-\int_{0}^{t} R(s) d s}<\frac{M}{\left(t_{B}-t\right)^{\varepsilon}} . \tag{4.1}
\end{equation*}
$$

Proof. The first two limits follow from L'Hôpital's rule. Let $0<\varepsilon<1$. Then, because $\lim _{s \rightarrow t_{B}^{-}}\left(t_{B}-s\right) R(s)=0$, there exists $t_{1} \in\left(0, t_{B}\right)$ such that for all $t_{1}<s<t_{B}$,

$$
\left(t_{B}-s\right)|R(s)|<\varepsilon .
$$

Then, for $t>t_{1}$,

$$
\begin{aligned}
\left|\int_{0}^{t} R(s) d s\right| & \leq \int_{0}^{t}\left(t_{B}-s\right)|R(s)| \frac{1}{t_{B}-s} d s \\
& <\varepsilon \int_{t_{1}}^{t} \frac{1}{t_{B}-s} d s+\int_{0}^{t_{1}}|R(s)| d s \\
& \leq-\varepsilon \ln \left(t_{B}-t\right)+C
\end{aligned}
$$

for some constant C that is independent of t. With $M=e^{C}$ it follows that

$$
\frac{\left(t_{B}-t\right)^{\varepsilon}}{M}<e^{-\int_{0}^{t} R(s) d s}<\frac{M}{\left(t_{B}-t\right)^{\varepsilon}} .
$$

Because of (3.18) and Theorem 3.2, we set $\left(u_{1} u_{n}\right)\left(t_{B}\right)=0$ and $\left(u_{1} u_{n}\right)^{\prime}\left(t_{B}\right)=-p+$ $q<0$. Then, for some $\eta(t)$ such that

$$
\begin{equation*}
\eta\left(t_{B}\right)=0, \quad \eta^{\prime}\left(t_{B}\right)=0 \tag{4.2}
\end{equation*}
$$

it holds that

$$
\left(u_{1} u_{n}\right)(t)=(p-q)\left(t_{B}-t\right)+\eta(t) .
$$

It follows that

$$
\begin{aligned}
& \lambda_{1}(t)-\lambda_{n}(t)=\frac{\lambda_{1,0}-\lambda_{n, 0}}{\left(u_{1} u_{n}\right)(t)}=\frac{\lambda_{1,0}-\lambda_{n, 0}}{(p-q)\left(t_{B}-t\right)+\eta(t)}=\frac{-p-q}{(p-q)\left(t_{B}-t\right)+\eta(t)}, \\
& \lambda_{1}(t)+\lambda_{n}(t)=\frac{\left(u_{1} u_{n}\right)^{\prime}(t)}{u_{1} u_{n}(t)}=\frac{-(p-q)+\eta^{\prime}(t)}{(p-q)\left(t_{B}-t\right)+\eta(t)}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \lambda_{1}(t)=\frac{-p+\eta^{\prime}(t) / 2}{(p-q)\left(t_{B}-t\right)+\eta(t)} \\
& \lambda_{n}(t)=\frac{q+\eta^{\prime}(t) / 2}{(p-q)\left(t_{B}-t\right)+\eta(t)}
\end{aligned}
$$

Owing to (4.2) we have the following forms:

$$
\begin{aligned}
& \lambda_{1}(t)=\frac{-p}{p-q} \frac{1}{t_{B}-t}+R_{1}(t) \\
& \lambda_{n}(t)=\frac{q}{p-q} \frac{1}{t_{B}-t}+R_{n}(t)
\end{aligned}
$$

where $R_{j}(t)(j=1, n)$ satisfies $\lim _{t \rightarrow t_{B}^{-}} R_{j}(t)\left(t_{B}-t\right)=0$.
Let

$$
\lambda_{j}(t)=\frac{\xi_{j}}{t_{B}-t}+R_{j} \quad(j=1, n)
$$

with

$$
\begin{equation*}
\xi_{1}:=\frac{-p}{p-q}, \quad \xi_{n}:=\frac{q}{p-q} \tag{4.3}
\end{equation*}
$$

Substituting this into the main equation (1.1a) yields

$$
\begin{equation*}
R_{j}^{\prime}(t)=-\frac{\xi_{j}^{2}+\xi_{j}}{\left(t_{B}-t\right)^{2}}-R_{j}^{2}(t)-\frac{2 \xi_{j}}{t_{B}-t} R_{j}(t)+\frac{k \rho_{0}}{n} e^{-\int_{0}^{t} \lambda(s) d s}-\omega^{2} . \tag{4.4}
\end{equation*}
$$

Integrating over $(0, t)$ and multiplying by $\left(t_{B}-t\right)$ give

$$
\begin{aligned}
\left(t_{B}-t\right) R_{j}(t) & =-\left(\xi_{j}^{2}+\xi_{j}\right)-\left(t_{B}-t\right) \int_{0}^{t}\left[R_{j}^{2}(\tau)+\frac{2 \xi_{j}}{t_{B}-\tau} R_{j}(\tau)\right] d \tau \\
& +\frac{k \rho_{0}}{n}\left(t_{B}-t\right) \int_{0}^{t} e^{-\int_{0}^{\tau} \lambda(s) d s} d \tau \\
& +\left(t_{B}-t\right)\left[\frac{\xi_{j}^{2}+\xi_{j}}{t_{B}}-\omega^{2} t+R_{j}(0)\right] .
\end{aligned}
$$

Because $\left(t_{B}-t\right) \int_{0}^{t}\left[R_{j}^{2}(\tau)+2 \xi_{j} R_{j}(\tau) /\left(t_{B}-\tau\right)\right] d \tau$ converges to 0 as $t \rightarrow t_{B}^{-}$by Lemma 4.1, we obtain the following quadratic equation for ξ :

$$
\begin{equation*}
\xi^{2}+\xi-\frac{k \rho_{0}}{n} \lim _{t \rightarrow t_{B}^{-}}\left(t_{B}-t\right) \int_{0}^{t} e^{-\int_{0}^{\tau} \lambda(s) d s} d \tau=0 . \tag{4.5}
\end{equation*}
$$

Here, $\xi=\xi_{1}, \xi_{n}$, for which the limit in (4.5) must exist.
Owing to Lemma 3.1 together with Theorem 3.1, we have that

$$
\begin{align*}
& \lambda_{i}(t)=\frac{\xi_{1}}{t_{B}-t}+R_{i}(t), \quad R_{i}(t)=R_{1}(t), \quad 1 \leq i \leq J \tag{4.6}\\
& \lambda_{i}(t)=\frac{\xi_{n}}{t_{B}-t}+R_{i}(t), \quad J<i \leq n \tag{4.7}
\end{align*}
$$

where $\lim _{t \rightarrow t_{B}^{-}}\left(t_{B}-t\right) R_{i}(t)=0$ for all $1 \leq i \leq n$. It follows that

$$
\begin{equation*}
\lambda(t)=\frac{-p J+q(n-J)}{p-q} \frac{1}{t_{B}-t}+\sum_{i=1}^{n} R_{i}(t)=\frac{\gamma}{t_{B}-t}+R(t), \tag{4.8}
\end{equation*}
$$

where

$$
\begin{align*}
\gamma & :=\frac{-p J+q(n-J)}{p-q}, \tag{4.9}\\
R(t) & :=\sum_{i=1}^{n} R_{i}(t), \quad \lim _{t \rightarrow t_{B}^{-}}\left(t_{B}-t\right) R(t)=0 .
\end{align*}
$$

Now, we evaluate the limit in (4.5) as follows. Note that

$$
\begin{equation*}
\int_{0}^{t} e^{-\int_{0}^{\tau} \lambda(s) d s} d \tau=t_{B}^{-\gamma} \int_{0}^{t}\left(t_{B}-\tau\right)^{\gamma} e^{-\int_{0}^{\tau} R(s) d s} d \tau \tag{4.10}
\end{equation*}
$$

