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A FOURIER COLLOCATION METHOD
FOR SCHRÖDINGER-POISSON SYSTEM WITH PERFECTLY

MATCHED LAYER∗

RONGHUA CHENG† , LIPING WU‡ , CHUNPING PANG§ , AND HANQUAN WANG¶

Abstract. Fourier spectral method has been widely used to solve Schrödinger equation with
constant coefficients. It meets difficulties and loses its efficiency when solving Schrödinger equation
with variable coefficients. We show that Fourier collocation method can be applied to efficiently solve
Schrödinger equation with variable coefficients. The method is characterized by the expansion of the
solution in terms of Fourier series-based functions, while the expansion coefficients are computed so
that the equation is satisfied exactly at a set of collocation points. We implement the method to solve
the Schrödinger-Poisson (SP) system with perfectly matched layer (PML), which is a Schrödinger-type
equation with variable coefficients. We carry out numerical simulation for the SP system by employing
splitting method in time and Fourier collocation method in space, respectively. Numerical results show
that the Fourier-collocation method coupled with PML technique can absorb well the outgoing waves
governed by the Schrödinger equation when the wave goes out of the computational boundary.

Keywords. Schrödinger-Poisson system; Perfectly matched layer; Fourier collocation method;
time-splitting method.

AMS subject classifications. 65Z0; 65N12; 65N35.

1. Introduction
The theory of quantum mechanics used to describe the microscopic world was de-

veloped at the beginning of the 20th century. The core equation of quantum me-
chanics is time-dependent Schrödinger equation, which is widely found in quantum
semiconductor physics, plasma physics, condensed matter physics and molecular dy-
namics [2, 7, 22, 27, 32, 38, 40, 42, 49]. For numerical discretization of time-dependent
Schrödinger equations, one usually truncates the whole space problem to bounded com-
putational domain. The numerical simulation proceeds correctly as long as the nu-
merical solution does not reach the computational boundary. But once the solution
reaches the boundary, it suffers nonphysical reflection. One technique for avoiding that
the boundary limits interfere with the correct wave is usually to build a wide enough
computational domain. However, it requires much more computational resources. Sev-
eral other efficient techniques have emerged in recent years. One way is to construct
the Dirichlet-to-Neumann (DtN) map for the Schrödinger operator at the boundary by
means of continuous or discrete Laplace transform and construct transparent or arti-
ficial boundary conditions (ABCs). The constructed ABCs can successfully avoid the
outgoing wave reflected back at the boundary. However the DtN map is nonlocal and
its approximations, which involve time fractional derivatives and integrals, are difficult
to handle in practical computations (see [2, 4] for further details). The other way is
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to first introduce an extra damping potential (also called complex absorbing potential
or exterior complex scaling) into the original Schrödinger equation and solve the mod-
ified equation next [34]. Still another way is to build an artificial damping layer of
finite size around the computational domain and solve a modified set of Schrödinger
equations [5, 33]. This method builds a perfectly matched layer (PML) around the
computational domain and allows the outgoing wave to move freely. Among these tech-
niques, the PML approach seems to be the easiest to implement and understand. As
such, it is widely applied in numerical solution of many partial differential equations
including Schrödinger equations [3, 6, 9–11,16,18,21,25,26,33,41,47,49].

When the PML technique is applied, the original Schrödinger-type equation be-
comes a Schrödinger-type equation with variable coefficients. High order and popular
numerical method such as Fourier spectral method meets some difficulties and loses
its efficiency. In this paper, we show that Fourier collocation method can be applied
to efficiently solve Schrödinger-type equation with variable coefficients. The method is
characterized by the expansion of the solution in terms of Fourier series-based functions,
while the expansion coefficients are computed so that the equation is satisfied exactly
at a set of collocation points. As an example, we implement the method to solve the
following SP system with PML

i
∂ψ(x,t)

∂t
=

(
−1

2
∆̃+φ(x,t)+V (x)+β|ψ| 4d

)
ψ(x,t), x∈ Ω̃⊂Cd, (1.1)

∆̃φ(x,t)=1−|ψ(x,t)|2, x∈ Ω̃⊂Cd, (1.2)

ψ(x,0)=ψ0(x), x∈ Ω̃⊂Cd, (1.3)

which is derived from the initial problem on the whole space [36,43]

i
∂ψ(x,t)

∂t
=

(
−1

2
∆+φ(x,t)+V (x)+β|ψ| 4d

)
ψ(x,t), x∈Rd, (1.4)

∆φ(x,t)=1−|ψ(x,t)|2, x∈Rd, (1.5)

ψ(x,0)=ψ0(x), x∈Rd, (1.6)

by stretching x(∈Rd) into x̃(∈Cd) and then using the derivative rule for compound
functions, which will be discussed later in Section 2.

In the initial problem on the whole space (1.4)-(1.5), ∆ is the Laplacian operator,
both the wave function ψ(x,t) and the potential φ(x,t) are unknown functions, V (x) is
a given external potential function, ψ0(x) is a given initial state, β is a constant, d is the

number of space dimensions, Ω is the space domain of the initial SP system. While Ω̃
is the space domain of the SP system with PML (1.1)-(1.2), the transformed Laplacian
operator

∆̃=

{
c1(x)∂x(c1(x)∂x), 1D,

c1(x)∂x(c1(x)∂x)+c2(y)∂y(c2(y)∂y), 2D.

The initial problem has been used to describe the interaction between charged particles
and electromagnetic fields, as well as to model the dynamics of quantum plasma [1,
23, 24, 29, 30], and was developed from the Vlasov equation coupled with the Poisson
equation for the electric potential [36, 37]. It has been widely investigated with several
kinds of numerical methods [15, 19, 20, 27, 31, 35, 39, 48, 49]. Few studies on boundary
reflection have been taken for SP system except that Mauser and Zhang derived exact
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artificial boundary condition for the Poisson equation in the simulation of SP System in
2D [31], by combining the finite difference method with PML technique to obtain some
numerical simulation results in 2D SP system.

