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Abstract. In this paper, we address the problem of analyticity up to the boundary to the 3D
inviscid Boussinesq equations in a half space R3

+. Furthermore, we prove the persistence of Gevrey
regularity and obtain lower bounds on the radius of Gevrey regularity.
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1. Introduction
In this paper, we consider the inviscid Boussinesq equations in a half space R3

+

ut+u ·∇u+∇p=θe3, (1.1)

θt+u ·∇θ=0, (1.2)

∇·u=0, (1.3)

u ·n=0, (1.4)

where x∈Ω={x∈R3 :x3>0} and t≥0 and n=(0,0,−1) is the outward unit normal
vector. Here, u(x,t) is the velocity vector field, e3=(0,0,1) is the unit vector, p is the
scalar pressure and θ is the scalar density. The Boussinesq equations are an important
model in the study of geophysical fluids and the Rayleigh–Bénard convection. There
have been many efforts devoted to understanding the Boussinesq system. For the global
existence and stability of solutions, recent progress has been made given fractional or
full dissipation (cf. [1, 12,14,17,18,20,24–27]).

The inviscid Boussinesq equations are however much harder to study since there
is no dissipation in the system and the global regularity, even in 2D, still remains a
challenging open problem. The 2D inviscid Boussinesq system shares some key features
with the 3D incompressible Euler equations such as the vortex stretching effect and
axisymmetry [22]. Thus, it has been studied by different authors. In [6], Chae and
Nam addressed local existence of solutions and obtained a blow-up criterion for the
inviscid Boussinesq equations in Sobolev spaces. Contributions on the local results of
solutions have also been made in other spaces, such as Besov, Hölder, and Triebel-
Lizorkin-Lorentz spaces (cf. [7, 8, 11,21,23,28]).

Recently, there were many authors studying the decay rates of radius of analyticity
and the persistence of Gevrey regularity for fluid equations where the Gevrey regularity
was orginally addressed by Foias and Temam for the Navier–Stokes equations [13]. The
analyticity of solutions to the incompressible Euler equations with analytic initial data
has been studied by many people [2–4, 15, 16, 19]. Bardos and Benachour [4] proved
the persistence of analyticity for the Euler equations on a 3D bounded domain and
obtained the decay rates of the radius of analyticity. As for the case of 3D periodic
domain, by using the method of Gevrey regularity, Levermore and Oliver obtained the
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same rates [19]. Kukavica and Vicol improved previous decay rates depending only

algebraically on ∥ω(t)∥Hr and exp(
∫ t

0
∥∇u(t′)∥L∞ dt′) in [15] for the Euler equations.

Later, they extended the result to the 3D half space with delicate pressure estimates on
the boundary [16] and obtained a better lower bound for decay rates of τ(t) replacing
(t+1)−2 with (t+1)−1.

In a recent paper, by using a deductive method from [5], Cheng and Xu in [10]
addressed the analyticity of smooth solutions for the inviscid Boussinesq equations on
Td, where d=2,3. However, it is still unknown whether one can discover the decay
rates for the radius of analyticity for the inviscid Boussinesq equations in a 3D half
space with the presence of a boundary and whether the previous techniques can be
adapted. Therefore, in this paper, we give positive answers to the above questions by
addressing the analyticity of the solution and the persistence of Gevrey regularity for
the inviscid Boussinesq equations in R3

+. The main difficulties come from the coupling
term u ·∇θ which needs a careful treatment (cf. Lemma 2.4). Furthermore, due to the
appearance of boundary conditions, the method in [5, 9, 10] no longer applies here and
we will need to adapt the pressure estimates from [16]. To the best of our knowledge,
this is the first result regarding the analyticity and Gevrey regularity of solutions to the
3D inviscid Boussinesq equations in a domain with boundary conditions.

The paper is organized as follows. In Section 2, we introduce notation and state
our main results, Theorem 2.1 and Theorem 2.2 together with a key lemma addressing
the coupling term u ·∇θ. In Section 3, we give the proofs for the main theorems. In
Section 4, we give the proofs of Lemmas 2.3 and 2.4.

2. Notation and main results
Recall that for s≥1 a smooth function f is uniformly of Gevrey-class s if there exist

M,τ >0 such that

∥∂αf∥L∞ ≤M
|α|!s

τ |α|
,

for all x∈Ω and all multi-indices α∈N3
0. Note that when s=1, we say that f is real-

analytic and when s>1, f is C∞ smooth but might not be analytic. For a multi-index
α=(α1,α2,α3)∈N3

0 , we let α′=(α1,α2) and define the Sobolev and Lipschitz semi-
norms | · |m and | · |m,∞ by

|v|m=
∑

|α|=m

Mα∥∂αv∥L2 ,

and

|v|m,∞=
∑

|α|=m

Mα∥∂αv∥L∞ , (2.1)

where

Mα=
|α′|!
α′!