If follows from (4.1) that for any $0<\varepsilon<1$, there exists $M>0$ such that

$$
\frac{t_{B}-t}{M} \int_{0}^{t}\left(t_{B}-\tau\right)^{\gamma+\varepsilon} d \tau<\left(t_{B}-t\right) \int_{0}^{t}\left(t_{B}-\tau\right)^{\gamma} e^{-\int_{0}^{\tau} R(s) d s} d \tau<M\left(t_{B}-t\right) \int_{0}^{t}\left(t_{B}-\tau\right)^{\gamma-\varepsilon} d \tau
$$

Assume that $\gamma+2<0$. Then, the lower bound

$$
\frac{-1}{M(\gamma+1+\varepsilon)}\left[\left(t_{B}-t\right)^{\gamma+2+\varepsilon}-t_{B}^{\gamma+1+\varepsilon}\left(t_{B}-t\right)\right] \rightarrow+\infty \text { as } t \rightarrow t_{B}^{-}
$$

by taking ε sufficiently small so that $\gamma+2+\varepsilon<0$. This is not the case, as the limit in (4.5) must converge, as previously mentioned. On the other hand, $\gamma+2>0$ implies that the upper bound

$$
\frac{-M}{\gamma+1-\varepsilon}\left[\left(t_{B}-t\right)^{\gamma+2-\varepsilon}-t_{B}^{\gamma+1-\varepsilon}\left(t_{B}-t\right)\right] \rightarrow 0 \text { as } t \rightarrow t_{B}^{-}
$$

by taking ε such that $\gamma+2-\varepsilon>0$ and $\gamma-\varepsilon \neq-1$. This ensures that

$$
\xi^{2}+\xi=0
$$

It follows that

$$
\xi_{1}=\frac{-p}{p-q}=-1, \quad \xi_{n}=\frac{q}{p-q}=0 .
$$

Substituting $q=0$ into (4.9) together with $\gamma+2>0$ then yields

$$
J=1
$$

Now, consider the case that $\gamma+2=0$. We first claim that

$$
\begin{align*}
& \lim _{t \rightarrow t_{B}^{-}}\left(t_{B}-t\right) \int_{0}^{t}\left(t_{B}-\tau\right)^{-2} e^{-\int_{0}^{\tau} R(s) d s} d \tau \tag{4.11a}\\
= & \lim _{t \rightarrow t_{B}^{-}} e^{-\int_{0}^{t} R(s) d s} . \tag{4.11b}
\end{align*}
$$

We remark that, in general, the convergence of (4.11a), which we have already verified, does not guarantee the convergence of (4.11b), because (4.11a) may converge for an oscillating divergent $\int_{0}^{t} R(s) d s$. However, the decay property of R can eliminate this case. By integration by parts,

$$
\begin{align*}
& \lim _{t \rightarrow t_{B}^{-}}\left(t_{B}-t\right) \int_{0}^{t}\left(t_{B}-\tau\right)^{-2} e^{-\int_{0}^{\tau} R(s) d s} d \tau \\
= & \lim _{t \rightarrow t_{B}^{-}}\left[e^{-\int_{0}^{t} R(s) d s}-\frac{t_{B}-t}{t_{B}}+\left(t_{B}-t\right) \int_{0}^{t}\left(t_{B}-\tau\right)^{-1} e^{-\int_{0}^{\tau} R(s) d s} R(\tau) d \tau\right] \tag{4.12}
\end{align*}
$$

Recall that $\left(t_{B}-t\right) R(t) \rightarrow 0$ as $t \rightarrow t_{B}^{-}$. Then, there exists $t_{1} \in\left(0, t_{B}\right)$ such that

$$
\left(t_{B}-t\right)|R(t)|<1, \quad t_{1}<t<t_{B}
$$

and

$$
\begin{align*}
& \left|\left(t_{B}-t\right) \int_{0}^{t}\left(t_{B}-\tau\right)^{-1} e^{-\int_{0}^{\tau} R(s) d s} R(\tau) d \tau\right| \tag{4.13}\\
& \leq\left(t_{B}-t\right) \int_{0}^{t_{1}}\left(t_{B}-\tau\right)^{-1} e^{-\int_{0}^{\tau} R(s) d s}|R(\tau)| d \tau+\left(t_{B}-t\right) \int_{t_{1}}^{t}\left(t_{B}-\tau\right)^{-2} e^{-\int_{0}^{\tau} R(s) d s} d \tau \tag{4.14}
\end{align*}
$$

Because (4.11a) converges, the second term in (4.14) converges, and thus (4.13) converges as $t \rightarrow t_{B}^{-}$. The convergence of $\exp \left(-\int_{0}^{t_{B}} R(s) d s\right)$ follows from (4.12). Now, apply L'Hôpital's rule to obtain (4.11).

Thus, the case with $\gamma+2=0$ may be considered as either

$$
\begin{equation*}
\lim _{t \rightarrow t_{B}^{-}}\left(t_{B}-t\right) \int_{0}^{t}\left(t_{B}-\tau\right)^{\gamma} e^{-\int_{0}^{\tau} R(s) d s} d \tau=\lim _{t \rightarrow t_{B}^{-}} e^{-\int_{0}^{t} R(s) d s}=0 \tag{4.15}
\end{equation*}
$$

or

$$
\begin{equation*}
\lim _{t \rightarrow t_{B}^{-}}\left(t_{B}-t\right) \int_{0}^{t}\left(t_{B}-\tau\right)^{\gamma} e^{-\int_{0}^{\tau} R(s) d s} d \tau=\lim _{t \rightarrow t_{B}^{-}} e^{-\int_{0}^{t} R(s) d s}=R_{0}>0 \tag{4.16}
\end{equation*}
$$

For the case that (4.15), a similar argument as that in the case for $\gamma+2<0$ yields

$$
\xi_{1}=\frac{-p}{p-q}=-1, \quad \xi_{n}=\frac{q}{p-q}=0
$$

and

$$
J=2
$$

Furthermore, (4.15) implies that

$$
\lim _{t \rightarrow t_{B}^{-}} \int_{0}^{t} R(s) d s=\infty
$$

For the case that (4.16), we deduce from (4.5) and (4.10) that

$$
\xi^{2}+\xi-\frac{k \rho_{0} t_{B}^{2} R_{0}}{n}=0
$$

and from (4.9) that

$$
p(J-2)=q(n-J-2) .
$$

We divide this into two cases, by taking into account $p>q$:

$$
\begin{aligned}
& J=2, n=4 \quad \text { or } \\
& J \geq 3, n>2 J
\end{aligned}
$$

In summary, we have the following:
Theorem 4.1. Suppose that $\left[0, t_{B}\right)$ be the maximum interval of existence for (1.1). Define u_{i} as (3.1), and let

$$
\lim _{t \rightarrow t_{B}^{-}} u_{1}^{\prime}(t) u_{n}(t)=-p, \quad \lim _{t \rightarrow t_{B}^{-}} u_{1}(t) u_{n}^{\prime}(t)=q .
$$

If $p>q$, then $\lambda_{i}(i=1,2, \cdots, n)$ and λ can be represented by (4.6), (4.7), and (4.8). Moreover, one of the following must hold, where $\xi=\xi_{1}, \xi_{n}$:
(1) $J=1$ and

$$
\xi^{2}+\xi=0 .
$$

(2-a) $J=2, \lim _{t \rightarrow t_{B}^{-}} \int_{0}^{t} R(s) d s=\infty$, and

$$
\xi^{2}+\xi=0 .
$$

(2-b) $J=2, n=4, \lim _{t \rightarrow t_{B}^{-}} \exp \left(-\int_{0}^{t} R(s) d s\right)=R_{0}>0$, and

$$
\xi^{2}+\xi-\frac{k \rho_{0} t_{B}^{2} R_{0}}{4}=0
$$

(3) $J \geq 3, n>2 J, \lim _{t \rightarrow t_{B}^{-}} \exp \left(-\int_{0}^{t} R(s) d s\right)=R_{0}>0$, and

$$
\xi^{2}+\xi-\frac{k \rho_{0} t_{B}^{2} R_{0}}{n}=0
$$

Furthermore, these cases imply (i), (a), (b) of (ii), and (iii) in Theorem 1.2, respectively.

