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GLOBAL SOLUTION FOR EQUATIONS GOVERNING THE
LOW-FREQUENCY ION MOTION IN PLASMA∗

DAIWEN HUANG† AND JINGJUN ZHANG‡

Abstract. Equations describing the interactions between Langmuir waves and the low-frequency
response of ions are considered in the present work. Existence of global smooth solution is established
for suitably small initial data. The proof is based on the analysis of higher order energy estimate and
lower order decay estimate.
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1. Introduction
In this paper, we mainly concentrate on the following set of equations:

nt+∇·(nu)=0,

n(ut+(u ·∇)u)+∇n=µ0∆u+µ1∇(∇·u)−∇|E|2,
2iεEt+3∆E=(n−1)E.

(1.1)

Here, n :R+×R3→R denotes the low-frequency density of ions, u :R+×R3→R3 de-
notes the velocity of ions, E :R+×R3→C3 is the slowly varying complex amplitude of
the high-frequency electric field, ε=

√
m/M with m, M the mass of the electron, ion

respectively, µ0>0 and µ1≥0 are viscous constants.
The third equation in the above system describes the propagation of a finite ampli-

tude Langmuir wave packet in plasma, and the first two equations in (1.1) describe the
motion of the low-frequency ions. By decomposing the motion of a plasma into lower
frequency part and higher frequency part, system (1.1) can be derived from two-fluid
system under the charge neutrality condition ni≈ne and the action of viscosity, see [3]
for more details. So we can also regard (1.1) as a simplified two-fluid model.

If one neglects the effects of electric field, system (1.1) is then reduced to the com-
pressible Navier-Stokes equations. Using energy methods, Kawashima [9] proved global
existence result of classical solution with initial data sufficiently small. Decay asymptotic
results for such system have been studied systematically in Lp with p>1 by Hoff and
Zumbrun [7]. In that case, the potential for electric field is governed by a self-consistent
Poisson equation, Li, Matsumura and Zhang [10] observed the Poisson equation could
make the decay rate for the momentum more slower.

When µ0=µ1=0, general theory of finite amplitude envelope solitons was presented
by Schamel, Yu and Shukla [14], and Liapunov stability of the Langmuir solitons was
shown by Laedke and Spatschek [11]. In the viscous case, Guo and Huang [4] obtained
global existence of weak solutions to the 1D initial-boundary value problem of (1.1) in
Sobolev-Orlicz space, and later in [5], they proved existence and uniqueness of global
strong solutions to the initial-boundary value problem in 2D case for small initial data.
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However, as far as we know, there are few results of system (1.1) in three dimensional
case. In particular, we want to know the influence of the coupled electric field in the
existence theory and the time decay problem of the solution. This is the main motivation
of the work.

Throughout the paper, Lp (p≥1) is the usual Lebesgue space, and HN denotes the
inhomogeneous Sobolev spaces equipped with the norms

∥u∥HN :=∥(1+ |ξ|2)N/2û∥L2 .

Here, û= û(ξ) is the Fourier transform of u, namely,

û(ξ)=Fu := 1

(2π)3/2

∫
R3

e−ix·ξu(x)dx.

The default integral domain is always taken over R3. For x,y≥0, the notation x≲y
means that there exists a constant C>0 such that x≤Cy.

Now we state the main result of the paper. We endow (1.1) with the following
initial data

(n,u,E)(0,x)=(n0(x),u0(x),E0(x)). (1.2)

Theorem 1.1. Assume N ≥6 and the initial data satisfies

∥(n0−1,u0)∥HN +∥(n0−1,u0)∥L1 ≤ ϵ0,
∥E0∥HN +∥|x|2E0∥L2 ≤ ϵ0

(1.3)

with ϵ0>0 being sufficiently small, then the Cauchy problem (1.1)–(1.2) admits a unique
global solution (n(t,x),u(t,x),E(t,x)) satisfying

n(t,x)−1∈C(R+;HN ), u(t,x)∈C(R+;HN ), E(t,x)∈C(R+;HN ),

and for all t≥0,

∥(n(t,x)−1,u(t,x),E(t,x))∥HN ≲ ϵ0,

∥(n(t,x)−1,u(t,x))∥L∞ ≲
ϵ0

(1+ t)9/8−
,

∥E(t,x)∥L∞ ≲
ϵ0

(1+ t)5/4
.

(1.4)

Theorem 1.1 states that global smooth solution exists for a small perturbation
around the constant equilibrium state (n∗,u∗,E∗)=(1,0,0). The proof is to establish
energy estimates and decay estimates in suitable spaces (see Section 2.2 for the strategy
of the proof). As we will see later, it is crucial to obtain the quadratic contribution of
the electric field in decay estimates by using precisely the null structure. As a result,
we see that although linearized equations for the motion of ions and the propagation of
the Langmuir wave evolve separately, the coupled term of electric field may eventually
reduce the asymptotic decay rate in the nonlinear solution. The proof of Theorem 1.1
will also imply some decay estimates concerning the first and second derivatives of the
solution.
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2. Preliminaries

2.1. Linear decay estimates. Let ρ :=n−1, then linearized system of (1.1)
around the constant equilibrium state (n∗,u∗,E∗)=(1,0,0) reads

ρt+∇·u=0,

ut+∇ρ−µ0∆u−µ1∇(∇·u)=0,

2iεEt+3∆E=0.

(2.1)

The first two equations in (2.1) are of coupled hyperbolic-parabolic type, and we rewrite
them in the following form

Ut=B(∇)U, (2.2)

where U := (ρ,u)t and B(∇) is a Fourier multiplier 4×4 matrix. Solution of (2.2) with
initial data U(0,x)=U0(x) is then given by

U(t,x)=etB(∇)U0 :=G(t,x)∗U0(x), (2.3)

where ∗ denotes the convolution, and G(t,x) is the Green’s function, which in Fourier
space can be expressed by

Ĝ(t,ξ)=

λ+e
λ−t−λ−e

λ+t

λ+−λ−
−i e

λ+t−eλ−t

λ+−λ−
ξt

−i e
λ+t−eλ−t

λ+−λ−
ξ e−µ0|ξ|2t(I3×3− ξtξ

|ξ|2 )+
λ+e

λ+t−λ−e
λ−t

λ+−λ−

ξtξ
|ξ|2

. (2.4)

In (2.4), λ+ and λ− are the roots of the equation

x2+ν|ξ|2x+ |ξ|2=0

with

ν=µ0+µ1>0,

namely,

λ±=−1

2
ν|ξ|2± 1

2

√
ν2|ξ|4−4|ξ|2. (2.5)

The representation of Ĝ was derived in [7]. For Ĝ(t,ξ), we have the following two
lemmas, which present pointwise estimates for the low-frequency case and the high-
frequency case respectively.