=

(
α1+α2

α1

)
.

Furthermore, we define the norms Xτ and Yτ by

∥v∥Xτ =

∞∑
m=3

|v|m
τm−3

(m−3)!s
,
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and

∥v∥Yτ
=

∞∑
m=4

|v|m
(m−3)τm−4

(m−3)!s
,

where the spaces Xτ and Yτ are defined by

Xτ ={v∈C∞ :∥v∥Xτ <∞},

and

Yτ ={v∈C∞ :∥v∥Yτ <∞}.

The following is our first main result addressing the analyticity of the solution in R3
+.

Theorem 2.1. Let r>9/2, and assume that ∥u0∥Hr <∞ with ∇·u0=0 and ∥θ0∥Hr <
∞. We further assume that u0 and θ0 are real-analytic in Ω. Then the unique solution
(u(t),θ(t))∈C(0,T ;Hr(Ω)) of the initial value problem (1.1)–(1.4) is real-analytic for
all time t<T , where T ∈ [0,∞). Moreover, the uniform radius of space analyticity τ(t)
satisfies

τ(t)≥ 1

C0(t+1)
exp

(
−C

∫ t

0

1+∥∇u(s,·)∥L∞ +∥∇θ(s,·)∥L∞ ds
)
, (2.2)

where C depends only on r.

The following is our second main result which shows the persistence of Gevrey
regularity for the Boussinesq equations in R3

+.

Theorem 2.2. Let r>9/2, and assume that ∥u0∥Hr <∞ with ∇·u0=0 and ∥θ0∥Hr <
∞. We further assume that u0 and θ0 are uniformly of Gevrey–class s in Ω. Then there
exists a unique solution (u(t),θ(t))∈C(0,T ;Hr(Ω)) of the initial value problem (1.1)–
(1.4) uniformly of Gevrey–class s for all time t<T , where T ∈ [0,∞). Moreover, the
uniform radius τ(t) of Gevrey–class regularity of the solution satisfies the lower bound
(2.2).

Next, we need the following pressure estimates.

Lemma 2.1 ( [16] Pressure estimates). Assume that p is a smooth solution of the
Neumann problem

−∆p=v in Ω,

∂p

∂n
=0 on ∂Ω,

with v∈C∞. Then there is a universal constant C>0 such that

∥∂3∂αp∥L2 ≤C
∑

s,t∈N0,|β|=m−1
β′−α′=(2s,2t)

(
s+ t

s

)
∥∂βv∥L2

for any m≥1 and any multi-index α∈N3
0 with |α|=m and α3 ̸=0. Additionally, if

α3≥2, then

∥∂1∂αp∥L2 ≤C
∑

s,t∈N0,|β|=m−1
β′−α′=(2s+1,2t)

(
s+ t

s

)
∥∂βv∥L2 ,



482 GEVREY REGULARITY FOR THE BOUSSINESQ EQUATIONS

∥∂2∂αp∥L2 ≤C
∑

s,t∈N0,|β|=m−1
β′−α′=(2s,2t+1)

(
s+ t

s

)
∥∂βv∥L2 ,

where C>0 is a universal constant.

The following lemma is used to estimate the upper bound for the commutator term.

Lemma 2.2 ([16]). Denote that

I1=

∞∑
m=3

∑
|α|=m

∑
β≤α,β ̸=0

τ(t)m−3

(m−3)!s
Mα

(
α

β

)
∥∂βu ·∇∂α−βu∥L2 .

Then there exists a sufficiently large constant C>0 such that

I1≤C(C1+C2∥u∥Yτ
),

where

C1= |u|1,∞|u|3+ |u|2,∞|u|2+τ |u|2,∞|u|3

and

C2= τ |u|1,∞+τ2|u|2,∞+τ3|u|3,∞+τ3/2∥u∥Xτ
.

The following lemma shall be used to estimate the pressure term in terms of u and θ.

Lemma 2.3. Denote that

I2=

∞∑
m=3

∑
|α|=m,α3 ̸=0

τ(t)m−3

(m−3)!s
Mα∥∇∂αp∥L2 .

Then there exists a sufficiently large constant C>0 such that and

I2≤C(L1+L2∥u∥Yτ +τ∥θ∥Yτ ),

where

L1≤ τ |u|1,∞|u|3+ |u|2,∞|u|2+τ |u|2,∞|u|3+ |θ|3,

L2≤ τ |u|1,∞+τ2|u|2,∞+τ3|u|3,∞+τ3/2∥u∥Xτ .

In the following lemma, we give estimates for higher order derivatives of u ·∇θ.