The remainder of the proof of Theorem 4.1 demonstrates the relations between the cases in Theorem 4.1 and in Theorem 1.2.

Assuming (1), we immediately have the following representation of λ_{i} :

$$
\begin{aligned}
& \lambda_{i}(t)= \begin{cases}\frac{-1}{t_{B}-t}+R_{1}(t), & i=1, \\
R_{i}(t), & 2 \leq i \leq n,\end{cases} \\
& \lambda(t)=\frac{-1}{t_{B}-t}+R(t), \quad R(t)=\sum_{i=1}^{n} R_{i}(t) .
\end{aligned}
$$

Although $\lim _{t \rightarrow t_{B}^{-}}\left(t_{B}-t\right) R_{i}(t)=0$ for $i=1,2, \cdots, n$, we require the integrability of R_{i} to obtain (i) in Theorem 1.2. Indeed, this is the case.
Lemma 4.2. Assuming (1) in Theorem 4.1,

$$
\lambda_{i} \in L^{1}\left(0, t_{B}\right), \quad i=2, \cdots, n,
$$

and

$$
\int_{0}^{t_{B}} R_{1}(s) d s=C
$$

Proof. Let $i=2,3, \cdots, n$. Then, we deduce that

$$
\begin{align*}
\lambda_{i}(t) & =-\int_{0}^{t} \lambda_{i}^{2}(s) d s+\frac{k \rho_{0} t_{B}}{n} \int_{0}^{t} \frac{1}{t_{B}-s} e^{-\int_{0}^{s} R(\tau) d \tau} d s-\frac{k c_{b}}{n} t+\lambda_{i, 0} \tag{4.17}\\
& \leq \int_{0}^{t} \frac{1}{t_{B}-s} e^{-\int_{0}^{s} R(\tau) d \tau} d s+\lambda_{i, 0} \tag{4.18}
\end{align*}
$$

Multiplying by $\left(t_{B}-t\right)^{1 / 2}$ yields

$$
\begin{equation*}
\left(t_{B}-t\right)^{1 / 2} \lambda_{i}(t) \leq\left(t_{B}-t\right)^{1 / 2} \int_{0}^{t} \frac{1}{t_{B}-s} e^{-\int_{0}^{s} R(\tau) d \tau} d s+\left(t_{B}-t\right)^{1 / 2} \lambda_{i, 0} \tag{4.19}
\end{equation*}
$$

Now, we take $\varepsilon=1 / 3$ in (4.1) to obtain

$$
e^{-\int_{0}^{s} R(\tau) d \tau} \leq \frac{M}{\left(t_{B}-s\right)^{1 / 3}}
$$

Then, we observe that the right-hand side of (4.19) converges to 0 . Thus,

$$
\lim _{t \rightarrow t_{B}^{-}}\left(t_{B}-t\right)^{1 / 2} \lambda_{i}(t)=0
$$

because $\lambda_{i}>0$ near t_{B}. This implies that

$$
\begin{equation*}
\lambda_{i} \in L^{1}\left(0, t_{B}\right), \quad i=2,3, \cdots, n \tag{4.20}
\end{equation*}
$$

To demonstrate the convergence of $\int_{0}^{t} R_{1}(s) d s$, we deduce from (2.8) that

$$
\begin{equation*}
\left(t_{B}-t\right)\left(\lambda_{1}(t)-\lambda_{n}(t)\right)=\left(\lambda_{1,0}-\lambda_{n, 0}\right) t_{B} e^{-\int_{0}^{t} R_{1}(s)+\lambda_{n}(s) d s} . \tag{4.21}
\end{equation*}
$$

Because the left-hand side converges to -1 assuming (1), there exists a constant C_{1} such that

$$
\begin{equation*}
\int_{0}^{t_{B}} R_{1}(s)+\lambda_{n}(s) d s=C_{1} \tag{4.22}
\end{equation*}
$$

and thus (4.20), $\lambda_{n} \in L^{1}\left(0, t_{B}\right)$, yields

$$
\int_{0}^{t_{B}} R_{1}(s) d s=C
$$

Lemma 4.2 enhances the estimate (4.1) as

$$
0<\lim _{t \rightarrow t_{B}^{-}} e^{-\int_{0}^{t} R(s) d s}<\infty
$$

Immediately, we obtain

$$
\rho(t)=\mathcal{O}\left(\frac{1}{t_{B}-t}\right) \quad \text { as } t \rightarrow t_{B}^{-} .
$$

Furthermore, it follows from (4.18) that λ_{i} is at most $\mathcal{O}\left(\ln \left(t_{B}-t\right)\right)$ for $i=2,3, \cdots, n$. Then, $\lambda_{i} \in L^{2}\left(0, t_{B}\right)$, and applying (4.17) again yields

$$
\lambda_{i}(t)=\mathcal{O}\left(\ln \left(t_{B}-t\right)\right) \quad i=2,3, \cdots, n
$$

This shows that (1) implies (i) in Theorem 1.2.
In the case of (2-a) in Theorem 4.1,

$$
\begin{aligned}
\lambda_{i}(t) & = \begin{cases}\frac{-1}{t_{B}-t}+R_{i}(t), & i=1,2, \\
R_{i}(t), & 3 \leq i \leq n,\end{cases} \\
\lambda(t) & =\frac{-2}{t_{B}-t}+R(t), \quad R(t)=\sum_{i=1}^{n} R_{i}(t), \quad R_{1}(t)=R_{2}(t) .
\end{aligned}
$$

Now, let $3 \leq i \leq n$. Then, similar to the derivation of (4.22), we have that

$$
\begin{equation*}
\int_{0}^{t_{B}} R_{1}(s)+\lambda_{i}(s) d s=C_{i} \tag{4.23}
\end{equation*}
$$

If $\int_{0}^{t} \lambda_{i}(s) d s$ is assumed to converge, then $\int_{0}^{t} R_{1}(s) d s$, and thus $\int_{0}^{t} R(s) d s$ converges, which does not belong to (2-a). Taking into account $\lambda_{i} \rightarrow \infty$, we must have

$$
\lim _{t \rightarrow t_{B}^{-}} \int_{0}^{t} \lambda_{i}(s) d s=\infty, \quad i=3,4, \cdots, n
$$

Then, (4.23) yields

$$
\begin{equation*}
\lim _{t \rightarrow t_{B}^{-}} \int_{0}^{t} R_{1}(s) d s=-\infty \tag{4.24}
\end{equation*}
$$

Summing (4.23) over $i=3,4, \cdots, n$ yields that for some constant C,

$$
\begin{equation*}
\int_{0}^{t_{B}} R(s)+(n-4) R_{1}(s) d s=C \tag{4.25}
\end{equation*}
$$

Because $\lim _{t \rightarrow t_{B}^{-}} \int_{0}^{t} R(s) d s=\infty$ in (2-a), we have that

$$
n \geq 5
$$

and it follows that

$$
\rho(t)=o\left(\frac{1}{\left(t_{B}-t\right)^{2}}\right) \text { as } t \rightarrow t_{B}^{-} .
$$