Lemma 2.1. Assume Ĝ(t,ξ) is given by (2.4). Then for any R>0 and |ξ|≤R, there
exists α>0 such that

|Ĝ(t,ξ)|≲e−α|ξ|
2t (2.6)

with the implicit constant depending on R.

Lemma 2.2. Let Ĝ(t,ξ) be defined by (2.4). Then there exists R0>0 sufficiently large
such that

|Ĝ(t,ξ)|≲e−βt, β :=min{1
ν
, µ0R

2
0} (2.7)
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|∇Ĝ(t,ξ)|≲e− 1
2ν t|ξ|−2+e−

µ0
2 |ξ|2t|ξ|−1, (2.8)

|∆Ĝ(t,ξ)|≲e− 1
2ν t|ξ|−3+e−

µ0
2 |ξ|2t|ξ|−2 (2.9)

for |ξ|>R0.

Estimates in Lemma 2.1 and Lemma 2.2 are actually obtained in [7]. To make the
paper self-contained, we give the proof in the appendix. Here, Lemma 2.2 is proved
in a more straightforward way. In particular, we remark that applying the weighted
inequality (2.13) below, L∞ decay bound for the linear solution (2.3) can be established

only using up to second order derivative estimates for Ĝ.

Theorem 2.1. For any t>0 and multi-index γ, we have

∥DγetB(∇)U0∥L2(R3)≲ t
−3/4−|γ|/2(∥U0∥L1(R3)+∥DγU0∥L2(R3)), (2.10)

∥DγetB(∇)U0∥L∞(R3)≲ t
−3/2−|γ|/2(∥U0∥L1(R3)+∥DγU0∥L∞(R3)). (2.11)

Proof. Let R0 be determined by Lemma 2.2. According to (2.3), we use
Plancherel’s identity and (2.6)–(2.7) to obtain

∥DγetB(∇)U0∥2L2 =

∫
R3

|Ĝ(t,ξ)|2|D̂γU0(ξ)|2dξ

=

∫
|ξ|≤R0

|Ĝ(t,ξ)|2|D̂γU0(ξ)|2dξ+
∫
|ξ|>R0

|Ĝ(t,ξ)|2|D̂γU0(ξ)|2dξ

≲
∫
|ξ|≤R0

|ξ|2|γ|e−2α|ξ|2t|Û0(ξ)|2dξ+
∫
|ξ|>R0

e−2βt|D̂γU0(ξ)|2dξ

≲∥Û0(ξ)∥2L∞

∫
R3

|ξ|2|γ|e−2α|ξ|2tdξ+e−2βt∥DγU0∥2L2

≲ t−3/2−|γ|∥U0∥2L1 +e−2βt∥DγU0∥2L2 .

Hence, the desired estimate (2.10) follows.
To prove (2.11), we introduce a smooth cut-off function ψ(r) defined by

ψ(r)=

{
1, |r|≤R0,
0, |r|>R0+1,

then we decompose G into

G=GL+GH

with

ĜL= Ĝ(t,ξ)ψ(|ξ|), ĜH = Ĝ(t,ξ)(1−ψ(|ξ|)).

For the low frequency part, we use Hausdorff-Young inequality and (2.6) to obtain

∥Dγ(GL ∗U0)∥L∞ ≲∥|ξ||γ|ĜL · Û0∥L1

≲∥|ξ||γ|ĜL∥L1∥Û0∥L∞

≲∥|ξ||γ|e−α|ξ|
2t∥L1∥U0∥L1

≲ t−3/2−|γ|/2∥U0∥L1 . (2.12)
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For the high frequency part, applying the weighted inequality (see [1, Lemma 2.1])

∥f∥L1(R3)≲∥xf∥1/2L2(R3)∥|x|
2f∥1/2L2(R3), (2.13)

which together with the estimates (2.8) and (2.9) yield that

∥Dγ(GH ∗U0)∥L∞ ≲∥GH∥L1∥DγU0∥L∞

≲∥xGH∥1/2L2 ∥|x|2GH∥1/2L2 ∥DγU0∥L∞

≲ t−
1
8 e−θt∥DγU0∥L∞ (2.14)

for some θ>0. Hence, the desired estimate (2.11) follows from (2.12) and (2.14).

The last equation in (2.1) is a Schrödinger equation, and it is known that (see, for
example, [2]) for p∈ [2,+∞],

∥eiκt∆f∥Lp(R3)≲
1

t3(1/2−1/p)
∥f∥Lp′ (R3),

1

p
+

1

p′
=1, κ :=

3

2ε
. (2.15)

2.2. Strategy of the proof. In order to prove the main theorem, we define the
following norms associated to the work space (recall that U =(ρ,u)t)

∥U∥XT
:= sup

t∈[0,T )

(
∥U∥HN +(1+ t)5/4∥∇U∥W 1,∞

+(1+ t)3/4−δ∥U∥L2 +(1+ t)5/4∥∆U∥L2

)
,

∥E∥YT
:= sup

t∈[0,T )

(
∥E∥HN +∥xf∥L2 +(1+ t)−1/2∥|x|2f∥L2

)
,

where δ>0 is sufficiently small, and set

AT :=∥U∥XT
+∥E∥YT

. (2.16)

Note that in the norm ∥E∥YT
, f denotes the the profile of E, namely,

f :=e−iκt∆E,

which yields ∥f∥Hs =∥E∥Hs for all s∈R, and

ft=e
−iκt∆(Et− iκ∆E)=− iκ

3
e−iκt∆((n−1)E). (2.17)

The introduction of weighted norms for the profile f in space YT is crucial, which in
turn controls the decay estimates for E. Indeed, using (2.13) and (2.15), one sees that

∥E∥L∞ =∥eiκt∆f∥L∞ ≲min{1,t−3/2}∥f∥L1∩H2 ≲ (1+ t)−5/4∥E∥YT
. (2.18)

Meanwhile, by Gagliardo-Nirenberg inequality, the above work space also implies

∥U∥L∞ ≲∥U∥1/4L2 ∥∆U∥3/4L2 ≲ (1+ t)−9/8+δ/4AT , (2.19)

∥∇U∥L2 ≲∥U∥1/2L2 ∥∆U∥1/2L2 ≲ (1+ t)−1+δ/2AT . (2.20)

In the following sections, our main attention is to prove the key a priori estimate

AT ≲ ϵ0+A
3/2
T , (2.21)
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where ϵ0 is related to the size of initial data, and the implicit constant in (2.21) is
independent of T . Then applying the standard continuation argument, we finally obtain
the existence of global solution as stated in Theorem 1.1 which satisfies A∞≲ ϵ0. As
shown in the definition of the work space, the proof will consist of higher order energy
estimate and lower order decay estimate. Using the dissipative structure of the fluid
equation, loss of derivatives can be avoided by means of integration by parts, and closed
energy estimate is obtained in the next section.