Lemma 2.4. Denote that

I4=

∞∑
m=3

∑
|α|=m

∑
β≤α,β ̸=0

τ(t)m−3

(m−3)!s
Mα

(
α

β

)
∥∂βu ·∇∂α−βθ∥L2 .

There exists a sufficiently large constant C>0 such that

I4≤C(K1+K2∥θ∥Yτ
+τ3/2∥u∥Xτ

∥θ∥Yτ
+τ3/2∥θ∥Xτ

∥u∥Yτ
),

where

K1= |u|1,∞|θ|3+ |u|2,∞|θ|2+τ |u|2,∞|θ|3+τ |u|1,∞|θ|3+τ |θ|2,∞|u|3+τ |θ|1,∞|u|3

and

K2= τ(t)|u|1,∞+τ2|u|2,∞+τ3|u|3,∞+τ |θ|1,∞+τ2|θ|2,∞.
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3. Proofs of main theorems
Next, we give the proofs of our theorems.

Proof. We first apply ∂α to Equation (1.1) and take the L2 inner product with
∂αu obtaining

1

2

d

dt
∥∂αu∥2L2 +⟨∂α(u ·∇u),∂αu⟩+⟨∂α∇p,∂αu⟩= ⟨∂αθe3,∂

αu⟩.

Notice that ⟨u ·∇∂αu,∂αu⟩=0 since ∇·u=0. Furthermore, since n=(0,0,−1) and
u ·n=0 on ∂Ω, we have that ∂αu ·n=0 for all α such that α3=0 and due to the
divergence-free condition of u in (1.3), we will have ⟨∇∂αp,∂αu⟩=0 whenever α3=0.
Therefore, we multiply Equation (1.1) by Mα and sum over |α|=m and apply the
Cauchy-Schwarz inequality obtaining

1

2

d

dt
|u|m≤

∑
|α|=m

∑
β≤α,β ̸=0

Mα

(
α

β

)
∥∂βu ·∇∂α−βu∥L2 +

∑
|α|=m,α3 ̸=0

Mα

(
α

β

)
∥∇∂αp∥L2

+
∑

|α|=m

Mα

(
α

β

)
∥∂αθ∥L2 .

Since we have a following a priori estimate

d

dt
∥u∥Xτ(t)

= τ̇(t)∥u∥Yτ(t)
+

∞∑
m=3

(
d

dt
|u|m

)
τ(t)m−3

(m−3)!s
.

Thus, combining with (2.1), we get

1

2

d

dt
∥u∥X(τ)≤ τ̇(t)∥u∥Yτ(t)

+I1+I2+I3,

where

I1=

∞∑
m=3

∑
|α|=m

∑
β≤α,β ̸=0

τ(t)m−3

(m−3)!s
Mα

(
α

β

)
∥∂βu ·∇∂α−βu∥L2 ,

I2=

∞∑
m=3

∑
|α|=m,α3 ̸=0

τ(t)m−3

(m−3)!s
Mα∥∇∂αp∥L2 ,

and

I3=

∞∑
m=3

∑
|α|=m

τ(t)m−3

(m−3)!s
Mα∥∂αθ∥L2 =∥θ∥Xτ .

By Lemmas 2.1, 2.2, and 2.4, we get

1

2

d

dt
∥u∥Xτ

≤ τ̇(t)∥u∥Yτ(t)
+C∥u∥2Hr (1+τ(t)2)

+C∥u∥Yτ

(
τ∥∇u∥L∞ +(τ2+τ3)∥u∥2Hr +τ3/2∥u∥Xτ

)
+∥θ∥Hr +τ∥θ∥Yτ

+∥θ∥Xτ
.
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Next, we apply ∂α to Equation (1.1) and take the L2 inner product with ∂αθ obtaining

1

2

d

dt
∥∂αθ∥2L2 +⟨∂α(u ·∇θ),∂αθ⟩=0.

Notice that ⟨u ·∇∂αθ,∂αθ⟩=0 since ∇·u=0. Thus, we multiply Equation (1.2) by Mα

and sum over |α|=m and apply the Cauchy-Schwarz inequality and obtaining

d

dt
|θ|m≤

∑
|α|=m

∑
β≤α,β ̸=0

Mα

(
α

β

)
∥∂βu ·∇∂α−βθ∥L2 .

Therefore, we have an a priori estimate

d

dt
∥θ∥Xτ

≤ τ̇(t)∥θ∥Yτ(t)
+

∞∑
m=3

∑
|α|=m

∑
β≤α,β ̸=0

τ(t)m−3

(m−3)!s
Mα

(
α

β

)
∥∂βu ·∇∂α−βθ∥L2

= τ̇(t)∥θ∥Yτ(t)
+I4.