Hence, we conclude that (2-a) in Theorem 4.1 implies (a) of (ii) in Theorem 1.2.
Now, we consider the case of (2-b). Because the solutions to the characteristic equation (4.5) are $\xi_{1}=-p /(p-q)$ and $\xi_{4}=q /(p-q)$, it follows that

$$
\begin{equation*}
\frac{p q}{(p-q)^{2}}=\frac{k \rho_{0} t_{B}^{2} R_{0}}{4} \tag{4.26}
\end{equation*}
$$

and

$$
\begin{aligned}
& \lambda_{i}(t)= \begin{cases}\frac{\xi_{1}}{t_{B}-t}+R_{i}(t), & i=1,2, \\
\frac{\xi_{4}}{t_{B}-t}+R_{i}(t), & i=3,4,\end{cases} \\
& \lambda(t)=\frac{-2}{t_{B}-t}+R(t), \quad R(t)=\sum_{i=1}^{4} R_{i}(t), \quad R_{1}(t)=R_{2}(t) .
\end{aligned}
$$

Note that the representation of λ follows from $\xi_{1}+\xi_{4}=-1$, and the representation of λ_{3} (i.e., $\xi_{3}=\xi_{4}$) follows from Lemma 3.1. Because $\lim _{t \rightarrow t_{B}^{-}} \exp \left(-\int_{0}^{t} R(s) d s\right)=R_{0}>0$, we immediately obtain that

$$
\rho(t)=\mathcal{O}\left(\frac{1}{\left(t_{B}-t\right)^{2}}\right) \quad \text { as } t \rightarrow t_{B}^{-} .
$$

Similar to (4.21), we deduce that

$$
\left(t_{B}-t\right)\left(\lambda_{1}(t)-\lambda_{i}(t)\right)=\left(\lambda_{1,0}-\lambda_{i, 0}\right) t_{B} e^{-\int_{0}^{t} R_{1}(s)+R_{i}(s) d s}, \quad i=3,4
$$

Sending $t \rightarrow t_{B}^{-}$and multiplying the two equations for $i=3,4$ yield that

$$
\begin{equation*}
\frac{(p+q)^{2}}{(p-q)^{2}}=A_{0} t_{B}^{2} R_{0} \tag{4.27}
\end{equation*}
$$

Recall that

$$
A_{0}:=\left(\lambda_{1,0}-\lambda_{3,0}\right)\left(\lambda_{1,0}-\lambda_{4,0}\right) .
$$

Then, we combine (4.26) and (4.27) to obtain

$$
(p-q)^{2}=4\left(\frac{A_{0}}{k \rho_{0}}-1\right) p q
$$

Thus, it must hold that

$$
\begin{equation*}
A_{0}>k \rho_{0} \tag{4.28}
\end{equation*}
$$

Furthermore, we obtain representations of ξ_{1} and ξ_{4} in terms of the given parameters. Indeed, we have

$$
\xi_{1}=-\frac{1}{2}-\frac{1}{2} \sqrt{\frac{A_{0}}{A_{0}-k \rho_{0}}},
$$

$$
\xi_{3}=\xi_{4}=-\frac{1}{2}+\frac{1}{2} \sqrt{\frac{A_{0}}{A_{0}-k \rho_{0}}}
$$

as described in (b) of (ii) in Theorem 1.2.
In the case of (3) in Theorem 4.1, we have that

$$
\begin{aligned}
& \lim _{t \rightarrow t_{B}^{-}}\left(t_{B}-t\right) \lambda_{1}(t)=\frac{-p}{p-q}, \\
& \lim _{t \rightarrow t_{B}^{-}}\left(t_{B}-t\right) \lambda_{i}(t)=\frac{q}{p-q}, \quad J+1 \leq i \leq n .
\end{aligned}
$$

The behavior of ρ,

$$
\rho(t)=\mathcal{O}\left(\frac{1}{\left(t_{B}-t\right)^{2}}\right) \quad \text { as } t \rightarrow t_{B}^{-}
$$

follows from $(-p J+q(n-J)) /(p-q)=-2$ and $\exp \left(-\int_{0}^{t_{B}} R(s) d s\right)=R_{0}$. This shows that (3) implies (iii) in Theorem 1.2.

5. The case $p=q$

In this section, we investigate the blow-up solution behaviors when

$$
\begin{equation*}
p=q\left(=\frac{\lambda_{n, 0}-\lambda_{1,0}}{2}\right) . \tag{5.1}
\end{equation*}
$$

As previously noted, understanding the behaviors of λ_{i}^{\prime} near t_{B} is essential. One technique to achieve this is to compare the behaviors of λ_{i}^{2} and ρ from (1.1a). However, the main difficulty lies in the fact that the condition (5.1) implies that the leading singular terms of $\int \lambda_{i}^{2}$ and $k / n \int \rho$ are the same. Indeed, integrating (1.1a) yields

$$
\begin{aligned}
& \lambda_{1}(t)-\lambda_{1,0}=-\int_{0}^{t} \lambda_{1}^{2}(s) d s+\frac{k}{n} \int_{0}^{t} \rho(s)-\omega^{2} d s \rightarrow-\infty, \\
& \lambda_{n}(t)-\lambda_{n, 0}=-\int_{0}^{t} \lambda_{n}^{2}(s) d s+\frac{k}{n} \int_{0}^{t} \rho(s)-\omega^{2} d s \rightarrow+\infty
\end{aligned}
$$

implying that in a neighborhood of t_{B},

$$
\begin{equation*}
\int_{0}^{t} \lambda_{n}^{2}(s) d s<\int_{0}^{t} \rho(s) d s<\int_{0}^{t} \lambda_{1}^{2}(s) d s \tag{5.2}
\end{equation*}
$$

However, the condition (5.1) yields

$$
\begin{equation*}
\lim _{t \rightarrow t_{B}^{-}} \frac{\lambda_{1}(t)}{\lambda_{n}(t)}=\lim _{t \rightarrow t_{B}^{-}} \frac{u_{1}^{\prime}(t) u_{n}(t)}{u_{1}(t) u_{n}^{\prime}(t)}=-1, \tag{5.3}
\end{equation*}
$$

which indicates that the leading singular terms of all integrals in (5.2) are the same. For this reason, we study the case of (5.1) by examining the second singular terms of $\int \lambda_{i}^{2}$ and $\int \rho$. We remark that one cannot compare λ_{i}^{2} and $k \rho / n$ directly as Proposition 2.3 demonstrates the behavior of $\int \rho$ rather than ρ. Furthermore, we notice that the case (5.1) occurs only in the case of (3.22) in Proposition 3.1. Indeed, (3.21) implies that

$$
\lim _{t \rightarrow t_{B}} \int_{0}^{t} \lambda_{n}(s) d s=\lim _{t \rightarrow t_{B}} \int_{0}^{t} \frac{u_{n}^{\prime}(s)}{u_{n}(s)} d s=\ln \beta_{n}<\infty
$$

Assuming (5.1), we have observed (5.3), which implies that $\lambda_{1} \in L^{1}\left(0, t_{B}\right)$. Thus, $\lambda_{i} \in$ $L^{1}\left(0, t_{B}\right)$ for all i, and thus ρ is bounded. This contradicts Proposition 2.3. More precisely, $\lambda_{i} \in L^{1}\left(0, t_{B}\right)(i>J)$, which is a necessary and sufficient condition for the convergence of $u_{i}(i>J)$ or (3.21) in Proposition 3.1, only holds in (i) in Theorem 1.2. That is, (i) is equivalent to (3.21), and all other cases in Theorem 1.2 are associated with (3.22) in Proposition 3.1.