Fourier collocation method has an advantage in dealing with differential equa-
tions with variable coefficients and periodic boundary conditions. A Fourier colloca-
tion scheme was developed for solving the periodic problem of nonlinear Klein-Gordon
equation [14]. It was performed for the Navier-Stokes equation in the horizontal di-
rection [28]. The Fourier collocation method was analyzed for solving the generalized
Benjamin-Ono equation with periodic boundary conditions and an error estimate was
presented in H

1
2 -norm [17]. Trigonometric Fourier collocation method was studied

for solving multi-frequency oscillatory second-order ordinary differential equations [46].
An efficient implementation of RKN-type Fourier collocation methods was discussed
for some second-order differential equations [45]. A splitting Fourier pseudospectral
method was proposed for Vlasov-Poisson-Fokker-Planck system [44]. In this paper, we
employ Fourier collocation method and apply PML technique to carry out numerical
simulation for SP system, so that the obtained numerical results can not only ensure
the spectral accuracy but also effectively avoid the reflection of wave function on the
physical boundary.

The rest of the paper is organized as follows. In Section 2, we introduce the detailed
PML formulation for the SP system, and show how to obtain the corresponding PML
equations. In Section 3, we present the detailed algorithm on how to apply the splitting
Fourier collocation method for solving the time-dependent SP system with PML. In
Section 4, we compare the numerical results by solving Schrodinger-type equations with
PML and without PML by the proposed method, respectively. Finally some conclusions
are drawn in Section 5.

2. Perfectly matched layer for SP system
In this section, we present how to get the SP system with PML, i.e., Equations

(1.1)-(1.3). The initial problem, i.e., Equations (1.4)-(1.6) in 1D coupled with the
homogeneous boundary conditions are

i∂tψ=

(
−1

2
∂xx+V +φ+β|ψ|4

)
ψ, x∈Ω, t>0, (2.1)

∂xxφ=1−|ψ|2, x∈Ω, t>0, (2.2)

ψ(xL,t)=ψ(xR,t)=0,φ(xL,t)=φ(xR,t)=0, t≥0, (2.3)

ψ(x,0)=ψ0(x), x∈Ω, (2.4)

where Ω=[xL,xR] and i=
√
−1 is the complex number.

We firstly enlarge the computation domain from the original interval Ω=[xL,xR]

to a larger interval Ω̃= [x̃L,x̃R], i.e., Ω⊂ Ω̃. To avoid the boundary reflection, we are

interested to solve the system (2.1)-(2.4) over the wider domain Ω̃:

i∂tψ=

(
−1

2
∂xx+V +φ+β|ψ|4

)
ψ, x∈ Ω̃, t>0, (2.5)

∂xxφ=1−|ψ|2, x∈ Ω̃,t>0; (2.6)

ψ(x̃L,t)=ψ(x̃R,t)=0, φ(x̃L,t)=φ(x̃R,t)=0, t≥0, (2.7)

ψ(x,0)=ψ0(x), x∈ Ω̃. (2.8)

However, unless the width of Ω̃ is large enough, directly solving the above equations
would not be able to avoid the outgoing wave reflected back at the boundary.
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Next, we construct a complex coordinate transform by means of PML technique [49]

x̃=


x−R

∫ xL

x
σ(r)dr, x̃L≤x<xL,

x, xL≤x≤xR,
x+R

∫ x
xR
σ(r)dr, xR<x≤ x̃R,

(2.9)

where R=σ0e
iθ, θ∈ (0, π2 ), σ0 is a given positive constant that is referred to as the

absorption strength factor. σ(x) is a nonnegative real-valued function that is called
absorption function defined by

σ(x)=

 (x−xL)2, x̃L≤x<xL,
0, xL≤x≤xR,

(x−xR)2, xR<x≤ x̃R.
(2.10)

We note that the complex coordinate transform (2.9) turns the real interval Ω̃=
[x̃L,x̃R] into a complex interval

˜̃
Ω=

x̃ | x̃=


x−R

∫ xL

x
σ(r)dr, x̃L≤x<xL,

x, xL≤x≤xR,
x+R

∫ x
xR
σ(r)dr, xR<x≤ x̃R.

.

And the wave function ψ(x,t) (or φ(x,t)) turns into ψ(x̃,t) (or φ(x̃,t)). Furthermore,
from Equations (2.5)-(2.6), we get

i∂tψ=

(
−1

2
∂x̃x̃+V +φ+β|ψ|4

)
ψ, x̃∈ ˜̃

Ω, (2.11)

∂x̃x̃φ=1−|ψ|2, x̃∈ ˜̃
Ω. (2.12)

Using the differential rule of compound function, we find ∂x̃ψ= 1
1+Rσ∂xψ and

∂x̃x̃ψ=
1

1+Rσ
∂x(

1

1+Rσ
∂x)ψ, (2.13)

and similarly,

∂x̃x̃φ=
1

1+Rσ
∂x(

1

1+Rσ
∂x)φ. (2.14)

Then, plugging Eqs. (2.13) and (2.14) into Eqs. (2.11) and (2.12), respectively, Equa-
tions (2.11)-(2.12) reduce to

i∂tψ=

(
−1

2
c1(x)∂x(c1(x)∂x)

)
ψ(x,t)+

(
V +φ+β|ψ|4

)
ψ(x̃,t), (2.15)

c1(x)∂x (c1(x)∂x)φ(x,t)=1−|ψ(x̃,t)|2, x̃∈ ˜̃
Ω, (2.16)

where c1(x)=
1

1+Rσ(x) .