Thus, by Lemma 2.4 we get

d

dt
∥θ∥Xτ

≤ τ̇(t)∥θ∥Yτ
+(1+τ)∥u∥Hr∥θ∥Hr +τ3/2∥u∥Xτ

∥θ∥Yτ
+τ3/2∥θ∥Xτ

∥u∥Yτ

+
(
τ(∥∇u∥L∞ +∥∇θ∥L∞)+(τ2+τ3)∥u∥Hr +τ2∥θ∥Hr

)
∥θ∥Yτ

.

By adding the two a priori estimates, we get

d

dt
(∥u∥Xτ +∥θ∥Xτ )≤ τ̇(t)(∥u∥Yτ +∥θ∥Yτ )+C∥u∥2Hr (1+τ(t)2)+(1+τ)∥u∥Hr∥θ∥Hr

+τ∥θ∥Yτ
+C∥u∥Yτ

(
τ∥∇u∥L∞ +(τ2+τ3)∥u∥2Hr +τ3/2∥u∥Xτ

)
+∥θ∥X(τ)+τ3/2∥u∥Xτ ∥θ∥Yτ +τ3/2∥θ∥Xτ ∥u∥Yτ +∥θ∥Hr

+
(
τ(∥∇u∥L∞ +∥∇θ∥L∞)+(τ2+τ3)∥u∥Hr +τ2∥θ∥Hr

)
∥θ∥Yτ

.

Let

F =∥u∥Xτ +∥θ∥Xτ

and

N =∥u∥Yτ
+∥θ∥Yτ

.

Then, we have

d

dt
F ≤ τ̇(t)N+C∥u∥2Hr (1+τ(t)2)+(1+τ)∥u∥Hr∥θ∥Hr +τ3/2FN+∥θ∥Hr

+CN
(
τ(∥∇u∥L∞ +∥∇θ∥L∞)+(τ2+τ3)∥u∥Hr +τ2∥θ∥Hr +τ+1

)
=N

(
τ̇(t)+C∥u∥2Hr (1+τ(t)2)+(1+τ)∥u∥Hr∥θ∥Hr +∥θ(t)∥Hr

+C
(
(τ2+τ3)∥u∥Hr +τ2∥θ∥Hr +1

)
+τ3/2F

)
+Cτ(∥∇u∥L∞ +∥∇θ∥L∞ +1). (3.1)

Thus, if τ(t) decreases fast enough so that for all 0≤ t≤T , we have

τ̇(t)+Cτ(∥∇u∥L∞ +∥∇θ∥L∞ +1)+C
(
(τ2+τ3)∥u∥Hr +τ2∥θ∥Hr

)
+τ3/2F ≤0. (3.2)
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Then, (3.1) implies

d

dt
F ≤C∥u(t)∥2Hr (1+τ(0)2)+(1+τ(0))∥u(t)∥Hr∥θ(t)∥Hr +∥θ(t)∥Hr ,

where we used the facts that N ≥0 and τ(t)≤ τ(0) for 0≤ t≤T . Thus, for 0≤ t≤T , we
have

F (t)≤F (0)+C

∫ t

0

∥u(t′)∥2Hr (1+τ(0)2)+(1+τ(0))∥u(t′)∥Hr∥θ(t′)∥Hr +∥θ(t′)∥Hr dt′

≤F (0)+C

∫ t

0

∥u(t′)∥2Hr +∥u(t′)∥Hr∥θ(t′)∥Hr +∥θ(t′)∥Hr dt′=L(t). (3.3)

Since τ must be chosen to be a decreasing function, a sufficient condition for (3.2) to
hold is that

τ̇(t)+Cτ(∥∇u∥L∞ +∥∇θ∥L∞ +1)+Cτ3/2
(
C ′

τ(0)(∥u∥Hr +∥θ∥Hr )+F
)
≤0,

where C ′
τ(0)= τ1/2(0)+τ3/2(0). Next, for simplicity, we denote

G(t)=exp

(
C

∫ t

0

(1+∥∇u(t′)∥L∞ +∥∇θ(t′)∥L∞)dt′
)
,

where the constant C>0 is chosen to be large enough so that

∥u(t)∥2Hr +∥θ(t)∥2Hr ≤ (∥u0∥2Hr +∥θ0∥2Hr )G(t).

Thus, we get

G−1(t)(∥u(t)∥2Hr +∥θ(t)∥2Hr )≤∥u0∥2Hr +∥θ0∥2Hr . (3.4)

If we let

τ(t)=G(t)−1/2

(
τ(0)−1/2+C

∫ t

0

(
C ′

τ(0)(∥u∥Hr +∥θ∥Hr )+L(t′)
)
G(t′)−1dt′

)−1/2

.