To derive decay estimates, we use Duhamel’s principle to obtain

U(t,x)=etB(∇)U0(x)+

∫ t

0

e(t−s)B(∇)F (U(s,x))ds, (2.22)

E(t,x)=eiκt∆E0(x)−
iκ

3

∫ t

0

eiκ(t−s)∆ρ(s,x)E(s,x)ds, (2.23)

where the nonlinear term F (U) :=(F1(U),F2(U))t with

F1(U) :=−∇·(ρu), (2.24)

F2(U) :=µ0(
1

1+ρ
−1)∆u+µ1(

1

1+ρ
−1)∇(∇·u)

−(
1

1+ρ
−1)∇ρ−(u ·∇)u− 1

1+ρ
∇|E|2. (2.25)

When applying (2.10)–(2.11) to estimate decay norms for U , one may see that the
problematic term comes from the coupled electric term in (2.25), i.e., 1

1+ρ∇|E|2. Indeed,
using (2.10)–(2.11) forces us to estimate L1 norm of the term 1

1+ρ∇|E|2, which is nearly

equal to ∇|E|2 if one ignores cubic and higher order terms. However, Hölder’s estimate
such as L2×L2 type does not work here since there is no decay estimate for E or ∇E
in L2. To overcome this difficulty, we use the idea of the works [6, 8, 13] (see also [1])
and take advantage of the weighted norm for E as introduced in (2.16). Taking Fourier
transform for this term yields that

∇̂|E|2(s,ξ)= iξ

∫
R3

Ê(s,ξ−η) ˆ̄E(s,η)dη

=iξ

∫
R3

eiκsφ(ξ,η)f̂(s,ξ−η) ˆ̄f(s,η)dη, (2.26)

where the phase φ(ξ,η) is given by

φ(ξ,η)=−|ξ−η|2+ |η|2. (2.27)

A key observation is that the derivative nonlinear structure in (2.26) provides a null
resonance form for φ, namely,

∇ηφ=2ξ, (2.28)

we then use this identity to integrate (2.26) by parts in η and obtain extra decay factors
which are sufficient to derive desired bound for the term ∥∇|E|2∥L1 . See Section 4 for
the detailed proof of decay estimates.

Now it remains to establish weighted estimates for the electric filed E, which are
given in Section 5. To this end, we deduce from (2.23) or (2.17) that

f(t,x)=f(0,x)− iκ

3

∫ t

0

e−iκs∆ρ(s,x)(eiκs∆f(s,x))ds,
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and in frequency space,

f̂(t,ξ)= f̂(0,ξ)− iκ

3

∫ t

0

∫
R3

eiκsφ̃(ξ,η)ρ̂(s,η)f̂(s,ξ−η)dηds, (2.29)

where

φ̃(ξ,η) := |ξ|2−|ξ−η|2. (2.30)

Although applying operator ∇ξ (or ∆ξ) to (2.29) will produce extra growth factor s (or
even s2), we note that the Lp decay property for fluid equation would eliminate nicely
some of these growth factors and eventually lead to the desired estimates for xf and
|x|2f .

3. Energy estimate of the solution
We show the energy estimate for system (1.1) in this section. During the proof, we

need the following calculus inequalities [12, Lemma 3.4].

Lemma 3.1. Assume m is a nonnegative integer, then for all u,v∈L∞(R3)∩Hm(R3),
we have

∥uv∥Hm ≲∥u∥Hm∥v∥L∞ +∥u∥L∞∥v∥Hm , (3.1)∑
0≤|γ|≤m

∥Dγ(uv)−u(Dγv)∥L2 ≲∥∇u∥L∞∥v∥Hm−1 +∥u∥Hm∥v∥L∞ . (3.2)

Proposition 3.1. Assume that (ρ=n−1,u,E)∈C([0,T );HN ×HN ×HN ) is a smooth
solution of system (1.1) satisfying AT ≪1, where AT is defined by (2.16). Then there
holds

sup
t∈[0,T )

∥(ρ(t,x),u(t,x),E(t,x))∥HN ≲∥(ρ0(x),u0(x),E0(x))∥HN +A
3/2
T , (3.3)

where the implicit constant C is independent of T .

Proof. System (1.1) admits the following energy identities:

d

dt

∫
R3

ρdx=0, (3.4)

d

dt

∫
R3

|E|2dx=0, (3.5)

d

dt
M+µ0

∫
R3

|∇u|2dx+µ1

∫
R3

|∇·u|2dx=0 (3.6)

with

M :=
1

2

∫
R3

n|u|2dx+
∫
R3

|∇E|2dx+
∫
R3

(n−1)|E|2dx+
∫
R3

n lnndx.

Since

n lnn=(1+ρ)ln(1+ρ)=ρ+
1

2
ρ2+O(ρ3),
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we then deduce from (3.4)–(3.6) that

∥(ρ,u)∥L2 +∥E∥H1 +

∫ t

0

∫
R3

|∇u(s,x)|2dxds≲∥(ρ0,u0)∥L2 +∥E0∥H1 . (3.7)

Therefore, it remains to prove (3.3) for the highest order of derivative.
Let γ be a multi-index satisfying |γ|=N . The density equation of (1.1) implies that

ρt+∇·u+∇·(ρu)=0, (3.8)

and performing energy estimate for this equation gives

1

2

d

dt

∫
R3

|Dγρ|2dx+
∫
R3

Dγ(∇·u)Dγρdx+

∫
R3

Dγ∇·(ρu)Dγρdx=0. (3.9)

Meanwhile, taking energy estimate for the momentum equation of (1.1) yields that∫
R3