Finally, let the complex coordinate x̃ keep only x in Equations (2.15)-(2.16) ( c.f.
the complex coordinate transform (2.9)) and we find the following SP system with PML
in 1D coupled with the following initial boundary conditions:

i∂tψ=

(
−1

2
c1(x)∂x(c1(x)∂x)+V +φ+β|ψ|4

)
ψ, x∈ Ω̃, (2.17)
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c1(x)∂x (c1(x)∂x)φ=1−|ψ|2, x∈ Ω̃, (2.18)

ψ(x̃L,t)=ψ(x̃R,t)=0, φ(x̃L,t)=φ(x̃R,t)=0, t≥0, (2.19)

ψ(x,0)=ψ0(x), x∈ Ω̃= [x̃L,x̃R], (2.20)

where Ω̃= [x̃L,x̃R]⊃Ω=[xL,xR]. The thickness of left absorbing layer is defined as
δL :=xL− x̃L, while the the thickness of right absorbing layer is defined by δR := x̃R−xR.
To simplify the calculation later, we set δ= δL= δR.

In addition, we notice that there are several other types of absorption functions
adopted in the literature [12,13].

Similarly, we can obtain two-dimensional SP systems with PML. The SP system
with PML can be denoted uniformly as follows

i∂tψ=−1

2
Lψ(x,t)+Nψ(x,t), x∈ Ω̃, (2.21)

Lφ(x,t)=1−|ψ(x,t)|2, x∈ Ω̃, (2.22)

ψ(x,t)=ψ(x,t)=0, x∈ Γ̃=∂Ω̃, t≥0, (2.23)

ψ(x,0)=ψ0(x), x∈ Ω̃, (2.24)

where Ω̃= [x̃L,x̃R] in 1D, Ω̃= [x̃L,x̃R]× [ỹL, ỹR] in 2D, Γ̃=∂Ω̃ is the boundary of Ω̃,

N =V (x)+φ(x,t)+β|ψ(x,t)| 4d , the linear differential operator

L=∆̃=

{
c1(x)∂x(c1(x)∂x), 1D,
c1(x)∂x(c1(x)∂x)+c2(y)∂y(c2(y)∂y), 2D.

Especially, setting δ=0,σ0=0, Equations (2.21)-(2.22) are reduced to Equations (1.4)-
(1.5).

3. A time-splitting Fourier collocation method for SP system
In this section, we propose a time-splitting Fourier-collocation method to discretize

the system (2.21)-(2.24). Two merits of the proposed Fourier collocation method for the
nonlinear SP system are that it is unconditionally stable and is of spectral accuracy in
space. In time direction, we solve the time-dependent SP system by splitting technique;
in spatial direction, the system is discretized by high-order Fourier collocation method;
the resulting full discretized system in one dimension and two dimensions can be solved
efficiently by matrix diagonalization technique.

3.1. Time-splitting. We choose ∆t>0 as the time step size and denote t=
tn=n∆t. From time tn to tn+1, one first-order time-splitting method for solving the
system (2.21)-(2.24) is [7, 42,43]:

Step 1. One solves first the nonlinear equation

i ∂tψ(x,t)=Nψ(x,t) tn≤ t≤ tn+1. (3.1)

Step 2. This is followed by solving the linear Schrödinger equation

i ∂tψ(x,t)=−1

2
Lψ(x,t) tn≤ t≤ tn+1. (3.2)

In Step 1, because ψ(x,t) satisfies d
dt |ψ(x,t)|

2=0 (see [43] for further details), we
can get

|ψ(x,t)|2= |ψ(x,tn)|2, tn≤ t≤ tn+1. (3.3)
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Noticing that φ(x,t) is obtained from Poisson Equation (2.22). When t∈ [tn,tn+1], from
Poisson Equation (2.22) we find that

φ(x,t)=φ(x,tn), tn≤ t≤ tn+1, (3.4)

and φ(x,t) satisfies the following Poisson equation

Lφ(x,t)=1−|ψ(x,tn)|2, tn≤ t≤ tn+1. (3.5)

Thus, plugging both (3.3) and (3.4) into Equation (3.1) and integrating it from tn to

tn+1, we obtain for all x∈ Ω̃

ψ(x,t)=e−i(t−tn)Nψ(x,tn), tn≤ t≤ tn+1. (3.6)

In Step 2, we can express the solution of Equation (3.2) as follows

ψ(x,t)=e
1
2 i(t−tn)Lψ(x,tn), tn≤ t≤ tn+1, (3.7)

which will be discretized with Fourier-collocation method later.
Therefore, merging steps (3.6) and (3.7), the system (2.21)-(2.22) is solved in the

following way

ψ(x,tn+∆t)=e−i∆tN ei
1
2∆tLψ(x,tn), x∈ Ω̃. (3.8)

The key step in (3.8) that remains is to numerically solve the linear Schrödinger equation
and Poisson equation which will be discussed in the next subsection.

3.2. Discretization in space. In this subsection, we present how to apply the
Fourier-collocation method to solve linear Schrödinger-type Equation (3.2) and Poisson
Equation (3.5).

3.2.1. The Fourier collocation method. The Fourier collocation method
has flexibilities and efficiency in dealing with partial differential equations with variable
coefficients. In fact, based on Fourier series, we can construct an approximation for an
unknown function u(x) with periodic boundaries defined on [a,b] as follows

u(x)≈uN (x)=

N−1∑
j=0

u(xj)gj (x̄) , (3.9)

where x̄= 2π(x−a)
b−a and grid points xj=a+

(b−a)j
N (j=0,. ..,N−1).The Lagrangian poly-

nomial gj(x̄)=
1
N sin[N

x̄−x̄j

2 ]cot[
x̄−x̄j

2 ] which is constructed from the collocation points
x̄j j=0,1, ·· ·N satisfies the interpolation properties, i.e.,

gj(x̄k)=

{
1, j=k,
0, j ̸=k,

with x̄j=
2π(xj−a)
b−a , j=0,. ..,N−1.