(3.5)

Then, we see (3.2) is satisfied by taking the derivative above. By (3.3) and (3.4), we get

τ(0)−1/2+C

∫ t

0

(
C ′

τ(0)(∥u∥Hr +∥θ∥Hr )+L(t′)
)
G(t′)−1dt′

≤τ(0)−1/2

+C

∫ t

0

(
C ′

τ(0)(∥u0∥Hr +∥θ0∥Hr )+Ct′(∥u0∥2Hr +∥u0∥Hr∥θ0∥Hr +∥θ0∥Hr )
)
dt′

≤C0(1+ t)2.

Therefore, by (3.5), we obtain the desired lower bound on the radius

τ(t)≥ 1

C0(1+ t)
G(t)−1

=
1

C0(1+ t)
exp

(
−C

∫ t

0

(1+∥∇u(t′)∥L∞ +∥∇θ(t′)∥L∞)dt′
)
. (3.6)
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The last inequality in (3.6) above gives the explicit dependence on the initial data
and thus we conclude the a priori estimates that are used to prove Theorem 2.2. The
proof can be made rigorous by considering an approximating solution (u(n),θ(n)), n∈N ,
proving the above estimates for (u(n),θ(n)), and then taking the limit as n→∞. We
omit further details.

Now we give the proof of Lemmas 2.3 and 2.4.

4. Proofs of Lemmas 2.3 and 2.4
Proof. (Proof of Lemma 2.4.) For I4, we split the sum depending on the values

of m and j, where |β|= j. We split them into low j when |β|= j in I41, intermediate j
in I42, and high j in I43 so that we couple with the estimates in Lemma 2.2. We obtain

I4=

∞∑
m=3

∑
|α|=m

∑
β≤α,β ̸=0

τ(t)m−3

(m−3)!s
Mα

(
α

β

)
∥∂βu ·∇∂α−βθ∥L2 = I41+I42+I43,

where

I41=

∞∑
m=3

∑
|α|=m

∑
β≤α,|β|=1

τ(t)m−3

(m−3)!s
Mα

(
α

β

)
∥∂βu ·∇∂α−βθ∥L2

+

∞∑
m=3

∑
|α|=m

∑
β≤α,|β|=2

τ(t)m−3

(m−3)!s
Mα

(
α

β

)
∥∂βu ·∇∂α−βθ∥L2 = I411+I412

and

I42=

∞∑
m=6

[m/2]∑
j=3

∑
|α|=m

∑
β≤α,|β|=j

τ(t)m−3

(m−3)!s
Mα

(
α

β

)
∥∂βu ·∇∂α−βθ∥L2

+

∞∑
m=7

m−3∑
j=[m/2]+1

∑
|α|=m

∑
β≤α,|β|=j

τ(t)m−3

(m−3)!s
Mα

(
α

β

)
∥∂βu∥L∞∥∇∂α−βθ∥L2

= I421+I422

and

I43=

∞∑
m=5

∑
|α|=m

∑
β≤α,|β|=m−2

τ(t)m−3

(m−3)!s
Mα

(
α

β

)
∥∂βu ·∇∂α−βθ∥L2

+

∞∑
m=4

∑
|α|=m

∑
β≤α,|β|=m−1

τ(t)m−3

(m−3)!s
Mα

(
α

β

)
∥∂βu ·∇∂α−βθ∥L2

+

∞∑
m=4

∑
|α|=|β|=m

τ(t)m−3

(m−3)!s
Mα

(
α

β

)
∥∂βu∥L∞∥∇∂α−βθ∥L2 = I431+I432+I433.

For I41, we apply Hölder’s inequality and get

I41=
∑
|α|=3

∑
β≤α,β ̸=0

Mα

(
α

β

)
∥∂βu ·∇∂α−βθ∥L2

+

∞∑
m=4

∑
|α|=m

∑
β≤α,β ̸=0

τ(t)m−3

(m−3)!s
Mα

(
α

β

)
∥∂βu ·∇∂α−βθ∥L2
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≤
∑
|α|=3

∑
β≤α,β ̸=0

Mα

(
α

β

)
∥∂βu∥L∞∥∇∂α−βθ∥L2

+

∞∑
m=4

∑
|α|=m

∑
β≤α,β ̸=0

τ(t)m−3

(m−3)!s
Mα

(
α

β

)
∥∂βu∥L∞∥∇∂α−βθ∥L2 .

It is easy to see that for α,β∈N3
0 with β≤α, we have(

α′

β′

)
MαM

−1
β M−1

α−β ≤
(
|α|
|β|

)
.