Dγ(nut)D
γudx+

∫
R3

Dγ(n(u ·∇)u)Dγudx

=−µ0

∫
R3

|Dγ∇u|2dx−µ1

∫
R3

|Dγ(∇·u)|2dx

−
∫
R3

Dγ∇|E|2Dγudx−
∫
R3

Dγ∇nDγudx. (3.10)

Note that the second term in (3.9) cancels the last term in (3.10) since ∇n=∇ρ.
The third term in (3.9) can be decomposed as∫

R3

Dγ∇·(ρu)Dγρdx=

∫
R3

Dγ(ρ(∇·u))Dγρdx+

∫
R3

Dγ(∇ρ ·u)Dγρdx

=: I1+I2. (3.11)

By (3.1), we have

|I1|≤∥Dγ(ρ(∇·u))∥L2∥Dγρ∥L2

≲ (∥ρ∥HN ∥∇u∥L∞ +∥ρ∥L∞∥∇u∥HN )∥Dγρ∥L2

≲ (1+ t)−5/4A3
T +(1+ t)−9/8+δ/4A2

T ∥∇u∥HN

≲ (1+ t)−5/4A3
T + ϵ̃∥∇u∥2HN , (3.12)

and by (3.2),

|I2|≤
∣∣∣∣∫

R3

[Dγ(∇ρ ·u)−((Dγ∇ρ) ·u)]Dγρdx

∣∣∣∣+ ∣∣∣∣∫
R3

((Dγ∇ρ) ·u)Dγρdx

∣∣∣∣
≲ (∥ρ∥HN ∥∇u∥L∞ +∥∇ρ∥L∞∥u∥HN )∥Dγρ∥L2 +∥∇u∥L∞∥Dγρ∥2L2

≲ (1+ t)−5/4A3
T . (3.13)

Hence, one sees from (3.11)–(3.13) that∣∣∣∣∫
R3

Dγ∇·(ρu)Dγρdx

∣∣∣∣≲ (1+ t)−5/4A3
T + ϵ̃∥∇u∥2HN . (3.14)
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Similarly, we can obtain∣∣∣∣−∫
R3

Dγ∇|E|2Dγudx

∣∣∣∣= ∣∣∣∣∫
R3

Dγ |E|2Dγ∇·udx
∣∣∣∣

≲∥Dγ |E|2∥L2∥Dγ∇·u∥L2

≲∥E∥L∞∥E∥HN ∥∇u∥HN

≲ (1+ t)−5/2A4
T + ϵ̃∥∇u∥2HN . (3.15)

For the first term in (3.10), we treat it as∫
R3

Dγ(nut)D
γudx=

∫
R3

[Dγ(nut)−nDγut]D
γudx+

∫
R3

nDγutD
γudx

=

∫
R3

[Dγ(nut)−nDγut]D
γudx+

1

2

∫
R3

n|Dγu|2tdx (3.16)

with∣∣∣∣∫
R3

[Dγ(nut)−nDγut]D
γudx

∣∣∣∣≲ (∥n∥HN ∥ut∥L∞ +∥∇n∥L∞∥ut∥HN−1)∥Dγu∥L2

≲ (1+ t)−5/4A3
T + ϵ̃∥∇u∥2HN , (3.17)

where we have used the following estimates in the last step

∥ut∥L∞ =∥−(u ·∇)u+n−1(µ0∆u+µ1∇(∇·u)−∇|E|2−∇n)∥L∞

≲ (1+ t)−5/4AT ,

∥ut∥HN−1 ≲∥∇u∥HN +AT .

In a similar way, we have∫
R3

Dγ(n(u ·∇)u)Dγudx

=

∫
R3

[Dγ((nu ·∇)u)−(nu ·∇)Dγu]Dγudx+

∫
R3

(nu ·∇)DγuDγudx

=

∫
R3

[Dγ((nu ·∇)u)−(nu ·∇)Dγu]Dγudx+
1

2

∫
R3

nt|Dγu|2dx (3.18)

with ∣∣∣∣∫
R3

[Dγ((nu ·∇)u)−(nu ·∇)Dγu]Dγudx

∣∣∣∣
≲(∥nu∥HN ∥∇u∥L∞ +∥∇(nu)∥L∞∥u∥HN )∥Dγu∥L2

≲(1+ t)−19/8+δ/4A4
T . (3.19)

Combining (3.9), (3.10) and (3.14)–(3.19), one sees

1

2

d

dt

(∫
R3

(|Dγρ|2+n|Dγu|2)dx
)
+µ0∥Dγ∇u∥2L2 +µ1∥Dγ∇·u∥2L2

≲(1+ t)−5/4A3
T + ϵ̃∥∇u∥2HN . (3.20)
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Finally, we take energy estimate for the Schrödinger equation in (1.1) and obtain

ε
d

dt

∫
R3

|DγE|2dx=Im

∫
R3

Dγ(ρE)DγEdx

≲ (∥ρ∥L∞∥DγE∥L2 +∥Dγρ∥L2∥E∥L∞)∥DγE∥L2

≲ (1+ t)−9/8+δ/4A3
T . (3.21)

Integrating (3.20)-(3.21) in time and summing over |γ|=N , then the desired bound
(3.3) follows from (3.7) and the above two estimates by choosing ϵ̃ sufficiently small.

4. Decay estimates for U
This section deals with the L∞ and L2 decay estimates for U . Recall the represen-

tation (2.22) for U , that is,

U(t,x)=etB(∇)U0(x)+

∫ t

0

e(t−s)B(∇)F (U(s,x))ds, (4.1)

where F (U) denotes the nonlinear term defined in (2.24)–(2.25). Note that F (U) has at
least quadratic nonlinearity with at most two derivatives on U . As we will see later, the
coupled term ∇|E|2 in the momentum equation will affect nonlinear decay rate. Decay
estimates for this term are very important in our analysis. In particular, we remark that
the derivative nonlinear structure in the argument is crucial. We first give the following
key lemma.