To derive Equation (3.9), we assume that the Fourier collocation discretization of
u(x) has the following Fourier series expansion

uN (x)=

N/2−1∑
k=−N/2

ûke
ikx̄, (3.10)
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where

ûk=
1

b−a

∫ b

a

u(x)e−ikx̄dx≈ 1

N

N−1∑
j=0

u(xj)e
−ikx̄j . (3.11)

Remark 3.1. In the popular Fourier spectral method, one usually assumes the un-
known function is expanded as Equation (3.10). This expansion has many advantages
such as ease of calculating derivatives of the unknown function and usage of the dis-
crete fast Fourier transform. However, it loses some of its efficiency when dealing with
differential equation with variable coefficients.

Substituting Equation (3.11) into Equation (3.10), we obtain Equation (3.9)

uN (x)=

N/2−1∑
k=−N/2

ûke
ikx̄

=

N/2−1∑
k=−N/2

 1

N

N−1∑
j=0

u(xj)e
−ikx̄j

eikx̄
=

N−1∑
j=0

u(xj)gj(x̄).

Furthermore, we can derive the p-th derivative of uN (x)

u
(p)
N (x)=γp

N−1∑
j=0

u(xj)g
(p)
j

(
2π(x−a)
b−a

)
, γ=

2π

b−a
. (3.12)

To implement the Fourier collocation method, we require to approximate the p-th
derivative of uN (x) at grid points xi(i=0, ·· · ,N). Here, the entries of the first-order
differentiation matrix D(1) are given by

d
(1)
kj =

d

dx
gj(x)|x̄k

=

{
(−1)k+j

2 cot[
x̄k−x̄j

2 ], k ̸= j,
0, k= j,

(3.13)

from which we get the first-order derivative of uN (x) at grid points xi

u
(1)
N (xi)=γ

N−1∑
j=0

d
(1)
ij u(xj), i=0,1, ·· · ,N. (3.14)

The entries of the second-order differentiation matrix D(2) are

d
(2)
kj =

d2

dx2
gj(x) |x̄k

=

{
− (−1)k+j

2 [sin(
x̄k−x̄j

2 )]−2, k ̸= j,
−N2+2

12 , k= j,
(3.15)

from which we get the second-order derivative of uN (x) at grid points xi

u
(2)
N (xi)=γ

2
N−1∑
j=0

d
(2)
ij u(xj), i=0,1,·· · ,N. (3.16)
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We shall apply the Fourier collocation method to solve Schrödinger-type Equation
(3.2) and Poisson Equation (3.5). We assume that the unknown function can be ap-
proximated in terms of Fourier series-based functions (c.f. (3.10)), while the unknown
expansion coefficients are computed so that the Equation (3.2) or (3.5) is satisfied ex-
actly at selected collocation points. In the following subsection, we show the details
of how to apply the Fourier-collocation method to solve Equation (3.2) and Equation
(3.5).

3.2.2. Fourier Collocation Discretization for SP System in 1D. We per-
form the Fourier collocation approximation to linear Schrödinger Equation (3.2) and
Poisson Equation (3.5) in 1D. Firstly, given grid points:

xj= x̃L+jhx,hx=
x̃R− x̃L
Nx

, j=0, ·· · ,Nx,

where Nx is a sufficiently large even integer, ψj(t) is an approximation of ψ(xj ,t) at
grid points xj , i.e., ψj(t)≈ψ(xj ,t).

Equation (3.2) is collocated at grid point xk,(k=0,1,...,Nx−1), i.e.,

i ∂tψN (x,t)|x=xk
=−1

2
LψN (x,t)|x=xk

, (3.17)

where

ψN (x,t)=

Nx−1∑
m=0

gm

(
2π(x− x̃L)
x̃R− x̃L

)
ψm(t). (3.18)

∂ψN

∂x and ∂2ψN

∂x2 at grid point xk can be evaluated as

∂ψN (x,t)

∂x
|x=xk

=γ

Nx−1∑
m=0

d
(1)
kmψm(t), (3.19)

∂2ψN (x,t)

∂x2
|x=xk

=γ2
Nx−1∑
m=0

d
(2)
kmψm(t), (3.20)

respectively, where γ= 2π
x̃R−x̃L

.
Consequently, LψN (x,t)= c1(x)∂x(c1(x)∂x)ψN (x,t) at grid point xk can be evalu-

ated by

LψN (x,t)|xk
= c′1(xk)c1(xk)γ

Nx−1∑
m=0

d
(1)
kmψm(t)+c21(xk)γ

2
Nx−1∑
m=0

d
(2)
kmψm(t). (3.21)

Plugging (3.21) into (3.17) and denoting D(p)=(d
(p)
km)(p=1,2; k,m=0, ·· · ,Nx−1),

we get the following matrix formulation

i ∂tΨ=−1

2
DΨ, (3.22)

where Ψ=Ψ(t)=(ψ0(t),ψ1(t), · · ·,ψNx−1(t))
T is the unknown vector, D=Λ1γD

(1)+
Λ2γ

2D(2) is a Nx×Nx coefficient matrix with

Λ1=diag(c′1(x0)c1(x0),c
′
1(x1)c1(x1), ·· · ,c′1(xNx−1)c1(xNx−1)),
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Λ2=diag(c21(x0),c
2
1(x1), ·· · ,c21(xNx−1)).