See [16] for a proof. Therefore, we get

I411≤
∑
|α|=3

∑
β≤α,β ̸=0

(
Mβ∥∂βu∥L∞

)(
Mα−β∥∇∂α−βθ∥L2

)
MαM

−1
β M−1

α−β

(
α

β

)

+

∞∑
m=4

∑
|α|=m

∑
β≤α,β ̸=0

(
Mβ∥∂βu∥L∞

)(
Mα−β∥∇∂α−βθ∥L2

(m−3)τ(t)m−4

(m−3)!s

)

×MαM
−1
β M−1

α−β

(
α

β

)
τ(t)

m−3

≤C
∑
|α|=3

∑
β≤α,β ̸=0

(
Mβ∥∂βu∥L∞

)(
Mα−β∥∇∂α−βθ∥L2

)
+Cτ(t)

∞∑
m=4

∑
|α|=m

∑
β≤α,β ̸=0

(
Mβ∥∂βu∥L∞

)(
Mα−β∥∇∂α−βθ∥L2

(m−3)τ(t)m−4

(m−3)!s

)
≤C|u|1,∞|∇θ|2+Cτ(t)|u|1,∞∥θ∥Yτ ≤C|u|1,∞|θ|3+Cτ(t)|u|1,∞∥θ∥Yτ .

For I412, we separate it as

I412=
∑

|α|=3,4

∑
β≤α,|β|=2

τ(t)m−3

(m−3)!s
Mα

(
α

β

)
∥∂βu ·∇∂α−βθ∥L2

+

∞∑
m=5

∑
|α|=m

∑
β≤α,|β|=2

τ(t)m−3

(m−3)!s
Mα

(
α

β

)
∥∂βu ·∇∂α−βθ∥L2

≤
∑

|α|=3,4

∑
β≤α,|β|=2

τm−3
(
Mβ∥∂βu∥L∞

)(
Mα−β∥∇∂α−βθ∥L2

)
MαM

−1
β M−1

α−β

(
α

β

)

+

∞∑
m=5

∑
|α|=m

∑
β≤α,|β|=2

(
Mβ∥∂βu∥L∞

)(
Mα−β∥∇∂α−βθ∥L2

(m−4)τ(t)m−5

(m−4)!s

)

×MαM
−1
β M−1

α−β

(
α

β

)
τ(t)2

(m−3)(m−4)

≤C|u|2,∞|θ|2+Cτ |u|2,∞|θ|3+Cτ2|u|2,∞∥θ∥Yτ
.

For I421, we know by Hölder’s and Sobolev inequalities

∥∂βu ·∇∂α−βθ∥L2 ≤∥∂βu∥L∞∥∇∂α−βθ∥L2 ≤∥∂βu∥1/4L2 ∥∆∂βu∥3/4L2 ∥∇∂α−βθ∥L2 .
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Thus,

I421≤ τ3/2
∞∑

m=6

[m/2]∑
j=3

∑
|α|=m

∑
β≤α,|β|=j

(
Mβ∥∂βu∥L∞

τ(t)j−3

(j−3)!s

)1/4

×
(
Mβ∥∆∂βu∥L2

τ(t)j−1

(j−1)!s

)3/4(
Mα−β∥∇∂α−βθ∥L2

(m−j−2)τ(t)m−j−2

(m−j−2)!s

)
Nα,β,s,

where for s≥1 and by (2.2) we have

Nα,β,s=MαM
−1
β M−1

α−β

(
α

β

)
(j−3)!s/4(j−3)!3s/4(m−j−2)!s

(m−3)!s(m−j−2)
≤C.

Therefore, we see

I421≤Cτ3/2
∞∑

m=6

[m/2]∑
j=3

(
|u|j

τ(t)j−3

(j−3)!s

)1/4(
|∆u|j

τ(t)j−1

(j−1)!s

)3/4

×
(
|∇θ|m−j

(m−j−2)τ(t)m−j−2

(m−j−2)!s

)
≤Cτ3/2∥u∥Xτ ∥θ∥Yτ .

For the estimates of I422, I431, I432, and I433, we reverse the indices j and m−j and
apply Hölder’s inequality and get

∥∂βu ·∇∂α−βθ∥L2 ≤∥∂βu∥L2∥∇∂α−βθ∥L∞ .

Therefore, we can similarly obtain Cτ3/2∥θ∥Xτ
∥u∥Yτ

as the upper bound for I422, I431,
I432, and I433.

I422≤Cτ3/2∥θ∥Xτ
∥u∥Yτ

, I431≤Cτ3|u|3,∞∥θ∥Yτ
, I432≤Cτ |θ|2,∞|u|3+Cτ2|θ|2,∞∥u∥Yτ

,

and

I433≤Cτ |θ|1,∞|u|3+Cτ |θ|1,∞∥u∥Yτ
.

Thus, by combining the above estimates we get

I4≤C(K1+K2∥θ∥Yτ +τ3/2∥u∥Xτ ∥θ∥Yτ +τ3/2∥θ∥Xτ ∥u∥Yτ ),

where

K1= |u|1,∞|θ|3+ |u|2,∞|θ|2+τ |u|2,∞|θ|3+τ |u|1,∞|θ|3+τ |θ|2,∞|u|3+τ |θ|1,∞|u|3,

and

K2= τ(t)|u|1,∞+τ2|u|2,∞+τ3|u|3,∞+τ |θ|1,∞+τ2|θ|2,∞.