We define η as

$$
\begin{equation*}
\frac{u_{1}^{\prime}}{u_{1}}+\frac{u_{n}^{\prime}}{u_{n}}=-2 \eta \tag{5.4}
\end{equation*}
$$

Because $\lim _{t \rightarrow t_{B}^{-}}\left(u_{1} u_{n}\right)(t)=0$ in Corollary 3.1 and $\lim _{t \rightarrow t_{B}^{-}}\left(u_{1} u_{n}\right)^{\prime}(t)=0$ from the condition (5.1), η satisfies

$$
\begin{align*}
& \lim _{t \rightarrow t_{B}^{-}} \eta(t)\left(u_{1} u_{n}\right)(t)=-\lim _{t \rightarrow t_{B}^{-}} \frac{\left(u_{1} u_{n}\right)^{\prime}(t)}{2}=0 \tag{5.5}\\
& \lim _{t \rightarrow t_{B}^{-}} \int_{0}^{t} \eta(s) d s=-\lim _{t \rightarrow t_{B}^{-}} \frac{\ln \left(\left(u_{1} u_{n}\right)(t)\right)}{2}=\infty \tag{5.6}
\end{align*}
$$

We remark that the behavior of η near t_{B} is not clear at this point, owing to the highly oscillating type (2.2).

Recall (3.15) or that for all $t \in\left(0, t_{B}\right)$,

$$
\begin{equation*}
\frac{u_{1}^{\prime}}{u_{1}}-\frac{u_{n}^{\prime}}{u_{n}}=-2 \frac{p}{u_{1} u_{n}} . \tag{5.7}
\end{equation*}
$$

Then, together with (5.4), we have that

$$
\begin{align*}
& \lambda_{1}=\frac{u_{1}^{\prime}}{u_{1}}=-\frac{p}{u_{1} u_{n}}-\eta, \tag{5.8}\\
& \lambda_{n}=\frac{u_{n}^{\prime}}{u_{n}}=\frac{p}{u_{1} u_{n}}-\eta . \tag{5.9}
\end{align*}
$$

Substituting these representations into the main equation (1.1a) yields

$$
\begin{align*}
& \lambda_{1}^{\prime}=-\lambda_{1}^{2}+\frac{k}{n} \rho-\omega^{2}=-\left[\left(\frac{p}{u_{1} u_{n}}\right)^{2}+2 \frac{p \eta}{u_{1} u_{n}}+\eta^{2}\right]+\frac{k}{n} \rho-\omega^{2}, \tag{5.10}\\
& \lambda_{n}^{\prime}=-\lambda_{1}^{2}+\frac{k}{n} \rho-\omega^{2}=-\left[\left(\frac{p}{u_{1} u_{n}}\right)^{2}-2 \frac{p \eta}{u_{1} u_{n}}+\eta^{2}\right]+\frac{k}{n} \rho-\omega^{2} . \tag{5.11}
\end{align*}
$$

Owing to the property of η in (5.5), we obtain

$$
\lim _{t \rightarrow t_{B}^{-}} \frac{\int_{0}^{t} \frac{p \eta(s)}{\left(u_{1} u_{n}\right)(s)} d s}{\int_{0}^{t}\left(\frac{p}{\left(u_{1} u_{n}\right)(s)}\right)^{2} d s}=0
$$

Thus, the leading singular term of $\int_{0}^{t} \lambda_{i}^{2}(s) d s(i=1, n)$ is

$$
\int_{0}^{t}\left(\frac{p}{\left(u_{1} u_{n}\right)(s)}\right)^{2} d s
$$

and this should be the same as the leading singular term of $k / n \int_{0}^{t} \rho(s) d s$, otherwise the integrations of (5.10) and (5.11) yield that $\lambda_{1} \lambda_{n}>0$ near t_{B}. Now, we define δ as

$$
\begin{equation*}
\int_{0}^{t}\left(\frac{p}{\left(u_{1} u_{n}\right)(s)}\right)^{2} d s+\delta(t):=\int_{0}^{t} \frac{k}{n} \rho(s)-\omega^{2} d s \tag{5.12}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
\lim _{t \rightarrow t_{B}^{-}} \frac{\delta(t)}{\int_{0}^{t}\left(\frac{p}{\left(u_{1} u_{n}\right)(s)}\right)^{2} d s}=0, \quad \delta(0)=0 \tag{5.13}
\end{equation*}
$$

It follows from (5.10) and (5.11) that

$$
\begin{align*}
& \lambda_{1}(t)-\lambda_{1,0}=\int_{0}^{t}\left(-2 \frac{p \eta(s)}{\left(u_{1} u_{n}\right)(s)}-\eta^{2}(s)\right) d s+\delta(t), \tag{5.14}\\
& \lambda_{n}(t)-\lambda_{n, 0}=\int_{0}^{t}\left(2 \frac{p \eta(s)}{\left(u_{1} u_{n}\right)(s)}-\eta^{2}(s)\right) d s+\delta(t) . \tag{5.15}
\end{align*}
$$

Now, we present a technical lemma. In Corollary 3.1, we showed that $u_{1} u_{n} \rightarrow 0$ as t tends to t_{B}. Thus, one may expect that for some $\theta>1, u_{1} u_{n}^{\theta}$ converges to a nonzero constant by assuming (3.22). However, this is not the case, at least when $p=q$.
Lemma 5.1. Assume the hypothesis of Theorem 4.1, and suppose that

$$
p=q .
$$

Then, for any $\theta \leq 1$,

$$
\lim _{t \rightarrow t_{B}^{-}}\left(u_{1} u_{n}^{\theta}\right)(t)=0 .
$$

For $\theta>1$, if the convergence of $u_{1} u_{n}^{\theta}$ is assumed, then

$$
\lim _{t \rightarrow t_{B}^{-}}\left(u_{1} u_{n}^{\theta}\right)(t)=0
$$

Proof. Recall that $p=q$ only occurs in (3.22), i.e., $u_{n} \rightarrow \infty$. Then, it clearly holds that $\lim _{t \rightarrow t_{B}^{-}}\left(u_{1} u_{n}^{\theta}\right)(t)=0$ for $\theta \leq 1$, because $\lim _{t \rightarrow t_{B}^{-}}\left(u_{1} u_{n}\right)(t)=0$ in Corollary 3.1.

Let $\theta>1$ and

$$
\lim _{t \rightarrow t_{B}^{-}}\left(u_{1} u_{n}^{\theta}\right)(t)=C .
$$

We deduce from (3.15) that

$$
\begin{aligned}
\left(\frac{u_{i}(t)}{u_{j}(t)}\right)^{\prime} & =\frac{\lambda_{i, 0}-\lambda_{j, 0}}{u_{j}^{2}(t)} \\
u_{i}(t) & =u_{j}(t)+u_{j}(t)\left(\lambda_{i, 0}-\lambda_{j, 0}\right) \int_{0}^{t} \frac{1}{u_{j}^{2}(s)} d s
\end{aligned}
$$

Multiplying by u_{n}^{θ} in the equation for $i=1, j=n$ yields

$$
\left(u_{1} u_{n}^{\theta}\right)(t)=u_{n}^{\theta+1}(t)\left(1+\left(\lambda_{1,0}-\lambda_{n, 0}\right) \int_{0}^{t} \frac{1}{u_{n}^{2}(s)} d s\right) .
$$

Then, $1+\left(\lambda_{10}-\lambda_{n, 0}\right) \int_{0}^{t_{B}} 1 / u_{n}^{2}(s) d s=0$, because the left-hand side converges to C, and $u_{n}^{\theta+1} \rightarrow \infty$. Apply L'Hôpital's rule to the right-hand side, to yield

$$
\begin{aligned}
\lim _{t \rightarrow t_{B}^{-}}\left(u_{1} u_{n}^{\theta}\right)(t) & =\lim _{t \rightarrow t_{B}^{-}} \frac{\lambda_{1,0}-\lambda_{n, 0}}{-\theta-1} \frac{u_{n}^{\theta}(t)}{u_{n}^{\prime}(t)} \\
& =\lim _{t \rightarrow t_{B}^{-}} \frac{\lambda_{1,0}-\lambda_{n, 0}}{-\theta-1} \frac{\left(u_{n}^{\theta} u_{1}\right)(t)}{\left(u_{n}^{\prime} u_{1}\right)(t)} .
\end{aligned}
$$

Because the final limit exists,

$$
C=\frac{2 p}{\theta+1} \frac{C}{p}=\frac{2 C}{\theta+1} .
$$

Then, as we assumed that $\theta>1$, it follows that $C=0$, as desired.
In the following theorem, we claim that the case of $p=q$ implies (c) of (ii) in Theorem 1.2.