Likewise, using Fourier collocation method, the discrete matrix formulation of Equa-
tion (3.5) in 1D is as follows

DΦ=F, (3.23)

where

Φ=Φ(t)=(φ0(t),φ1(t),· · ·,φNx−1(t))
T,

F =F (t)=(f0(t),f1(t),· · ·,fNx−1(t))
T,

here, fj(t)=1−|ψj(t)|2.
According to the method of matrix factorization, D can be factorized into D=

PΛP−1 since D is a Hermite matrix. Then, from the above Equation (3.22)-(3.23), we
can get

i ∂tΨ=−1

2
PΛP−1Ψ,

i ∂t(P
−1Ψ)=−1

2
Λ(P−1Ψ),

i ∂tΨ̃=−1

2
ΛΨ̃, (3.24)

PΛP−1Φ=F,

ΛP−1Φ=P−1F,

ΛΦ̃= F̃ , (3.25)

where Λ=diag(λ0,λ1, ·· · ,λM−1) is a diagonal matrix,

Ψ̃=P−1Ψ=(ψ̃0,ψ̃1, ·· · ,ψ̃Nx−1)
T,

Φ̃=P−1Φ=(φ̃0,φ̃1,·· · ,φ̃Nx−1)
T,

F̃ =P−1F =(f̃0, f̃1,·· · , f̃Nx−1)
T.

Equation (3.24) is a decoupled system of ordinary differential equations for Ψ̃, which
can be solved exactly; Equation (3.25) is a linear system that can be solved easily.
The components of Equation (3.24) and Equation (3.25) are expressed as the following,
respectively

i ∂tψ̃k=−1

2
λkψ̃k, k=0,1,...,Nx−1, (3.26)

λkφ̃k= f̃k, k=0,1,...,Nx−1. (3.27)

Solving Equations (3.26), we can get

ψ̃k(t+∆t)=e
1
2 iλk∆tψ̃k(t), k=0,1,...,Nx−1. (3.28)
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Setting t= tn, (3.28) is rewritten as

ψ̃k(tn+1)=e
1
2 iλk∆tψ̃k(tn), k=0,1,...,Nx−1,n=0,1,...,N−1. (3.29)

Finally, the full numerical algorithm for system (2.21)-(2.24) in 1D is summarized
in Algorithm 1:

Algorithm 1 Full discretization for system (2.21)-(2.24) in 1D

Starting from n=0,

(1) Find matrix D and factorize D into PΛP−1 with Λ=diag(λ0,λ1, ·· · ,λNx−1);

(2) Compute Ψ̃(tn)=P
−1Ψ(tn),F̃ (tn)=P

−1F (tn);

(3) Obtain φ̃k(tn)= f̃k(tn)/λk, k=0,1,...,Nx−1;

(4) Calculate ψ̃∗
k(tn+1)=e

1
2 iλk∆tψ̃k(tn), k=0,1,...,Nx−1;

(5) Get Ψ∗(tn+1)=P Ψ̃
∗(tn+1),Φ(tn)=P Φ̃(tn);

(6) Obtain ψk(tn+1)=e
−i(Vk+φk(tn)+β|ψ∗

k(tn+1)|4)∆tψ∗
k(tn+1),k=0,1,...,Nx−1;

(7) Let n=n+1 and repeat steps 2-6 until n=N (the final time step).

3.2.3. Fourier collocation Discretization for SP system in 2D. We now
extend the Fourier collocation approximation to linear Schrödinger Equation (3.2) and
Poisson Equation (3.5) in 2D. If we take:

xj= x̃L+jhx,hx=
x̃R− x̃L
Nx

, j=0, ·· · ,Nx,

yk= ỹL+khy,hy=
ỹR− ỹL
Ny

, k=0,·· · ,Ny,

where Nx,Ny are sufficiently large even integers. Then, grid points are defined as
(xj ,yk),j=0, ·· · ,Nx,k=0, ·· · ,Ny. In addition, for simplicity of notation, we denote
ψjk(t) as approximation of ψ(xj ,yk,t), i.e., ψjk(t)≈ψ(xj ,yk,t).

Based on the Fourier collocation method, Equation (3.2) in 2D can be collocated
at grid points (xj ,yk) and approximated by

i ∂tψN (x,y,t)|(x,y)=(xj ,yk)=−1

2
LψN (x,y,t)|(x,y)=(xj ,yk), (3.30)

j=0,·· · ,Nx−1;k=0,·· · ,Ny−1,

where

ψN (x,y,t)=

Nx−1∑
m=0

Ny−1∑
n=0

gm

(
2π(x− x̃L)
x̃R− x̃L

)
g̃n

(
2π(y− ỹL)
ỹR− ỹL

)
ψmn(t). (3.31)

Thus, LψN (x,y,t)= [c1(x)∂x(c1(x)∂x)+c2(y)∂y(c2(y)∂y)]ψN (x,y,t) in (3.30) at
grid point (xj ,yk) can be evaluated by

LψN (x,y,t)|(xj ,yk)= c
′
1(xj)c1(xj)γ1

Nx−1∑
j=0

d
(1)
jmψmk(t)+c

2
1(xj)γ

2
1

Nx−1∑
j=0

d
(2)
jmψmk(t)
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+c′2(yk)c2(yk)γ2

Ny−1∑
k=0

d̃
(1)
knψjn(t)+c

2
2(yk)γ

2
2

Ny−1∑
k=0

d̃
(2)
knψjn(t), (3.32)

where γ1=
2π

x̃R−x̃L
, γ2=

2π
ỹR−ỹL , D

(p)=(d
(p)
jm) and D̃(p)=(d

(p)
kn )(p=1,2;j,m=0,1,...,Nx−

1;k,n=0,1,...,Ny−1) represent the p-th differentiation matrices of gm

(
2π(x−x̃L)
x̃R−x̃L

)
and

g̃n

(
2π(y−ỹL)
ỹR−ỹL

)
at grid points, respectively.