Therefore, Lemma 2.4 is proved.

Next, we prove Lemma 2.3.

Proof. (Proof of Lemma 2.3.) For I2, we apply Lemma 2.1 and get∑
|α|=m,α3 ̸=0

Mα∥∂3∂αp∥L2
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≤C
∑

|α|=m,α3 ̸=0

∑
s,t∈N0,|β|=m−1
β′−α′=(2s,2t)

(
s+ t

s

)
∥∂β(∂iuk∂kui)∥L2

+C
∑

|α|=m,α3 ̸=0

∑
s,t∈N0,|β|=m−1
β′−α′=(2s,2t)

(
s+ t

s

)
∥∂β(∂3θ)∥L2

=C
∑

|β|=m−1

[β1/2]∑
s=0

[β2/2]∑
t=0

(
β1+β2−2s−2t

β1−2s

)(
s+ t

s

)
∥∂β(∂iuk∂kui)∥L2

+C
∑

|β|=m−1

[β1/2]∑
s=0

[β2/2]∑
t=0

(
β1+β2−2s−2t

β1−2s

)(
s+ t

s

)
∥∂β(∂3θ)∥L2 . (4.1)

By the pressure estimates from Lemma 2.1, we get∑
|α|=m,α3 ̸=0

Mα∥∂3∂αp∥L2 ≤Cm
∑

|β|=m−1

Mβ∥∂β(∂iuk∂kui)∥L2

+Cm
∑

|β|=m−1

Mβ∥∂β(∂3θ)∥L2 .

Thus,

∞∑
m=3

 ∑
|α|=m,α3 ̸=0

Mα∥∂3∂αp∥L2

≤
∞∑

m=3

∑
|β|=m−1

Mβ∥∂β(∂iuk∂kui)∥L2

mτ(t)m−3

(m−3)!s

+

∞∑
m=3

∑
|β|=m−1

Mβ∥∂β(∂3θ)∥L2

mτ(t)m−3

(m−3)!s
.

For higher derivatives of ∂1p, we decompose as follows∑
|α|=m,α3 ̸=0

Mα∥∂1∂αp∥L2 =
∑

|α|=m,α3=1

Mα∥∂1∂αp∥L2

+
∑

|α|=m,α3≥2

Mα∥∂1∂αp∥L2 =J1+J2.

For J1, we have

J1=
∑

|α|=m,α3=1

Mα∥∂1∂αp∥L2

≤C
∑

|α|=m,α3=1

Mα∥∂α′
(∂iuk∂kui)∥L2 +C

∑
|α|=m,α3=1

Mα∥∂α′
(∂3θ)∥L2

=C
∑

|β|=m−1,β3=0

Mβ∥∂β(∂iuk∂kui)∥L2 +C
∑

|β|=m−1,β3=0

Mβ∥∂β(∂3θ)∥L2 .

For J2, we have

J2≤
∑

|α|=m,α3≥2

Mα∥∂1∂αp∥L2 ≤CJ21+CJ22,
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where

J21=
∑

|α|=m,α3≥2

∑
s,t∈N0,|β|=m−1
β′−α′=(2s+1,2t)

(
s+ t

s

)
∥∂β(∂iuk∂kui)∥L2

=
∑

|β|=m−1,β1≥1

[(β1−1)/2]∑
s=0

[(β2−1)/2]∑
s=0

(
β1−1+β2−2s−2t

β1−2s−1

)(
s+ t

s

)
∥∂β(∂iuk∂kui)∥L2

≤Cm
∑

|β|=m−1,β1≥1

Mβ∥∂β(∂iuk∂kui)∥L2

and

J22=
∑

|α|=m,α3≥2

∑
s,t∈N0,|β|=m−1
β′−α′=(2s+1,2t)

(
s+ t

s

)
∥∂β(∂3θ)∥L2

=
∑

|β|=m−1,β1≥1

[(β1−1)/2]∑
s=0

[(β2−1)/2]∑
s=0

(
β1−1+β2−2s−2t

β1−2s−1

)(
s+ t

s

)
∥∂β(∂3θ)∥L2

≤Cm
∑

|β|=m−1,β1≥1

Mβ∥∂β(∂3θ)∥L2 .

By [16], we know that there exists a positive universal constant C such that

[β1/2]∑
s=0

[β2/2]∑
t=0

(
β1+β2−2s−2t

β1−2s

)(
s+ t

s

)
≤Cm

(
β1+β2

β1

)
.