Theorem 5.1. Suppose that $\left[0, t_{B}\right)$ be the maximum interval of existence for (1.1). Define u_{i} as (3.1), and let

$$
\lim _{t \rightarrow t_{B}^{-}} u_{1}^{\prime}(t) u_{n}(t)=-p, \quad \lim _{t \rightarrow t_{B}^{-}} u_{1}(t) u_{n}^{\prime}(t)=q .
$$

If

$$
p=q
$$

then $J=2, n=4$, and

$$
\left(\lambda_{1,0}-\lambda_{3,0}\right)\left(\lambda_{1,0}-\lambda_{4,0}\right)=: A_{0}=k \rho_{0} .
$$

Moreover, this implies (c) of (ii) in Theorem 1.2.
Proof. Recall (3.3)

$$
\rho=\rho_{0} \prod_{i=1}^{n} \frac{1}{u_{i}}
$$

From (5.12) and (5.13),

$$
\lim _{t \rightarrow t_{B}^{-}} \frac{\int_{0}^{t}\left(u_{1} u_{n}\right)^{-2} d s}{\int_{0}^{t} \prod_{i=1}^{n} u_{i}^{-1} d s}=\frac{k \rho_{0}}{n p^{2}} .
$$

We apply Cauchy's mean value theorem, to obtain

$$
\frac{\int_{0}^{t}\left(u_{1} u_{n}\right)^{-2} d s}{\int_{0}^{t} \prod_{i=1}^{n} u_{i}^{-1} d s} \frac{1-\frac{\int_{0}^{t_{1}}\left(u_{1} u_{n}\right)^{-2} d s}{\int_{0}^{t}\left(u_{1} u_{n}\right)^{-2} d s}}{1-\frac{\int_{0}^{t_{1}} \prod_{i=1}^{n} u_{i}^{-1} d s}{\int_{0}^{t} \prod_{i=1}^{n} u_{i}^{-1} d s}}=\frac{\prod_{i=1}^{n} u_{i}(\tau)}{u_{1}^{2}(\tau) u_{n}^{2}(\tau)}
$$

for some $t_{1}<\tau<t$. Owing to the convergence of the left-hand side as $t \rightarrow t_{B}^{-}$, we can construct a sequence $\left\{\tau_{l}\right\}_{l=1}^{\infty}$ converging to t_{B} such that

$$
\lim _{l \rightarrow \infty} \frac{\prod_{i=1}^{n} u_{i}\left(\tau_{l}\right)}{u_{1}^{2}\left(\tau_{l}\right) u_{n}^{2}\left(\tau_{l}\right)}=\frac{k \rho_{0}}{n p^{2}}
$$

It follows from Lemma 3.1 that

$$
\begin{equation*}
\lim _{l \rightarrow \infty} u_{1}^{J-2}\left(\tau_{l}\right) u_{n}^{n-J-2}\left(\tau_{l}\right)=\frac{k \rho_{0}}{n p^{2}} \prod_{j=J+1}^{n-1} \frac{\lambda_{n, 0}-\lambda_{1,0}}{\lambda_{j, 0}-\lambda_{1,0}} . \tag{5.16}
\end{equation*}
$$

If it is assumed that $J \neq 2$, then

$$
\begin{equation*}
\lim _{l \rightarrow \infty} u_{1}\left(\tau_{l}\right) u_{n}^{\frac{n-J-2}{J-2}}\left(\tau_{l}\right)=\left(\frac{k \rho_{0}}{n p^{2}} \prod_{j=J+1}^{n-1} \frac{\lambda_{n, 0}-\lambda_{1,0}}{\lambda_{j, 0}-\lambda_{1,0}}\right)^{\frac{1}{J-2}} . \tag{5.17}
\end{equation*}
$$

If it is additionally assumed that $(n-J-2) /(J-2) \leq 1$, then Lemma 5.1 implies that

$$
\left(\frac{k \rho_{0}}{n p^{2}} \prod_{j=J+1}^{n-1} \frac{\lambda_{n, 0}-\lambda_{1,0}}{\lambda_{j, 0}-\lambda_{1,0}}\right)^{\frac{1}{J-2}}=0
$$

which is not possible. The assumption that $(n-J-2) /(J-2)>1$ also yields a contradiction. Indeed, under this assumption one can show that $u_{1} u_{n}^{(n-J-2) /(J-2)}$ is an increasing function in a neighborhood of t_{B}, by showing that for any $\varepsilon>0$ there exists $t_{1} \in\left(0, t_{B}\right)$ such that

$$
\begin{equation*}
\left(u_{1} u_{n}^{1+\varepsilon}\right)^{\prime}(t)>0, \quad t_{1}<t<t_{B} \tag{5.18}
\end{equation*}
$$

in the case of $p=q$. Then, together with (5.17) we have

$$
\lim _{t \rightarrow t_{B}^{-}} u_{1}(t) u_{n}^{\frac{n-J-2}{J-2}}(t)=\left(\frac{k \rho_{0}}{n p^{2}} \prod_{j=J+1}^{n-1} \frac{\lambda_{n 0}-\lambda_{10}}{\lambda_{j 0}-\lambda_{10}}\right)^{\frac{1}{J-2}}
$$

Now, we apply Lemma 5.1 to obtain

$$
\left(\frac{k \rho_{0}}{n p^{2}} \prod_{j=J+1}^{n-1} \frac{\lambda_{n, 0}-\lambda_{1,0}}{\lambda_{j, 0}-\lambda_{1,0}}\right)^{\frac{1}{J-2}}=0
$$

which is also not possible.
Hence, $J=2$. Because the case of $p=q$ is corresponds to (3.22), we must have that $n=4$. Moreover, substituting (5.1) into (5.16) with $J=2$ and $n=4$ yields

$$
\begin{equation*}
k \rho_{0}=\left(\lambda_{4,0}-\lambda_{1,0}\right)\left(\lambda_{3,0}-\lambda_{1,0}\right), \tag{5.19}
\end{equation*}
$$

as desired.
It remains to verify the solution behaviors described in (c) of (ii) in Theorem 1.2. We first state a lemma describing the behavior of δ near t_{B}.
Lemma 5.2. Under the hypothesis of Theorem 5.1, δ defined in (5.12) satisfies

$$
\lim _{t \rightarrow t_{B}^{-}} \delta^{\prime}(t)=-\omega^{2} .
$$

Proof. We have shown that $J=2$ and $n=4$ when $p=q$. Thus, we deduce from (5.12) and (3.3) that

$$
\delta^{\prime}=\frac{1}{u_{1}^{2} u_{4}}\left(\frac{k \rho_{0}}{4} \frac{1}{u_{3}}-\frac{p^{2}}{u_{4}}\right)-\omega^{2} .
$$