Plugging (3.32) into (3.30) and we get the following matrix formulation

i ∂tΨ=−1

2
(DxΨ+ΨDT

y ), (3.33)

where Ψ=Ψ(t)=(ψjk(t)) is the unknown Nx×Ny matrix, Dx=Λ11γ1D
(1)+Λ12γ

2
1D

(2)

is a Nx×Nx coefficient matrix with

Λ11=diag(c′1(x0)c1(x0),c
′
1(x1)c1(x1), ·· · ,c′1(xNx−1)c1(xNx−1)),

Λ12=diag(c21(x0),c
2
1(x1), ·· · ,c21(xNx−1)).

Dy=Λ21γ2D̃
(1)+Λ22γ

2
2D̃

(2) is a Ny×Ny coefficient matrix with

Λ21=diag(c′2(y0)c2(y0),c
′
2(y1)c2(y1), ·· · ,c′2(yNy−1)c2(yNy−1)),

Λ22=diag(c22(y0),c
2
2(y1), ·· · ,c22(yNy−1)).

Likewise, using Fourier collocation method, the discretized matrix formulation of
Poisson Equation (3.5) in 2D is as follows

DxΦ+ΦDT
y =F, (3.34)

where Φ=Φ(t)=(ψjk(t)) and F =F (t)=(fjk(t))=(1−|ψjk(t)|2) are Nx×Ny matrices.
According to the method of matrix factorization, Dx and Dy can be factorized into

Dx=PΛP
−1 and Dy=QΛQ−1, respectively. Then, multiplying the above Equations

(3.33)-(3.34) with matrices P−1 and (QT)−1, we can get

i ∂tΨ̃=−1

2
(ΛxΨ̃+Ψ̃Λy), (3.35)

ΛxΨ̃+Ψ̃Λy= F̃ , (3.36)

i.e., or element by element,

i ∂tψ̃jk=−1

2
(λxj+λyk)ψ̃jk, (3.37)

(λxj+λyk)φ̃jk= f̃jk, (3.38)

where Λx=diag(λx0,λx1,· · ·,λx,Nx−1) and Λy=diag(λy0,λy1, · · ·,λy,Ny−1) are diagonal

matrices, Ψ̃=P−1Ψ(QT)−1=(ψ̃jk), Φ̃=P−1Φ(QT)−1=(φ̃jk) and F̃ =P−1F (QT)−1=

(f̃jk) are Nx×Ny matrices.

Equation (3.35) has been decoupled into ordinary differential equations for Ψ̃. More-
over, Equation (3.36) is also a decoupled linear system. Both of them can be solved
exactly. For any j,k, we solve Equations (3.37) over [tn,tn+1] and obtain the following
solutions

ψ̃jk(tn+1)=e
1
2 i(λxj+λyk)∆tψ̃jk(tn). (3.39)

Thus, we can get the following algorithm for system (2.21)-(2.24), which is summa-
rized in Algorithm 2:
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Algorithm 2 Full discretization for system (2.21)-(2.24) in 2D

Starting from n=0,

(1) Find matrix Dx,Dy and factorize Dx and Dy into PΛxP
−1 and QΛyQ

−1, respec-
tively;

(2) Compute Ψ̃(tn)=P
−1Ψ(tn)(Q

T)−1,F̃ (tn)=P
−1F (tn)(Q

T)−1;

(3) Obtain φ̃jk(tn)= f̃jk(tn)/(λxj+λyk),j=0,1,...,Nx−1;k=0,1,...,Ny−1;

(4) Calculate ψ̃∗
jk(tn+1)=e

1
2 i(λxj+λyk)∆tψ̃jk(tn), j=0,1,...,Nx−1;k=0,1,...,Ny−1;

(5) Get Ψ(tn+1)=P Ψ̃(tn+1)Q
T,Φ(tn)=P Φ̃(tn)Q

T;

(6) Calculate ψjk(tn+1)=e
−i(Vjk+φjk(tn)+β|ψ∗

jk(tn+1)|2)∆tψ∗
jk(tn+1), j=0,1,...,Nx−

1;k=0,1,...,Ny−1;

(7) Let n=n+1 and repeat steps 2-6 until n=N (the final time step).

4. Numerical results
In this section, to show the benefit of PML technique, we first test the numerical

accuracy of proposed Fourier collocation method and show the performance of PML
technique for one-dimensional and two-dimensional Schrödinger equation. Then, we
apply the newly proposed splitting Fourier collocation method to solve the SP system
with PML and see whether or not the proposed method can capture the correct wave
near the computational boundary. Unless specified otherwise, we take spatial mesh size
hx=0.01 in 1D and hx=hy=0.01 in 2D, temporal mesh size ∆t=0.001 and θ= π

4 .
Besides, we denote the numerical solution obtained with PML and without PML as
ψpml(·,t) and ψnonpml(·,t), respectively.

4.1. Numerical tests for Schrödinger equation. In this subsection, we solve
one-dimensional linear Schrödinger equation, one-dimensional nonlinear Schrödinger
equation (NLSE), two-dimensional linear Schrödinger equation, and two-dimensional
NLSE, respectively, on truncated domain with PML technique. We test the numerical
accuracy of proposed Fourier collocation method and show the performance of PML
technique.