Thus,

J21=
∑

|β|=m−1,β1≥1

[(β1−1)/2]∑
s=0

[(β2−1)/2]∑
s=0

(
β1−1+β2−2s−2t

β1−2s−1

)(
s+ t

s

)
∥∂β(∂iuk∂kui)∥L2

≤Cm
∑

|β|=m−1,β1≥1

Mβ∥∂β(∂iuk∂kui)∥L2

and

J22=
∑

|β|=m−1,β1≥1

[(β1−1)/2]∑
s=0

[(β2−1)/2]∑
s=0

(
β1−1+β2−2s−2t

β1−2s−1

)(
s+ t

s

)
∥∂β(∂3θ)∥L2

≤Cm
∑

|β|=m−1,β1≥1

Mβ∥∂β(∂3θ)∥L2 .

Therefore, combining the above estimates of J21 and J22 yielding

∞∑
m=3

 ∑
|α|=m,α3 ̸=0

Mα∥∂1∂αp∥L2

≤
∞∑

m=3

∑
|β|=m−1

Mβ∥∂β(∂iuk∂kui)∥L2

mτ(t)m−3

(m−3)!s

+

∞∑
m=3

∑
|β|=m−1

Mβ∥∂β(∂3θ)∥L2

mτ(t)m−3

(m−3)!s
.
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By symmetry between ∂1 and ∂2, we similarly get

∞∑
m=3

 ∑
|α|=m,α3 ̸=0

Mα∥∂2∂αp∥L2

≤
∞∑

m=3

∑
|β|=m−1

Mβ∥∂β(∂iuk∂kui)∥L2

mτ(t)m−3

(m−3)!s

+

∞∑
m=3

∑
|β|=m−1

Mβ∥∂β(∂3θ)∥L2

mτ(t)m−3

(m−3)!s
.

Combine the above estimates and we have

I2≤
∞∑

m=3

∑
|β|=m−1

Mβ∥∂β(∂iuk∂kui)∥L2

mτ(t)m−3

(m−3)!s

+

∞∑
m=3

∑
|β|=m−1

Mβ∥∂β(∂3θ)∥L2

mτ(t)m−3

(m−3)!s
≤

∞∑
m=3

m−1∑
j=0

I2,j+I2,θ, (4.2)

where

I2,j =
mτ(t)m−3

(m−3)!s

∑
|β|=m−1

∑
γ=j,γ≤β

Mβ∥∂γ∂iuk ·∂β−γ∂kui∥L2 ,

and

I2,θ=

∞∑
m=3

∑
|β|=m−1

Mβ
mτ(t)m−3

(m−3)!s
∥∂β(∂3θ)∥L2

≤C|∂3θ|2+
∞∑

m=4

Mβ
mτ(t)m−4

(m−3)!s
|∂3θ|m−1≤C|θ|3+Cτ∥θ∥Yτ .

Similarly to [16], we address I2,j according to the values of m and j by considering the
cases of low j, intermediate j, and high j, thus we obtain for low j

∞∑
m=3

I2,0≤C|u|1,∞|u|3+Cτ |u|1,∞∥u∥Yτ
,

∞∑
m=3

I2,1≤C|u|2,∞|u|2+τ |u|2,∞|u|3+Cτ2|u|2,∞∥u∥Yτ
,

∞∑
m=5

I2,2≤Cτ2|u|3,∞|u|3+Cτ3|u|3,∞∥u∥Yτ
.

For intermediate j,

∞∑
m=8

[m/2]−1∑
j=3

I2,j ≤Cτ3/2∥u∥Xτ
∥u∥Yτ

,

∞∑
m=6

m−3∑
j=[m/2]−1

I2,j ≤Cτ3/2∥u∥Xτ
∥u∥Yτ

,
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∞∑
m=8

[m/2]−1∑
j=3

I2,j ≤|u|1,∞|u|3+ |u|2,∞|u|2+τ |u|2,∞|u|3+τ2|u|3,∞|u|3.

For high j,

∞∑
m=4

I2,m−2≤Cτ |u|2,∞|u|3+Cτ2|u|2,∞∥u∥Yτ
,

∞∑
m=3

I2,m−1≤Cτ |u|1,∞|u|3+Cτ |u|1,∞∥u∥Yτ
.

Thus, by combining the above estimates we get

∞∑
m=4

I2,m−2≤Cτ |u|2,∞|u|3+Cτ2|u|2,∞∥u∥Yτ

and

I2≤C(L1+L2∥u∥Yτ +τ∥θ∥Yτ ),

where

L1≤ τ |u|1,∞|u|3+ |u|2,∞|u|2+τ |u|2,∞|u|3+ |θ|3,

L2≤ τ |u|1,∞+τ2|u|2,∞+τ3|u|3,∞+τ3/2∥u∥Xτ .

Thus, we have the estimates of I2.
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