Using the representation in (3.17),

$$
u_{3}=\frac{\lambda_{4,0}-\lambda_{3,0}}{\lambda_{4,0}-\lambda_{1,0}} u_{1}+\frac{\lambda_{3,0}-\lambda_{1,0}}{\lambda_{4,0}-\lambda_{1,0}} u_{4},
$$

we have that

$$
\begin{equation*}
\delta^{\prime}=\frac{-p^{2}\left(\lambda_{4,0}-\lambda_{3,0}\right)}{\left(\lambda_{4,0}-\lambda_{3,0}\right) u_{1}+\left(\lambda_{3,0}-\lambda_{1,0}\right) u_{4}} \frac{1}{u_{1} u_{4}^{2}}-\omega^{2} . \tag{5.20}
\end{equation*}
$$

The condition $p=q$ implies that in a neighborhood of t_{B},

$$
\lim _{t \rightarrow t_{B}^{-}}\left(u_{1} u_{4}^{2}\right)^{\prime}(t)>0
$$

as mentioned in (5.18). Thus, $1 /\left(u_{1} u_{4}^{2}\right)$ is a decreasing function near t_{B} and converges. Moreover, in the case of (3.22) we have that

$$
\frac{-p^{2}\left(\lambda_{4,0}-\lambda_{3,0}\right)}{\left(\lambda_{4,0}-\lambda_{3,0}\right) u_{1}+\left(\lambda_{3,0}-\lambda_{10}\right) u_{4}} \rightarrow 0 .
$$

Hence, we conclude that

$$
\lim _{t \rightarrow t_{B}^{-}} \delta^{\prime}(t)=-\omega^{2}
$$

Proof. (Continued Proof of Theorem 5.1.) Substituting (5.8) and (5.9) into (5.14) and (5.15) yields

$$
\begin{aligned}
-\frac{p}{\left(u_{1} u_{4}\right)(t)}-\eta(t)-\lambda_{1,0} & =\int_{0}^{t}\left(-2 \frac{p \eta(s)}{\left(u_{1} u_{4}\right)(s)}-\eta^{2}(s)\right) d s+\delta(t), \\
\frac{p}{\left(u_{1} u_{4}\right)(t)}-\eta(t)-\lambda_{4,0} & =\int_{0}^{t}\left(2 \frac{p \eta(s)}{\left(u_{1} u_{4}\right)(s)}-\eta^{2}(s)\right) d s+\delta(t) .
\end{aligned}
$$

We deduce that

$$
\eta(t)=\int_{0}^{t} \eta^{2}(s) d s-\delta(t)-\frac{\lambda_{1,0}+\lambda_{4,0}}{2} .
$$

Notice that the integral equation, together with (5.6) and Lemma 5.2, yields

$$
\begin{equation*}
\eta(t) \rightarrow \infty, \quad \text { as } t \rightarrow t_{B}^{-} . \tag{5.21}
\end{equation*}
$$

The integral equation can be rewritten as

$$
\begin{equation*}
\eta^{\prime}=\eta^{2}-\delta^{\prime}, \quad \eta(0)=-\frac{\lambda_{1,0}+\lambda_{4,0}}{2} . \tag{5.22}
\end{equation*}
$$

Then, for t sufficiently close to t_{B} so that

$$
0<\int_{t}^{t_{B}} \frac{\eta^{2}(s)-\delta^{\prime}(s)}{\eta^{2}(s)+1} d s<\pi
$$

we have that

$$
\arctan (\eta(\tau))-\arctan (\eta(t))=\int_{t}^{\tau} \frac{\eta^{2}(s)-\delta^{\prime}(s)}{\eta^{2}(s)+1} d s, \quad t<\tau<t_{B}
$$

Now, send $\tau \rightarrow t_{B}^{-}$to obtain

$$
\eta(t)=\cot \left(\int_{t}^{t_{B}} \frac{\eta^{2}(s)-\delta^{\prime}(s)}{\eta^{2}(s)+1} d s\right)
$$

Owing to Lemma 5.2 and (5.21), we have

$$
\lim _{t \rightarrow t_{B}^{-}}\left(t_{B}-t\right) \eta(t)=1
$$

and for some σ,

$$
\begin{equation*}
\eta(t)=\frac{1}{t_{B}-t}+\sigma(t), \quad \sigma(t)=o\left(t_{B}-t\right) . \tag{5.23}
\end{equation*}
$$

Moreover, one can show that σ is integrable, i.e.,

$$
\begin{equation*}
\left|\int_{0}^{t_{B}} \sigma(s) d s\right|<\infty \tag{5.24}
\end{equation*}
$$

Indeed, substituting (5.23) into (5.22) yields

$$
\sigma^{\prime}(t)=\sigma^{2}(t)+\frac{2 \sigma(t)}{t_{B}-t}-\delta^{\prime}(t)
$$

and for $t_{1}<t<t_{B}$

$$
\left(t_{B}-t\right) \sigma(t)-\left(t_{B}-t_{1}\right) \sigma\left(t_{1}\right)=\int_{t_{1}}^{t}\left(t_{B}-s\right) \sigma^{2}(s) d s+\int_{t_{1}}^{t} \sigma(s) d s-\int_{t_{1}}^{t}\left(t_{B}-s\right) \delta^{\prime}(s) d s
$$

If $\int_{t_{1}}^{t}\left(t_{B}-s\right) \sigma^{2}(s) d s$ were unbounded, then $\int_{t_{1}}^{t} \sigma(s) d s \rightarrow-\infty$ as $t \rightarrow t_{B}^{-}$, as the left-hand side and $\delta^{\prime}(t)$ converge. However, this yields a contradiction, because

$$
\frac{\int_{t_{1}}^{t}\left(t_{B}-s\right) \sigma^{2}(s) d s}{\int_{t_{1}}^{t} \sigma(s) d s} \rightarrow 0
$$

Thus, for t_{1} sufficiently close to t_{B},

$$
\begin{aligned}
\left|\left(t_{B}-t\right) \sigma(t)-\left(t_{B}-t_{1}\right) \sigma\left(t_{1}\right)\right| & =\left|\int_{t_{1}}^{t}\left(t_{B}-s\right) \sigma^{2}(s) d s+\int_{t_{1}}^{t} \sigma(s) d s-\int_{t_{1}}^{t}\left(t_{B}-s\right) \delta^{\prime}(s) d s\right| \\
& >\int_{t_{1}}^{t}\left(t_{B}-s\right) \sigma^{2}(s) d s \rightarrow \infty, \quad \text { as } t \rightarrow t_{B}^{-}
\end{aligned}
$$

Hence, $\int_{t_{1}}^{t}\left(t_{B}-s\right) \sigma^{2}(s) d s$ converges. Thus we have (5.24).
We now estimate λ_{i} and ρ from the representation of η. Integrating (5.4) together with (5.23) yields

$$
\left(u_{1} u_{4}\right)(t)=\frac{\left(t_{B}-t\right)^{2}}{t_{B}^{2} e^{2 \int_{0}^{t} \sigma(s) d s}}
$$

Substituting this representation and (5.23) into (5.8), (5.9), and (5.12) yields

$$
\lambda_{1}(t)=-\frac{p t_{B}^{2} e^{2 \int_{0}^{t} \sigma(s) d s}}{\left(t_{B}-t\right)^{2}}-\frac{1}{\left(t_{B}-t\right)}-\sigma(t) .
$$

$$
\lambda_{4}(t)=\frac{p t_{B}^{2} e^{2 \int_{0}^{t} \sigma(s) d s}}{\left(t_{B}-t\right)^{2}}-\frac{1}{\left(t_{B}-t\right)}-\sigma(t)
$$

and

$$
\rho(t)=\frac{4 p^{2} t_{B}^{4} e^{4 \int_{0}^{t} \sigma(s) d s}}{k\left(t_{B}-t\right)^{4}}+\frac{4 \delta^{\prime}(t)}{k}+c_{b}
$$