Example 1. With Fourier collocation method, we solve the linear one-dimensional
Schrödinger equation with PML

iψt=−1

2
c1(x)∂x(c1(x)∂x)ψ+

1

4
ψ, x∈ Ω̃= [x̃L,x̃R], t>0, (4.1)

ψ(x̃L,t)=ψ(x̃R,t)=0, t≥0,

which is derived from the Cauchy problem on the whole space

iψt=−1

2
ψxx+

1

4
ψ, x∈R, t>0, (4.2)

ψ(x,t)=0, |x|→∞,t≥0.

For the latter one, it admits an analytical solution

ψexact(x,t)=
4

√
2

π

√
i

−4t+ i
exp

(
−2ix2

−4t+ i
− i1

4
t

)
.

Figure 4.1 shows that σ0 in c1(x)=
1

1+eiθσ0σ(x)
has implications for the performance

of PML technique.
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Fig. 4.1. Numerical error changes with respect to time t for different σ0 in solving one-dimensional
linear Schrödinger Equation (4.1) over Ω̃= [−12−δ,12+δ] with δ=2.

From Figure 4.1, we find σ0=1 may have better numerical performance than the re-
maining ones (σ0=0.01,0.1,10,100,1000 ) in terms of numerical error. ‘Error’ is defined
as ∥ψ(x,t)−ψexact(x,t)∥∞,Ω.

Once the appropriate parameter σ0=1 is taken, we now compare the numerical
result obtained with PML technique (by solving Equation (4.1)) and without PML
technique (by solving Equation (4.2)), respectively. Numerical result is shown in Fig-
ure 4.2, from which we observe that the numerical solution obtained without PML is
reflected at the boundaries at t≥2.5, while solutions obtained with PML can avoid
boundary reflections at t≥2.5. Furthermore, in Table 4.1, we calculate numerical error
at different times. From this table, we find numerical error obtained with PML is much
less than that obtained without PML.
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Fig. 4.2. Time evolution of wave function of one-dimensional Schrödinger equation : (a)
|ψnonpml(x,t)|; (b) |ψpml(x,t)|; (c) |ψexact(x,t)|.

t 1 2 3 4 5
Error without PML 1.931e-8 3.745e-3 0.03532 0.07275 0.09719
Error with PML 9.540e-9 3.605e-8 3.276e-7 6.786e-7 9.211e-7

Table 4.1. Error at different times in solving Equation (4.2) without PML (the second row) and
Equation (4.1) with PML (the third row).
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Fig. 4.3. (a) Numerical error obtained with PML for a relatively long-time simulation (t=20)

and the spatial computation domain Ω̃= [−24−3,24+3]; (b) Numerical error obtained with PML for

a long-time simulation (t=200) and the spatial computation domain Ω̃= [−128−12,128+12].

However, PML technique may not avoid unstable numerical results in long-time
simulations, as shown in Figure 4.3(a), where the computational domain is chosen as
(x,t)∈ [−24−3,24+3]× [0,20]. We thought that one of the remedies for this problem
might be enlarging the computational spatial domain from [−24−3,24+3] to [−128−
12,128+12]. But, as shown in Figure 4.3(b), it is observed that the corresponding
numerical error is still growing at a relatively long time (until t=200). We note that
stability of PML for anisotropic waves had been discussed earlier in [8]. The technique
presented there might be helpful for solving the instability problem here.

Example 2. We solve the one-dimensional NLSE with PML

iψt=−1

2
c1(x)∂x(c1(x)∂x)ψ−|ψ|2ψ, x∈ Ω̃, (4.3)

ψ(x,t)=0, (x,y)∈∂Ω̃, t≥0,

which is derived from the initial problem on the whole space

iψt=−1

2
ψxx−|ψ|2ψ x∈R, t>0, (4.4)

ψ(x,t)=0, |x|→∞, t≥0,

where Ω̃= [−12−δ,12+δ] with layer size δ=2. The analytical solution to (4.4) is

ψexact(x,t)=exp[i(3x−4t)]sech(x−3t).

We depict the numerical solution and compare them with exact solutions in Figure
4.4. Figure 4.4 shows time evolution of wave functions |ψnonpml(x,t)|, |ψpml(x,t)| and
|ψexact(x,t)|, respectively. From this figure, the numerical solution obtained without
PML is reflected at the boundaries at t≥3, while solutions obtained with PML can
avoid boundary reflections at t≥3.

Example 3. For the computation of two-dimensional linear Schrödinger equation
with homogeneous Dirichlet boundary condition

iψt=−1

2
(ψxx+ψyy), (x,y)∈R2, t>0, (4.5)

ψ(x,y,t)=0,
√
x2+y2→∞, t≥0,

we consider the following equation with PML

iψt=−1

2
[c1(x)∂x(c1(x)∂x)+c2(y)∂y(c2(y)∂y]ψ, (x,y)∈ Ω̃, (4.6)
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Fig. 4.4. Time evolution of wave function of one-dimensional NLSE : (a) |ψnonpml(x,t)| ; (b)
|ψpml(x,t)|; (c) |ψexact(x,t)|.

ψ(x,y,t)=0, (x,y)∈∂Ω̃, t≥0,

where Ω̃= [−2−δ,2+δ]2 with layer size δ=2. The analytical solution to Equation (4.5)
is

ψexact(x,y,t)=

√
2

π

i

−4t+ i
exp

(
−i(2x2+2y2)

−4t+ i

)
.

In both cases (with PML and without PML technique), we depict the numerical solution
at several time points and compare them with exact solutions. Figure 4.5 shows the
image plots for the density functions |ψnonpml(x,y,t)|, |ψpml(x,y,t)| and |ψexact(x,y,t)|
at different times, respectively. As can be seen from this figure, the wave goes out
of the computaional boundary after t=0.25, and the numerical solution without PML
is reflected at the boundaries, while the one with PML avoids reflections for some
time. However, similar to the one-dimensional case, the numerical solution with PML
technique is unstable for long-time simulations.