Lemma 4.1. Assume (U,E)∈C([0,T );HN ×HN ) satisfies system (1.1) with T >0. If
AT ≪1, then there hold

∥F (U(t,x))∥L1 ≲ (1+ t)−1A2
T , (4.2)

∥∇F (U(t,x))∥L1 ≲ (1+ t)−11/8+δA2
T , (4.3)

∥F (U(t,x))∥W 1,∞ ≲ (1+ t)−5/4A2
T , (4.4)

∥F (U(t,x))∥H2 ≲ (1+ t)−5/4A2
T . (4.5)

Proof. For small t such as 0<t≤1, we have 1+ t∼1, so the estimates (4.2)–(4.5)
follows directly from the definition of F (U) by Hölder inequality and Sobolev inequality
only using the following energy bounds

∥U∥HN ≲AT , ∥E∥HN ≲AT . (4.6)

Hence without loss of generality, we may assume t>1 and thus 1+ t∼ t.
Since

1

1+ρ
−1=−ρ+ρ2−ρ3+ ·· ·=ρ+O(ρ), (4.7)

then using the decay bounds coming from the definition AT ,

∥U∥L2 ≲ t−3/4+δAT , ∥∇U∥L2 ≲ t−1+δ/2AT , ∥∆U∥L2 ≲ t−5/4AT , (4.8)

we see that all the terms (see (2.24) and (2.25)) in F (U) except the term ∇|E|2 can be
treated by Cauchy-Schwarz inequality,

∥∇·(ρu)∥L1 ≲∥∇ρ∥L2∥u∥L2 +∥ρ∥L2∥∇u∥L2 ≲ t−7/4+3δ/2A2
T ,
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∥(u ·∇)u∥L1 ≲∥u∥L2∥∇u∥L2 ≲ t−7/4+3δ/2A2
T ,

∥( 1

1+ρ
−1)∇ρ∥L1 ≲∥ρ∥L2∥∇ρ∥L2 ≲ t−7/4+3δ/2A2

T ,

∥( 1

1+ρ
−1)∆u∥L1 ≲∥ρ∥L2∥∆u∥L2 ≲ t−2+δA2

T ,

∥ 1

1+ρ
∇|E|2∥L1 ≲∥∇|E|2∥L1 .

So in order to show (4.2), it suffices to prove

∥∇|E|2(t,x)∥L1 ≲ t−1A2
T . (4.9)

From (2.26), we have

∇̂|E|2(t,ξ)= i

∫
R3

ξeiκtφ(ξ,η)f̂(t,ξ−η) ˆ̄f(t,η)dη

=
1

2κt

∫
R3

∇ηe
iκtφ(ξ,η)f̂(t,ξ−η) ˆ̄f(t,η)dη, (4.10)

where we have used the null resonance condition of φ (∇ηφ=2ξ) in the second equality.
We integrate (4.10) by part in η to obtain

∇̂|E|2(t,ξ)=− 1

2κt

∫
R3

eiκtφ(ξ,η)∇η f̂(t,ξ−η) ˆ̄f(t,η)dη

− 1

2κt

∫
R3

eiκtφ(ξ,η)f̂(t,ξ−η)∇η
ˆ̄f(t,η)dη.

Returning back to the physical space yields

∇|E|2= i

2κt
[eiκt∆(xf) · Ē+E ·e−iκt∆(xf̄)]

from which we can get

∥∇|E|2∥L1 ≲ t−1∥E∥L2∥xf∥L2 ≲ t−1A2
T .

Hence, the bound (4.9) is proved.
The proof for (4.3) is similar. By (4.8), (2.18) and the bound

∥∇∆u∥L2 ≲∥∆u∥1/2L2 ∥D4u∥1/2L2 ≲ t−5/8A2
T ,

it is easy to see that for j=1,2,3,

∥∂xj∇·(ρu)∥L1 ≲∥∆ρ∥L2∥u∥L2 +∥ρ∥L2∥∆u∥L2 +∥∇ρ∥L2∥∇u∥L2 ≲ t−2+δA2
T ,

∥∂xj
(u ·∇)u∥L1 ≲∥u∥L2∥∆u∥L2 +∥∇u∥2L2 ≲ t−2+δA2

T ,

∥∂xj [(
1

1+ρ
−1)∇ρ]∥L2 ≲∥ρ∥L2∥∆ρ∥L2 +∥∇ρ∥2L2 ≲ t−2+δA2

T ,

∥∂xj
[(

1

1+ρ
−1)∆u]∥L1 ≲∥∇ρ∥L2∥∆u∥L2 +∥ρ∥L2∥∇∆u∥L2 ≲ t−11/8+δA2

T ,

∥∂xj
(

1

1+ρ
∇|E|2)∥L1 ≲∥∂xj

∇|E|2∥L1 +∥∂xj
ρ∇|E|2∥L1
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≲∥∂xj∇|E|2∥L1 +∥∇ρ∥L2∥E∥L∞∥∇E∥L2

≲∥∂xj
∇|E|2∥L1 + t−9/4+δ/2A2

T .

For the term including the electric field, we obtain from (2.26)

F [∂xj
∇|E|2](t,ξ)=−

∫
R3

ξξje
iκtφ(ξ,η)f̂(t,ξ−η) ˆ̄f(t,η)dη.

Using the derivative structure and (2.27)–(2.28), we integrate by part twice in ηj and
η, then there holds

F [∂xj
∇|E|2](t,ξ)= 1

4κ2t2

∫
R3

eiκtφ(ξ,η)∇η∇ηj f̂(t,ξ−η) ˆ̄f(t,η)dη

+
1

4κ2t2

∫
R3

eiκtφ(ξ,η)∇ηj f̂(t,ξ−η)∇η
ˆ̄f(t,η)dη

+
1

4κ2t2

∫
R3

eiκtφ(ξ,η)∇η f̂(t,ξ−η)∇ηj
ˆ̄f(t,η)dη

+
1

4κ2t2

∫
R3

eiκtφ(ξ,η)f̂(t,ξ−η)∇η∇ηj
ˆ̄f(t,η)dη,

so it can be seen that

∥∂xj∇|E|2∥L1 ≲ t−2∥eiκt∆(xxjf)∥L2∥Ē∥L2

+ t−2∥eiκt∆(xjf)∥L2∥e−iκt∆(xf̄)∥L2

+ t−2∥eiκt∆(xf)∥L2∥e−iκt∆(xj f̄)∥L2

+ t−2∥E∥L2∥e−iκt∆(xxj f̄)∥L2

≲ t−2(∥|x|2f∥L2∥E∥L2 +∥xf∥2L2)

≲ t−3/2A2
T .

Therefore, the bound (4.3) follows from the above estimates. Note that we need one
extra derivative to produce better decay rate.

From (4.8) and the L∞ decay bounds

∥U∥L∞ ≲ t−9/8+δ/4AT , ∥∇U∥W 1,∞ ≲ t−5/4AT , (4.11)

it is easily to obtain the bounds (4.4) and (4.5) by using Hölder inequality and Sobolev
inequality (note that the worst bound comes from the coupled term). We skip the
details here for simplicity.