These representations, together with (5.24), imply (c) of (ii) in Theorem 1.2.
We close this section by providing a specific example with $p=q$.
Example 5.1. Recall that

$$
\omega=\sqrt{\frac{k c_{b}}{4}}, \quad p=q=\frac{\lambda_{4,0}-\lambda_{1,0}}{2} .
$$

Let $\lambda_{3,0}=\lambda_{4,0}$. Then, we have that

$$
k \rho_{0}=1, \quad \delta^{\prime}(t)=-\omega^{2},
$$

from (5.19) and (5.20), respectively. Furthermore, we can obtain an explicit formula for η by solving (5.22):

$$
\eta(t)=\omega \tan \left(\omega t-\arctan \left(\frac{\lambda_{1,0}+\lambda_{4,0}}{2 \omega}\right)\right) .
$$

The maximum interval of existence follows from the domain of η :

$$
t_{B}=\frac{\pi / 2+\arctan \left(\frac{\lambda_{1,0}+\lambda_{4,0}}{2 \omega}\right)}{\omega}
$$

Then, integrating (5.4) yields

$$
\left(u_{1} u_{4}\right)(t)=\left(\left(\frac{\lambda_{1,0}+\lambda_{4,0}}{2 \omega}\right)^{2}+1\right) \cos ^{2}\left(\omega t-\arctan \left(\frac{\lambda_{1,0}+\lambda_{4,0}}{2 \omega}\right)\right)
$$

Finally, we deduce from (5.8), (5.9), and (5.12) that

$$
\begin{aligned}
& \lambda_{1}= \lambda_{1}= \\
&-\frac{p}{\left(\frac{\lambda_{1,0}+\lambda_{4,0}}{2 \omega}\right)^{2}+1} \sec ^{2}\left(\omega t-\arctan \left(\frac{\lambda_{1,0}+\lambda_{4,0}}{2 \omega}\right)\right) \\
&-\omega \tan \left(\omega t-\arctan \left(\frac{\lambda_{1,0}+\lambda_{4,0}}{2 \omega}\right)\right), \\
& \lambda_{3}= \lambda_{4}= \\
&\left(\frac{p}{\left(\frac{\lambda_{1,0}+\lambda_{4,0}}{2 \omega}\right)^{2}+1} \sec ^{2}\left(\omega t-\arctan \left(\frac{\lambda_{1,0}+\lambda_{4,0}}{2 \omega}\right)\right)\right. \\
&-\omega \tan \left(\omega t-\arctan \left(\frac{\lambda_{1,0}+\lambda_{4,0}}{2 \omega}\right)\right), \\
&\left(\left(\frac{\lambda_{1,0}+\lambda_{4,0}}{2 \omega}\right)^{2}+1\right)^{2} \sec ^{4}\left(\omega t-\arctan \left(\frac{\lambda_{1,0}+\lambda_{4,0}}{2 \omega}\right)\right) .
\end{aligned}
$$

Acknowledgments. Liu was partially supported by the National Science Foundation under Grant DMS1812666. Shin was supported by newly appointed professor research fund of Hanbat National University and the National Research Foundation under Grant NRF-2017R1E1A1A03070498.

REFERENCES

[1] O.N. Boratav and R.B. Pelz, On the local topology evolution of a high-symmetry flow, Phys. Fluids, 7(7):1712-1731, 1995. 1
[2] U. Brauer, A. Rendall, and O. Reula, The cosmic no-hair theorem and the non-linear stability of homogeneous Newtonian cosmological models, Classical Quant. Grav., 11(9):2283-2296, 1994. 1
[3] M.P. Brenner and T.P. Witelski, On spherically symmetric gravitational collapse, J. Stat. Phys., 93(3-4):863-899, 1998. 1
[4] B.J. Cantwell, Exact solution of a restricted Euler equation for the velocity gradient tensor, Phys. Fluids A, 4(4):782-793, 1992. 1
[5] J.A. Carrillo, Y.-P. Choi, E. Tadmor, and C. Tan, Critical thresholds in 1D Euler equations with non-local forces, Math. Model. Meth. Appl. Sci., 26(1):185-206, 2016. 1
[6] D. Chae and E. Tadmor, On the finite time blow-up of the Euler-Poisson equations in \mathbb{R}^{n}, Commun. Math. Sci., 6(3):785-789, 2008. 1
[7] M. Chertkov, A. Pumir, and B.I. Shraiman, Lagrangian tetrad dynamics and the phenomenology of turbulence, Phys. Fluids, 11(8):2394-2410, 1999. 1
[8] Y. Deng, T.-P. Liu, T. Yang, and Z. Yao, Solutions of Euler-Poisson equations for gaseous stars, Arch. Ration. Mech. Anal., 164(3):261-285, 2002. 1
[9] S. Engelberg, H. Liu, and E. Tadmor, Critical thresholds in Euler-Poisson equations, Indiana Univ. Math. J., 50(Special Issue):109-157, 2001. 1
[10] E. Hille, Ordinary Differential Equations in the Complex Domain, Dover Publications, Inc., Mineola, NY, 1997. 1
[11] D.D. Holm, S.F. Johnson, and K.E. Lonngren, Expansion of a cold ion cloud, Appl. Phys. Lett., 38(7):519-521, 1981. 1
[12] S. Junca and M. Rascle, Relaxation of the isothermal Euler-Poisson system to the drift-diffusion equations, Quart. Appl. Math., 58(3):511-521, 2000. 1
[13] Y. Lee, Upper-thresholds for shock formation in two-dimensional weakly restricted Euler-Poisson equations, Commun. Math. Sci., 15(3):593-607, 2017. 1
[14] Y. Lee and H. Liu, Thresholds in three-dimensional restricted Euler-Poisson equations, Phys. D, 262:59-70, 2013. 1, 1, 1, 2, 3
[15] H. Liu and E. Tadmor, Spectral dynamics of the velocity gradient field in restricted flows, Comm. Math. Phys., 228(3):435-466, 2002. 1.1, 1, 1, 2
[16] H. Liu and E. Tadmor, Critical thresholds in 2D restricted Euler-Poisson equations, SIAM J. Appl. Math., 63(6):1889-1910, 2003. 1
[17] H. Liu, E. Tadmor, and D. Wei, Global regularity of the $4 D$ restricted Euler equations, Phys. D, 239(14):1225-1231, 2010. 1
[18] T. Makino, On a local existence theorem for the evolution equation of gaseous stars, in T. Nishida, M. Mimura, and H. Fujii (eds.), Patterns and Waves, Stud. Math. Appl., North-Holland, Amsterdam, 18:459-479, 1986. 1
[19] P.A. Markowich, C.A. Ringhofer, and C. Schmeiser, Semiconductor Equations, Springer-Verlag, Vienna, 1990. 1
[20] D. Wei, Critical thresholds in multi-dimensional restricted Euler equations, Commun. Math. Sci., 9(2):583-596, 2011. 1
[21] D. Wei, E. Tadmor, and H. Bae, Critical thresholds in multi-dimensional Euler-Poisson equations with radial symmetry, Commun. Math. Sci., 10(1):75-86, 2012. 1
[22] P. Vieillefosse, Local interaction between vorticity and shear in a perfect incompressible fluid, J. Phys., 43:837-842, 1982. 1

[^0]: *Received: October 29, 2019; Accepted (in revised form): June 30, 2021. Communicated by Shi Jin.
 ${ }^{\dagger}$ Department of Mathematics, Iowa State University, Ames, IA 50011, United States (hliu@iast ate.edu).
 ${ }^{\ddagger}$ Department of Mathematical Sciences \& Institute for Applied Mathematics and Optics, Hanbat National University, Daejeon 34158, Korea (jaemin.shin@hanbat.ac.kr).