Example 4. To solve the two-dimensional NLSE with homogeneous Dirichlet
boundary condition

iψt=−1

2
(ψxx+ψyy)−2|ψ|2ψ, (x,y)∈R2, t>0, (4.7)

ψ(x,y,t)=0,
√
x2+y2→∞, t≥0,

we consider the following equation with PML

iψt=−1

2
[c1(x)∂x(c1(x)∂x)+c2(y)∂y(c2(y)∂y]ψ−2|ψ|2ψ, (x,y)∈ Ω̃, (4.8)

ψ(x,y,t)=0, (x,y)∈∂Ω̃, t≥0,

where Ω̃= [x̃L,x̃R]× [ỹL, ỹR]. The analytical solution to Equation (4.7) is

ψexact(x,y,t)=exp[i(2x+2y−3t)]sech(x+y−4t).

In this example, we firstly test whether PML technique can be used to get correct
numerical solution of the two-dimensional NLSE over a truancated domain Ω̃= [−8−
δ,8+δ]2 with layer size δ=3. We depict the numerical solution and compare them with
exact solutions in Figure 4.6. Figure 4.6 shows the image plots for the density functions
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Fig. 4.5. Image plots of the density functions at different times (t=0.25, t=0.5, t=0.9, respec-
tively) of two-dimensional linear Schrödinger equation: |ψnonpml(x,y,t)| (the first row), |ψpml(x,y,t)|
(the second row), and |ψexact(x,y,t)| (the third row).
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Fig. 4.6. Comparison between two approximated solutions and exact solution of two-dimensional
NLSE at t=0.5 : (a) |ψnonpml(x,y,t)| ; (b) |ψpml(x,y,t)|; (c) |ψexact(x,y,t)|.

|ψnonpml(x,y,t)|, |ψpml(x,y,t)| and |ψexact(x,y,t)| at t=0.5, respectively. From this
figure, compared with the exact solution (c.f. Figure 4.6(c)), we see that the numerical
solution without PML is reflected obviously at the boundaries (c.f. Figure 4.6(a)), while
those with PML technique avoids reflections at the boundary (c.f. Figure 4.6(b)).

Next, we hope to get correct solution to the two-dimensional NLSE iψt=
− 1

2 (ψxx+ψyy)+200|ψ|2ψ over truncated domain Ω=[−2,2]2 with PML technique. In

this case, we take Ω̃= [−2−δ,2+δ]2 with layer size δ=2 in the PML technique. Nu-
merical result shown in Figure 4.7 give us image plots of wave function at different
times. From the figure we can see that the waves from the two-dimensional NLSE are
reflected back clearly in the computational domain if PML technique is not used. On
the contrary, when PML is imposed, the outgoing waves can be absorbed well.
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Fig. 4.7. Image plots of wave function at different times (t=0, t=0.1, t=0.25, respectively) of
two-dimensional NLSE: |ψnonpml(x,y,t)| (upper row) and |ψpml(x,y,t)| (lower row).
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Fig. 4.8. Time evolution of wave function from one-dimensional SP system solved on a shorter
spatial interval [−4,4]: (a)|ψnonpml(x,t)|; (b) |ψpml(x,t)|.

4.2. Numerical results for the Schrödinger-Poisson system. We now
apply the newly proposed splitting Fourier collocation method into studying SP system
with PML in 1D and 2D, respectively. Modified Schrodinger equation and Poisson
equation in the system will be solved on Ω̃.

We first consider one-dimensional SP system (2.21)-(2.22) over [−4−δ,4+δ]. If

taking the thickness of absorbing layer δ=1, V (x)= x2

2 , β=10 and the initial data

ϕ0(x)=(2π)
−1
4 e

−x2

4 x, we can obtain image plots of the density function |ψnonpml(x,t)|
and |ψpml(x,t)| in Figure 4.8. When the SP system is solved on a shorter computational
domain [−4−δ,4+δ], adding a PML region can absorb the outgoing waves well, and
the dynamics of SP system in 1D in the computational domain can be reproduced very
well, which is shown in Figure 4.8(b).

We next consider SP system (2.21)-(2.22) in 2D, along with the initial data

ϕ0(x)=
1√
2π
e−

x2+y2

4 (x+ iy) and the potential function V (x,y)= x2+y2

2 , and β=10. The

computational domain is chosen as [−3−δ,3+δ]2 with layer size δ=1 . Figure 4.9 shows
us image plots of the density function |ψnonpml(x,y,t)| and |ψpml(x,y,t)| at several times,
respectively. As one can see from the upper row of Figure 4.9, adding PML region can
absorb the outgoing waves well when the wave goes out of the computational boundary.
Without usage of PML technique, the numerical solution will be reflected back because
of the limit of computational boundary (c.f. upper row of Figure 4.9) .
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Fig. 4.9. Image plots of the density function |ψnonpml(x,y,t)| and |ψpml(x,y,t)| at several times:
|ψnonpml| (upper row) and |ψpml| (lower row).

5. Conclusions

As a kind of numerical method with spectral accuracy, Fourier collocation method
is efficient and flexible to deal with those partial differential equations with variable
coefficients numerically. We proposed and implemented a splitting Fourier collocation
method for the time-dependent Schrödinger-Poisson system with PML technique. We
show that Fourier collocation method can be applied to efficiently solve Schrödinger
equation with variable coefficients. Our extensive numerical experiments show that the
higher-order numerical method—Fourier collocation method, coupled with PML tech-
nique, can absorb well the outgoing waves governed by the Schrödinger equation when
the wave goes out of the computational boundary. In future, we hope to implement the
Fourier-collocation method as well as the PML technique to solve many other quantum
mechanical problems numerically.
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