Proposition 4.1. Assume (U,E)∈C([0,T );HN ×HN ) satisfies system (1.1) with
T >0. If AT ≪1, then we have

(1+ t)−5/4∥∇U∥W 1,∞ ≲∥U0(x)∥L1∩H4 +A2
T , (4.12)

for all t∈ [0,T ), where the implicit constant is independent of T .

Proof. From (2.6) and (2.7), one sees etB(∇) is a bounded linear operator from
Hk to Hk,

∥etB(∇)∥L(Hk→Hk)≲1. (4.13)
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So for small t such as 0<t≤1, we use (4.6), (4.13) and Sobolev embedding H2(R3) ↪→
L∞(R3) to obtain

∥∇U∥W 1,∞ ≲∥etB(∇)∇U0∥W 1,∞ +

∫ t

0

∥e(t−s)B(∇)∇F (U)∥W 1,∞ds

≲∥U0∥H4 +

∫ 1

0

∥F (U)∥H4ds

≲∥U0∥H4 +A2
T .

Since in this case 1+ t∼1, we thus obtain the bound (4.12).
From now on we assume t>1. Decompose the expression for ∇U as

∇U(t,x)=etB(∇)∇U0(x)+

∫ 1

0

e(t−s)B(∇)∇F (U(s,x)ds

+

∫ t

1

e(t−s)B(∇)∇F (U(s,x)ds. (4.14)

From the linear estimate (2.11), we see

∥etB(∇)∇U0∥L∞ ≲ t−2∥U0∥L1∩L∞ . (4.15)

Also, from (2.11), there holds∥∥∥∥∫ 1

0

e(t−s)B(∇)∇F (U)ds

∥∥∥∥
W 1,∞

≲
∫ 1

0

1

(t−s)2
∥F (U)∥L1∩W 1,∞ds

≲
∫ 1

0

1

(t−s)2
A2
T ds

≲
1

(t−1)2
A2
T

∼ 1

t2
A2
T , (4.16)

where we have used the following rough bounds

∥F (U)∥L1 ≲A2
T , ∥F (U)∥W 1,∞ ≲A2

T .

To estimate the third term in (4.14), we use (2.11) and Lemma 4.1 to get∥∥∥∥∫ t

1

e(t−s)B(∇)∇F (U)ds

∥∥∥∥
L∞

≲
∫ t

1

1

(t−s)3/2
∥∇F (U)∥L1∩L∞ds

≲
∫ t

1

1

(t−s)3/2
· 1

s5/4
A2
T ds

≲A2
T

∫ t/2

1

1

(t−s)3/2
· 1

s5/4
ds

+A2
T

∫ t

t/2

1

(t−s)3/2
· 1

s5/4
ds

≲
1

t5/4
A2
T , (4.17)
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and ∥∥∥∥∫ t

1

e(t−s)B(∇)∂xj
∇F (U)ds

∥∥∥∥
L∞

≲
∫ t

1

1

(t−s)2
∥∇F (U)∥L1∩L∞ds

≲
∫ t

1

1

(t−s)2
· 1

s5/4
A2
T ds

≲
1

t5/4
A2
T . (4.18)

Therefore, the desired bound (4.12) follows from the estimates (4.14)–(4.18).

With a similar argument as above, we can obtain L2-type decay estimates.

Proposition 4.2. Under the same assumptions as Proposition 4.1, there hold that

sup
t∈[0,T )

(1+ t)3/4−δ∥U(t,x)∥L2 ≲∥U0∥L1∩L2 +A2
T , (4.19)

sup
t∈[0,T )

(1+ t)5/4∥∆U(t,x)∥L2 ≲∥U0∥L1∩Ḣ2 +A
2
T , (4.20)

where the implicit constant is independent of T .

Proof. As shown in Proposition 4.1, without loss of generality, we may assume
t>1. Also, we only consider the time integral form 1 to t. One sees from (2.10) with
|γ|=0, (4.2) and (4.5) that∥∥∥∥∫ t

1

e(t−s)B(∇)F (U)ds

∥∥∥∥
L2

≲
∫ t

1

1

(t−s)3/4
∥F (U)∥L1∩L2ds

≲
∫ t

1

1

(t−s)3/4
· 1
s
A2
T ds

≲
1

t3/4−δ
A2
T ,

which yields (4.19) as desired.
From (4.1), we have

∆U(t,x)=etB(∇)∆U0(x)+

∫ t

0

e(t−s)B(∇)∆F (U(s,x))ds, (4.21)

so using (2.10) with |γ|=2, there holds

∥etB(∇)∆U0(x)∥L2 ≲
1

t7/4
∥U0∥L1∩Ḣ2 . (4.22)

For the Duhamel’s term, we use (2.10) with |γ|=1, (4.3) and (4.5) to obtain∥∥∥∥∫ t

1

e(t−s)B(∇)∆F (U)ds

∥∥∥∥
L2

≲
∫ t

1

1

(t−s)5/4
∥∇F (U)∥L1∩Ḣ1ds

≲
∫ t

1

1

(t−s)5/4
· 1

s5/4
A2
T ds

≲
1

t5/4
A2
T . (4.23)

Thus, the bound (4.20) follows from (4.21)–(4.23).
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5. Weighted estimates for E
Now we prove the weighted estimates for the profile of E, which can control the L∞

decay estimate as shown in (2.18). Recall the expression (2.29), i.e.,

f̂(t,ξ)= f̂(0,ξ)− iκ

3

∫ t

0

∫
R3

eiκsφ̃(ξ,η)ρ̂(s,η)f̂(s,ξ−η)dηds

=: f̂(0,ξ)+N̂ (t,ξ) (5.1)

with

φ̃(ξ,η) := |ξ|2−|ξ−η|2=2ξ ·η−|η|2. (5.2)

The main result of this section is stated as follows.

Proposition 5.1. Let (ρ,u,E) be the solution of system (1.1) on [0,T )×R3 with
T >0. If AT ≪1, then we have

sup
t∈[0,T )

(∥xf∥L2 +(1+ t)−1/2∥|x|2f∥L2)≲∥xE0∥L2 +∥|x|2E0∥L2 +A2
T . (5.3)

Proof. We first note that if xE0, |x|2E0∈L2, then as the argument shown in [15],
we can obtain xf, |x|2f ∈C([0,T );HN ). Since f :=e−iκt∆E, one has

∥xf(0,x)∥L2 =∥xE0(x)∥L2 , ∥|x|2f(0,x)∥L2 =∥|x|2E0(x)∥L2 .

Hence, in order to prove (5.3), we only need to show

sup
t∈[0,T )

(∥xN (t,x)∥L2 +(1+ t)−1/2∥|x|2N (t,x)∥L2)≲A2
T . (5.4)

As shown in Section 4, we can easily treat with the case 0≤ t≤1 or the contribution
of the time integral from 0 to 1. So without loss of generality, we may assume t>1 and
only consider the contribution coming from the time integral in the interval [1,t]. We
now denote

N̂ ′(t,ξ) :=− iκ

3

∫ t

1

∫
R3

eiκsφ̃(ξ,η)ρ̂(s,η)f̂(s,ξ−η)dηds. (5.5)

Applying ∇ξ to N̂ ′ gives

∇ξN̂ ′=− iκ

3

∫ t

1

∫
R3

∇ξe
iκsψ̃ρ̂(η)f̂(ξ−η)dηds− iκ

3

∫ t

1

∫
R3

eisκψ̃ρ̂(η)∇ξ f̂(ξ−η)dηds

=
2κ2

3

∫ t

1

∫
R3

seiκsψ̃ηρ̂(η)f̂(ξ−η)dηds− iκ

3

∫ t

1

∫
R3

eisκψ̃ρ̂(η)∇ξ f̂(ξ−η)dηds,

then we use the Hölder inequality to obtain

∥xN ′∥L2 =∥∇ξN̂ ′∥L2

≲
∫ t

1

s∥∇ρ∥L2∥E∥L∞ds+

∫ t

1

∥ρ∥L∞∥xf∥L2ds

≲A2
T

∫ t

1

s

(1+s)9/4−δ/2
ds+A2

T

∫ t

1

1

(1+s)9/8−δ/4
ds≲A2

T . (5.6)
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Furthermore, taking ∆ξ to (5.5), we get

∆ξN̂ ′=K1+K2+K3, (5.7)

where

K1=
4iκ3

3

∫ t

1

∫
R3

s2eiκsψ̃|η|2ρ̂(η)f̂(ξ−η)dηds,

K2=
4κ2

3

∫ t

1

∫
R3

seiκsψ̃ηρ̂(η) ·∇ξ f̂(ξ−η)dηds,

K3=− iκ

3

∫ t

1

∫
R3

eiκsψ̃ρ̂(η)∆ξ f̂(ξ−η)dηds.

The term K1 is estimated by a direct L2×L∞ estimate

∥K1∥L2 ≲
∫ t

1

s2∥∆ρ∥L2∥E∥L∞ds

≲A2
T

∫ t

1

s2

(1+s)5/2
ds

≲ (1+ t)1/2A2
T , (5.8)

and term K3 is estimated by L∞×L2 type estimate

∥K3∥L2 ≲
∫ t

1

∥ρ∥L∞∥|x|2f∥L2ds

≲A2
T

∫ t

1

(1+s)1/2

(1+s)9/8−δ/4
ds

≲ (1+ t)3/8+δ/4A2
T . (5.9)

To estimate the middle term, we first note that, by interpolation,

∥∇ρ∥L4 ≲∥∇ρ∥1/4L2 ∥∆ρ∥3/4L2 ≲
1

(1+s)19/16−δ/8
A2
T

and by (2.15),

∥eiκs∆(xf)∥L4 ≲
1

(1+s)3/4
∥xf∥L4/3

≲
1

(1+s)3/4
∥xf∥1/4L2 ∥|x|2f∥3/4L2

≲
1

(1+s)3/8
AT ,

then using L4×L4 type estimate gives

∥K2∥L2 ≲
∫ t

1

s∥∇ρ∥L4∥eiκs∆(xf)∥L4ds

≲A2
T

∫ t

1

s

(1+s)25/16−δ/8
ds
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≲ (1+ t)7/16+δ/8A2
T . (5.10)

Inserting estimates (5.8)–(5.10) into (5.7), we obtain

∥|x|2N ′∥L2 =∥∆ξN̂ ′∥L2 ≲ (1+ t)1/2A2
T ,

which together with (5.6) yield the bound (5.4) as desired. This ends the proof of
Proposition 5.1.

Finally, combining Proposition 3.1, Proposition 4.1, Proposition 4.2 and Proposition
5.1, we thus obtain the desired bound (2.21).

Acknowledgments. This work is supported by the NSFC grants 11771183,
11971068, 11971503.

Appendix.

In this appendix, we prove Lemma 2.1 and Lemma 2.2.

Proof. (Proof of Lemma 2.1.) Recall (2.4) for the representation of Ĝ(t,ξ). For
sake of simplicity, we denote

Ĝ1(t,ξ) :=
λ+e

λ−t−λ−eλ+t

λ+−λ−
,

Ĝ2(t,ξ) :=−i
eλ+t−eλ−t

λ+−λ−
ξt,

Ĝ3(t,ξ) :=−i
eλ+t−eλ−t

λ+−λ−
ξ,

Ĝ4(t,ξ) :=e
−µ0|ξ|2t(I3×3−

ξtξ

|ξ|2
)+

λ+e
λ+t−λ−eλ−t

λ+−λ−
ξtξ

|ξ|2
.

Our aim is to show all the above four multipliers satisfy (2.6). Since

ν2|ξ|4−4|ξ|2=0⇔|ξ|=0 or |ξ|= r0 :=
2

ν
,

there holds

λ±=

{
− 1

2ν|ξ|
2± i 12 |ξ|

√
4−ν2|ξ|2, |ξ|<r0,

− 1
2ν|ξ|

2± 1
2ν|ξ|

2
√
1− 4

ν2|ξ|2 , |ξ|≥ r0.
(A.1)

We begin to prove (2.6) for the multiplier G2. Notice first that

lim
|ξ|→0

Ĝ2=−i lim
|ξ|→0

1+λ+t+o(λ+t)−(1+λ−t+o(λ−t))

i|ξ|
√
4−ν2|ξ|2

ξt

=−i lim
|ξ|→0

i|ξ|t
√

4−ν2|ξ|2+ |ξ|2t2O(1)

i|ξ|
√
4−ν2|ξ|2

ξt

=0,

then we split this proof into the following three cases.

Case 1: 0< |ξ|< 9
10r0 and |ξ|<R. From (A.1), this case implies

|eλ+t|= |eλ−t|=e− 1
2ν|ξ|

2t,
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thus we see

|Ĝ2|≤
|eλ+t|+ |eλ−t|
|ξ|

√
4−ν2|ξ|2

|ξt|≲e− 1
2ν|ξ|

2t.

Case 2: 9
10r0≤|ξ|≤ 11

10r0 and |ξ|<R (we may assume 9
10r0<R, otherwise this case

does not exist). We use mean-valued theorem to get

eλ+t−eλ−t=e(θλ++(1−θ)λ−)t(λ+−λ−)t, θ∈ (0,1).

So if |ξ|<r0, we have

|Ĝ2|=e−
1
2ν|ξ|

2tt|ξ|=e− 1
4ν|ξ|

2t(e−
1
4ν|ξ|

2tt|ξ|2|)|ξ|−1≲e−
1
4ν|ξ|

2t,

and if |ξ|≥ r0, we have

|Ĝ2|=e−
1
2ν|ξ|

2te
1
2ν|ξ|

2
√

1− 4
ν2|ξ|2

(2θ−1)t|ξ|t

≤e− 1
2ν|ξ|

2te
√

21
22 ν|ξ|2t|ξ|t

≲e−
1
4ν|ξ|

2t.

Case 3: r> 11
10r0 and |ξ|<R (one can again assume 11

10r0<R, or this case is empty).
In this case, it is easy to see that there exist two constants c1,c2 satisfying

0<c1<1−

√
1− 4

ν2|ξ|2
<c2<1,

11

10
r0< |ξ|<R,

then

eλ+t=e
− 1

2ν|ξ|
2t·(1−

√
1− 4

ν2|ξ|2
)≤e−

c1
2 ν|ξ|

2t.

This bound together with the trivial bound

|eλ−t|≤e− 1
2ν|ξ|

2t

yield

|Ĝ2|≤
|eλ+t|+ |eλ−t|

ν|ξ|2
√
1− 4

ν2|ξ|2
|ξt|≲e−

c1
2 ν|ξ|

2t.

Combining the estimates in Case 1–Case 3, we thus obtain (2.6) for G2. The proof
for G3 is the same since G3=G

t
2. Note that |λ±|≲1 if |ξ|<R and

λ+e
λ−t−λ−eλ+t

λ+−λ−
=eλ+t−λ+ · e

λ+t−eλ−t

λ+−λ−
, (A.2)

λ+e
λ+t−λ−eλ−t

λ+−λ−
=eλ−t+λ+ · e

λ+t−eλ−t

λ+−λ−
, (A.3)

applying similar treatment as G2 for the second term of (A.2) and (A.3), the desired
bound for G1 and G4 thus follows.
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Proof. (Proof of Lemma 2.2.) We first show the estimates (2.7)–(2.9) hold for

Ĝ2. For |ξ|≥R0 with R0 large enough, Taylor’s formula implies√
1− 4

ν2|ξ|2
=1− 2

ν2|ξ|2
− 2

ν4|ξ|4
− 4

ν6|ξ|6
+ ·· · ,

so we have

λ+=−1

ν
− 1

ν3|ξ|2
− 2

ν5|ξ|4
+ ·· · , (A.4)

λ−=−ν|ξ|2+ 1

ν
+

1

ν3|ξ|2
− 2

ν5|ξ|4
+ ·· · , (A.5)

λ+−λ−=ν|ξ|2− 2

ν
− 2

ν3|ξ|2
− 4

ν5|ξ|4
+ ·· · . (A.6)

Let r= |ξ|, from (A.4)–(A.6), it can be seen that

λ+∼−ν−1, λ−∼−νr2, λ+−λ−∼νr2,

λ′+∼2ν−3r−3, λ′−∼−2νr, λ′+−λ′−∼2νr,

λ′′+∼−6ν−3r−4, λ′′−∼−2ν, λ′′+−λ′′−∼2ν.

(A.7)

Define

g(r)=
eλ+t−eλ−t

λ+−λ−
,

using the bounds in (A.7), a direct computation gives

|g(ξ)|= |g(r)|≲ e−
1
ν t+e−νr

2t

r2
,

|∇g(ξ)|≤ |g′(r)|≲ e−
1
2ν t+e−

ν
2 r

2t

r3
,

|∆g(ξ)|= |g′′(r)+ 2

r
g′(r)|≲ e−

1
2ν t+e−

ν
2 r

2t

r4
.

(A.8)

Since Ĝ2=−ig(ξ)ξt, one can easily see

|Ĝ2|≲ (e−
1
ν t+e−ν|ξ|

2t)|ξ|−1,

|∇Ĝ2|≲ (e−
1
2ν t+e−

ν
2 |ξ|

2t)|ξ|−2,

|∆Ĝ2|≲ (e−
1
2ν t+e−

ν
2 |ξ|

2t)|ξ|−3.

(A.9)

Clearly, the estimates in (A.9) still hold if we replace Ĝ2 by Ĝ3. In virtue of (A.2) and
(A.3), we use the bounds (A.7), (A.8) and

|eλ+t|≲e− 1
ν t, |∇eλ+t|≲ |ξ|−3e−

1
2ν t, |∆eλ−t|≲ |ξ|−4e−

1
2ν t,

|eλ−t|≲e−ν|ξ|
2t, |∇eλ−t|≲ |ξ|−1e−

ν
2 |ξ|

2t, |∆eλ−t|≲ |ξ|−2e−
ν
2 |ξ|

2t,
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then it is not hard to find that

|Ĝ1|≲ |ξ|−2e−ν|ξ|
2t+e−

1
ν t,

|∇Ĝ1|≲ |ξ|−3e−
ν
2 |ξ|

2t+ |ξ|−3e−
1
2ν t,

|∆Ĝ1|≲ |ξ|−4e−
ν
2 |ξ|

2t+ |ξ|−4e−
1
2ν t

(A.10)

and

|Ĝ4|≲e−µ0|ξ|2t+ |ξ|−2e−
1
ν t,

|∇Ĝ4|≲ |ξ|−1e−
µ0
2 |ξ|2t+ |ξ|−3e−

1
2ν t,

|∆Ĝ4|≲ |ξ|−2e−
µ0
2 |ξ|2t+ |ξ|−4e−

1
2ν t.

(A.11)

Therefore, the desired bounds (2.7)–(2.9) follows from (A.9)–(A.11) clearly.
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